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Abstract

This paper presents an extended polynomial chaos formalism for epistemic uncertainties and a new framework for evaluating

sensitivities and variations of output probability density functions (PDF) to uncertainty in probabilistic models of input variables.

An "extended" polynomial chaos expansion (PCE) approach is developed that accounts for both aleatory and epistemic

uncertainties, modeled as random variables, thus allowing a unified treatment of both types of uncertainty. We explore in

particular epistemic uncertainty associated with the choice of prior probabilistic models for input parameters. A PCE-based

Kernel Density (KDE) construction provides a composite map from the PCE coefficients and germ to the PDF of quantities of

interest (QoI). The sensitivities of these PDF with respect to the input parameters are then evaluated. Input parameters of the

probabilistic models are considered. By sampling over the epistemic random variable, a family of PDFs is generated and the

failure probability is itself estimated as a random variable with its own PCE. Integrating epistemic uncertainties within the PCE

framework results in a computationally efficient paradigm for propagation and sensitivity evaluation. Two typical illustrative

examples are used to demonstrate the proposed approach.

c© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Dealing with uncertainty in model-based inference has been addressed with much attention in recent decades

[1,2]. Uncertainty quantification (UQ) is the rational process of managing the interplay between data, models and

ecisions and involves steps of collecting data, constructing physics and probabilistic models, estimating their

arameters, predicting quantities of interest, and updating the parameters of the models [3]. While Bayesian logic

provides a rigorous foundation for updating model parameters, it is predicated on data being available for update. An

assessment of the worth of information can be made prior to data acquisition by integrating over all possible data,

within a Bayesian framework [4]. This approach is computationally prohibitive without considerable assumptions

concerning the likelihood function [5]. This paper presents an alternative approach to assessing the significance

of additional information concerning model parameters on the credibility of the probability density function of
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prediction variables. Additional information about the parameters is construed as modifying the parameters in the
prior probability models (for instance, shape parameters in a Beta distribution, or coefficients in the PC model),
while credibility of the PDF is interpreted as statistical scatter of the PDF, viewed as a statistic. In this paper, we
construct a functional representation of the output PDF in terms of the uncertainty in the PDF of input parameters.
We express this functional form in a polynomial chaos expansion, and use the directional sensitivities to quantify
the effect of perturbing various statistical parameters from their current values.

Uncertain input parameters are usually modeled as random variables with specified prior models for their
probability distributions. Estimating parameter values for these distributions is challenged, both numerically and
conceptually, by model errors and measurement errors [6]. Insightful prior probabilistic models are important both
as key ingredients of Bayesian updating and for the purpose of articulating prior knowledge in a useful format. Prior
models are also crucial from a practical perspective, since in many settings data is not readily available, and prior
models that are sufficiently robust to account for current knowledge are the only recourse for probabilistic inference.
Emphasizing current knowledge, however, can hamper scientific discovery, and attempts to widen their scope have
been pursued in the guise of epistemic uncertainty and model error [7]. Model parameters within each model class,
when inferred from data, are typically described as random variables with a probabilistic structure that depends
both on the model class and on the data. Sources of uncertainty can be generally classified into aleatory (or data)
uncertainty and epistemic (or approximation) uncertainty [7]. Aleatory uncertainty typically refers to irreducible
variabilities inherent in nature and is traditionally treated using random variables or random fields. Epistemic
uncertainty, on the other hand, is usually reduced to within bounds, by acquiring more data and accordingly revising
the predictive model. A variety of approaches focusing on modeling and propagating epistemic uncertainty has been
proposed in the literature exploring both revisions to physics models and to uncertainty model for the parameters.
For example, Helton J.C. represents epistemic uncertainty using evidence theory and implemented into Monte Carlo
procedures [8]. Valdebenito M.A. applied intervening variables to quantify epistemic uncertainty based on the first-
order Taylor expansion [9]. Jacquelin E. treated the uncertain inputs as random and fuzzy variables and the response
is also described by fuzzy approach [10]. In this paper, we tackle the epistemic uncertainty associated with the choice
of probabilistic model for input parameters.

