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Abstract: Unmanned aircraft systems are expected to provide both increasingly varied functionalities
and outstanding application performances, utilizing the available resources. In this paper, we
explore the recent advances and challenges at the intersection of real-time computing and control
and show how rethinking sampling strategies can improve performance and resource utilization.
We showcase a novel design framework, cyber-physical co-regulation, which can efficiently link
together computational and physical characteristics of the system, increasing robust performance
and avoiding pitfalls of event-triggered sampling strategies. A comparison experiment of different
sampling and control strategies was conducted and analyzed. We demonstrate that co-regulation
has resource savings similar to event-triggered sampling, but maintains the robustness of traditional
fixed-periodic sampling forming a compelling alternative to traditional vehicle control design.

Keywords: resource-aware control; co-regulation; feedback scheduling; time-varying system

1. Introduction

The design of efficient, intelligent, and safe unmanned aircraft systems (UASs) is
challenging, especially as onboard resources are stretched to maximize performance [1].
Emerging UASs are equipped with complex suites of computing (cyber) and mechatronics
(physical) systems. They are expected to provide both highly varied functionalities, out-
standing application performances, and remain safe, all within the available resources [2].
Computing and timing are key factors determining holistic system behavior [3,4] and, hence,
must be first-class design parameters in such intelligent control systems. To optimize the
use of computing resources—autonomy and control algorithms and associated resource
requirements need to be considered simultaneously, or “co-designed” [5].

In this article, we focus on comparing the control performance of a multicopter UAS
under different sampling strategies varying in the level of a “co-design” of computing
resources (sampling rate) and holistic system performance. Specifically, we examine tra-
ditional fixed-periodic control [6], event-triggered control [7], self-triggered control [8],
and a new hybrid sampling strategy we developed—“cyber-physical co-regulation” [9].
Cyber-physical co-regulation incorporates computational resource allocation alongside
traditional control performance in a single model [9]. Cyber and physical controllers can
then be co-designed to meet holistic performance requirements. The computational effector,
sampling rate, is adjusted in response to off-nominal conditions in the controlled system,
and the physical effector adjusts control outputs corresponding to the current (changing)
sampling rate. To analyze the influences from computing and timing, the controllers are all
designed based on a unified optimal control strategy—linear quadratic regulator (LQR).
Our previous work focused on co-regulation design methodologies [10], co-regulated
system stability analysis [11], co-regulated controller design [12], and proof-of-concept
demonstrations of control and computing features of co-regulation design on a simple
inverted pendulum system [13]. In this work, we focus on a detailed analysis of control and
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computing for UASs. We conducted a thorough comparison of control performances and
computational efficiencies among different sampling strategies on an UAS to demonstrate
how computing and timing can affect control. We highlight the unique benefits of our
proposed co-regulation strategy on control performance, computational efficiency, and sys-
tem robustness over the traditional fixed-periodic, event-triggered, and self-triggered
controllers. We propose new evaluation metrics for analyzing UAS control and computing
performances. We discuss the implementation of a co-regulation strategy to provide insight
to control engineers on how to design co-regulated systems. Moreover, a more thorough
discussion on the pitfalls of event-triggered and self-triggered sampling strategies on UAS
is presented. Quantitative evaluations for all of these strategies were conducted based on
evaluation metrics that could reflect both control performance and computing costs.

2. Motivating Example

In a traditional fixed-periodic, computer controlled system, the control laws and
their associated sampling or execution rates are intrinsically linked [6]. The sampling rate
is typically overdesigned—selected to account for the worst-case anticipated noise and
response characteristics, giving the system a safety margin [14]. The behavior of the control
loops, and the relation between the control performance and controller execution rate, such
as the results in [15], suggest that static resource allocation may not be optimal for system
performance when computing resources are limited. Intuitively, a controller of a plant
operating close to its equilibrium may only require a much lower sampling rate than a plant
operating far from its equilibrium point [16]. In size, weight, and power constrained vehicle
systems running control tasks and a myriad of other tasks, such as perception, learning,
planning, and data processing—redistributing these computing resources at runtime is key
to maximize the overall system performance [15,16].

