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Enhanced U-Net Tool Segmentation using Hybrid Coordinate
Representations of Endoscopic Images

Kevin Huang, Digesh Chitrakar, Wenfan Jiang, and Yun-Hsuan Su

Abstract— This paper presents an approach to enhanced
endoscopic tool segmentation combining separate pathways
utilizing input images in two different coordinate represen-
tations. The proposed method examines U-Net convolutional
neural networks with input endoscopic images represented via
(1) the original rectangular coordinate format alongside (2)
a morphological polar coordinate transformation. To maxi-
mize information and the breadth of the endoscope frustrum,
imaging sensors are oftentimes larger than the image circle.
This results in unused border regions. Ideally, the region
of interest is proximal to the image center. The above two
observations formed the basis for the morphological polar
transformation pathway as an augmentation to typical rectan-
gular input image representations. Results indicate that neither
of the two investigated coordinate representations consistently
yielded better segmentation performance as compared to the
other. Improved segmentation can be achieved with a hybrid
approach that carefully selects which of the two pathways
to be used for individual input images. Towards that end,
two binary classifiers were trained to identify, given an input
endoscopic image, which of the two coordinate representation
segmentation pathways (rectangular or polar), would result
in better segmentation performance. Results are promising
and suggest marked improvements using a hybrid pathway
selection approach compared to either alone. The experiment
used to evaluate the proposed hybrid method utilized a dataset
consisting of 8360 endoscopic images from real surgery and
evaluated segmentation performance with Dice coefficient and
Intersection over Union. The results suggest that on-the-fly
polar transformation for tool segmentation is useful when
paired with the proposed hybrid tool-segmentation approach.

Index Terms—robot-assisted minimally invasive surgery;
telesurgery; surgical tool segmentation; U-Net

I. INTRODUCTION

Robot-assisted minimally invasive surgery (RMIS) ex-
hibits several salient patient-side benefits over open surgery,
including reduction in pain, recovery time and medication.
While benefits also exist for the surgical operator, perception
and situational awareness can be improved. Oftentimes,
visual feedback is available through the use of endoscopes.
However, limited field of view, occlusions, and lack of realis-
tic force feedback while operating in a dynamic environment
reduce scene and task understanding. Computer vision is a
promising pathway for remedying several of these areas.
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A. Background and Related Work

1) Endoscopic Tool Segmentation: Intraoperative en-
doscopy is often used in concert with laparoscopic proce-
dures and has been demonstrated to reduce complications [1],
[2]. When it comes to RMIS, endoscopy is often the assumed
and most baseline form of visual feedback [3]-[5]. With
that said, several approaches consider the use of multicamera
systems in RMIS [6]-[9]. Accurate tool segmentation can be
used to assist in tool tracking and guidance [10] and be used
for vision-based force estimation [11]-[14]. Myriad machine
learning techniques have been investigated for segmenting
tool pixels from tissue pixels in endoscopic images [15]-[18].
The use of U-Net for image segmentation is of particular
interest [5]. Improving tool segmentation accuracy is an
important and popular field of research.

(a) (®)
Fig. 1: (a) Typical rectangular endoscopic image from an RMIS
procedure with content presented in a circular shape, called the
image circle (b) the polar transformed version of the circular image.

The work presented here aims to expand machine learning-
based segmentation approaches by leveraging observations
related to the morphological structure of ideal endoscopic
imaging from RMIS procedures. Firstly, the content from
endoscopic cameras is limited to a circular area since the
image sensor is designed to typically be larger than the
image circle of the endoscope [19]. The remainder of the
image consists of zero padding to retain a rectangular shape.
Secondly, ideally the region of interest (ROI) of a given
surgical operation remains in the center of the field of view,
and tool-tissue interactions occur at the ROI.

