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ABSTRACT
Continuously monitoring a wide variety of performance and
fault metrics has become a crucial part of operating large-
scale datacenter networks. In this work, we ask whether we
can reduce the costs to monitor – in terms of collection, stor-
age and analysis – by judiciously controlling how much and
whichmeasurements we collect. By positing that we can treat
almost all measured signals as sampled time-series, we show
that we can use signal processing techniques such as the
Nyquist-Shannon theorem to avoid wasteful data collection.
We show that large savings appear possible by analyzing
tens of popular measurement systems from a production
datacenter network. We also discuss some challenges that
must be solved when applying these techniques in practice.
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1 INTRODUCTION
High availability guarantees are etched into the service-level
agreements of data centers, and failure to meet them has
signi�cant monetary impact. As a result, data centers deploy
large-scale monitoring systems that continuously monitor
various performance metrics to help quickly identify (or pre-
dict) and alleviate service disruptions. For the most common
class of monitoring systems, typical operation entails period-
ically sampling operational parameters of various data center
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Figure 1: How far above the Nyquist rate current mon-
itoring systems operate on average.
components (e.g., CPU temperatures, packet drops, path la-
tencies); operators collect and analyze these measurements
in real-time or store them for later analysis.
At the scale of modern data centers, monitoring systems

incur signi�cant costs in terms of storage, network band-
width, and CPU resources [2, 9, 16, 25, 26, 32, 35]. For a large
class of measurements, e.g. interface counters, ping laten-
cies, traceroutes, or results from sketches, there is often a
quality versus cost tradeo�. Obtaining measurements more
frequently provides potentially “higher quality” monitoring
but also places greater demands on data center resources, i.e.
has higher costs.

We ask: “what is the right frequency at which a measure-
ment must be taken?” We �nd that measurements are being
conducted at a high frequency, conservatively, and without
the bene�t of a systematic analysis. In our survey of measure-
ments collected from many production monitoring systems
of a large cloud provider, we observe that admins typically
choose to err on the safer side; that is, they collect as much
information as possible subject to some (arbitrarily set) re-
source constraints. They often cannot answer whether the
chosen measurement rate is adequate for the given metric
or whether measuring more (or less) frequently will lead to
better (or no worse) insights? Also, admins often express con-
cern that collecting less information could lead to missing
out on important insights.
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Information theory provides techniques that can help
with this question. For instance, the Nyquist sampling fre-
quency [18] (Nyquist rate) of a bandlimited1 signal deter-
mines the minimum sampling frequency required to cap-
ture the signal without any information loss. Intuitively, the
Nyquist rate is a measure of “how quickly” a signal changes
in time: measurements need not be taken faster than the
underlying value changes.
Our key contribution is a somewhat surprising result ob-

tained after estimating the Nyquist sampling frequencies of a
range of measurements in production data centers— in many
cases, the conservatively chosen sampling rates currently
employed in production are orders of magnitude greater
than their actual Nyquist rates. Figure 1 is a summary of
our observations showing that operators are signi�cantly
over-sampling a diverse set of metrics (methodology in Sec-
tion 3.2). This indicates that many measurements could be
sampled far less frequently, resulting in signi�cant reduction
in monitoring costs with “negligible” loss in information
(see Section 4). In Section 3.2 we quantify this potential cost
reduction on many real-world metrics.
In practice, the Nyquist rate of a measurement may vary

over time or be di�erent at di�erent devices. During rela-
tively quiescent periods, a measurement may not change
“quickly” and a low sampling rate would su�ce. However, at
other periods, the signal may be more dynamic and require
sampling at a higher rate. A practical system must there-
fore continuously analyze the measurements to determine
whether the currently employed sampling rate is su�cient.
It must also be able to track changes in the Nyquist rate
and adapt the measurement rate accordingly. To this end we
propose a dynamic sampling method in Section 4. We show
preliminary results that demonstrate the e�ectiveness of this
approach in our extended version [31].
While signal processing techniques such as compressive

sensing and sparse FFT have been applied before, to our
knowledge, we are unaware of any prior work that applies
the Nyquist principle to �nd appropriate measurement rates
for datacenter metrics. Our initial results are promising and
point to large untapped gains.