Figure 1 illustrates three possible resource allocation strategies for a simplified surveil-
lance multicopter in which a flight control task and a perception task are executed con-
currently and share a fixed amount of computing resources. The plots depict an example
response from the simulation for illustration purposes. The flight control task in this ex-
ample is for the UAS to track a series of waypoints and the control system response in
each subfigure depicts the cross tracking error with respect to the reference waypoint in
meters. Assume that the processor has a limited amount of resources that can allow only
one task to run at a higher rate and the other at a lower rate during runtime. The lower rate
and higher rate tasks respectively correspond to lower and higher resource consumption.
In typical priority-driven scheduling, the highest priority task is given system resources—
CPU cycles [17]. A task’s priority, in most safety-critical systems, is dependent on the task’s
period, particularly for hard real-time tasks, such as control and perception [17].

Figure 1a,b show two static (fixed-rate) resource allocation strategies; Figure 1c shows
a simple dynamic (variable-rate) resource allocation policy. In Figure 1a, the control
task is consistently executed at a high rate, while the perception task is executed at a
low rate because of the limited computing resources. This leads to a good control task
performance, but potentially poor perception performance. In contrast, in Figure 1b,
the control system performance deteriorates because a major portion of the computing
resources are allocated to the perception task. The control task has to be executed at a low
rate; thus, the system response becomes slow. In Figure 1c, the resources are dynamically
allocated, in a closed-loop fashion, according to plant dynamics and performance to the
control and perception tasks. The benefits of this dynamic resource allocation are that it
has good control performance and efficient and effective resource usage. Thus, the system
computational resources are efficiently allocated to different tasks in a closed-loop fashion,
which can increase the holistic system performance.
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(a) (b) (c)

Figure 1. Different resource allocation strategies for UAS (example response for illustration pur-
poses). (a) static high-rate control with low-rate perception; (b) static low-rate control with high-rate
perception; (c) dynamic resource allocation for control and perception tasks.

Figure 2 provides an example of this dynamic resource allocation design on a UAS.
When flying from an initial position to waypoint 1, in a dynamically quiescent environment,
the planning and control task should consume fewer resources as the UAS moves closer
to its target (less trajectory tracking error). The resources are more efficiently applied
to improve perception, reasoning, or data collection activities. In contrast, when flying
from waypoint 1 to waypoint 2, the UAS should “pay more attention” (i.e., reallocate
resources) to the planning and control task to navigate itself to the target while avoiding
obstacles in the congested environment. During this time, higher level reasoning and
perception tasks can wait, while resources are reallocated to control, planning to improve
tracking performance.

Figure 2. Dynamic resource reallocation of a UAS.

To enable a resource-aware controller capable of adjusting performance and resources
as needed, we developed a feedback control-based model for controller tasks, in which com-
puting resources and control performances are jointly considered. The co-regulated systems
are capable of dynamically reallocating resources to control tasks based on system states
in a closed-loop fashion, while the control task could provide an adjustable performance
depending on the dynamically reallocated resources at runtime. In this paper, we con-
duct a comparative experiment based on a multicopter UAS to analyze the computational
and physical control performances of co-regulation and the conventional fixed-periodic,
event-triggered, and self-triggered sampling and control strategies. Results show that the
co-regulated UAS preserves the resource savings similar to event- and self-triggered control
strategies, but maintains the high-quality control performance and system robustness as a
fixed-periodic control strategy.
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3. Background

Here, we provide a brief overview of dynamic resource allocation and its relationship
to intelligent control. We then narrow down to resource allocation in control systems,
focusing on how computational resources, in the form of a sampling rate, have traditionally
been allocated.

3.1. Dynamic Resource Allocation
Although dynamic physical resource allocation in the form of mutable or reconfig-

urable structures has been studied, we focus on dynamic cyber resource allocation (i.e.,
CPU time, memory). This approach offers system adaptability to available resources when
performance requirements of a running application are changed, or the current allocation
is not sufficiently close to optimal [18]. Strategies, such as voltage and frequency scaling
CPUs [19], dynamically adjust CPU clock rates, thereby adjusting the actual physical CPU
time any task gets. A side-effect of these strategies is a corresponding change in power
consumption. Rate-adaptive and rhythmic tasks [20] adjust the CPU schedule to obtain a
similar result leaving remaining CPU cycles to be reallocated elsewhere, thereby forfeiting
power savings. A framework called “time bands”, in contrast, reallocates tasks to different
levels of time granularity [21]. To know when, and how much to adjust resources, the above
must be connected to a measure of “quality of service” and other performance metrics [22].
This was addressed most recently by applying reinforcement learning to design an optimal
resource allocation system [23].