With the above two considerations, the use of a pre-
processing morphological step transforming circular endo-
scopic images into polar coordinates centered about the
image circle center is proposed as a means to provide
potentially more amenable image representation for segmen-
tation. Figure 1 shows (a) a sample endoscopic image from
the University of Washington Sinus Surgery Cadaver/Live
Dataset [20] and (b) its polar representation.
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Figure 2 illustrates that with perspective projection and
straight surgical tools that polar transformed endoscopic
images may be more suitable for rectangular kernels used
in most image segmentation networks.

Endoscopic Image

Polar Representation

Fig. 2: A rectangular kernel implemented on a polar-transformed
endoscopic image corresponds to a geometry suitable for represent-
ing the tool in the original image.

2) U-Net Image Semantic Segmentation: Semantic image
segmentation is often approached with deep neural networks,
including the use of feature-enhanced convolutional neu-
ral networks [21]. One such approach utilizes a deeply-
supervised symmetric encoder-decoder architecture, called
the U-Net [22]. In the medical imaging field, the U-Net
structure has been used extensively, particularly for organ or
tumor volumetric segmentation from tomography slices [23]—
[25]. Because of prevalence and familiarity in the medical
imaging community, the U-Net architecture is the chosen
method for image segmentation in this work.

3) Polar Medical Imaging: Several sensors, including
ultrasonic sensing and radar systems, gather information
radially and thus in polar spatial coordinates. Some medical
imaging systems also vary the angle between successive
measurements, including computer aided tomography using
an X-Ray scanner, and often implement a polar morpho-
logical transformation for visualization [26]. In particular,
these data are visualized rectangularly with original sensor
data interpolated or resampled using algorithms based on
the Fourier slice theorem, e.g. the Jakowatz and O’Sullivan
gridding methods [27].

Whereas these approaches are developed since data are
spatially sampled in polar coordinates, the imaging data from
endoscopes are presented in rectangular form - the useful
image content is just restricted within a shape of a circle. In
this work, a simple polar coordinate transform is performed
where radial lines in Cartesian space are mapped to vertical
lines in the polar cortical plane representation, and concentric

circles in the Cartesian space are mapped to horizontal lines
in the polar cortical plane representation. Lossless methods
for this purpose exist [28] yet impart a greater computational
burden.

a) Log-Polar Transform: Both polar and log-polar
transformations can be used for affine image registration.
Polar registration can accommodate for arbitrary size of ro-
tations and at different scales. Scaling factors are represented
as simple phase shifts in the log-polar transformed coor-
dinates. The affine image registration problem was demon-
strated to improve with a log-polar non-linear least squares
hybrid approach [29]. The rotation and scaling effects in log-
polar coordinates is well-studied, as well as implications with
regard to optical flow and translational motions [30].

b) Adaptive Polar Transform: Matungka et al. observed
that, while the log-polar transform is useful for robustness to
rotation and scale variations, registration becomes an issue
when occlusions or other alterations occur. This is due to the
non-uniform spatial sampling of the polar transformation.
Thus, a new adaptive sampling scheme was proposed that
increases angular sampling frequency with increased radius.
The resultant information in the cortical plane representation
is non-rectangular, however [31].

B. Contributions

To the best of the authors’ knowledge, this work is the

first to simultaneously

- implement morphological polar transformation of en-
doscopic imaging, thus removing zero padding and
rearranging data spatially;

- implement dual U-Net tool segmentation frameworks
via two pathways

i) R: using typical rectangular representation;
ii) P: using polar coordinate counterparts;

- present a neural-network based hybrid approach that
improves segmentation Dice score using a pathway
selector S to determine the more probable prediction
result of the two coordinate representation pathways for
each input image. Two selector options - Syq and S 4 -
are presented in Section II-E.

The results of this work suggest that endoscopic images with
certain features are better suited for tool segmentation using
images arranged spatially using the described polar transfor-
mation as compared to unaltered rectangular coordinate im-
age representations. The hybrid approach determines which
images are better suited for either segmentation pathway.