The aleatory or epistemic nature of uncertainty is relative to the choice of predictive model, which includes
both the physics and probabilistic models. Once these models have been selected, however, the aleatory/epistemic
distinction becomes meaningful, and types are typically involved in any given problem. A common approach has
been to segregate these two types of uncertainties and perform nested iterations, with aleatory analysis on the
inner loop and epistemic analysis on the outer loop [11]. In this manner, the two types of uncertainties can be
separated and easily traced. Specifically, each particular instance of the epistemic variables generates a response
PDF based only on the aleatory uncertainties. The family of PDFs thus evaluated at many instances of the epistemic
variables can be used to visualize the combined uncertainty in the response and further interpret the results using
various statistical metrics. This paradigm, while conceptually simple, is computationally prohibitive. In this paper,
we preserve the conceptually appealing uncertainty segregation for purposes of visualization and interpretation [12],
and enhance its computational efficiency through novel stochastic polynomial chaos representations (PCE) that
provide a uniform treatment of aleatory and epistemic uncertainties. PCE is an uncertainty quantification method
that has been widely used in many areas across science and physics [13–16]. Conventionally, mostly dealing with
aleatory uncertainty, PCE has demonstrated robustness and computational efficiency. As for epistemic uncertainty
quantification applications, PCE has been applied in the context of multi-uncertainty modeling [17,18] and global
sensitivity analysis [19]. Besides, PCE has been integrated within some frameworks as a surrogate model, including
interval methods [9,20], fuzzy set theory [21], evidence theory [22].

A key idea in the present paper is to treat the coefficients in an aleatory PCE as random variables whose
uncertainty encodes epistemic uncertainty, which is itself described as random variables independent of the aleatory
ones. A PCE is then carried out relative to the epistemic variables. In view of the polynomial structure of PCE,
this two-step expansion can be implemented as a single PCE in higher-dimension. This approach was already
present in developing sampling distribution for PCE representations [23] and carrying out associated Bayesian
updating [24–27]. In this work, the propagation of epistemic uncertainty to the PDF of the quantity of interest
is assessed.

Operationally, as new information is acquired, the probabilistic models (or parameters of these models, referred

to herein as “statistical parameters”) of the input variables should be updated. As a result, the change in response
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PDF resulting from the update in statistical input parameters, namely the sensitivity of response PDF with respect
to statistical parameters of model inputs, is relevant for risk assessment, reliability analysis, model verification and
validation. A simple idea is to treat the statistical parameters of input before and after update as two separate UQ
problems and to solve them separately. This would entail two separate stochastic forward propagations of uncertainty
each requiring significant computational resources, with no clear path for sharing the computational burden between
the two tasks. This “sensitivity” relative to epistemic uncertainty is substantially more taxing, numerically, than
standard sensitivity formulations [28,29]. This cost is the greater if the sensitivity of the PDF itself is sought,
and not merely the sensitivity of the variance-based (or Sobol) and the moment-independent indices [30]. Recent
works discussing the evaluation of sensitivity measures in multi-uncertainty problems include using the variance
decomposition of the logarithm of the conditional failure probability [19], combining importance sampling and
importance splitting methods with Sobol indices [31], and applying the Kriging method to compute conditional
expectation of failure probability [32]. The aforementioned approaches are all based on conditional probabilities.
In this paper, we construct a composite map from statistical parameters to PDF of QoI, by integrating a PCE of
the QoI within a kernel density estimate (KDE) of that QoI’s PDF. We demonstrate the value of this map for both
propagating epistemic uncertainty and evaluating PDF sensitivity relative to these uncertainties.

The objective of this work is thus twofold. First we provide a coherent framework to simultaneously model
aleatory and epistemic uncertainties and propagate the influence of both uncertainties to the predicted response
in a computationally efficient manner. Second, we develop a framework for efficiently evaluating the sensitivity
of probability density functions (PDF) of output quantities relative to both aleatory and epistemic variables. The
remainder of the paper is structured as follows. Section 2 reviews the conventional PCE approach and Section 3
resents the extended PCE approach that takes into account simultaneous aleatory and epistemic uncertainties.
ection 4 describes the framework of quantifying the influence of aleatory and epistemic uncertainties on several
esponse metrics. Section 5 applies the framework to an analytical and a numerical illustrative example. Section 6
resents the conclusions and some closing comments.

. Polynomial chaos expansion

Let X represent a scalar QoI that can be expressed as a function of a vector k = {k1, . . . , kd} in Rd representing
hysical random parameters. The d-dimensional vector k is first expressed as a mapping from a d-dimensional
ector ξ = {ξ1, . . . , ξd} of uncorrelated standard normal random variables using, for instance, the Rosenblatt
ransformation. The set ξ is referred to as the “germ” of the PCE. Expressing X as a function of ξ in the form
X (ξ ) and representing X (ξ ) in an orthogonal polynomial expansion with respect to ξ yields the polynomial chaos
xpansion (PCE) of X relative to ξ ,

X (ξ ) =

∑
|α|≤p

Xαψα(ξ ) (1)

here {Xα} are called PCE coefficients; p denotes the highest order in the polynomial expansion; α is a d-
imensional multi-index, and {ψα} denotes normalized multivariate Hermite polynomials that can be expressed
n terms of their univariate counterparts as follows,

ψα(ξ ) =

d∏
p=1

ψαp (ξp) =

d∏
p=1

hαp (ξp)√
αp!