These methods have largely remained divorced from the specifics of control and
UAS, or otherwise do not incorporate such systems into their models. In contrast, most
recently, attention has been given to building formal resource architectures and controllers
for computer systems utilizing knowledge gained in the control community, specifically for
robust control [24]. Our work complements and enhances this work, but takes the approach
of directly integrating computational resources into control-specific models, allowing for
the co-design of both computational and physical controllers.

3.2. Overview of Sampling Strategies
Controllers are designed to meet performance specifications for the system and are

executed on a digital computer. In this paradigm, allocating CPU cycle/time takes the form
of different sampling strategies resulting in the sampled-data control class of systems [14].
If we consider the sampling period as a control variable, the predominant design amounts
to open-loop control of periodic execution, or fixed-periodic sampling. The period is
typically chosen according to worst-case conditions, leading to inefficient implementations
in terms of processor usage, communication bandwidth, energy, etc. As in the UAS example,
executing the control tasks are under a fixed period, when states and the environment are
quiescent waste computational resources that could be used for reasoning, decision-making,
or adaptation.

The inefficient allocation of resources in fixed-periodic sampling motivates research
in aperiodic sampling strategies [13]. Aperiodic sampling in the control is exemplified by
event-triggered control where control actuation instances are performed when needed [13].
In event-triggered control, a control cycle is only executed when the triggering condition
is violated [8]. These aperiodic sampling strategies can greatly conserve computational
resources, but suffer from the disadvantages of event-triggered systems. The triggering
condition needs to be continuously monitored and, thus, more sampling instances may
be required. Moreover, the cases where trigger conditions are not met cannot be dis-
tinguished from failure in detecting/communicating the event [13,17]. This reduces the
robustness of event-triggered control strategies in dynamical environment and network
conditions, and makes developing a mathematical foundation for this class of controllers
challenging [13,25].

The research in self-triggered control provide a new type of sampling strategy, time-
varying periodic sampling [13]. Time-varying periodic sampling achieves the benefits of
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periodic methods in terms of design, but because the sampling period changes, it conserves
computational resources similar to aperiodic control strategies [13]. In self-triggered control,
the time for next sampling and control instance is precomputed during the current control
cycle using previously received data and knowledge of system dynamics [8]. In [9], we
introduced a new hybrid time-varying periodic sampling strategy that can dynamically
vary the sampling period at runtime, depending on computing demands and system
state feedback. This allows computational and physical resources to be dynamically
reallocated as needed. Therefore, going beyond the traditional classification of Riemann
and Lebesgue sampling approaches in [25], we reclassify computer control systems into
three categories: fixed-periodic sampling, aperiodic sampling, and time-varying periodic
sampling, as shown in Figure 3.

Figure 3. Three categories of control systems.

4. Control under Different Sampling Strategies

Consider a linear control system model in a general form,

ẋ = Ax + Bu. (1)

where x 2 Rn is the state and u 2 Rm is the control input. We introduced the control design
for each of the sampling categories in Figure 3 based on this general model. To analyze
the performance of different sampling strategies, we employed a unified discrete linear
quadratic regulator (DLQR) algorithm for fixed-periodic, event-triggered, self-triggered,
and a co-regulated controller design.

4.1. Category I—Fixed-Periodic, or Time-Triggered Control
For a fixed sampling interval Td, we can discretize the system model (1) as

x[k + 1] = Fx[k] + Gu[k]. (2)

For the common state-feedback control [14], the control input can be denoted as
u[k] = �Kx[k], where the control gain K can be designed to meet the performance criteria.
For the DLQR algorithm, the control gain, K, can then be decided by choosing appropriate
Q and R matrices.

4.2. Category II—Event-Triggered Control
Event-triggered control consists of two elements—a feedback controller that computes

the control input and a triggering mechanism that determines when the control input has
to be updated again [8]. To implement event-triggered control in a computer, the controller
needs to sample the system at a fixed base-period Td (internal sampling interval) to decide if
a new control update is needed [26]. Generally, a triggering parameter needs to be designed
to execute a control instance to guarantee system stability. This triggering parameter
should be designed depending on the system model. In this paper, we have adapted the
event-triggered controller in [27] to our multicopter UAS and used it as the basis for results
comparison. This algorithm updates the control signal once the UAS states deviate more
than a certain threshold from a desired value.
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4.3. Category III—Self-Triggered Control
Event-triggered is reactive; it requires constant monitoring of a triggering condition.