II. METHODS

Images were obtained from the University of Washington
Sinus Surgery Cadaver/Live Dataset [20], [32]. The endo-
scopic videos were recorded using the Stryker 1088 HD
camera and the Karl Storz Hopkins @ 4mm 0° endoscope
at 30fps. The data set includes manual annotations of tool
pixels, with a variety of visual obstacles present, including:
motion blur, blood, smoke, shadows and specular reflections.
The overall workflow of the hybrid coordinate representation
segmentation approach is depicted in Fig. 3 and Fig. 4.
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Fig. 3: Flowchart diagram depicting the hybrid coordinate representation network training method. The training image set is first used to
train two separate U-Net segmentation networks, (one for each of the image coordinate representation pathways P and R). The U-Net
in R takes as input rectangular for mated endoscopic images i, while P takes polar images, i.e. f(¢). The training prediction masks
and resultant Dice coefficients are used to train binary classifiers, Sp¢ and S.4, to learn which pathway yields better segmentation. Saq
uses manually selected binary image processing features, and uses only final rectangular format predictions. S.4, on the other hand, uses
filter-based features and utilizes both types of masks generated in P as well as the mask type generated in R. The pathway selector, S,

is thus trained and may consist of either Saq or S4.

A. Image Pre-Processing

All endoscopic images in the data set were resized to
256 x 256 pixels via gridded linear interpolation. The
largest circle (with radius 128 pixels) from the center of the
original image was extracted from the rectangular image to
isolate useful endoscopic image information - note that less
consistent endoscopic imaging may employ a circle detection
method prior to resizing in case the circle image appears in a
different location or is of a different size. The training set was
further expanded by convolving an additive Gaussian white
noise kernel across all training images and then normalizing
pixel values to between 0 and 1.

B. Polar Transformation, f

Let N, be the set of natural numbers {1,2,...,256}. A
pre-processed endoscopic image can be represented as a set
of 3-tuples, call it C' = {(z,y,v)}, where (z,y) € N, x N,,,
representing pixel coordinates, and v as the associated value
of pixel (x,y). The goal is to represent radially with origin at
the center of the image circle. The proposed method is com-
putationally efficient, but does not sample space uniformly.

For an original endoscopic image C, an accompanying
polar image is most easily expressed as a matrix whose
entries correspond to spatial pixel location, call it Z €
N§56X256. Let P represent a set of 3-tuples where an element
(x,%,s) € P is generated by taking the entry in Z from
the ¥ row and ™ column, and x,v € {1,2,...,256}
and assigning as s. The polar transformation is a surjective
mapping f : C — P. To that end, select arbitrarily an
element in P, suppose it is (x, %, s). Then

:v,s) = f((z,y,9)

where
¢ = gcos(%%)ﬂ%l (1
y = {%sin(%r%)+128—‘ @)

Hybrid Pathway Selector

Fig. 4: Given an input image ¢, pathway R generates binary mask
Mg (7). Pathway P takes f(i) and generates both Mp (i) and
g (Mp(2)). Spm extracts 10 features from each of Mz (i) and
g (Mp (7)) to predict the best mask, while S4 uses a 3-channel
image M3(i) composed of all three masks.

and (z,y,s) € C. Then the corresponding element in P is
Dyy = 5. Visually Z is a square image, where pixel values in
the pre-processed image circle are reparameterized by angle
and radial distance from the image circle center.