, ξ ,α ∈ Rd (2)

here, hαp represents the one-dimensional Hermite polynomial of order p. The collection of the multivariate
olynomials forms an orthogonal set with respect to the multivariate Gaussian density function.

In order to emphasize its dependence on the PCE representation, we denote the realization of X synthesized
rom its PCE using sample ξ (i) of ξ by,

X (i) ∆
= X (ξ (i), {Xα}) =

∑
|α|≤p

Xαψα(ξ (i)). (3)

he PCE coefficients Xα are estimated using quadrature approximations to multidimensional integrals as follows,

Xα =

∑
X (ξ q )ψα(ξ q )wq , |α| ≤ p , (4)
q∈Q
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where, Q is the set of sparse quadrature points, q is a quadrature node in Q and wq is the associated weight.
The quadrature level required to achieve a preset accuracy in approximating any Xα increases with the order of
the associated polynomial, ψα . For a given polynomial order p and germ dimension d , the number of these PCE
coefficients, denoted by Nc, is equal to,

Nc =
(d + p)!

d! p!
. (5)

. Extended polynomial chaos expansion for mixed aleatory and epistemic uncertainties

Clearly, the numerical value of Xα depends both on the mapping from k to X , and the mapping from ξ to
k. The former mapping encapsulates physics models and governing equations while the latter mapping describes
he probabilistic model of the physical parameters k, in a functional form that explicitly relates them to a set of
ndependent Gaussian random variables ξ . Uncertainty in the probabilistic model of k is propagated into uncertainty

about X through the composite map from k to ξ and ξ to X .
We introduce the m-dimensional vector P = {P1, . . . , Pm} representing all the statistical parameters of the input

random variables k. These parameters are typically estimated based on a finite sample. Different estimation methods
yield different probabilistic models for P with the Maximum Likelihood estimates (MLE) generally yielding an
asymptotically (for large sample size) Gaussian distribution with variance that is inversely proportional to sample
size. We represent the random vector P in a polynomial chaos decomposition relative to a new Gaussian germ ρ

independent of ξ . Motivated by asymptotic results concerning MLE sampling distributions, we limit this PCE to a
first order expansion, resulting in a Gaussian model for P . We also assume a one-dimensional PCE representation
for P , imposing a strict dependence between the different Pi , making them all linear transformations of the same
scalar random variable ρ. This statistical dependence between components of P is justified by the observation that
experimental evidence that influences our estimate of any one of the Pi ’s is likely to also affect our estimates of all
other components of P . We thus introduce ρ as a standard normal random variable independent of ξ = {ξ1, . . . , ξd},
nd express the parameters of the input PDFs, Pi , in the form,

Pi = µPi + σPiρ, i = 1, . . . , NP , (6)

here µPi is the mean of Pi , and σPi its standard deviation. Also, NP denotes the number of parameters from the
et P that is presumed to be uncertain.

Thus, X can be represented as a function of a new germ η = {ξ1, . . . , ξd , ρ}, and is therefore denoted as X (η).
he extended polynomial expansion of X can thus be expressed as,

X (η) =

∑
γ∈Rd+1
|γ |≤p

Xγψγ (η) , η ∈ Rd+1 (7)

here {Xγ } denotes the PCE coefficients. Making use of Eq. (2), we can separate the dependence on ξ from the
ependence on ρ, resulting in the following useful representation,

X (η) = X (ξ , ρ) =

∑
α∈Rd ,β∈R
|α|+β≤p

Xαβψα(ξ )ψβ(ρ), ξ ∈ Rd , ρ ∈ R , (8)

ith the subscript αβ being a d + 1 multi-index formed as the concatenation of α and β. It is consistent with
ommon views [6–8,10,23–25] to construe dependence on ξ and ρ to represent, respectively, aleatory and epistemic
ncertainties. Eq. (7) provides a joint and uniform representation of these two uncertainties in a single representation.
t is worth mentioning that the extension of the foregoing to the case where each Pi is decomposed according to its
wn stochastic dimension ρi can be readily accommodated, with some increase in computational cost. This higher
arameterization, however, is not necessarily more physical or more accurate. Indeed, all stochastic parameters
an be viewed as depending on the same microstructure with the random parameter ρ identifying the particular
icrostructure being investigated. For instance, ρ could refer to such microstructure properties as the size of the

argest impurity, or the magnitude of the largest contrast between elastic moduli, or the theoretical distance between
pper and lower bounds on local elastic properties.. The linear dependence of Pi on ρ would then necessitate small
ensitivity of the probabilistic parameters to perturbation in the microstructure. This linear dependence could be
4
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relaxed by pursuing a higher-order PC expansion in Eq. (6). Our present formulation is restricted to capturing the
influence of uncertainty in parameters of the input PDF, and does not account for model error which is a key
component of epistemic uncertainty.