Self-triggered control, on the other hand, is proactive and computes the next sampling
and control instance ahead of time [8]. At each sampling instant, the control signal values,
as well as the next sampling instance time, are both calculated based on the current state.
To implement self-triggered control in a computer, an inter-execution time Td is required to
work as the time span unit that, when combined with the calculated next control time step
k⇤, the exact time for the next sampling and control instance can be achieved as k⇤Td. Similar
to event-triggered control, a triggering parameter is needed to decide the appropriate next
control instant to guarantee system stability. In our comparison test, we leverage the
self-triggered control algorithm in [27]. This algorithm determines the subsequent control
updates based on the prior ones, obviating the necessity for continual measurement error
monitoring [13].

4.4. Cyber-Physical Co-Regulation
Cyber-physical co-regulation is a time-varying periodic sampling and control strategy,

it can adjust system performance by simultaneously co-regulating the control input and its
required computing resources. We augmented a traditional state space control model as in
Equation (1) with a model of the computational control task. This resulted in an augmented,
stacked state-space system model

ẋ = Ax + Bu
ẋc = uc

(3)

where c denotes “computational”. The term “computational” refers to the state of the
resource, and in this case, xc refers to the physical system’s control task execution rate,
which is regulated by the computational control input uc.

Figure 4 shows the co-regulation method developed for the multicopter UAS control
in our previous work [10]. The computational system monitors the physical state error
at runtime and dynamically reallocates computational resources (i.e., sampling rate) in
reaction to physical performance. When the physical state error increases, the compu-
tational controller increases the sampling rate; when error decreases, the sampling rate
decreases [13]. The physical system then executes the control task and adjusts the physical
system performance according to the time-varying sampling rate. The physical controller
is designed to provide performance guarantees for the UAS when working under the
time-varying sampling rate.

Figure 4. Co-regulation block diagram [10].



Sensors 2022, 22, 1525 7 of 17

Because of the dynamically changing sampling rate at discrete intervals, the discrete
system matrices F and G are not static and need to be recalculated at each time step k.
The resulting discrete-time-varying system model is then [13],

x[k + 1] = F[k]x[k] + G[k]u[k] (4)

and the control input is
u[k] = �K[k]x[k] (5)

The controller is designed using a sequence of DLQR control gains for a sequence of
sampling rates [14]. The control gains are mapped with different sampling rate values,
and are then deployed corresponding to the current sampling rate [13]. This control design
is referred to as a “gain-scheduled DLQR (GSDLQR)” and is described in Table 1 [10,12],
with stability results demonstrated in [11]. In this work, we primarily focused on a compar-
ative analysis of the control and computing features among different sampling strategies.
Although advanced methods for UAS nonlinear control [28] exist, we leveraged a unified
linear DLQR control algorithm for different sampling strategies to simplify the control
design and highlight the performance differences brought by different sampling strategies.

Table 1. Scheduled Gains at different sampling rates [10].

Rate xc Gain K[k]

xc = xc,min Hz K[k] = DLQR @xc,min Hz

xc = 10 Hz K[k] = DLQR @10 Hz

xc = 11 Hz K[k] = DLQR @11 Hz

...
...

xc = xc,max Hz K[k] = DLQR @xc,max Hz

Co-regulation, as with event- and self-triggered strategies, needs to know when to
take the next sample [13]. We structured this as a feedback computational controller that
calculates the coupled control input uc, which dynamically modifies the sampling rate
in response to the system’s dynamics. In prior work [10], we defined a control law for
computational systems as

uc[k] = Kcp

⇣
x[k]� xre f [k]

⌘
� Kc

⇣
xc[k]� xc,re f [k]

⌘
. (6)

In response to physical state error, the coupling gain Kcp was employed to increase
the sampling rate of the system. The gain Kc, conversely, directs xc in the direction of the
desired reference sampling rate xc,re f . We applied an optimization approach introduced
in [10] to determine values for the gain values Kcp and Kc. As a result, the discrete-time
computational system model for the current sampling instance k can be denoted as [13]

xc[k + 1] = xc[k] +
1

xc[k]
uc[k]. (7)

Thus, based on the current state of the plant, the next sample instance time can be
determined using Equations (6) and (7).

