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Abstract

We introduce the use of p-descent techniques for elliptic surfaces over a perfect field of
characteristic not 2 or 3. Under mild hypotheses, we obtain an upper bound for the rank
of a non-constant elliptic surface. When p = 2, this bound is an arithmetic refinement of
a well-known geometric bound for the rank deduced from Igusa’s inequality. This answers a
question raised by Ulmer. We give some applications to rank bounds for elliptic surfaces over
the rational numbers.

1 Introduction

The aim of this paper is to introduce the use of classical p-descent techniques for elliptic curves
over function fields of one variable, and to use these techniques to derive general bounds for the
Mordell-Weil rank which are sensitive to the field of constants of the function field. Let k be a
field of characteristic not 2 or 3 and let S be a smooth projective geometrically integral curve
over k. Let E be a (nonconstant) elliptic curve over the function field £(5). Using cohomological
arguments (see , one obtains the following well-known upper bound for the rank:

rkz E(k(S)) < 49(S) — 4 + deg(fr), (1)

where ¢(S) is the genus of S and deg(fg) is the degree of the conductor of E, viewed as a divisor
on S (in fact, also holds in characteristics 2 and 3). Following [Sil04], we call (1f) the geometric
rank bound. This bound is geometric in the sense that the right-hand side does not depend on
the field k, and in particular the inequality holds with k replaced by its algebraic closure. In
positive characteristic, there are examples with conductor of arbitrarily large degree for which the
inequality (1) is sharp (see [Shi86], [Ulm02]).

When £k is a number field, Ulmer [Ulm04, Section 9] has raised the question of the existence
of arithmetic bounds improving , that is, refinements of the inequality which depend on the
arithmetic of the field k. Ulmer noted that work of Silverman [Sil00, [Sil04] on ranks of elliptic
curves over abelian towers provided some evidence for the existence of such a bound. Under
mild hypotheses, we give a positive answer to Ulmer’s question, providing a bound for the rank
which is equivalent to when k is algebraically closed (see , and which in general yields
an improvement depending on the arithmetic of the field k. The precise statement is given in
Theorem for each suitable prime p, we obtain a bound which depends crucially on the number
of k-rational p-torsion points in the Jacobian of a certain curve associated to the p-torsion subgroup

of E. Two examples (|1.10} , and one application (Theorem [1.13]), are given when k = Q.



When k = F, is a finite field, Brumer [Bru92] used Weil’s “explicit formula” to prove an
arithmetic bound for the rank of E depending on ¢:

49(S) — 4 + deg(fp) deg(fr)
rky E(k(S)) < 2log, deg(7r) +c(logq deg(i))2

where ¢ is an explicit constant depending only on ¢(S) and g. Although there are examples
with conductor of arbitrarily large degree for which the main term in the inequality is sharp
(see [Ulm02]), our bounds will frequently also provide an improvement to . Silverman [Sil04]
Conjecture 4] has stated a conjectural analogue of Brumer’s inequality over number fields, and
Theorem |1.1{ provides a possible approach towards Silverman’s conjecture (Remark .

It is quite surprising that, although p-descent techniques have been extensively used in order
to bound the rank of elliptic curves over number fields, we have not been able to track a similar
use of these techniques in the function field setting, apart from a few exceptions (see Remark .

Instead, a more common approach takes advantage of the rich theory that can be developed
in this setting by relating the geometry of surfaces and the Mordell-Weil group of an elliptic curve
over a function field, enriched with the lattice structure on the torsion-free part induced by the
Néron-Tate height pairing. The detailed analysis of these Mordell-Weil lattices was developed
simultaneously by Elkies and Shioda in the late 80’s, and quickly became a powerful and central
tool in the study of elliptic curves over function fields.

Despite the success of this approach, we believe that p-descent techniques can shed new light
on classical results in the function field setting, and provide new ideas to tackle open questions.
Additionally, these techniques may be advantageous for studying “arithmetic” problems, where
one desires finer information over a non-algebraically closed field. For instance, in recent work we
give applications of our general p-descent result to the construction of number fields with “large”
ideal class groups [GL19], and in a forthcoming paper, we give applications to the study of integral
points on elliptic curves over function fields.

(2)

1.1 p-descent: the generic case

Let &k be a perfect field of characteristic not 2 or 3. In the applications we have in mind, & may
be a number field, or a finite field, or the algebraic closure of such fields.

Let S be a smooth projective geometrically integral curve over k, and let k(S) be the function
field of S. By abuse of notation, we identify closed points of the scheme S and discrete valuations
of k(S)/k. If v is such a valuation, we denote by k, the residue field of v, which is a finite extension
of k. The scheme S being a Dedekind scheme, if we start with an elliptic curve over k(S) we may
consider its Néron model over S. In the present paper, the word Néron model refers to Néron’s
group scheme model, which is the smooth locus of Néron’s minimal regular model (see [BLRIO0,
§1.5] or [Liu02l §10.2]).

Throughout this paper, we consider the following setting:

1. E is an elliptic curve over k(.5).

2. £ — S is the Néron model of E over S.

3. X C S is the set of places of bad reduction of &£.
4. p # char(k) is a prime number.

5. E[p] — S is the group scheme of p-torsion points of £. The map E[p] — S is étale, and its
restriction to S\ ¥ is finite of degree p?.



The étaleness of £[p] — S stated above follows from the fact that the prime p is invertible
on S (assumption 4); see [BLRI0, §7.3, Lemma 2, (b)] for a proof. Since S is smooth and the
composition of smooth morphisms is smooth, one deduces that E[p] \ {0} is smooth over k.

If v € X is a place of bad reduction of £, we denote by &, := £ x gk, the special fiber of £ at v,
by &Y the connected component of the identity in &,, and by ®, the component group of &,. By
definition, we have an exact sequence for the étale topology on k,

0 o E P, > 0, (3)

v

and ®, is a finite étale group scheme over k,. The Tamagawa number of £ at v is by definition
the order of ®,(k,), and we denote it by ¢,. Finally, we denote by ® the skyscraper sheaf over S
whose fiber at v is ®,,, and by EP® the inverse image of p® by the natural map & — ®.

The scheme E[p] \ {0} (where {0} denotes the image of the unit section of &€ — S) is a smooth
scheme of dimension one over k, with a degree p?> — 1 quasi-finite map to S. The deficiency of
finiteness of this map can be understood as follows: above a place v of multiplicative reduction at
which ®, has no p-torsion, the fiber of £[p] — S has p points instead of p?. Above a place v of
additive reduction at which ®, has no p-torsion, the fiber of £[p] — S has only one point. As a
result, the scheme &£[p] is not projective over k.