2 A PRIMER ON NYQUIST–SHANNON
Signals are functions of one or more independent variables,
with the primary independent variable in most signals being
time. We can further divide these signals into two categories:
continuous- and discrete-time signals where the di�erence is
in the domain of the function. More concretely, continuous-
time signals are functions, 5 (C), where C : R ! R, and
discrete-time signals are functions, 5 () ), where ) : N! R.

1A bandlimited signal is such that the signal and all its derivatives are
continuous in time.
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Frequency Frequency
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Figure 2: Showing the result, in the frequency do-
main, when sampling above and below the Nyquist
rate. Sampling a signal at frequency 51 and reconstruct-
ing it can be thought o�, in the frequency domain, as
adding copies of the signal which are 51 apart.

The outputs of today’s measurement systems are discrete-
time signals. Sampling a signal converts continuous-time sig-
nals into discrete-time signals or down-samples discrete-time
signals to reduce the costs to monitor and store telemetry.
The Fourier transform.We can convert signals from func-
tions over time into functions over frequency. These conver-
sions from the time to frequency domain are lossless. The
procedure to accomplish this translation is the Fourier trans-
form, which produces a function whose magnitude at fre-
quency 5 is the amount of that frequency present in the
original function. An Inverse Fourier Transform converts
the signal back to the time-domain.

The Fast Fourier Transform (FFT) is an e�cient algorithm
that applies over discrete sampled signals. Given an input # ,
the FFT divides the frequency space from 0 to the maximum
frequency in the signal into # discrete bins and computes
the signal power in each bin. The square of these per-bin
magnitudes is the Power Spectral Density (PSD).
Nyquist rates and Fourier transforms in practice. The
Nyquist–Shannon theorem states: if a function G (C) contains
no frequencies higher than 50, then, sampling it at a rate at
or above 250 ensures the original signal can be recovered
completely; we call 250 the Nyquist rate of G (C) [18].
When the sampling frequency is below the nyquist rate,

aliasing occurs (bottom half of Figure 2) which distorts the
PSD and prevents recovering the original signal. Figure 3
demonstrates these e�ects on an example signal.

The implication of this theorem in practice is that when a
monitored signal is sampled at or above the Nyquist rate of
that signal, then operators can rest assured no information is
being lost due to sampling. On the other hand, when aliasing
occurs, the extent of the information loss depends on the
di�erence between the PSD of the aliased signal and that
of the original. The impact of information loss depends on
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Figure 3: A signal and its sampled versions in the frequency domain (top row). The original signal (bottom) is
the superposition of two sin waves at 400 and 440Hz. The time-domain representations of the sampled versions
are reconstructed and upsampled. Variants shown are: (a) the original signal, (b) the signal sampled at above the
Nyquist rate (890Hz), (c) the signal sampled at slightly below the Nyquist rate (800Hz), and (d) the signal sampled
at signi�cantly below the Nyquist rate (600 Hz). Aliasing is observable in the frequency domain of (c) and (d).

the application using the measurements and operators must
determine what level of aliasing (if any) is acceptable.

3 QUANTIFYING THE OPPORTUNITY
Through this new lens of viewing existing network monitor-
ing systems as collecting (sensing) signals, we can optimize
existing monitoring systems. While we may need to address
many challenges before realizing these techniques in prac-
tice (see Section 4), as a �rst step, we answer the question:
what do we stand to gain if we use them?

We examine the network of a major cloud provider and
the monitoring systems it has deployed. We describe why
many of the existing monitoring systems this provider (and
others similar to it) have deployed are sub-optimal. Here, we
restrict our focus to monitoring systems that periodically
poll a numeric metric. Later, we introduce opportunities for
taking these observations further and applying them to other
types of monitoring systems our community has developed.

3.1 Today’s Monitoring Systems
Every aspect of the task of monitoring—collection, trans-
mission, analysis, and storage—all consume resources that,
when considering the scale of modern data centers, represent
a non-negligible overhead. In an e�ort to reduce the costs
of monitoring, for non-event-based data, today’s systems
generally sample their target metrics periodically/randomly
so as to capture the gist of the metric without sacri�cing too
many resources. Examples include systems that periodically
poll switch counters [10, 32, 35], sample packets to construct

�ow records [5, 21], or send packets through the network to
extract the instantaneous latency of the network [9, 26].
The sampling rate for the majority of these systems is

entirely arbitrary [2, 35]. Often, the sampling rates are not
governed by signal processing principles but chosen based on
defaults and vague ‘gut feelings’ about the desired granular-
ity of the data and the system and network-level overheads.
For such monitoring systems aliasing e�ects are never eval-
uated and the chosen granularities are never re-considered.

