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Negative critical currents in single-channel Josephson junctions
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We argue that negative critical currents arise generically in Josephson junctions formed by single-channel
conductors. Specifically, we theoretically study the Josephson coupling between two superconducting leads
connected by a one-dimensional conductor in the Coulomb blockade regime. We show that in the clean regime
the sign of the critical current alternates with the number of electrons in the normal region. For odd occupancy
the critical current is negative even when the number of electrons on the conductor is large.
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The energy of a superconductor–normal metal–
superconductor (SNS) junction depends on the order
parameter phase difference between the two superconductors.
In the limit of weak tunneling between the normal region and
the superconductors, this dependence has the form

EJ(χ1 − χ2) = − h̄Jc
2e

cos(χ1 − χ2). (1)

Here, χ1 and χ2 are the order parameter phases in the two
superconductors, e is the electron charge, and Jc is the critical
current of the junction.

It is possible to prove that in the single-particle approxi-
mation the critical current is always positive [1]. Beyond the
noninteracting electron approximation, there are no general
principles which determine the sign of Jc. Several physical
mechanisms of negative currents have been proposed. The
sign of the critical current of a superconductor-ferromagnet-
superconductor junction is an oscillating function of the mag-
netization and the length of the ferromagnet (see Refs. [2,3]).
Even in the absence of macroscopic magnetization, the critical
current can be negative if it is mediated by tunneling through
a magnetic impurity [4], a resonant state [5–7], or a quantum
dot in the Coulomb blockade regime [8]. Recently, negative
critical currents were observed in SNS Josephson junctions
with a normal region comprised of a carbon nanotube [9] and
semiconductors [10–12].

We consider an SNS junction formed by a one-dimensional
(1D) metallic wire in the Coulomb blockade regime. We show
that the alternation of the sign of the critical current as a
function of the number of electrons in the normal region is a
generic property of such systems. Namely, the critical current
is positive when the number of electrons is even, and negative
if it is odd, even when the number of electrons in the junction
is large.

The physical reason for the sign alternation can be traced
to the node theorem for electron wave functions in one di-
mension (see, for example, Ref. [13]). According to this

theorem, the number of nodes in the wave function of an
energy eigenstate is given by the ordinal number of the energy
level counted from the ground state. Indeed, we note that
the amplitude of the electron tunneling through an insulating
barrier from a single-particle state in the normal region with
wave function ψm(x) to a state in the lead i = 1, 2 with wave
function φ

(i)
k (x) may be expressed as [13,14]

t (i)mk = 1

2m∗
[
φ
(i)
k (x)∂xψm(x) − ψm(x)∂xφ

(i)
k (x)

]∣∣
x=xi

. (2)

Here, m∗ denotes the electron mass, the x axis is along the
wire, and xi is located inside the tunneling barrier between the
wire and lead i; x1 = 0, and x2 = L, where L is the length of
the wire. We assume that all electron wave functions can be
chosen real. In second-order perturbation theory the single-
particle tunneling amplitude between the two leads through
the virtual state m in the wire is proportional to the product of
derivatives ∂xψm(x) at the contacts,

[∂xψm(0)][∂xψm(L)] = (−1)m+1|∂xψm(0)||∂xψm(L)|. (3)

The alternation of the sign in this equation is a direct conse-
quence of the node theorem.

To elucidate the mechanism of the critical current sign
alternation we consider a system described by the following
Hamiltonian,

Ĥ = EC (N̂ − N0)
2 + Ĥ1D +

∑
i=1,2

[
Ĥ (i)
t + Ĥ (i)

SC

]
. (4)

In this expression, Ĥ (i)
SC is the Hamiltonian of the ith supercon-

ducting lead, and Ĥ1D is the Hamiltonian of the normal metal
region,

Ĥ1D =
∑
m,σ

ξmc
†
σmcσm. (5)

Here, cσm is the annihilation operator of an electron with spin
σ =↑, ↓ and the mth single-electron state, whose energy ξm
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is measured relative to the chemical potential (we will assume
that ξm is a monotonic function of index m). The mean level
spacing for the conductor is δ ∼ h̄vF/L, where vF is the Fermi
velocity.

