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ABSTRACT

Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in
freshwater environments in the early Proterozoic and diversified into marine environments
by the Tonian Period, but early algal evolution is poorly reflected in the fossil record.
Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outer-
shelf marine facies of the ca. 950-900 Ma (Re-Os minimum age constraint = 898 + 68 Ma)
Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These
fossils, variably preserved by iron oxides and clay minerals, represent two size classes.
The larger forms feature unbranching thalli with uniform cells, differentiated cell walls,
longitudinal striations, and probable holdfasts, whereas the smaller specimens display
branching but no other diagnostic features. While the smaller population remains
unresolved phylogenetically and may represent cyanobacteria, we interpret the larger
fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based
on their large size and presence of rib-like wall ornamentation. Considered as such, the
latter are among the few green algae and some of the largest macroscopic eukaryotes yet
recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores
Creek fossils indicate that eukaryotic algae, including green algae, colonized marine
environments by the early Neoproterozoic Era.

INTRODUCTION

Understanding the early evolution and di-
versification of eukaryotes is a central objective
in geobiology. Of particular importance are the
archaeplastids, a key group that includes Rho-
dophyta (red algae) and Viridiplantae (green
algae and land plants). With their primary
chloroplasts derived from endosymbiosis, al-
gae became significant contributors to primary
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productivity and photosynthetic oxygen pro-
duction in the Neoproterozoic (1000-539 Ma;
Brocks, 2018). Algae are proposed to have
first evolved in freshwater environments in
the early Proterozoic, but they then expanded
into marine environments by the Tonian Period
(1000-720 Ma)—Ileading to dramatic reorga-
nizations of the marine biological pump, food
webs, and benthic habitats (Sanchez-Baracaldo
etal., 2017; Del Cortona et al., 2020). However,
the early fossil record of algae—a polyphyletic
group of photosynthetic eukaryotic organisms—
is scarce and controversial (Berney and Paw-

lowski, 2006; Graham, 2019). While both fossils
(Butterfield, 2000; Bykova et al., 2020; Tang
etal., 2020) and biomarkers (Brocks, 2018) im-
ply algal diversification by the Tonian, rare algal
fossils provide limited geological constraints
on the timing and environment of key nodes
predicted by molecular data.

Various marine fossils as old as 1.9-1.5 Ga
have been interpreted as algae (e.g., Han and
Runnegar, 1992), including green algae (e.g.,
Agic etal., 2017). However, the phylogeny and
habitat of many algal fossils remain contentious
owing to their simple morphology and a lack
of paleoenvironmental constraints. The oldest-
known unequivocal rhodophyte fossil is the
ca. 1050 Ma Bangiomorpha pubescens (But-
terfield, 2000; Yang et al., 2016; Gibson et al.,
2018). Also, Proterocladus from the ca. 795 Ma
Svanbergfjellet Formation in Svalbard, Norway
(Butterfield et al., 1994), and the ca. 1000 Ma
Nanfen Formation in north China (Tang et al.,
2020) has been interpreted as a siphonocladous
green alga. This interpretation is inconsistent
with some molecular clock results that suggest
siphonocladous green algae did not diverge un-
til the latest Neoproterozoic (e.g., Del Cortona
etal., 2020). However, if confirmed, these fossils
imply a much earlier origin and diversification
of the chlorophytes. The ca. 1080 Ma Nonesuch
Formation in North America contains a possible
fragment of Proterocladus (Tang et al., 2020),
but the setting (marine versus nonmarine) is
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disputed (Jones et al., 2020). These uncertain-
ties highlight the pressing need to document Pro-
terozoic algal fossils from geochronologically
and paleoenvironmentally resolved successions.

We report two populations of exceptionally
well-preserved, macroscopic, filamentous fos-
sils from ca. 950 Ma marine strata of the low-
er Dolores Creek Formation in the Wernecke
Mountains, Yukon, Canada. Phylogenetic and
paleoenvironmental interpretations of these fos-
sils reveal novel insights into early eukaryotic
evolution and ecology.