4. Quantification of aleatory and epistemic uncertainties

In Sections 4.1 and 4.2 we first introduce two key ingredients for constructing the composite map from input
parameters to PDF of QoI and for evaluating sensitivities across this map. We then demonstrate the application of
these tools to quantifying changes in these PDFs.

4.1. Representation of PDF: Kernel Density Estimation (KDE)

We will be mainly interested in quantifying the influence of input parameter uncertainties on the probability
density function (PDF) of quantities of interest. We rely on Kernel Density Estimates (KDE) to represent these
PDFs [33]. The PDF of X (the QoI), denoted by fX (x) and KDE of the PDF, denoted by f̂X (x), can be expressed
as,

fX (x) ∆
= f̂X (x) =

1
Nh

N∑
j=1

K
(

x − X ( j)

h

)
(9)

where we recall that,

X ( j)
=

∑
|γ |≤p

Xγψγ (η( j)) . (10)

The Gaussian kernel is used for K with its bandwidth h determined following Silverman’s rule [34] as,

h =

(
4σ 5

3N

) 1
5

, (11)

where σ is the sample standard deviation evaluated from the N samples. It should be noted that statistical properties
of the KDE hinge on the samples being independently selected from the distribution of X . In our formulation,
samples of η ∈ Rd+1 are independently sampled from a d+1-dimensional Gaussian distribution, and subsequently
pushed through the PCE to yield samples of X . The sample thus collected does not necessarily, a-priori, follow
the distribution of X . However, mean square convergence of PCE implies its convergence in distribution. Thus,
provided the PCE of X is converged, samples collected from the PCE will adhere to the distribution of X .

4.2. Stochastic sensitivity measures

When considering the uncertainties of Pi , i = 1, . . . , NP , as described in Eq. (6), the extended PCE as developed
in Eq. (7) can be used and integrated with the KDE in Eq. (9), to result in,

fX (x) =
1

Nh

N∑
j=1

K

(
x −

∑
|γ |≤p Xγψγ (η( j))

h

)
, η( j)

∈ Rd+1 . (12)

his expression for fX involves summation over all d + 1 stochastic dimensions (η) and does not therefore express
ependence on any of them. In order to retain sensitivity with respect to the parameters P , we make use of Eq. (8)
nd replace Eq. (12) by the following equation,

fX (x, ρ) =
1

Nh

N∑
j=1

K

⎛⎜⎜⎝1
h

⎛⎜⎜⎝x −

∑
α∈Rd ,β∈R
|α|+β≤p

Xαβψα(ξ ( j))ψβ(ρ)

⎞⎟⎟⎠
⎞⎟⎟⎠ , ξ ( j)

∈ Rd , ρ ∈ R (13)

By taking the directional derivative of fX (x, ρ) in Eq. (13) with respect to Pi , the sensitivity of the PDF to the
statistical parameters of inputs, denoted by fX,Pi (x), is given by,

fX,Pi (x, ρ) =
∂ fX (x, ρ)

= σPi

∂ fX (x, ρ)
, i = 1, . . . , NP , (14)
∂Pi ∂ρ

5
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and substituting the KDE formulation in Eq. (13) into Eq. (14) results in,

fX,Pi (x, ρ) =
σPi

Nh2

N∑
j=1

⎡⎣ x − X (η( j))
h

K
(

x − X (η( j))
h

) ∑
|α|+β≤p

Xαβψα(ξ ( j))
∂ψβ(ρ)
∂ρ

⎤⎦ , i = 1, . . . , NP

(15)

here we relied on the Gaussian form of the kernel. Eq. (15) provides a stochastic representation of the sensitivity
f PDF with respect to probabilistic parameters in the input random variables. The sensitivity measure has the
roperty that, for each value of ρ, the integral of fX with respect to x is equal to zero.

.3. Methods of quantifying the effect of aleatory and epistemic uncertainties on PDF of QoI

In this section, we investigate the influence on the response PDF of uncertainty in the parameters P characterizing
the probability model of input parameters. We explore three different approaches to that end. The first approach
is based on a finite difference scheme, the second one is based on a sensitivity analysis, and the third approach
provides an explicit expression of the probability measure on the PDF induced by uncertainty in P .