We shall denote by C' the smooth compactification of E[p] \ {0}, endowed with its canonical
finite map C' — S of degree p?> — 1. By construction, C is a smooth projective curve over k, and
the inclusion £[p] \ {0} < C is an isomorphism above the open subset of good reduction of E.

By elementary Galois theory, the following conditions are equivalent:

(i) C is a geometrically integral k-curve;

(i) (E[p] @ k) \ {0} is the spectrum of a field;

(iii) the action of Gal(k(S)/k(S)) on E[p]\ {0} is transitive.

In the sequel, we shall assume that these conditions hold. This implies that F is non-constant,
but does not prevent it from being isotrivial. On the other hand, if F is not isotrivial, then it was
proved by Igusa [Igu59] that, for all but finitely many p, the image of the Galois representation
Gal(k(S)/k(S)) — GLa(F,) attached to E[p] is SLa(F,), which implies condition (iii).

We are ready to state the main result of this paper, which provides an arithmetic upper bound
on the rank of elliptic curves over function fields. The proof, which is given in §2.1] relies on
p-descent techniques, analogous to the number field case.

Theorem 1.1. Assume that the action of Gal(k(S)/k(S)) on E[p]\ {0} is transitive, and let C
be the smooth compactification of E[p] \ {0}. Then:

1) If p > 3, there is an injective morphism
EPP(S)/pE(S) — ker (Ngyo+ : Pic(C)[p] — Pic(CH)[p]) , (4)

where CT is the quotient of C' by the involution P — —P, and Ng/c+ denotes the norm
map. It follows that

rkz, E(k(S)) < dimg, Pic(C)[p] — dimg, Pic(CT)[p] + #{v € Z,p | ¢} (5)

where ¢, denotes the Tamagawa number of £ at v.



2) If p =2, there is an injective morphism
£%%(9)/2£(S) — ker (N¢ys : Pic(C)[2] — Pic(9)[2]) - (6)
It follows that

rky, E(k(S)) < dimg, Pic(C)[2] — dimg, Pic(5)[2] + #{v € £,2 | ¢} )
+ #{v € X, the red. type of € at v is 15, for some n > 0}.

A few comments on the statement of Theorem [L.1t

1. The group EP®(S) is the group of sections of £ which, in each fiber, reduce to a component
which is a multiple of p in the group of components. The quotient EP®(S)/p&(S) measures
the difference between sections which are locally multiples of p and those which are globally
multiples of p (where locally should be understood in the sense of étale topology). The injec-
tive morphism is, roughly speaking, a coboundary map for the Kummer exact sequence
induced by multiplication by p on &£.

2. Let Jo be the Jacobian of C. Then Pic(C)[p] is a subgroup of Jo(k)[p], the group of k-
rational p-torsion points on Jo (equality holds, for example, if C'(k) # 0). Thus, Pic(C)[p]
is a quantity which depends on the arithmetic of C' over k.

3. Observe that the norm map Ng o+ @ Pic(C)[p] — Pic(C*)[p] is surjective when p > 3,
because the degree of ¢ — C7T is 2, which is coprime to p. It follows that the quantity
dimp, Pic(C)[p] — dimp, Pic(C")[p] cannot decrease when enlarging the field k. The same
remark applies when p = 2, in which case C' — S has degree 3, and hence the norm map
Ngys = Pic(C)[2] — Pic(5)[2] is surjective.

4. In the bound (), the terms dimg, Pic(C)[p] — dimg, Pic(C*)[p] and #{v € ,p | c,} are
both of arithmetic nature. As we have seen, the first one depends on the size of the k-rational
p-torsion subgroups of the Jacobians of the curves C and CT. The second one is the number
of closed points of S at which £ has bad reduction and Tamagawa number divisible by p. In
fact, it follows from Lemma that

#{v € S, p|c,} = dimp, H°(S, @[p]).

When enlarging k, this number can increase for two reasons: firstly, a closed point which
is not k-rational can split as the sum of several points over a larger field, which has the
effect of enlarging the set X; secondly, a component of order p in the group ®, which is
not k,-rational can become rational over a larger field. The same remark applies, mutatis
mutandis, for p = 2.

5. In the case when p = 2, the bound is a geometric analogue of the classical bound of
Brumer and Kramer [BK77, Proposition 7.1] for the rank of an elliptic curve over Q (which
does not have a rational point of order 2) in terms of the 2-torsion of the class group of a
cubic field and bad reduction data.

6. A comment on the terminology: when we say that I has a fiber of type I3, at v, we mean it
over k,, and not just over k. More precisely, this means that the Kodaira type of &, over k is
I5,,, and that the four components of £, are rational over k,, in other terms ®,(k,) ~ (Z/27)?.
In general, the reduction type at v can be described by the data of the reduction type over
k together with the action of the absolute Galois group of k, on ®,. See [Liu02, §10.2].



7. In practice, given a Weierstrass equation y? = 23 + Az + B for E, with A, B € k(S), one can
obtain explicit defining equations for C' and C* over S. More precisely, if p = 2 then C — S
is the degree 3 cover defined by the equation 3 + Az + B = 0. If p > 3, then C* — S is the
degree (p?> — 1)/2 cover defined by the vanishing of the p-division polynomial ¢/, of E, and
the curve C is the double cover of CT defined by y* = 23 + Az + B, with ¢, (x) = 0.

8. In specific examples, computing the bound requires an efficient algorithm for computing
the p-torsion in the Jacobian of a curve. Over finite fields, polynomial-time algorithms exist
(see [Cou09]). Over number fields the situation is more complicated, but by reduction modulo
a good prime # p one obtains an upper bound on the p-torsion.

Remark 1.2. When p > 5, one can improve as follows: we have an injective morphism

EP*(8)/pE(S) — () ker (Ngyer : Pic(C)[p] — Pic(C")[p)])
Cc—C'

where C' — C' runs through all proper subcovers of C' — S. See Remark for the details.

Remark 1.3. It is possible to generalize the statement above by replacing E[p] by a group G C E
of order p > 2 satisfying conditions similar to (i)—(iii). By considering the isogeny A : E — F with
kernel G, one can prove an analogous result in which £P®(S)/p&(S) is replaced by F ®(S)/A\E(S),
with obvious notation. Note that p = 2 is excluded here, because we need the sum of all elements
of G(k(S)) to be zero in order to make Lemma work.