GEOLOGIC SETTING

The ca. 950-900 Dolores Creek Forma-
tion (Fig. 1; Figs. S1-S4 in the Supplemental
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Material') is the basal unit of the ca. 950-775 Ma
Mackenzie Mountains Supergroup, which out-
crops along the border between Yukon and
Northwest Territories (Canada) and represents
one of the most complete early-middle Tonian
successions globally (Turner, 2011). In most
locations, the formation consists of ~300 m of
shale, siltstone, and microbial dolostone deposit-
ed in outer-shelf settings (Fig. 1). The conform-

Supplemental Material. Detailed description of
methods, geological setting, Proterozoic life, and
additional figures for each morphologic characteristic.
Please visit https://doi.org/10.1130/GEOL.S.14120384
to access the supplemental material, and contact
editing @geosociety.org with any questions.

ably overlying Black Canyon Creek Formation
is composed of tidally influenced meter-scale
carbonate-shale cycles, implying a marine set-
ting (Turner, 2011) (Figs. S5-S7). At the fossil
locality (Fig. S3), the Dolores Creek Formation
is expanded to ~1 km thick and includes a thick
basal succession, absent in most sections, that
consists of dark-gray siltstones and shales with
minor stromatolitic bioherms and debrites. The
macrofossils described here are associated with
debrite beds near the middle of the formation
in facies interpreted to record deposition via
gravity flows into relatively deep water (below
storm wave base; Fig. 1C). We infer that the
fossils were transported from a shallow marine
shelf edge and redeposited by episodic slope
failure events resulting in rapid burial and aiding
fossil preservation. Increasingly abundant stro-
matolite bioherms above the debrite interval re-
cord progradation of the shallower, photic-zone
shelf-edge facies from which the fossils were
likely derived. Thus, the fossils likely represent
organisms that inhabited the seafloor between
stromatolite mounds that rimmed the margin.

Re-Os Geochronology

Black shale from the Dolores Creek For-
mation yielded a Re-Os date of 896 + 45 Ma
(20, n = 5, mean square of weighted deviates
[MSWD] = 0.92; total uncertainty includes
that of the '¥7Re decay constant) with an initial
1870s/1%80s composition of 0.38 4+ 0.09 (Fig. S1;
Dataset S2; see Supplemental Material). This
date is similar to that obtained using a Monte
Carlo resampling approach (8§98 + 68 Ma) that
propagates both analytical and model age uncer-
tainties (Fig. 1; Fig. S1; Li et al., 2019). Here,
we consider the date derived using the Monte
Carlo method to be the best estimate of the depo-
sitional age of the Dolores Creek Formation and
minimum age for the macrofossils.

MACROFOSSILS

We analyzed 339 specimens of macrofossils
(Figs. 2 and 3; Table 1; Figs. S8-S15; Dataset
S2) that ranged from exceptional preservation
with rare three-dimensional morphological de-
tails to poor preservation with only outlines of
the fossils. Fossils are casted by clays and py-
rite (often weathered as Fe oxides; Figs. 3C and
3D) with limited carbon remaining. Accounting
for variations in preservation, the specimens
maintain a ribbon-like shape with consistent
widths along the entire length (Figs. 2A and
2B). Two populations were identified based on
their widths (Fig. S9): Large specimens range
from 0.60 to 0.80 mm in width, whereas small
specimens range from 30 to 50 pm. The large
fossils reach up to 36 mm in length, while the
small forms can be up to 4.9 mm long; be-
cause the specimens are likely fragmented,
their observed lengths provide only minimum
estimates.
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The large fossils are subdivided by a se-
ries of double septa into uniform, repeating
segments with no evidence of pit connections
(Figs. 2A-2D; Figs. S10 and S11). These seg-
ments range in length from 0.45 to 0.53 mm
(mean = 0.49 £ 0.017 mm), they are consis-
tently spaced, and >30 segments occur in the
best-preserved examples. Where specimens
are preserved in three dimensions, the double
septa exhibit higher relief (Fig. S8; Video S1).
Longitudinal striations (<0.03 mm in width)
within the segments and extending between
the septa (Figs. 2A and 2E) may be the result
of compression of a tube (Cohen et al., 2009).
However, the observation of these striations
in the three-dimensionally preserved speci-
mens (Fig. 2E) suggests that they were bio-
logical features. Exceptionally preserved larger
specimens bear an elongated, ellipsoidal-to-
globose, club-like structure at one of the ter-
mini (n = 15; Figs. 2C and 2D; Fig. S12). The
small specimens display branching (Fig. 2F;

Fig. S13) but lack visible segments or other
characteristic features.