The tunneling Hamiltonian may be expressed in terms of
the tunneling matrix elements in Eq. (2) as

Ĥ (i)
t =

∑
m,k,σ

t (i)mkc
†
σma

(i)
σk + H.c., (6)

where a(i)
σk denotes the electron annihilation operator in state k

in the superconducting lead i.
To keep the presentation more transparent we treat the elec-

tron interactions in the “zero mode” approximation. In doing
so we neglect the correlations induced by the electron-electron
interactions inside the normal region. This approximation is
applicable for small ratios between the electron potential and
kinetic energy: rs = e2/h̄vF � 1. Furthermore, we assume
that the length of the metallic wire L satisfies the inequality
rs ln(kFL) � 1, so that the Tomonaga-Luttinger liquid effects
[15–17] may be neglected.

The zero mode interaction is represented by the first term
in Eq. (4). Here, EC ∼ e2/L � δ is a single-electron charging
energy, and operator N̂ = ∑

σm c†σmcσm counts the number of
electrons in the 1D conductor. (In the absence of tunneling this
number is quantized.) The parameterN0 is proportional to the
gate voltage and controls the number of electrons in the wire.
We work in the approximation of weak tunneling and assume
that the system is sufficiently far from the charge degeneracy
point, so that quantum charge fluctuations are small. In this
case the spin in the ground state is 0 for an even number of
electrons and 1/2 for an odd number.

The lowest order of perturbation theory with respect to
H (i)
t which yields the dependence of the junction energy on

(χ1 − χ2) is fourth. For simplicity we assume that 	, the
quasiparticle energy gap in superconductors, exceeds both the
Coulomb energy and the mean level spacing: 	 � EC, δ. In
this regime, quasiparticles can tunnel from superconductors
to the normal metal wire only by pairs, and the part of the
pair-tunneling Hamiltonian between superconductor i and the
metallic wire may be written in the form

Ĥ (i)
T = eiχi

∑
mn

T (i)
mn c

†
↑mc

†
↓n + H.c., (7)

where T (i)
mn denotes the tunneling amplitude of a Cooper pair

from lead i into the states m and n in the normal region.
For low-lying excited states m and n in the wire, satisfying
	 � |ξn|, |ξm|, amplitude T (i)

mn can be expressed in terms of
the single-particle tunneling amplitudes in Eq. (2) in the form
[18,19]

T (i)
mn = −

∑
k

t (i)kmt
(i)
kn |〈a↑ka↓k〉|

εk
. (8)

In this approximate expression, εk is the quasiparticle energy
in state k of the superconductor, and 〈a↑ka↓k〉 denotes the
Cooper pair condensation amplitude. Performing the summa-
tion over k in Eq. (8), one obtains the following estimate,

|T (i)
mn | ∝ g(i)δ, (9)

where g(i) is the dimensionless conductance of the ith SN
interface.

Once higher-energy degrees of freedom are “integrated
out,” the effective model Hamiltonian reads

Ĥeff = EC (N̂ − N0)
2 + Ĥ1D + Ĥ (1)

T + Ĥ (2)
T . (10)

Note that it only contains degrees of freedom in the normal
metal.

We evaluate the Josephson coupling energy of the system
using second-order perturbation theory in powers of Ĥ (1,2)

T ,

EJ =
∑
mn

〈0|Ĥ (1)
T | ↑ m,↓ n〉〈↑ m,↓ n|Ĥ (2)

T |0〉
E0 − Emn

+ c.c., (11)

where |0〉 is the ground state of the wire, while |↑ m,↓ n〉 is
the two-particle excited state characterized by the presence (or
absence) of two electrons with opposite spins, one on level
n, another on level m. The structure of the ground state |0〉
depends on the parity of N0. When the number of electrons is
even, N0 = 2M, the ground state |0〉 is a spin singlet, and any
m � M level is empty, while any 0 < m < M level is doubly
occupied. This ground state remains stable as long as the gate
potential N0 satisfies the following inequalities,

−EC − ξM < 2EC (2M − N0) < EC − ξM−1. (12)

Alternatively, for a fixed gate potential N0, one can view this
relation as a condition on N0 = 2M.

When either of the strict inequalities in Eq. (12) become
an equality, the ground state becomes charge degenerate. For
example, if 2EC (2M − N0) = −EC − ξM , the state with 2M
electrons and a state with 2M + 1 electrons become degener-
ate. The extra electron occupies the m = M level. The ground
state with odd N0 = 2M + 1 is stable when

|2EC (2M + 1 − N0) + ξM | < EC . (13)

For odd N0, the ground state is a spin doublet.
In the following, we will redefine the single-electron index

m as follows: m → m − M. That way, all levels with m < 0
are doubly occupied, and all levels with m > 0 are empty.
A single electron resides on the m = 0 level for odd N0,
otherwise this level is empty. Furthermore, without loss of
generality, we can assume that ξ0 = 0.