C. Back-Transformation, g

After a polar represented endoscopic image is segmented,
the image must be back-converted to the original image
circle form in order to evaluate performance with rectangular
coordinate endoscopic images. The back-transformation, g,
is then composed of simply reverse operations of (1) and
(2). Since sign ambiguity arises with inverse trigonometric
operations, the regions of the polar image Z corresponding
to different quadrants of the original image centered at
the image circle center are set as constraints. Then for an
arbitrary element (a, b, s) in the back-transformed image, the
value is obtained from the polar image pixel (z,y) by
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(a,b,s) = g((x,%s))

where
v o= |V (3)
Pl

D. Coordinate Representation Pathways

1) Rectangular Coordinate Representation Pathway, R:
No additional processing was performed on either training
or testing images (beyond those already described in Section
II-A) for the rectangular coordinate representation pathway
- this represents the standard endoscopic image format used
in most segmentation approaches. Given an input endoscopic
image ¢, the R pathway simply passes ¢ as an input to the
trained U-Net tool segmentation network and generates a
single predicted binary tool mask, Mg(i), as depicted in
Fig4.

i— R — Mg(i) 5)

2) Polar Coordinate Representation Pathway, P: In this
pathway, endoscopic input images are first converted to a
radial spatial coordinate representation of the endoscopic
image data, as described in Section II-B. Training, segmen-
tation and testing are all performed using image data in this
coordinate representation before being back-transformed, as
described in Section II-C, to evaluate segmentation perfor-
mance. Given an input endoscopic image ¢, the P pathway
first computes the polar coordinate representation of ¢, i.e.
f(@). f(i) is an input to a trained U-Net polar tool seg-
mentation network and generates a predicted polar binary
tool mask, Mp (7). The final output of P for input image
i consists of two masks: Mp (i) and the back-transformed
polar tool mask, i.e. g(Mp(4)). This is depicted in Fig.4.

Mp (i),
g (Mp(i))

3) U-Net Training: The segmentation model in both path-
ways was trained using the U-Net architecture with dice
coefficient loss function, Dy. Suppose that Y; is the ground
truth segmentation and Y), is the generated segementation
prediction for a given input image. Then the dice loss is
computed as the following

f@) =P — { (6)

2[Y;NY,|+ S
Dp=1-""—_F _~ 7
g Y +Y,+8 @
where S was set to 1 in order to avoid dividing by 0.
a) Training Splits: The training-testing split was

heuristically determined as 90-10 with a total of 7404
training images and 956 testing images. Images were selected
randomly for training. A batch size of 2 for 50 epochs was
used to train, with 100 batches used per epoch. The Adam
optimizer with a learning rate of 1 x 10~* was used for
training, with the exponential decay rate of the first moment
(B1) set to 0.2 and the second moment (33) set to 0.8. A
value of 1 x 1077 was selected as .

b) Augmentations: Even though there were an abun-
dance of training images (7404 images), over-fitting was
observed in initial experiments with both coordinate rep-
resentations. To improve the model, augmentations such as
rotation, vertical and horizontal shifting, zooming, horizontal
flip, shearing and rescaling were used for both pathways.

-+ largest component
centroid

— largest component
component major axis

e image center

projection onto
major axis

Fig. 5: Pictoral representation of feature variable 4. A line oriented
as the major axis of the largest component and intersecting the
component centroid is drawn. § is then determined as the distance
between the image center and its orthogonal projection on that line.

E. Intelligent Pathway Selector, S

The U-Net segmentation networks trained for the rectan-
gular and polar coordinate representation pathways yielded
varying results on the training input images. The Dice
coefficient was calculated for segmentation mask predictions
generated from each of the two pathways for each training
image, thus creating data output labels. Based on the Dice
coefficient metric, 4395 input training endoscopic images
were better segmented using the polar coordinate representa-
tion pathway network as compared to 3009 segmented better
with the rectangular counterpart. By decoupling the training
processes of the two segmentation models, each network
utilized strong feature traits within each spatial representation
across the entire dataset. These results were used to train
binary classifiers for pathway selection of test images. Two
binary selector classifiers were examined:

1) Sy - with manually picked features that heuristically

present strong binary distinguishing power.

ii) Sy - with automatically generated filter-based features.