The end result is that most of these systems are either (a)
over-sampling (increasing overheads and wasting resources)
or (b) under-sampling without any idea of how much in-
formation is lost. This has signi�cant implications on the
resource usage of existing monitoring systems.

3.2 Case Study: A Large Cloud Provider
We demonstrate empirically the opportunity a�orded by
applying the Nyquist-Shannon theorem. The monitoring
systems we study encompass a wide range of monitoring
systems in a large cloud provider including device tempera-
ture, packet drops, FCS errors [37], and link utilization.
Our goal is to identify the Nyquist rate of each of the

signals these systems monitor. To do so: (a) for a given trace
(where each trace is the data for a metric being measured
on a single device), we compute the FFT and compute the
total energy in the signal—the sum of the PSD across all FFT
bins; (b) we add the PSD components in each FFT bin until
we reach 99% of the total energy in the signal computed in
(a); if we need all bins of the FFT to achieve 99% of the total
energy we assume the signal is probably already aliased;
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Figure 4: CDFs of the ratio between the actual sampling rate and the computed Nyquist rate. Note x axes is in log
scale and G = 10 indicates 10⇥ over-sampling. Each datapoint is one day’s worth of data from a distinct device. We
do not show the cases where we cannot reliably detect the Nyquist rate.

(c) otherwise, we report twice the frequency at which we
capture 99% of the total energy as the Nyquist rate.
The approach above can uncover the Nyquist rate of the

underlying signal if the measured trace is sampled above
its Nyquist rate. We �nd this to be the common case in our
traces. The converse case is challenging because when alias-
ing has already happened in a measured signal, the method
above does not reliably produce the Nyquist rate. We discuss
how to detect aliasing (under-sampling) in Section 4. Our
choice of the 99% cut-o� on total energy is a workaround
to compensate for measurement noise. Using a higher value
such as 99.99% would increase our estimate of the Nyquist
rate and reduce performance gains but, in our experience,
does not necessarily lead to a lower reconstruction error
since the delta that is being captured is often just the noise.

In practice, monitoring systems do not produce perfectly
sampled signals—samples are not always spaced at equi-
distant points in time. In such situations, we pre-clean the
signal using nearest neighbor re-sampling [27, 28]; that is,
we add values for missing samples based on nearby samples.

Figure 4 reports for each measured statistic the CDF of
the ratio between the current sampling and the Nyquist
rate we identi�ed through the above approach. The ratio
indicates the degree to which we are currently oversampling
the underlying signal.We observe that in 20% of the examples
the sampling rate can be reduced by a factor of ⇠ 1000⇥.

We studied 1613 metric and device pairs (14 distinct met-
rics). Of these, 89%were sampling at higher than their Nyquist
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Figure 5: A box plot of the Nyquist rate of each system.

rate. Within a metric, the Nyquist rate varies across de-
vices (Figure 5). For example, for the temperature signal,
the Nyquist rate ranges from 7.99 ⇥ 10�7 Hz to 0.003Hz. We
also notice di�erent Nyquist rates at di�erent time periods
on the same device. This indicates the properties of the un-
derlying metric vary over time and across devices and the
need for dynamically adapting the measurement rate. Adap-
tation must be quick because under-sampling would lead to
aliasing and information loss. We discuss some relevant prior
work and propose a dynamic sampling method in Section 4;
we show an example of how the approach works in [31].
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In our experiments the existing sampling rate is below the
Nyquist rate of the underlying signal in about 11% of the
metric-device pairs which require more careful inspection: it
is possible existing monitoring systems must increase their
sampling rates to fully capture these metrics. We also want to
rule out issues such as measurement noise, data loss or data
corruption that may have lead to an incorrect assessment of
the Nyquist rate. We defer this to future work.

4 TOWARD DYNAMIC MONITORING
There is a signi�cant opportunity to save resources in de-
ployed monitoring solutions by analyzing the signals they
produce. Acquiring the measurements may be a large ex-
pense and we discuss a new dynamic sampling method be-
low to address this problem. The dynamic sampling method
also applies when the Nyquist rate of a metric varies across
devices or across time; we do not yet understand the reasons
for these changes but nevertheless use dynamic sampling
to ensure robustness to changes to the Nyquist rate of the
underlying signal. We need to address a number of chal-
lenges in order to implement this method in practice. We
next outline these challenges and potential solutions.