Ultimately, the perturbation-theory expression (11) for the
Josephson coupling EJ can be written as

EJ = −(E+ + E−) cos(χ1 − χ2), (14)

where energies E± represent two-electron and two-hole con-
tributions

E± =
∑
mn

2T (1)
mn T

(2)
mn �(±m ± 1/2)�(±n ± P/2)

4EC ± [4EC (N0 − N0) + ξm + ξn]
, (15)

where the choice of the sign (top/bottom) on the right-hand
side is dictated by the sign on the left, and the half-integer
terms in the arguments of the Heaviside functions �(x) are
introduced to avoid the uncertainty of �(0). Note that in
Eq. (15) the summation range for index n depends on the
parity P defined as

P = (−1)N0 . (16)

For odd N0, this accounts for the Pauli blocking of the n = 0
single-electron state by a single electron occupying this state.
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Another crucial observation about the sum in Eq. (15) is the
sign alternation of the terms being summed. While the denom-
inators are always positive, the numerator signs demonstrate a
different pattern,

T (1)
mn T

(2)
mn = (−1)m+n

∣∣T (1)
mn T

(2)
mn

∣∣. (17)

To justify the sign-alternating factor (−1)m+n in this relation
one can use Eqs. (2) and (8) to express T (i)

mn in terms of the
derivatives ∂xψm|x=0,L and ∂xψn|x=0,L, and then apply the node
theorem (3) to the product T (1)

mn T
(2)
mn .

So far we did not make any assumptions about the strength
of disorder in the wire. Now we apply the formalism to
the clean-wire case, L � l , where l is the elastic electron
mean free path. In such a situation, the wave functions are
ψm ∝ sin(kmx), where the quantized momentum is km = kF +
πm/L, and the Fermi momentum is equal to kF ≈ πN0/(2L)
for N0 � 1. The single-particle energies are ξm = mδ.

In this regime, |T (1)
mn T

(2)
mn | may be considered independent

of m and n, while the sign of the product T (1)
mn T

(2)
mn satisfies

Eq. (17). Thus, Eq. (15) for an even number of electrons can
be expressed as

E (even)
± = E0

∑
m�0
n�0

(−1)m+n

κ± + m + n
. (18)

Here, E0 ∝ g(1)g(2)δ, and the dimensionless offset parameters
are

κ± = 4EC

δ

[
1 ± (N0 − N0) + (1 ∓ 1)δ

4EC

]
. (19)

Note that κ± > 0, as ensured by inequalities (12), and κ+ +
κ− ≈ 2. The latter relation means that at least one of the κ’s is
of order unity, and neither of them exceed 2.

Therefore, we reduce the issue of finding the Josephson
coupling to the task of evaluating the sum in Eq. (18). To
proceed, we rewrite this double sum in the form

S± =
+∞∑
n=0

(−1)n f (κ± + n), (20)

where

f (y) =
+∞∑
m=0

(−1)m

y + m
. (21)

Since the right-hand side of Eq. (20) is a sign-alternating
series satisfying the Leibniz criterion [sequence (y + m)−1

monotonically decreases to zero for growing index m], we
conclude that, for positive y, the series is convergent, and
function f (y) is finite. Moreover, the Leibniz theorem guar-
antees that, for positive y, f (y) > 0 since the first term in
the sum (20) is positive. Additionally, it is easy to prove that
f (y) decreases monotonically when y → +∞. Indeed, the
derivative of f ,

f ′(y) =
+∞∑
�=0

[
1

(y + 2� + 1)2
− 1

(y + 2�)2

]
, (22)

is negative since it is a convergent series of strictly negative
terms. Therefore, the series in Eq. (20) also passes the Leibniz
test. Furthermore, S± > 0 since f (κ±) are both positive. Thus

we conclude that for an even number of electrons in the wire
the critical current Jc in Eq. (1) is positive.