DISCUSSION
Taphonomy

Taphonomic bias contributes to the sparse
fossil record of Proterozoic macroalgae. Non-
biomineralizing macroalgae have low preser-
vation potential and are primarily preserved
as two-dimensional carbonaceous compres-
sions (Xiao and Dong, 2006). This is similar
to Burgess Shale—type preservation, which,
in addition to the characteristic carbonaceous
films, also include accessory minerals such as
pyrite and clays, implicated as taphonomically
important in algal fossils from the Ediacaran
to Cambrian (Anderson et al., 2011; LoDuca
et al., 2015), as well as other postulated green
algae from the Tonian (Anderson et al., 2020).
The Dolores Creek macrofossils show both of
these accessory minerals (Figs. 3C and 3D;
Figs. S14 and S15) but retain little remnant
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Figure 2. Dolores Creek For-
mation (Yukon, Canada)
macrofossils. (A) Large macro-
fossil divided by double septa
(arrowheads) into cells (C,,—cell
height, C,—cell width) with lon-
gitudinal striations. (B) One large
specimen (arrowhead) overlying
another perpendicular to the first.
(C) Large macrofossil with septa
(arrowheads) and probable hold-
fast (arrow). (D) Holdfast (arrow)
of large macrofossil overlap-
ping another with double septa
(white arrowhead). Note small
fossils (black arrowhead). (E)
Small macrofossil with branch-
ing. (F) Large macrofossil with
longitudinal striations (arrow-
heads). White scale =1 mm;
black scale = 0.5 mm. See the
Supplemental Material (see foot-
note 1) for additional examples
of morphological characteris-
tics. Specimens in A, D, and F
are from sample HCS-W18-56
(Royal Ontario Museum speci-
men ROMIP66167), specimen in
C is from sample HCS-W18-59
(ROMIP66169), and specimens in
B and E are from sample HCS-
W18-72 (ROMIP66170).

organic carbon, implying a similar preserva-
tional pathway but enhanced degradation and
removal of carbonaceous remains (Schiffbauer
et al., 2014).

Phylogenetic Affinity

An animal affinity can be ruled out for the
macrofossils because no animals are known to
have a septate filamentous construction. A fun-
gal affinity is also unlikely for the larger fossils
because septate fungal hyphae are much thinner
(micrometer versus millimeter scale), and often
associated with diagnostic spore-bearing struc-
tures (Alexopoulos et al., 1996). Large filaments
with differentiated cell walls (double septa) or-
ganized into an unbranching thallus are consis-
tent with a cyanobacterial or algal interpretation
(Graham and Wilcox, 2000).

Distinguishing between these interpreta-
tions is complicated by the morphological
convergence among extant filamentous cya-
nobacteria and algae. However, the large size,
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TABLE 1. GENERAL MORPHOMETRICS OF THE TWO FOSSIL SIZE CLASSES

Size class n Minimum Maximum Mean o Maximum Mean o
width width width length length

Large 250 600 800 700 30 36 9 4.78

Small 89 30 50 40 5 4.9 0.95 0.70

Note: Widths are reported in pm, and lengths are in millimeters.

longitudinal striations, and probable holdfasts
all favor an epibenthic algal interpretation for
the large fossils. Cyanobacteria lack a holdfast
to support an erect epibenthic habit (Xiao et al.,
2002). Some cyanobacteria such as Rivularia
and Calothrix can develop apical cells (Cas-
tenholz, 2001), but these are typically conical
in shape or specialized heterocysts that are un-
likely to occur only at the terminal end of the
organism (cf. Fig. 2C). The probable holdfasts
represent the only variation in the width from
the thallus and differ in shape from heterocysts
by their elongated structure. Additionally, the
longitudinal striations (Figs. 2A and 2E) likely
represent rib-like cell wall ornamentation. Such
striations are unknown from cyanobacterial cell
walls but are broadly similar to the longitudinal
ridges on the cell walls of some green algae
(e.g., desmidaceans; Gontcharov and Watanabe,
1999). Finally, filamentous cyanobacterial cells
have an upper size limit of ~0.2 mm in width
(Pang et al., 2018), whereas the cells in the larger
macrofossils are up to 0.8 mm in width. Thus,
the larger population is most parsimoniously
interpreted as epibenthic eukaryotic macroal-
gae. The smaller branching specimens some-
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what resemble other Tonian fossils interpreted
as crown-group green algae (Butterfield et al.,
1994; Tang et al., 2020); however, with their
simple morphology, they could plausibly rep-
resent either algae or cyanobacteria.