4.1 Detecting aliasing
A critical component to a solution is to detect when a cho-
sen sampling rate has dipped below the Nyquist rate of the
underlying signal. In [20], the authors propose a solution
where they sample at two distinct frequencies, 51 and 52, such
that 51 > 52 and

51
52
is not an integer. If aliasing occurs, i.e.,

the underlying signal has frequency terms that are larger
than 52

2 , then comparing the discrete fourier transforms of
the two sampled signals would show discrepancies. A com-
plicating aspect here is noise at higher frequencies, but noise
especially of a small amplitude can be �ltered [1, 3, 30].
Collecting samples at two frequencies roughly doubles

measurement cost but we still expect sizable net bene�t
since, as we saw in Section 3 current systems, over-sample
by well over 2⇥. Furthermore, after checking for aliasing, we
can discard excess measurements by resampling at the iden-
ti�ed Nyquist rate. We believe that further improvements
are possible for example by using an aliasing detector that is
speci�c to changes that appear in data center measurements.

4.2 Adapting the sampling rate
Upon detecting aliasing, we increase the sampling rate. There
are several possible approaches to manage the rate adapta-
tion process and the choice among these depends on the
properties of the signal (e.g., whether the high-frequency
changes are one-o� occurrences or sustained shifts) and the
requirements for the measurement (e.g., how important is it
to capture every spike and how costly is it to oversample).

Consider the problem of quantifying link failures by sam-
pling frame checksum [37] errors. Initially, we do not know
the Nyquist rate of the underlying signal and so we must
probe: multiplicatively increase the measurement rate along
with the method in Section 4.1, (i.e., measuring at two di�er-
ent frequencies) to detect aliasing. While aliasing persists,
we remain in probe mode. Once we no longer detect alias-
ing, we use the method in Section 3.2 which will successfully
identify the Nyquist rate of the signal: our new sampling rate.
We continue to use the aliasing detection method to detect
if aliasing recurs and if so move to probing mode again.

We can add memory into the system and/or leverage tem-
poral stability to make adaptation faster. If the frequency
increases exhibit temporal locality (as it does in, e.g., fail-
stop or link-�ap scenarios), we can optimize the system by
also adaptively decreasing the sampling rate if we observe
the Nyquist rate returning to a lower value. We can even
‘remember’ previous maximum Nyquist rates to ramp up
more quickly in the future. Similarly, we may be able to learn
information about signals’ Nyquist shift distributions from
other (oversampled) sources measuring the same signal. The
optimal strategy will vary depending on the signal.

Perhaps the most challenging scenario for such a system
is how the system should handle a �rst-of-its-kind event.
Maintaining ample headroom may be helpful in these cases
(many of the deployed systems we examine in Section 3 are
already sampling at rates well above the Nyquist rate). We
note, however, the most critical issues in modern systems
are those that recur—after all, ongoing �res are typically a
higher priority for operators to debug than events that occur
only once and never again. An adaptive strategy will detect
this more severe category of issues.

4.3 Quantization Noise and Reconstruction
In practice, measurements are quantized. For example, a tem-
perature sensor may emit readings that are rounded to the
nearest integer. Such quantization adds noise which in the
frequency domain appears at higher frequencies; the larger
the quanta relative to the range of values a signal can take,
the higher the noise level. Quantization noise impacts our
techniques in a few di�erent ways: (a) identifying the true
Nyquist rate of a signal becomes more challenging; and (b)
upsampling and recovering the signal after it is downsam-
pled. For (a) we use the thresholding approach proposed in
Section 3.2 so as to discard higher-order frequencies intro-
duced by quantization. For (b) we can add the same quantiza-
tion in order to recover the signal more accurately. However,
in such cases the signal is no longer “perfectly recoverable”
and the recovered signal may be slightly di�erent from the
original. We show the e�ectiveness of this approach in [31].
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Using the Nyquist principle and the adaptive sampling ap-
proach described above, we are able to reduce the overhead
on the monitoring system. To reconstruct the signal, opera-
tors would have to pass the signal through a low-pass �lter.
This reconstruction takes time and may not be acceptable
to applications that expect low-latency. However, in many
cases this reconstruction cost is acceptable. For instance, ma-
chine learning models would typically prefer some delay in
recovering the data in return for higher-�delity.