Remark 1.4. The proof of Theorem relies on the computation of a geometric analogue of the
p-Selmer group, under the assumption that Gal(k(S)/k(S)) acts transitively on E[p] \ {0}.

There are a few occurrences in the literature of geometric analogues of Selmer groups. Let
us cite in particular [CTSSD9§|, whose Section 4 contains definitions and various properties of
these groups; as we note in Remark the étale cohomology groups that we compute are closely
related to them. We also refer the reader to [EIIO6], which is more focused on p>°-Selmer groups
and fundamental groups.

Remark 1.5. When the full p-torsion of E is defined over k(S), one can prove with the same
techniques that there exists an injective morphism

EPP(S)/pE(S) — H' (S, p)?,

where
HY(S, pp) = (K™ /(K)P) @ Pic(S) [p]-

In this case, if k is a number field, then £* /(k*)? is infinite, and so the natural generalization
of Theorem is not relevant (bounding a finite number by +o00). This provides examples in
which the geometric analogue of the Selmer group is infinite.

On the other hand, if & is algebraically closed, then k*/(k*)P = {1}, and we obtain the upper
bound

dimg, EP(S)/pE(S) < 4g(5),

where ¢g(.5) denotes the genus of S. The rationality of the full p-torsion puts strong constraints on
the reduction type of £, and in particular, p | ¢, for each place v of bad reduction. It follows that,
in this case, the natural analogues of the inequalities and are both equivalent, whatever
the value of p is, to

rkz E(k(S)) < 49(5) — 2 + deg(fr),

a bound which is weaker than the geometric rank bound .



1.2 Refinements of the geometric rank bound

Let us assume that k is algebraically closed. In this case, there are well-known bounds for the
rank of elliptic curves over k(S) in terms of the conductor of the curve and the genus of S. For a
nice overview of this topic, we refer the reader to [Shi92].

Let € denote the minimal regular model of E over S, which is also a smooth compactification
of the k-surface £, and let NS(&) := Pic(€)/Pic’(€) be the Néron-Severi group of £, which is a
free Z-module of finite rank. We let

p = rkyz NS(E),

the so-called Picard number of £. Igusa’s inequality asserts that
P < b27

where by is the second Betti number of the surface £. If the characteristic of k is not zero, by is
computed using ¢-adic cohomology, with ¢ # char(k).

Let fg := ), cx fo - v be the conductor of £, which is a divisor on S. It is well-known [Sil94,
Chap. IV, Theorem 10.2] that f, = 1 if the reduction type of £ at v is multiplicative and f, = 2
if the reduction is additive; the wild part of the conductor is zero since char(k) # 2, 3.

The Grothendieck-Ogg-Shafarevich formula [Ray95] states that

by — p = 4g(5) — 4 — kg E(k(S)) + deg(fE), (8)

where deg(fr) = >_,cx fo is the degree of the divisor fz. Therefore, Igusa’s inequality is equivalent
to the geometric bound:

rky E(k(S)) < 4g(S) — 4+ deg(fg).
In we prove the following.

Theorem 1.6. Assume that E(k(S))[2] =0, and let C be the smooth compactification of E[2]\{0}.
Then

49(8) — 4 + deg(fr) = 29(C) — 29(5) + #{v € £,2 | ¢}
+ #{v € I, the red. type of €& at v is I3, for some n > 0}.

9)

It follows that the bound @ is a refinement of the geometric rank bound .

Thus, as mentioned in the introduction, we obtain a positive answer to Ulmer’s question
from the survey [Ulm04, §9]. This refinement allows one to improve on known bounds even in
characteristic zero (see Example and Theorem .

As a matter of fact, another refinement occurs via 3-descent, provided the field k& does not
contain cube roots of unity.

Theorem 1.7. Assume that the prime 3 satisfies (i)—(iii). Let C be the smooth compactification
of E[3] \ {0}, and let C* be the quotient of C by the involution P+ —P. Then

4g(8) — 4+ deg(fp) = 9(C) — g(C™) +#{v € 5,3 | o }- (10)

It follows that, for p = 3, the bound is a refinement of the geometric rank bound provided
the field k does not contain cube roots of unity.



Remark 1.8. In fact, Theorem provides a family of upper bounds on the rank of E over
k(S), one for each prime p # char(k) satisfying assumptions (i)-(iii). While over k, the bound
for p = 2 is equivalent to the geometric rank bound , the same phenomenon does not hold for
p = 3, as Theorem shows: the difference between the rank bound coming from 3-descent and
the geometric rank bound is equal to g(C) — g(C*) over k. In fact, the genus of C increases with
p, and so for large p the bound will be weaker than the bound over k (also note that when
p > 5 our p-descent bound may be improved as in Remark . However, over nonalgebraically
closed fields k, it may still be the case that provides an improved bound, depending on the size
of the rational p-torsion subgroup of the Jacobian of C' (see Remark .

Remark 1.9. When k is an algebraically closed field of positive characteristic, the bound
can be improved under the assumption that the formal Brauer group of £ has finite height A, in
which case it was proved by Artin and Mazur [AMT7] that by — p > 2h. This result, which relies
on computations in crystalline cohomology, is called the Igusa-Artin-Mazur inequality. As with
Igusa’s inequality, this is a result of geometric nature.

We end this section by discussing the case when k has characteristic zero, and in particular,
the case when k is a number field. When £ is an algebraically closed field of characteristic zero,
the bound can be improved as follows: Lefschetz’s inequality states that p < h!, and hence
it follows from Hodge theory that by — p > 2p4, where p, is the geometric genus of the surface £.
By Grothendieck-Ogg-Shafarevich , we conclude that

tkz E(k(S)) < 49(S) — 4 + deg(f) — 2p,. (11)

In contrast to the bound in positive characteristic, Lefschetz’s bound is not known to
be sharp when the right-hand side is large, even over the field of complex numbers. In fact, we do
not even know whether or not there exist non-constant elliptic curves over C(¢) with arbitrarily
large rank (the current record, due to Shioda [Shi92], is a curve of rank 68 over C(t)).

As the next example shows, when working over Q(t), the inequality allows one in practice to
improve on the bound , provided one is able to compute the rational 2-torsion in the Jacobian
of a certain trigonal curve.

Example 1.10. Let ¢ > 5 be a prime number, and let a € Z be an odd integer. Let E be the
elliptic curve over Q(t) defined by the equation

y? =2+t +a.