4.3.1. Finite difference approach
We consider information about the system contained in two distinct datasets that we label “original” and “new”.

As above, we let NP denotes the number of Pi treated as random variables, and we introduce Po and Pn as the
vectors of all Pi , (i = 1, . . . , NP ) values of the original and new datasets. We then pursue a PCE representation

ith each of these two sets of parameters, resulting in two distinct PDFs. Representing each of these two PDFs
y a KDE relative to the same sample {X (i)

}, and taking the difference of the resulting two expressions yield the
ollowing representation for the change in PDF

∆ fX (x) =
1

Nh

[
N∑

i=1

K

(
x − X (ξ (i), {Xo

α})
h

)
−

N∑
i=1

K

(
x − X (ξ (i), {Xn

α})
h

)]
. (16)

It should be mentioned that this approach does not take the uncertainties of the statistical parameters into account
and does not involve any explicit modeling of P . The approach does not therefore provide the facility to interpolate
or extrapolate beyond the two datasets associated with Po and Pn. This approach is mentioned because of its
simplicity and in order to provide a comparison with more advanced approaches described next. It is important to
note that a rigorous probabilistic analysis as data is acquired should involve Bayesian update of model parameters.
The result in this section, using a difference scheme, is meant to provide an assessment that is both easy and efficient
to implement, while providing useful insight into the credibility of statistical inferences.

4.3.2. Stochastic sensitivity approach
Given our probabilistic model for Pi in accordance with Eq. (6), an interval for Pi can be associated with a

re-specified confidence level ci . We note that this confidence level could be equally well have been specified on
. Denoting the upper and lower bounds of the associated confidence interval by ui and li , respectively, permits us

o express the precision of Pi as,

∆Pi = li − ui , i = 1, . . . , NP , (17)

hich can be used to develop the induced precision on fX (x). Specifically, using Eq. (15) results in,

∆ fX (x, ρ) =

NP∑
i=1

fX,Pi (x, ρ)∆Pi . (18)

oting the recurrence equation for the derivative of univariate Hermite polynomials,
′
hn(x) = xhn(x) − hn+1(x) , (19)

6
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and taking the mathematical expectation of the derivative of fX relative to Pi , results in the following expression
for the expected value of ∆ fX (x, ρ), where ⟨.⟩ denotes the expectation operator,

⟨∆ fX (x, . )⟩ =

NP∑
i=1

σPi

Nh2

N∑
j=1

⎡⎣ x − X (η( j))
h

K
(

x − X (η( j))
h

) ∑
|α|+β≤p

Xαβψα(ξ ( j))⟨ρψβ(ρ)⟩

⎤⎦∆Pi . (20)

The stochastic sensitivity approach considers the epistemic uncertainty that characterizes the uncertainty in the
statistical parameters Pi .

The stochastic sensitivity approach requires the solution of a (d + 1)-dimension problem while the difference-
based method requires the solution of two independent d-dimensional problems.

4.4. Stochastic model for PDFs

A stochastic model for the PDF of X has already been developed in Eqs. (12) and (13). While these equations
were used above to characterize sensitivity measures, in this section they are used to characterize confidence in
estimates of failure probability. The extended PCE allows to separate the epistemic variable ρ from the aleatory
variables ξ . Its PDF can be expressed in a more suggestive form than Eq. (13) as in,

fX (x, ρ) =
1

Nh

N∑
j=1

K

(
x −

∑
|γ |≤p Xγψγ (ξ ( j), ρ)

h

)
, (21)

here ψγ (ξ ( j), ρ) indicates that the polynomial ψγ is evaluated at the sample where the first d components are
pecified by ξ ( j), while the last (d + 1)st component remains as a free variable. It can be seen that Eq. (12) is the

distribution of the family of PDFs generated by Eq. (21), marginalized over ρ.
One important application of the foregoing ideas is to the characterization of failure probabilities, themselves,

s random variables. In many applications, the failure probability P f is defined as the probability of reaching or
exceeding a critical threshold and is of great significance. This distribution is typically predicated on pre-specified
probabilistic models for input parameters, and thus lends itself to the present analysis. To simplify the presentation,
and without loss of generality, we assume a scalar description of the limit state in terms of a critical threshold for
the QoI, denoted by Xc. The failure probability, P f , is then given by the following integral,

P f (ρ) =

∫
x≥Xc

fX (x, ρ) dx , (22)

here we have explicitly expressed the dependence of P f on the epistemic input uncertainty encoded in ρ. The
DF of P f computed by KDE is expressed as,

fP f (x) =
1

Nρh f

Nρ∑
j=1

K

(
x − P ( j)

f

h f

)
, (23)

here Nρ is the number of samples of ρ used in estimating the KDE, and P ( j)
f , j = 1, . . . , Nρ is the j th realization

f failure probability evaluated at ρ j . The Gaussian kernel is used for K with the bandwidth h f determined following
ilverman’s rule as h f = (4σ 5

f /3Nρ)1/5, where σ f is the standard deviation estimated from the Nρ failure probability
amples.