1) Manual Feature Classifier, Spq: As an input, S takes
for a single image 7 one predicted tool segmentation binary
mask from each of the two pathways, namely Mg (i) and
g(Mp(7)). The selector is tasked to determine which of the
two masks will yield better tool segmentation as measured
by the Dice coefficient.

a) Feature Selection: A total of ten single variable
features were generated for an input binary tool segmentation
mask. These features were generated using basic binary im-
age processing algorithms and connected component analysis
(in the 4-connected sense). For a mask M, feature extraction
is performed via F', such that

FM)=[a v 6 C o A u € p 9] ®
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(a)

Fig. 6: (a) Sample segmentation results from representation pathways R and P (b) Training and Testing Dice Score Histogram

where « is the number of pixels in the largest component,
~ the total number of connected components, ¢ the tool
direction distance from the image center, ( the total number
of tool labeled pixels, o the circularity of the largest con-
nected component, A the pixel length of the major axis of
the largest component, p the Euler number of the largest
component, ¢ the eccentricity of the ellipse that has the
same second-moments as the largest component, p the pixel
perimeter of the largest component, and ¢ the solidity of
the largest component. Each feature was Z-normalized to
that parameter’s distribution within the training data. The
parameter § calculation is depicted in Fig. 5.

For each input to Spq, i.e. (Mg (i), g(Mp(i))), a feature
vector F (Mg (i), g(Mp(i))) € R2 was generated as

7 : Ay - ( F(Mr(i))

Foorm(@). a0t @) = () ©
Feature vectors from binary mask prediction pairs using
pathways R, P on all 7404 training images were used as
training inputs for a single layer artificial neural network. A
single variable label output, the difference between the Dice
coefficients using My versus Mp denoted DD, was used
for the supervised training. The hidden layer consisted of
100 nodes and was trained using the quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno numerical optimization algorithm.

F. Automatic Filter Feature Classifier, S4

For the S 4 pathway selector, the inputs are RGB images
of size 256 x 256. Each layer corresponds to each of the
types of masks generated: the rectangular coordinate binary
mask generated by the R pathway Mz (i), and the polar
and backconverted masks from the P pathway, Mp (i) and
g(Mg(i)). This 3-channel prediction is denoted M;(i) as
depicted in Fig.4. The target outputs for S 4 are again DD 4.
M3 masks were generated for all 7404 training images and
used to train a convolutional network consisting of three
Conv2D layers with filter count and kernel sizes being

(o))

(32,3 x 3), (32,3 x 3), (64,3 x 3) followed by 2 x 2 max-
pooling. Two Dense layers with 64 and 1 node(s) are added.
The network uses ReLU and sigmoid activation functions for
hidden and output layer(s) respectively.

G. Testing

A total of 956 testing endoscopic images were used to
evaluate the hybrid coordinate representation approach. The
testing images were segmented with four approaches: (1) U-
Net trained on unaltered rectangular images (2) U-Net trained
using polar representations, and hybrid approaches (3) Sy
and (4) S4. Mean Dice and Intersection-over-Union (IoU)
[33] scores were calculated for each method.

III. RESULTS

Figure 6 shows (a) segementation results and (b) the Dice
score distribution of the training and testing images using
the four strategies P, R, Srq, S4 and optimal selection B,
the best possible Dice and IoU scores from perfect selection
of predicted masks for test images calculated post hoc. Table
I shows the pathway selection classification performance
results on the 956 testing images using Syq and S4.