Since the polynomial t? 4+ a is square-free, it follows from Tate’s algorithm [Tat75] that E has
additive reduction of type II at roots of t? + a, and additive reduction of type II or IT* at infinity
(because ¢ = 1 or 5 (mod 6)). The degree of the conductor of E is 2(¢ + 1). One also computes

that the geometric genus is p, = L%J. Hence, according to , we have the bound

_ -1
rkz E(Q(t)) < 2q —2 -2 VGJ .
Let us now compute the bound @ from Theorem The Tamagawa numbers of F are all

equal to 1, hence
rkyz E(Q(t)) < dimp, Pic(C)[2],



where C is the curve defined by the equation 2% = t7 4+ a. According to [Jed16, Theorem 2.6], the
Jacobian of C has no rational 2-torsion, the integer a being odd. Therefore, yields

rkz E(Q(t)) = 0.
On the other hand, the bound over Q is equivalent to the geometric rank bound:
rkz E(Q(t)) < 2q — 2.
Example 1.11. Let 8 € Q* and let E be the elliptic curve over Q(¢) defined by
y? =23+ tx? + 212 + B).

The singular fibers of this curve are listed below (we assume that 3 # 22.376 50 that 27(t2+ 3) +4t
is not a square over Q):

[ #2+8=0 27(+f)+4t=0 t=0 t=o0
fiber type I I v v
order of @, 1 1 3 3

Its conductor is
fp={t?+B=0}+{27(t* + B) + 4t = 0} +2- ({0} + {c0})

which has degree 8. Moreover, £ is a rational elliptic surface, hence has geometric genus p, = 0,
and so the bounds and agree and yield:

kg B@(1)) < deg(fp) — 4 = 4.

In fact, this bound is sharp and the exact value of the rank over Q(t) is 4. More generally, the
structure of the Mordell-Weil lattice and related information for £ can be found in entry No. 11
in the table of Oguiso and Shioda [OS91], who classified Mordell-Weil lattices of rational elliptic
surfaces over algebraically closed fields.

On the other hand, let C' be the curve defined by the equation 23 + tx? + t2(t?> + 8) = 0. The
Tamagawa numbers being odd, none of the bad fibers contributes to the arithmetic bound ,
and hence we have

rkz E(Q(t)) < dimg, Pic(C)[2].

By substituting X = 2/t and Y = 2t + X3 + X2, we find that C is a hyperelliptic curve of
genus 2, with equation
Y= XX +1)?—48.

Let s be the number of irreducible factors of X*(X + 1)2 — 4/ over Q; then

s —1 if all factors of X*(X + 1) — 43 have even degree

dimp, Pic(C)[2] < dimp, Jo(Q)[2] = )
s — 2 otherwise

We compute some examples in the following table:

B | 22513712 223176 1 9 —3i5t2-8 9
factorization type of X4(X +1)2 —43 | [1,1,2,2] [1,1,1,3] [1,2,3] [3,3] [2,4] 6]
rank bound over Q(¢) 2 2 1 0 1 0




In fact, it can be shown that these examples exhaust all of the possible factorization types for
B e Q*\ {22375} and it’s not hard to parametrize each possibility. For instance, the first four
factorization types can occur only when S is a perfect square, and the factorization type [1, 1,2, 2]
occurs precisely when 5 = % for some a € Q.

In a recent preprint [BST™17, Theorem 7.1], Bhargava et al. have given the following bounds
for 2-torsion over finite fields:

Theorem 1.12. Let C' be a smooth projective curve of genus g over F,. Then

qg+1 -1

If C admits a degree n map to P! (over F,) then

1
dimp, Pic(C)[2] < <1 — n) glogy g + On(1).

We note that these results only improve on the trivial bound dimg, Pic(C)[2] < 2¢(C') when
q is very small. For example, if C' is trigonal, then we should take ¢ < 7. If C is a curve over
a number field k, then we consequently obtain bounds for dimg, Pic(C')[2] whenever C' has good
reduction at a prime of small (odd) norm. Thus, when k is a number field, Theorem leads to
improvements of the inequalities and under suitable hypotheses. Let x =1 — g(S) + py,
where p, is the geometric genus of the surface £. Then (still assuming char(k) = 0) we have the
well-known inequalities [Shi92]

2x +2 —2g(5) < deg(fr) < 12x.

In particular, in terms of the invariant x, the bound yields another well-known inequality
for the rank when char(k) = 0:

rkz E(k(S)) < 10x + 2g(S) — 2. (12)

As a sample application, under suitable good reduction hypotheses, in Section 2.3] we prove the
following asymptotic improvement to over the rational numbers.

Theorem 1.13. Let E be an elliptic curve over Q(S) and suppose that E(Q(S))[2] = 0. Let C be
the smooth compactification of £[2] \ {0}.

1) If C has good reduction at 3, then

tkz E(Q(S)) < 6(log, 3)x + 3(log 3)9(S) — (logy 3 - 1) ) ey —logy3 -1, (13)

veEY
where the e, are defined in Lemma[2.9
2) If Q(S) = Q(t) and C has good reduction at p € {3,5}, then
rkz E(Q(t)) < 4(logy p)x + O(1). (14)

Remark 1.14. If E(Q(9))[2] # 0, then Cox [Cox82] proved the better (geometric) bound:

ks E(Q(S)) < 6x +29(S) — 2.



Remark 1.15. The numerical expansions of the coefficients of x in Theorem are:

6(logy 3) = 9.509775 - - -
4(logy 3) = 6.339850 - - -
4(logy 5) = 9.287712-- - .

If F is an elliptic curve defined over Q(t), there is a strategy which allows one, in specific cases,
to improve on Lefschetz’s bound over Q(t). One picks a suitable prime p of good reduction
for the surface £, and one computes the characteristic polynomial of the Frobenius acting on the
second f-adic cohomology group of the reduced surface over F,. The details of this approach
are explained in [vLOT, §6] and [KloO7, §4]. Obviously, one may replace Q by a number field k.
Nevertheless, this technique is not “arithmetic”, in the sense that the bound it provides is valid
over Q.

The question of refining Lefschetz’s bound over Q, and more generally over number fields, has
been addressed previously by various authors, see the discussion in [SS10, §13.12]. In this respect,
to our knowledge, only specific elliptic surfaces (e.g., K3 surfaces) have been studied so far. So,
it seems to us that Theorem is the first general result which provides an upper bound of an
“arithmetic nature” on the rank of elliptic curves over function fields.

We end with a speculative remark on using our results to prove statements towards Silverman’s
conjectural analogue of when the base field £ is a number field instead of a finite field.