. Illustrative numerical examples

In this section, two examples are investigated to demonstrate the proposed framework. Example I is a beam
tructure of which a closed-form expression for the QoI is known. Example II is a reinforced concrete wall of
hich the hysteresis analysis is performed using finite elements.

.1. Example I: Beam structure

The beam structure is shown in Fig. 1. The model characterizes the mid-span displacement Xmid of the beam

xed by a linear spring and a rotational spring at each end, with concentrated load F acting in the middle of the

7
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Fig. 1. Schematic of the physical setup for Example I: Random beam on random supports.

Table 1
Statistical parameters of random inputs for Example I.

Input variables Distribution ao bo an bn q r

Linear spring k1 (N ∗ m) Beta 4 5 5 6 350 650
Rotational spring k2 (N ∗ m/rad) Beta 4 5 5 6 400 600
Flexural stiffness E I (N/m ∗ m) Beta 4 5 5 6 80 186.67
Beam span L (m) Beta 4 5 5 6 0.216 0.264

beam. The random inputs include the linear spring, rotational spring, flexural stiffness and beam span, which are
denoted as k1, k2, E I and L , respectively. The four input variables are mutually independent and follow the Beta
distributions. The vector of random statistical parameters P consists of the eight random variables a and b. The
mean value of P is taken equal to the values estimated from the original dataset, and the coefficient of variation of
each entry in P is assumed to 5%. In order to explore the finite difference approach presented above, we assume
that two datasets are made available to the analyst at two different occasions, yielding different parameters for
the Beta distribution. These parameters can be estimated from the data using, for instance, a maximum likelihood
approach. The distribution parameters are listed in Table 1 where, ao and bo are the vectors of two shape parameters
of each input from the original dataset; an and bn are the vectors of two shape parameters of each input from the
new dataset; q and r are the vectors of the lower and upper bounds of each input and assumed to be the same in
the two datasets. It can be shown from elementary mechanics of materials that mid-span displacement Xmid for this
beam is given by,

Xmid =
F

16E I

[
L3

3
−

8E I k2L3
+ k1k2L6

16E I (k2 + k1L2)
+

8E I k1L2
− k1k2L3

2k1k2 + 2k2
1 L2

]
. (24)

The PDF of Xmid using KDE based on the extended PCE as in Eq. (7) is shown in Fig. 2. A second order PCE was
ound to be sufficiently converged in the tail of the PDF to carry out the foregoing PDF sensitivity studies. Besides, to
void the effect of noise from KDE on the tail of the PDF, the PDFs obtained from N = 104, 105, 106 are plotted in
ig. 2. It is found that 105 samples can give an accurate tail of the PDF and thus used in the remaining computation.
ig. 3 shows the family of PDFs computed from Eq. (13) at 1000 samples of ρ. As indicated previously, the PDF

n Fig. 2 is just the distribution over the ensemble of PDFs for which samples are shown in Fig. 3.
Assuming failure is associated with Xmid > 2.45 cm, the distribution of the probability of failure (P f ) is obtained

y evaluating P f for each sample in Fig. 3, and plotting the PDF of the resulting values. The resulting PDF is shown
n Fig. 4. Although confidence intervals for P f can be easily synthesized from the PDF, more accurate decision
nalysis can be developed by relying on the full PDF.

The change in response PDF resulting from the change in the statistical parameters from Po to Pn computed
y the finite difference approach is shown in Fig. 5. Based on Fig. 5, the failure criterion of Xmid = 2.45 cm
xhibits one of the largest sensitivities to changes in Pi in the tail region. The sensitivity plot in this figure tapers
oward zero for larger values of displacement, consistent with the fact that Pi refers to the shape parameter of beta
istributions rather than to its range. We thus observe, as expected, a deterministic upper bound on the mid-span
isplacement as the shape parameter varies over its range. On the other hand, given a 95% confidence level for
, the confidence intervals [li , ui ] for each Pi , where i = 1, . . . , NP are computed to be [3.6, 4.4] for the shape
arameters a and [4.51, 5.49] for the shape parameters b. Thus, Fig. 6 shows the result computed by the stochastic

ensitivity approach according to Eq. (18). The figure shows the statistical samples of the change in response PDF,

8
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Fig. 2. PDF computed by KDE (N = 104, 105, 106) using extended PCE for Example I.