5 RELATEDWORK
In this paper, we proposed a di�erent perspective on how
we approach network monitoring. The research we propose
builds on top of the vast array of knowledge in the �eld of
signal processing and relates to the following categories of
work in signal processing and network monitoring:
Signal processing theory and its applications to net-
working. The Nyquist–Shannon theorem is ubiquitous and
has been applied in several domains [7, 22, 34] and been
expanded in its applicability [23]. We build on this work.
The most closely related work are the existing, but iso-

lated examples of signal processing techniques in systems
and networks. These include techniques like compressive
sensing. In [12], for example, authors regard �ow statistics
as signals to design new sketch algorithms that bound the
information loss of the system. In [36] the authors use FFTs
to identify network faults. Other work, characterize the un-
derlying properties of network tra�c [4, 6, 19, 24, 29]. These
examples are complementary to our work.
Networkmonitoring systems.Many others have also tried
to address the problem of scalability/overhead in both the col-
lection and storage of network measurement. Sketches like
the one in [12] and [13, 15] are one such approach. Sketches
reduce the space required for storing data plane statistics,
but those statistics must still be sampled when summarized
for users or stored for later analysis.

There is also a vast body of network monitoring systems,
from simple, periodic ones [9, 37], to those that are further
optimized [11, 14, 16, 25]. It may be possible to improve
the e�ciency of these systems by re-framing the monitored
information as time-varying signals as demonstrated by [12].

Many network protocols continuouslymeasure (most promi-
nently TCP) the network. Here toowemay be able to improve
e�ciency through our new lens of viewing the information
they monitor as a continuous or discrete-time signals.

In summary, this paper advocates for a broader re-examin-
ation of modern data center systems with an eye toward
directly improving the e�ciency of those systems by bring-
ing to bear signal processing techniques.

6 CONCLUSION AND FUTUREWORK
Monitoring systems are a crucial part of ensuring high avail-
ability for data centers. Yet, e�cient measurements based on
information theoretic concepts are not widely studied. We ar-
gue the next stage of network monitoring should go beyond
vague ‘gut feelings’ about the granularity of data and in-
stead leverage concepts from signal processing to help avoid
wasteful collection. We show how Nyquist-Shannon might
provide guidance to optimize existing monitoring systems
and propose a straw-man approach for adaptive sampling.
Beyond numbers. In this paper we focused on monitoring
systems that �t nicely into the Nyquist model of sampling:
they periodically sample a numeric metric at a �xed fre-
quency. We need further research to apply these techniques
to other more complex systems such as [12, 14–16, 33], which
may measure events, sets of metrics, or text representations.
Multivariate signals. Many applications may monitor and
use multiple di�erent signals. The joint distribution of these
signals may be important to such applications. As long as we
sample each individual signal at a rate higher than Nyquist,
we can recover the original signal. However, if the Nyquist
rate changes frequently and the system attempts to use the
dynamic increase/decrease approach of Section 4, the al-
gorithm we presented may encounter pathological cases.
For example, before the sampling rate of individual signals
converges to the Nyquist rate, we may lose correlation be-
tween signals. Luckily, a number of work extend the Nyquist
theorem to multivariate signals [8, 17]. Incorporating these
extensions into a practical system is left to future work.
Beyond Nyquist. The Nyquist–Shannon theorem is one
example of a technique from the realm of signal processing
that can be applied to data centers. Another is ergodicity.

An ergotic process is one where the statistical properties
of a su�ciently long random sample of the process are equiv-
alent to the properties of a random sample of a statistical
ensemble of the process. For example, consider a system that
monitors the CPU utilization of all servers in a data center.
Samples from the system are ergotic if the statistical prop-
erties of a set of samples derived from a single CPU over a
su�ciently long sequence of time are equivalent to those of
a set of samples from measuring the entire �eet at once.

Operators often assume ergodicity implicitly. One example
is the practice of canarying, where an update is rolled out
to a handful of servers/racks/switches to evaluate its e�ects
before deploying the update more broadly. Extrapolating
canary results to other devices relies on ergodicity. Does this
assumption hold in practice? How long of an observation
period is required for the assumption to hold? Is there a way
to leverage ergodicity to reduce the number of devices that
we need to sample?
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