Remark 1.16. Silverman [Sil04] Conjecture 4] has conjectured that if &k is a number field and E
is a non-isotrivial elliptic curve over k(S), then

deg(fr)
log deg(fg)’

where the implied constant depends only on k and S (in fact, Silverman states a more precise
conjecture).

To approach using Theorem one needs strong bounds on the rank of p-torsion in
Pic(C). A possible argument for the existence of such bounds is as follows. Let p be a prime and
d a positive integer. Brumer and Silverman [BS96] have raised the question of the existence of a
constant ¢, 4 such that for every number field k/Q of degree d,

rky, E(k(S)) < (15)

log | Disc k
dimg, Cl(k)[p] < c og | Disc k|

_— 16
P41og log | Disc k|’ (16)

where Cl(k) is the ideal class group of k, and Disc k is the discriminant of k.

Let us fix a finite field F,. Curves of genus g and gonality d over F, are analogous to number
fields of degree d over Q with discriminant (roughly) ¢?9. Thus, a function field analogue of
might assert the existence of a constant ¢, 4, such that

dimp, Pic(C)[p] < ¢, (17)

_9
“4]0g 2g’

where C' is any curve over F, of positive genus g admitting a morphism of degree d to P'. When
p | d, the example of hyperellipticﬂ (or more generally superelliptic) curves shows that cannot

!More precisely, by considering an equation 3? = f(z) where f € Q[x] splits as a product of 2¢g + 1 distinct linear
factors, one obtains a hyperelliptic curve C' over Q for which dimg, Pic(C)[2] = 2g.
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be extended from finite fields to number fields k. However, if p 1 d, it seems possible that may
continue to hold when k is a number field.

Now let k& be a number field and let E and C' be as in Theorem (for the prime p). We have
a natural morphism C' — S of degree p? — 1, which is unramified outside of the set of places of
bad reduction X. We can bound the degree of the ramification divisor by (p? —2) deg(fg). Assume

additionally that not more than % Tamagawa numbers are divisible by p. Then assuming

that holds for number fields when p t d (note that p and p? — 1 are coprime), Theorem
immediately implies that

deg(fr)
log deg(fg)’

where the implied constant depends on k, S, and also p. Thus, we would obtain Silverman’s
conjecture for various large families of elliptic curves (one family for each fixed prime p).

rky E(k(9)) <

2 Proofs

2.1 Proof of Theorem [1.1]

We denote by £° the open subgroup of €& whose fiber at each v is £2, and we call it (by abuse
of notation) the connected component of £.
By globalizing , we obtain an exact sequence for the étale topology on S

0 y £0 £ P =P, ex(iv) Py — 0,

where i, : Spec(k,) — S denotes the canonical inclusion.
We denote by EP® the open subgroup scheme of £ which is the inverse image of p® by the
quotient map above, so that we have an exact sequence for the étale topology on S

0 Er® £ O/pd —— 0.
Applying global sections to this sequence, we obtain an exact sequence
0 —— EPP(S) —— &(S) —— HO(S,@/pd).

Since the group p&(S) is a subgroup of £P®(9), if we mod out the first two groups by p&(S)
we obtain another exact sequence

0 —— EP2(S)/pE(S) —— &(9)/pE(S) —— HO(S,®/pd). (18)
Before we proceed with the proof of Theorem [I.1] we shall prove a few lemmas.

Lemma 2.1. Let v € ¥ be a place of bad reduction for £.

1) If p > 3, then

L ifple

dim]pp Ho(kva CDU[p]) = dime Ho(k”’ (I)U/pq)v) - { 0 otherwise

11



2) If p =2, then

2 if reduction type 15, for some n >0
dimp, H°(k,, ®,[2]) = dimp, H®(k,, ®,/2®,) ={ 1 if2 | ¢y, other reduction type

0 otherwise.

Proof. Tt follows from the explicit description of the Néron model of an elliptic curve (see [Liu02,
§10.2, Remark 2.24] or [Sil94, Chap. IV, Table 4.1]) that, if p > 3, or if p = 2 and the reduction

type of £ at v is not I}, for some n > 0, then the p-primary component of ®,(k,) is cyclic. In this
situation, it follows from basic cohomology that the following conditions are equivalent:

1. the Galois module ®,/p®, is either trivial, or else a non-constant Galois module over k,;
2. H(k,, ®,/p®,) = 0;
3. ptey =#Dy(ky).

This proves the lemma in all cases except when p = 2 and the reduction type is I5,, for some n > 0.
In this case, ®, is isomorphic to the constant k,-group scheme (Z/27)?, hence the result. O

Lemma 2.2. 1) Ifp > 3, we have
dimg, EPP(S)/pE(S) > rky E(k(S)) — #{v € ,p | cu}.

2) If p =2, we have
dimp, £2%(8)/2E(S) > kg E(k(S)) — #{v € £,2] ¢y}
— #{v € X, the red. type of £ at v is 15, for some n > 0}.
Proof. Tt follows from the exact sequence that
dimg, E7°(S)/pE (S) > dimg, £(S)/pE (S) — dimg, H(S, 3 /p®).

By the universal property of the Néron model, £(S)/pE(S) = E(k(S))/pE(k(S)). Because E|p]
satisfies (i)—(iii), F(k(S)) has no nontrivial p-torsion, hence

dimg, £(5)/pE(S) = rkz E(k(S)).

On the other hand,
HO(S,®/p®) = D H(k, Bu/pDy),
vEX
and Lemma allows one to compute the IF)-dimension of each of these groups. ]
Let 7 : n = Spec(k(S)) — S be the inclusion of the generic point of S. Let us recall that, if H
is a k(5)-group scheme, then by definition the Néron model of H is a smooth separated S-group

scheme of finite type which represents the sheaf j,H on the smooth site of S. Therefore, we have
an exact sequence

0 — HY(S,j.H) — H'(k(S),H) — H°(S,R'j,H) — --- .

In particular, if G is a Néron model of its generic fiber, then the restriction to the generic fiber
induces an injection
H'(S,G) = H'(k(5),G) (19)

12



Remark 2.3. The image of can be described as the set of Galois cohomology classes which
are unramified everywhere. We shall not make use of this description, but it may be helpful to
keep in mind.

Lemma 2.4. 1) The group scheme E[p] is the Néron model of E[p].
2) If G is a finite étale S-group scheme, then G is the Néron model of its generic fiber.