Extant filamentous green algae provide the
best analog for the larger populations based on
their large cell size, typical of extant sipho-
nocladaleans (Leliaert et al., 2007), and the
presence of rib-like ornamentation on their
cell walls, reminiscent of extant desmidaceans
(Gontcharov and Watanabe, 1999). Most multi-
cellular red and brown algae have either pseudo-
parenchymatous or true parenchymatous thalli
(Graham and Wilcox, 2000), distinct from the
uniseriate filamentous construction of the Do-
lores Creek fossils. Red algae also have pit
connections (Yang et al., 2016) and smaller
cell size compared with most multicellular
lineages, possibly due to their minimal cyto-
skeleton (Brawley et al., 2017), while larger
cells are common in green algae (e.g., siphono-
cladaleans; Leliaert et al., 2007). A uniseriate
filamentous thallus is common among green
algae (South and Whittick, 1987), including
both streptophytes and chlorophytes (Leliaert

Figure 3. Electron microscopic
images and elemental maps.
(A-B) Backscattered electron
image of large macrofossils. (C)
Energy-dispersive X-ray spec-
troscopy (EDS) map of the area
in A with relative abundances of
Fe, Si, and P. Note the apparent
branching is a result of overlap-
ping fossils, and apparent red
color is from Fe (red) enrich-
ment. (D) EDS map of area in B
with relative abundances of Fe,
Si, K, and S. Note: orange color
is the result of a combination
of Fe (red) and sulfur (yellow).
Arrowheads denote small fos-
sils. Scale =1 mm. Specimens
in A and C are from sample HCS-
W18-40 (Royal Ontario Museum
specimen ROMIP66164), and
specimens in B and D are from
HCS-W18-59 (ROMIP66169).

etal., 2012), some of which can develop simple
holdfasts as well (South and Whittick, 1987).
An extant analog for the large fossils could be
Chaetomorpha melagonium, a cladophoralean
green alga with a uniseriate filament composed
of cells up to 850 um in width and a discoidal
holdfast (Blair, 1983).

Broader Implications

The larger macrofossils from the Dolores
Creek Formation, together with recognized
Tonian chlorophytes from China (Tang et al.,
2020) and Spitsbergen (Butterfield et al., 1994),
provide evidence that benthic macroalgae inhab-
ited marine habitats by the early Tonian Period.
This finding is consistent with a Paleoprotero-
zoic—Mesoproterozoic divergence between Rho-
dophyta and Viridiplantae (Sdnchez-Baracaldo
et al., 2017; Gibson et al., 2018), and it indi-
cates that chlorophytes had already colonized
oceans by ca. 900 Ma, ~200 m.y. before the first
Cryogenian snowball glaciation and 300 m.y.
before the earliest biomarker evidence for green
algae—dominated marine ecosystems (Brocks,
2018). This discrepancy between the fossil and
biomarker record may be an artifact of preserva-
tion (or sampling bias), or, alternatively, it may
indicate that marine algae were ecologically
restricted, perhaps due to severe nutrient limi-
tation in Tonian seawater (Ozaki et al., 2019).
This distinction is important because the eco-
logical expansion of benthic macroalgae may
have influenced marine oxygenation due to their
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greater burial potential compared to phytoplank-
ton (LoDuca et al., 2017). The Dolores Creek
fossil locality represents a depositional setting
that was optimized for fossil preservation due to
rapid burial by gravity flow(s), and thus it offers
arare glimpse into early eukaryotic macroalgae.
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