Let us now consider the situation with an odd number of
electrons in the wire. In this case, using Eq. (15) with P = −1,
we obtain the following expression for E± [see Eq. (14)],

E (odd)
± = −E0

∑
m�0
n�0

(−1)m+n

(κ± ± 1) + m + n
. (23)

This relation is the odd-N0 counterpart of Eq. (18). The dif-
ferences between these two expressions, both in terms of the
overall sign and the denominator structure, follow from the
difference in values of P for even/odd N0.

The argumentation presented above for the even-N0 case is
trivially applicable for Eq. (23). This allows us to conclude
that E (odd)

± < 0. Thus, for an odd number of electrons in the
wire the critical current Jc is negative. In other words, an
addition or subtraction of a single electron from the conductor
changes the sign of the critical current even in the case where
the number of electrons is large.

The reason for the opposite sign of the critical current Jc
in the cases of even and odd numbers of electrons in the wire
N0 is related to the fact that the signs of the corresponding
alternating series, Eqs. (18) and (23), are determined by the
signs of the terms with the smallest energy denominator.

So far we considered the case of a clean metallic wire. In
the presence of a disorder potential V (x), the general pertur-
bative expression (15) remains valid. Equation (17), which
follows from the node theorem, is valid as well. However,
generally speaking, the absolute values of the terms in the
alternating series Eq. (15) do not decrease monotonically
since the products |T (1)

mn T
(2)
mn | become sample-specific func-

tions of n and m. Therefore, the double sum in Eq. (15)
may be dominated by the states whose wave functions have
the strongest coupling to the leads, rather than those with
the smallest energy denominators. In this case the value
of the critical current depends on the realization of disorder.

Interestingly, it is possible to prove that, similarly to
the case of noninteracting electrons [1], the Josephson cou-
pling for an even number of electrons in the wire remains
positive for any disorder in the wire. Our proof relies on
the factorization T (1)

mn T
(2)
mn = snsm, where the function sn ∝

∂xψn(0)∂xψn(L). We also make use of the following integral
representation of a fraction, 1/x = ∫ +∞

0 due−ux , valid for any
x > 0. Applying the latter representation to the denominator
in expression (15), one derives

E (even)
± =

∫ +∞

0
duG2

±e
−4EC [1±(N0−N0 )]u, (24)

where functions G± = G±(u) are defined for u > 0 by a con-
vergent series

G± =
∑
m

(−1)me∓uξm |sm|�(±m ± 1/2). (25)

It is clear from Eq. (24) that E (even)
± are both positive for any

spectrum and the wave-function structure.
Finally, we would like to make the following observations.
(i) In the case where the number of electrons in the wire is

odd and in the presence of a disordered potential the critical
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current of the junction has a random sign, and the proba-
bility of the negative sign decreases as the strength of the
disorder in the wire increases. For example, in the strongly
disordered case where the electron mean free path l is shorter
than the wire length, l < L, the electron wave functions are
localized. In this case the distribution of |T (1)

mn T
(2)
mn | in Eq. (17)

is exponentially broad. As a result, the double sum for the
critical current in Eq. (15) is dominated by contributions of
states whose wave functions have the strongest coupling to
both leads. Since such states are typically either doubly oc-
cupied or empty, the probability of a negative critical current
is small.

(ii) Since the results obtained above are based on the
one-dimensional node theorem, they are of purely one-
dimensional character. In general, in the systems where
EF � δ and in the case where the normal metal stripe has a
finite width larger than the Fermi wavelength, the probability
for the critical current to be negative decreases when the
sample width grows.

(iii) For longer conductors, L � LTL, the Luttinger liquid
effects become significant. In this regime the 0-junction crit-
ical current Jc(L) has been extensively studied theoretically
[20–22]. In this limit the Luttinger liquid effects change the

L dependence of the critical current from the single-particle
dependence 1/L to a power of L which depends on the value
of the interaction constant. As far as a question of the sign
of Jc is concerned, we conjecture that the Luttinger liquid
effects do not destroy the alternation of the Josephson cou-
pling sign. In particular, at rs � 1, where the system is close
to an antiferromagnetic Wigner crystal, an extension of the
arguments presented in Ref. [6] suggests that the sign of the
critical current should oscillate as a function of the number
of electrons. We also would like to mention that the sign
oscillation of the pair field correlator as a function of distance
in a 1D Kondo system has been discussed in Ref. [23].

To summarize, we showed that in clean single-channel
Josephson junctions the sign of the critical current alternates
with the number of electrons in the normal region, being
positive if the number of electrons is even and negative when
it is odd.
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