Proof. 1) Let us note that, p being invertible on S, the S-group scheme E[p] is étale, and is a
closed subgroup scheme of £. Therefore, £[p| is the Néron model of E[p], according to [BLRI0,
§7.1, Corollary 6.

2) By hypothesis, G is a smooth and separated S-group scheme. Moreover, the map G — S
is finite, hence proper. It follows from [BLRO0, §7.1, Theorem 1] that G is the Néron model of its
generic fiber. O

Let Resy(c)/k(s) Hp denote the Weil restriction of 1, which, by definition, satisfies
(Resk (o) /r(s) Hp) (L) = pp(L @ k(C))

for any k(S)-algebra L. Let T' denote the generic point of C, which is also the generic non-zero
p-torsion point of E. Then the Weil pairing e, induces a morphism of finite étale k(S)-group
schemes (equivalently of Galois modules over k(.S))

w : Elp] — Resgc)/r(s) p
P—e,(P,T).

According to Lemma E[p] and p, are Néron models of their generic fibers. It follows from
[BLROO, §7.6, Proposition 6] that the same holds for Resc/g 1y We denote by

w: E[p] — Rescys pip
the map induced by w on these Néron models.

Lemma 2.5. The map w induces on étale cohomology an injective map
hlw: H'(S,E[p]) — H'(S,Rescys pp) = H' (C, pp),
whose image is contained in the kernel of the norm map
Neys + HY(C, pp) — H'(S, ).
When p > 3, the image of h'w is contained in the kernel of the norm map
Nejor : HY(C, pp) — HY(CT, ).

Proof. Tt has been proved by Djabri, Schaefer and Smart [DSS00, Prop. 7 and Prop. 8] that the
map w induces on Galois cohomology an injective map

h'w: H'(k(S), E[p]) — H' (k(S), Resy(o)/acs) tp) = H' (k(C), pp)-

Let us stress here the fact that the authors cited above work over a number field or the
completion of a number field. Nevertheless, their arguments are purely Galois-theoretical and
extend without any change to our function field setting.
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Now, consider the following commutative diagram

HY(SEp) % HY(C,pp)

| |

hlw
H'(K(S), Elp]) —— H'(k(C), up)
in which the vertical maps are injective, according to . Thus, one deduces the injectivity of
h'w from that of h'w. Then, we note that the composition of the maps
w Nicy/k(s)
Elp] —— Resyoy/ks)p ——— Hp
is zero, because the sum of all non-zero elements of E[p] is zero. It follows that the composition of
the induced maps on the Néron models is also zero, hence the same holds for the maps induced on

cohomology. Finally, when p > 3, the map P — —P is a nontrivial involution of C', with quotient
C™T, and the composition of the maps

w Nyoy/net)
Elp] —— Respoym(s) o — 2" Resy(c+)/k(s) Hp

is zero, because e,(P,T) - e,(—P,T) = 1. This proves the last part of the statement. O

Proof of Theorem[1.1. Let us note that the map [p] : £2 — £V is surjective for the étale topology
on k, (multiplication by p on a smooth connected group scheme in characteristic # p is étale
surjective). It follows that multiplication by p on £ induces an exact sequence for the étale
topology on S

0 —— &[] g P, gve 0.

Applying cohomology to this sequence, we obtain an injective map

§: EP(S)/pE(S) — H'(S, E[p))-
According to Lemma the target group can be embedded in the kernel of the norm map
NC/S : Hl(cv /’LP) — HI(S7 )U’p)

Let us determine the size of this kernel. The prime p being invertible in k, multiplication by p
on Gy, is surjective for the étale topology on k-schemes. Moreover, S and C' being geometrically
integral projective curves over k, we have Gy (S) = Gn(C) = k*. Therefore, Kummer theory
over S and C yields a commutative diagram with exact rows

0 —— kX/(KX)? —— HY(C,p) —— Pic(C)jp] —— 0

H lNC/S lNC’/S

0 —— kX/(k*)P —— HYS,pp) —— Pic(9)[p] —— 0

where the vertical maps are the norm maps. We deduce, by the snake lemma, that the two
norm maps N¢/g above have the same kernel. In other words, if we compose the natural map
Kk HY(C, pp) — Pic(O)[p] with hlw o §, we obtain an injective group morphism

EP?(S)/pE(S) — ker (Ngys : Pic(C)[p] — Pic(S)[p])

14



which proves @ when p = 2. When p > 3, the last statement of Lemma allows us to prove ({4
with a similar argument. When p = 2, C'— S has degree 3, hence N¢/g is surjective on 2-torsion,
from which we deduce that

dimp, ker (N¢ /g : Pic(C)[2] = Pic(5)[2]) = dimg, Pic(C)[2] — dimg, Pic(S)[2].
Similarly, when p > 3 the map C' — C™ has degree 2 and we have
dimp, ker (N o+ @ Pie(C)[p] = Pic(CT)[p]) = dimg, Pic(C)[p] — dimg, Pic(C™)[p]
The statements and follow by combining this with Lemma O

Remark 2.6. In [CTSSDOI8, §4.2], the authors define a geometric Selmer group, denoted &(&, p),
which, according to Prop. 4.2.2 of loc. cit., fits into an exact sequence

0 —— HY(S,Ep]) —— &(&,p) —— HY(S,®/pd).

Our proof of Theorem relies on a) bounding the size of H'(S,&[p]) in terms of the curves S
and O, and b) computing the exact size of H°(S,®/p®). This yields an upper bound on the size
of the geometric Selmer group.

Remark 2.7. It is important to require that C' and S are both geometrically integral and pro-
jective. The fact that G, (S) = Gm(C) is a crucial argument in the proof, which implies that the
units do not contribute to the kernel of the norm. Recall from Remark that, when the full
p-torsion is defined over k(.S), it may happen that the geometric analogue of the Selmer group is
infinite.

Remark 2.8. In the framework of p-descent over a number field, it was proved by Dokchitser
[Dok00, Cor. 6.5.2], under the same assumption (the Galois action on E[p] is transitive), that the
image of hlw is contained in the kernel of the norm Ni(c) i for any proper subfield K C k(C).
So one can improve the statement of Theorem 1) as follows: if p > 3, we have an injective
morphism
EP*(8)/pE(S) — () ker (Ngyer : Pic(C)[p] — Pic(C")[p])
c—C’
where C' — C’ runs through all proper subcovers of C' — S. In fact, for p = 3 this is not an

improvement since every proper subcover of C' — S factors through C — C* (see the proof of
Theorem [1.7]).