Precision Recall
Strategy Accuracy R | P R [ P
Sm 73.5% 61.2% | 83.7% | 753% | 72.5%
Sa 99.7% 99.1% | 100% 100% | 99.5%

TABLE I: Testing Accuracy, Precision and Recall

Figure 7 depicts feature importance and confusion statis-
tics through misclassification histograms of the 20 manually
selected features using pathway selection approach Sa.
Table II compares test image segmentation results for the
four segmentation approaches. Measured as percent of po-
tential improvement attained over the baseline pathway R,
the percentage (%) of maximum metric score achieved is
calculated as the following:

_ Score(T) — Score(R)

% Max Score(T) = Score(B) — Score(R)

(10)
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Fig. 7: Feature importance and confusion diagrams of the 956 test images using the manual feature pathway selector Sa. The vertical
axes of the 20 subgraphs show the 20 features in F. The horizontal axis represents the predicted dice difference, DD,,.. The color bar
represents the ground truth dice difference labels, DDg;. A directional histogram along the center of each subgraph visualizes the number
of incorrectly labeled data samples as a function of the feature values. Specifically, the false positives (yellow bars) are data samples with
DD, <0, DD,->0, and the false negatives (green bars) are data samples with DDy >0, DDy, <0.

, where Score(.) represents either the Dice or IoU metric
score. 7 is the target strategy including the polar repre-
sentation P or the two hybrid coordinate representation
approaches Sy and S 4.

Dice ToU

Strategy Mean Median Mean Median
Raw % Imp Raw % Imp Raw % Imp Raw % Imp
0.867 0.00% 0.877 0.00% 0.771 0.00% 0.781 0.00%
P 0.884 58.08% 0.893 59.91% 0.797 63.08% 0.807 64.15%
Sm 0.891 82.47% 0.899 83.85% 0.808 84.51% 0.816 86.10%
Sa 0.896 99.97% 0.903 100.0% 0.798 62.41% 0.809 69.27%
B 0.896 100.0% 0.903 100.0% 0.815 100.0% 0.822 100.0%

TABLE II: Segmentation results (Dice and IoU) from 956 test
images. The best performances are shown in blue. 3 shows the
best segmentation performance by optimally selecting segmentation
mask calculated manually post hoc.

Table II shows that Sy achieves the best IoU score and
S 4 demonstrates an impressive Dice score almost identical
to the optimal selection result B. Considering potential
improvement over baseline pathway R, S4 achieves almost
the max score in terms of Dice score while Sp achieves
about 85% of the maximum potential improvement in the
metric of IoU.

Observing the results in Fig.6, S4 is hardly visible as it
almost fully overlaps with distribution 5 since the selector
performs almost as well. Out of 956 test images, only three
were misclassified by S4. Saq achieves a training distribu-
tion similar to P around its peak range, whereas its testing
performance is more similar to S4 and B. This suggests
that the explainable manual feature selection approach S
exhibits generalizability to unseen data samples.

Most subplots from Fig.7 appear symmetric, and thus mak-
ing predictions by any single feature value is challenging.
Using an ANN helped to extract more distinguishable fea-
tures within the manually selected 20. Features «, 6, A, and
p from pathway P exhibit strong linear negative correlation
with DD,,. Features o and ¢ from pathway R exhibit strong
linear positive correlation with DDy;. These observations
suggest that «, the number of connected components, and 4,
the tool direction distance from the image center, of predicted
tool segmentation masks have strong distinguishing power
between P and R segmentation performance.

IV. CONCLUSION

This work demonstrated that a polar morphological trans-
form of endoscopic images may sometimes result in better
tool segmentation. Two different types of selectors were
trained, one with manually determined features, S, and
the other trained filter-based features, S4. The proposed
hybrid approaches intelligently selected coordinate repre-
sentation pathway for each input image (either P or R),
and demonstrated results show improvements over U-Nets
trained with either coordinate representation alone (polar or
rectangular). While hybrid pathway selector S4 exhibited
almost perfect classification for optimizing Dice score, the
resultant IoU score improvements were modest only. Sag,
on the other hand, provided balanced improvements in both
metrics over pathway R alone, and the manual feature
designations provide more direct interpretable/explainable
inferences. In particular, the analysis of each of the 20
features in Fig. 7 indicate that predicted masks with fewer
connected components («) and largest connected component
directed towards the image center (§) are amenable to better
tool segmentation with pathway P.
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