Fig. 3. The family of PDFs at 1000 realizations of ρ for Example I.

Fig. 4. PDF of failure probability that Xmid ≥ 2.45 cm for Example I.
9



Z. Wang and R. Ghanem Computer Methods in Applied Mechanics and Engineering 382 (2021) 113854

o
i

a
a
m
T
c
w
o
j

5

T
e
a

Fig. 5. Change in response PDF between Po and Pn by the finite difference method for Example I.

Fig. 6. Statistical samples (Eq. (18)) and their expectation (bold red; Eq. (20)) for change in response PDF with a 95% confidence interval
f ρ by the stochastic sensitivity approach for Example I. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

s well as the expectation of these samples. The scatter in this sample is a reflection of the epistemic uncertainty
bout the probabilistic model of the input parameters. The shape of ∆ fX using both the difference and the sensitivity
ethods is as expected with the largest difference near the mode and a change of sign before tapering off to zero.
he net area under the curve is equal to zero. The change in PDF according to sensitivity is different from the
hange using finite difference which can be attributed to one or both of two factors. First, the derivative of the PDF
ith respect to Pi at each of the two datasets is quite different, leading to a discrepancy upon linearizing at either
f the two datasets. Second, the values of Pi associated with the new dataset lie outside the confidence intervals
ust evaluated.

.2. Example II: Reinforced concrete shear wall

It has been suggested that epistemic uncertainty is non-negligible in seismic analysis of structures [35] [36] [37].
o illustrate the proposed methodologies in this context, a reinforced concrete shear wall model is taken as an
xample in this study. This model comes from an experimental study [38]. Fig. 7 depicts the geometry, dimension
nd reinforcement of the shear wall.
10
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Fig. 7. Schematic of the physical setup for Example II: Reinforced concrete shear wall.

Table 2
Statistical parameters of random inputs for Example II.

Material Input variable Distribution aSW
o bSW

o aSW
n bSW

n qSW r SW

Concrete Compressive strength fc (in Pa) Beta 2 2 2.4 2.3 3.91 × 107 5.29 × 107

Steel Yielding strength fy (in Pa) Beta 2 2 2.4 2.2 3.40 × 108 4.60 × 108

There are two steps in the loading procedure. First, a constant axial load of 378 kN is applied on the top of the
all, followed by a cyclic lateral load achieved by controlling the displacement. The applied lateral drift consisted
f a train of triangular pulses of alternating signs. Additional details of the setup and its loading are described
lsewhere [38]. The purpose of the present analysis is to find the influence of the statistical parameters of mechanical
roperties of concrete and steel on the response PDF of the energy dissipated throughout the structure via hysteresis.

Some of the material properties are considered as random variables, including the concrete elastic modulus
Ec, the concrete tensile strength fr , the concrete compressive strength fc and the steel yielding strength fy . For
oncrete, Ec, fr and fc are of course correlated, but for simplicity they were regarded as fully correlated in this
aper. According to the code ACI 318–19 [39], the relationships between these parameters are,

Ec = 57,000
√

fc ,

fr = 7.5λ
√

fc ,
(25)

here, the units are in psi. To calculate these concrete parameters, the fc is sampled from a Beta distribution first and
he fr and Ec are then generated according to Eq. (25). The steel strength is also modeled as a Beta random input.
he material properties input to the shear wall structure are listed in Table 2. where, in this shear wall hysteresis
roblem, aSW

o and bSW
o are the vectors of two shape parameters of each input from the original dataset; aSW

n and
bSW

n are the vectors of two shape parameters of each input from the new dataset; qSW and r SW are the vectors of
he lower and upper bounds of each input and assumed to be the same in the two datasets. Thus, in this example,
he vector P of random parameters has four components consisting of the shape parameters aSW and bSW . The
ean value of P is taken equal to the values estimated from the original dataset, and the coefficient of variation

f each entry in P is assumed to 5%. The resulting [li , ui ] interval, at the 95% confidence level, for each of the
hape parameters is equal to [1.80, 2.20]. We also note, however, that parameters from the new dataset are outside
his confidence interval.

We implement in Abaqus [40] a model that follows the theoretical development in Feng et al. [41] which features
multi-dimensional softened plasticity damage model. The steel material follows a Menegotto-Pinto model that

ncludes strain-hardening, Baushinger effects and tension stiffening and a multi-layer shell element is used for the
hear wall [41]. Additional material properties include the concrete Poisson’s ratio, the steel elastic modulus and

he steel hardening ratio which are deterministic inputs.