2.2 Proof of Theorem [1.6

Let us recall that, if f: X — Y is a finite flat, tamely ramified map of smooth k-curves, then
the ramification divisor of f is given by ) (e, — 1) - , where z runs through closed points of X,
and e, denotes the ramification index of f at x. All finite maps we shall consider here are tamely
ramified.

By assumption, char(k) # 2,3 and £ does not have a nontrivial 2-torsion section over S. In
order to prove @, we may assume that k is algebraically closed, which we do until further notice.

Let C be the smooth compactification of £[2] \ {0}. We note that C — S is tamely ramified,
because the Galois closure of its generic fiber has Galois group Z/37Z or &3, whose order is coprime
to the characteristic of k.

We shall first compute the degree of the ramification divisor of C' — S.
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Lemma 2.9. Let R C C be the ramification divisor of the natural cubic map C — S. Then the
degree of R is given by the formula

deg(R) = deg(fr) — Z Ev,

vEX
where
2 if reduction type I3, for some n >0
v =< 1 if2]|cy, other reduction type

0 otherwise.
Remark 2.10. Note that > . &, = dimg, H°(S, ®[2]).

Proof. By construction, £[2] \ {0} is an open subscheme of C. In fact, we claim that
C\ R=¢&[2]\{0}. (20)

Let us prove the two inclusions: the right hand side is a subscheme of the left hand side,
because £[2] \ {0} — S is étale (the assumption that char(k) # 2 is important here). The other
inclusion follows from the universal property of the Néron model: C'\ R — S is a smooth separated
scheme over S, hence the inclusion of the generic fiber E[2] \ {0} < E can be extended to a map
C'\ R — &, which takes values in £[2] \ {0}.

If v € X is a place of bad reduction, we denote by R, the fiber of R above v. The map C — S
being finite flat of degree 3, it follows from that

0 if #&,[2 =4
deg(Ry) =< 1 if #&,[2] =2 (21)
2 if #E,[2] = 1,

where #&,[2] denotes the number of k-points of &,[2], or equivalently, the rank of &,[2] as a finite
k-group scheme (remember that k is algebraically closed here).

On the other hand, the map [2] : £ — &£° being surjective for the étale topology, we deduce
from a short exact sequence of étale sheaves

0 —— &2] —— &[2] —— ®y[2] —— 0.

It follows from the explicit description of the bad fibers of the Néron model of an elliptic curve
[Sil94] Chap. IV, Table 4.1] that

if reduction type I3, for some n > 0

if reduction type I, for some n > 0

if reduction type Ia, 41 for some n > 0

if reduction type IIL, III* or I3, ; for some n > 0
if reduction type II, IT*, TV or IV*.

Ik

N

o

Il
N N R

\

For example, in the case of reduction Ij,, the group @, is isomorphic to (Z/2Z)?, hence &,[2]
has four points. In the case of multiplicative reduction Ig,4+1, we have ®, ~ Z/(2n + 1) and
EY ~ Gy, hence &,[2] = EY[2] = p2, which has two points.
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Using one checks that, in each case listed above,

deg(Ry) = fo — €,

where f, is the exponent of the conductor at v. The result follows immediately by summing up
over all v € X.. O

Proof of Theorem[1.6. Applying the Riemann-Hurwitz formula to the cubic map C' — S, we find
that
29(C) = 2 =3(29(5) — 2) + deg(R),

where R C C is the ramification divisor of C' — S. Equivalently,
29(C) —29(5) = 49(5) — 4 + deg(R).
Replacing deg(R) by its value computed in Lemma yields
29(C) —2¢9(S —i—ZEv =49(S) — 4 + deg(fr).
vEX

But, by definition of ¢,, we have

Z gy =#{v e X, 2| e} +#{v € X, the red. type of € at v is I5,, for some n > 0}
vEX

which proves @
Let us now prove the last statement of Theorem Keeping for the moment the assumption
that k is algebraically closed, we have

dimp, Pic(C)[2] = 2¢(C)

and similarly for S. Therefore, the relation @D means that is equivalent to the geometric rank
bound. Dropping now the assumption that k is algebraically closed, it follows that the bound
is a refinement of the geometric rank bound. O

2.3 Proof of Theorem [1.13

We keep the notation of the previous section.

Proof of Theorem[1.13. We first prove the bound (13)). Let ¥ be the set of places of bad reduction
of & over Sg. From the proof of Theorem ., we have

1
9(C) =3g(8) =2+ | deg(ir) = ) _ev
vED

Since C' has good reduction at 3, the reduction map modulo 3 is injective on 2-torsion, and
Theorem [I.12] implies that

39(C)+1 _ 1
dimp, Pic(C)[2] < log, — ] < (g(C)+1)logy3—1
1
< (logy 3) ( 39(S) — 1+ 5 | deg(ir) - e -1

vED
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For v € X, let m, denote the number of irreducible components in the fiber above v. Then it
follows easily from the definition of €, and a known formula for 12y [Shi92] that

deg(fr) +Z€v<deng +Z 0 — 1) =12y,
veR veED

and this inequality is sharp only if €, = m, — 1 for each bad v.
Let us now consider the inequality , in which we neglect the negative term — dimp, Pic(5)[2],
and observe that ) v ey < > 5 €y, which yields:

rkz E(Q(S)) < dimg, Pic(C)[2] + st

1
< (logy 3) [ 39(S) — 1+ 5 | deg(ir) — e | -1+ e

vED vED

25 3 log
22 deg(fE)—i-( 2 >ZEU logy3—1

vEY

= 3(logy 3)g(S) + o

log, 3
= 3(log, 3)g(S) + —22

deg(fr) —|—Z€v (logs 3 —1) Zev logy 3 —1
vEX vER

< 3(logy 3)g(S) + 6(logy 3)x — (log 3 —1) > &, —logy 3 — 1.
vEX
For the bound , suppose that C' has good reduction at p € {3,5}. Since S = P!, the curve
C is trigonal. It is well-known that the gonality of C' can only decrease after reduction modulo a
good prime, and so applying Theorem with n = 3 yields

dimp, Pic(C)[2] < £g(C)logyp + O(1).

Wl o

Now nearly the exact same calculation as above gives

rkz E(Q(t)) < 4(logy p)x + O(1).

2.4 Proof of Theorem

By assumption, char(k) # 2,3 and the prime 3 satisfies assumptions (i)—(iii). In order to prove
, we may assume that k is algebraically closed, which we do until further notice.

Let C be the smooth compactification of £[3] \ {0}, and let C™ be the quotient of C by the
involution P +— —P.