11
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Fig. 8. PDF computed by KDE (N = 104, 105, 106) using extended PCE for Example II.

The response PDF of the energy dissipation using KDE based on the extended PCE is shown in Fig. 8. Again,
convergence test is conducted by using N = 104, 105, 106 to avoid the effect of noise from KDE on the tail of the
PDF, as shown in Fig. 2. N = 105 is found to give an accurate tail of the PDF and thus used in the final calculations.
Then Fig. 9 shows the results of the family of PDFs computed at 1000 samples of ρ. Here again, a second order PCE
was found to yield a converged PDF. Again, the PDF in Fig. 8 is just the distribution of the family of PDFs in Fig. 9.
Postprocessing these results, the probability, P f , of exceeding a threshold level of 37.5 X = 37.5 kN m is shown
in Fig. 10. We reiterate that the probability of failure is itself characterized as a random variable with a computed
scatter that reflects its credibility for critical decision making. The change in response PDF due to the change in the
statistical parameters from Po to Pn computed by the finite difference approach is shown in Fig. 11. Here again
we seek a value in the tail region of energy dissipation that exhibits significant sensitivity to fluctuations in Pi .
We thus select a value of 37.5 kN m at which to evaluate sensitivities and variations in PDFs. On the other hand,
given a 95% confidence level for ρ, the confidence intervals [li , ui ] for each Pi , (i = 1, . . . , NP ) are computed and
then ∆P is obtained. Thus, Fig. 12 shows the result from the stochastic sensitivity approach according to Eq. (18),
as well as the expected value of change in PDF according to Eq. (20). The figure shows a statistical ensemble of
these samples of change in PDF that reflects the epistemic uncertainty about the probabilistic parameters of the
input variables. The same observations noted for the previous example while comparing fX (x) obtained using the
two formalisms apply to the present example. There is a distinct difference in the shape of the scatter between this
example and the previous one. In our definition of ∆ fX (x), the increments ∆Pi are deterministic. The scatter in
∆ fX is thus due to the scatter in the sensitivities expressed in Eq. (15). The two examples clearly exhibit different
dependence of the sensitivities on x and ρ, demonstrating the influence of the chaos coefficients of X on these
sensitivities. The difference between Figs. 6 and 12 is mainly due to the contributions of higher order polynomials
in ρ (Eq. (13)) in Example II while Example I is largely dominated by the first order polynomials in ρ. It is also
noted that the scatter in the sensitivities does not mirror the scatter in the PDF, and that the sensitivity of the PDF
varies considerably along its support.

6. Concluding remarks

A framework is proposed in this paper to quantify mixed aleatory and epistemic uncertainties and to evaluate
their influence on the probability density functions of various quantities of interest. The epistemic uncertainty is
modeled as random variables which are integrated with the aleatory variables into the extended PCE, thus realizing
a single-stage efficient quantification of both type of uncertainties. The sensitivity of response PDF with respect

to the statistical parameters of input variables is expressed through a combination of KDE and extended PCE,

12



Z. Wang and R. Ghanem Computer Methods in Applied Mechanics and Engineering 382 (2021) 113854
Fig. 9. The family of PDFs at 1000 realizations of ρ for Example II.

Fig. 10. PDF of failure probability that X ≥ 37.5 kN*m for Example II.

Fig. 11. Change in response PDF between Po and Pn by the finite difference method for Example II.
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Fig. 12. Statistical samples (Eq. (18)) and their expectation (dashed bold red; Eq. (20)) for the change in response PDF with a 95%
onfidence interval of ρ by the stochastic sensitivity approach for Example II. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

hus allowing for a straightforward post-processing of the extended PCE to determine the sensitivity of PDF to
pistemic variables, with little additional computational effort. Based on the result of the extended PCE, several
etrics including the family of PDFs and the distribution of the failure probability are investigated to provide

nterpretations to the response from different angles. Based on the significant variation of the sensitivities along
he support of the PDF, we deduce that the acquisition of additional observations, aimed at shaping the statistical
arameters, should take into account which portion of the support is expressed by the relevant decisions.

If the statistical parameters P are estimated according to the MLE arguments, then their asymptotic distribution
ill be Gaussian. However, in the small data case, the distribution of P will generally depend on the dataset. As
potential extension of this work, one could replace Eq. (6) with a higher-order PCE to account for more general

orm of the density function. In this case, the development in Section 4.3.2 will have to be modified, while the
evelopment in Sections 4.4 and 4.3.1 will remain valid.
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