The composite morphism Gal(k(S)(EF[3])/k(S)) — GLa(Fs3) det, F% is the cyclotomic char-
acter, which is trivial since k is algebraically closed. Therefore, Gal(k(S)(E[3])/k(S)) is a sub-
group of SLy(F3) which, by assumption (i)-(iii), acts transitively on F%\ {0}. It follows that
Gal(k(S)(E[3])/k(S)) is equal to SLy(F3) or to its 2-Sylow subgroup the quaternionic group Qs,
which is normal in SLy(F3), with quotient group cyclic of order three.

In fact, it is easy to check [Ade01l, Prop. 5.4.3] that the subfield of k(S)(E[3]) fixed by Qg is
k(S)(V/A), where A € k(S) is the discriminant of E. Therefore, Gal(k(S)(E[3])/k(S)) = Qs if
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and only if A is a cube in k(S). If not, then k(S)(E[3]) is the compositum of k(C) and k(S)(V/A)
over k(S). Switching to geometry, if we denote by S[v/A] (resp. C[v/A]) the curve with function
field k(S)(v/A) (resp. k(S)(E[3])), we have the following cartesian square of connected covers of
curves, in which Galois covers are labelled with their corresponding Galois group.

Let us underline the fact that, in any case, C[V/A] — S is
tamely ramified, since it is Galois of degree 24 (resp. 8 in the CVA]

quaternionic case), which is coprime to the characteristic of k.

Therefore, the inertia groups of its ramified points are cyclic sub- y YARY/

groups of SLy(F3), hence have order 2, 3, 4 or 6 (resp. 2 or 4 in
the quaternionic case).

3
Let R C C be the ramification divisor of C — S. If v € S is a S[VA] SLa(F3) C
closed point, we denote by C, (resp. by R,) the fiber of C' (resp.
R) at v. As previously , we note that YARYA 8
C\ R=¢[3]\ {0} S

Similarly, we denote by Rt C C™T the ramification divisor of
CT — S. We note that Qg has a unique subgroup of order two, which means that P — —P is the
unique automorphism of order 2 of C[v/A] — S. The same holds for C' — S (which is not Galois
in general, but over which the automorphism P +— —P is still defined). It then follows from the
diagram above that, given a point P € C' with ramification index ep (relative to S), its image by
the map C' — CT has ramification index ep/2 if ep is even, and ep if ep is odd.

We shall now proceed to a case-by-case description of R, and R, depending on the reduction
type of £ at v.

1.

2.

Reduction type I, 3 | n. In this case, #&,[3] = 9 hence R, and R are both zero.

Reduction type I,,, 3 1 n. In this case, #&,[3] = 3 hence C,, has exactly two unramified points
Py and P,. Moreover, v(A) = n, hence A is not a cube in k(S) and, after performing the
totally ramified base change S[v/A] — S, E has reduction type I3,, in particular C[v/A] —
S[V/A] is unramified above v (previous case). It follows that the ramified points of C' — S
have ramification index 3, hence C,, = P; + P> +3Q1 +3Q2 and C;f = Pt +3Q*. Therefore,
deg(R,) = 4 and deg(R}) = 2.

. Reduction type I’;, 3 | n. In this case, #&,[3] = 1 hence C, has all its points ramified.

Moreover, v(A) = 6 + n, hence S[v/A] — S is unramified above v. So without loss of
generality we may assume that A is a cube in £(.59), i.e. C — S is Galois with group Qs. On
the other hand it is known that, after a quadratic ramified base change, E has reduction type
I5p,, in which case C' — S is unramified (first case). We deduce that all ramification indexes
of C — S are equal to 2, i.e. C, = 2P, +2P,+2P;+2P,, and that C} = P1++P2+ —|—P3++PI.
Therefore, deg(R,) = 4 and deg(R;) = 0.

. Reduction type I', 3 t n. As in the previous case, C, has all its points ramified. After

performing a quadratic ramified base change, F has reduction type Is,, and we recover the
case 2. We conclude that C, = 2P + 6Q and C;} = Pt + 3Q™". Therefore, deg(R,) = 6 and
deg(R}) = 2.

. Reduction type IV or IV*. In this case, #&,[3] = 3 hence C, has exactly two unramified

points P; and P». Moreover, v(A) is 4 or 8, hence A is not a cube in k(S) and, after
performing the totally ramified base change S [%] — S, E acquires good reduction, because
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the valuation of A is multiplied by 3, hence is zero modulo 12. Therefore, C[v/A] — S[V/A]
is unramified above v. We conclude that the ramification is the same as in 2.

In the remaining cases, the reduction is additive, potentially good, and C, has all its points
ramified. According to Serre-Tate [ST68, Cor. 2|, the curve E acquires good reduction
exactly when the field of definition of the 3-torsion points becomes unramified. Therefore,
the ramification indexes of C[v/A] — S are all equal to the semistability defect of E, which
is the denominator of v(A)/12 since char(k) # 2,3 [Kra90, Prop. 1].

6. Reduction type IT or IT*. In this case, C, = 2P + 6Q, deg(R,) = 6 and deg(R;) = 2.
7. Reduction type IIT or IIT*. In this case, C, = 4P + 4Q, deg(R,) = 6 and deg(R;}) = 2.
One checks that, in each case listed above,

1 if3 ey

0 otherwise.

N | =

(e - ) 1. - |
Summing up over all v € ¥, it follows that

5 (deg(R) — dea(R")) = degis) — #{v € 5.3 | 0}, (22)

The proof ends by applying the Riemann-Hurwitz formula to the covers C' — S of degree 8,
and C*T — S of degree 4. Subtracting the two identities and dividing by 2, one obtains

9(C) ~ 9(C) = 4g(8) ~ 4+  (deg(R) — deg(R"))

and follows by combining this with ([22)).

Let us now prove the last statement of Theorem Keeping for the moment the assumption
that k is algebraically closed, we have dimy, Pic(C)[3] = 2¢(C), and similarly for C*. By self-
duality of the Jacobian of C, the Weil pairing induces a perfect, symplectic pairing Pic(C)[3] x
Pic(C)[3] — us, which is Galois equivariant. Dropping now the assumption that k is algebraically
closed, it follows that in particular, if k£ does not contain cube roots of unity, then

dimp, Pic(C)[3] < ¢(C)
and similarly for CT. Therefore, the identity implies that, for p = 3, the bound is a
refinement of the geometric rank bound provided £ does not contain cube roots of unity.
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