To implement the co-regulation strategy in the software, we needed to add constraints
to the computational system model (7) to limit the sampling rate values, xc, to a set S that
contained a finite number of possible values. S = { f1, f2, . . . , fN} is a pre-defined finite
set that contains stable sampling rate values as prescribed operating points. This limits
the sampling rate of the co-regulated system to a finite number to simplify the analysis.
The bounds and the resolution of the values in S can be customized depending on the
application. The general rule to generate S is to:
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1. Set the upper bound based on the system computational bandwidth given all other
computing tasks;

2. Set the lower bound to the rate where system performance degrades beyond accept-
able limits, or otherwise is unstable;

3. Set the resolution based on the system dynamics and application scenarios, which
can guarantee system stability and accommodate performance requirements, such as
disturbance rejection, dynamic response, etc.
In the software implementation, the GSDLQR gain matrices are saved as a look-up

table. In each control cycle, the appropriate DLQR gain matrix that maps with the current
sampling rate is leveraged to compute the control signal. Then the next sampling rate
value is calculated by the computational control model based on the current state feedback.
The control task execution rate is decided by the computational controller based the the
real-time state feedback. The software implementation of the co-regulation algorithm is
summarized in Algorithm 1.

Algorithm 1: Cyber-physical co-regulation.
Result: Physical control input u[k]

Control task rate xc[k + 1]
Input: x[k], xre f [k], xc[k], xc,re f [k], Kcp, Kc, S
Output: u[k], xc[k + 1]
while Algorithm is running do

if t = tlast + 1/xc[k + 1] then

//Update the control instance time
tlast = t;
//Calculate the physical control input
K[k] = DLQR @ xc[k]Hz;
u[k] = �K[k](x[k]� xre f [k]);
//Calculate the computational control input
uc[k] = Kcp

⇣
x[k]� xre f [k]

⌘
� Kc

⇣
xc[k]� xc,re f [k]

⌘
;

//Calculate the following tasks execution rates
xc[k + 1] = xc[k] +

⇣
1

xc [k]

⌘
uc[k];

xc[k + 1] = closest value in S;
Return: u[k], xc[k + 1];

The novelty of the co-regulation approach is in its coupling of computational and
physical systems via equations of motion rather than incorporating the delays of motion
into the models used for task scheduling. That is, at the feedback control level, computa-
tional and physical resources are balanced dynamically rather than at a higher planning
level [9]. Co-regulation does not replace traditional planning, but supplements it by reactive
reallocation of resources within the reference trajectories commanded by the planner [9].

Co-regulation, conceptually, can be applied to a wide variety of control problems,
including nonlinear controllers, and there are currently two main approaches to designing
them. The most widely applicable are methods such as the presented gain scheduling
framework that are generalizable to virtually any control strategy as long as multiple
sampling-rate-targeted controllers can be designed. In this paradigm, co-regulation be-
comes a switched system with associated performance guarantees [12]. More generally,
however, smoother, more robust controllers can be developed as long as a single control
law that works for a wide range of sampling rates can be found. As an example, for attitude
control of a CubeSat, we introduced a control strategy based on propagating the Riccati
equations forward in time (rather than the traditional “backward in time”) [9]. In that
paradigm, the controller evolves alongside the sampling rate and discrete-time-varying dy-
namics. Such strategies are more difficult to design since they rely on discrete-time-varying
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dynamics (due to the time-varying sampling rate) and developing such control laws is an
active area of research. Minimum sampling rates to ensure good performance are highly
dependent upon the speed of the system dynamics, and experimentally, we observed that
single co-regulated control laws tend to evolve more slowly without an associated sampling
rate prediction mechanism or trajectory. As a result, our existing controllers of this type
are applied to systems with slower dynamics (e.g., CubeSat). In contrast, the presented
gain scheduling paradigm, due to its switching nature, is better applied in systems with
faster dynamics. Eventually, we envision an all-encompassing framework for designing
co-regulated controllers dependent upon the speed of the system dynamics, expected
computational capabilities, expected computing task sets, and resource requirements.

5. Evaluation Metrics

We intend to quantify both physical and computational characteristics of the system
in order to more holistically evaluate system performance. Physical evaluation metrics
primarily assess performance of the plant’s response to references and the actuation effort
required to achieve it. Computational evaluation metrics primarily assess the computational
resources allocation for control task, which include the number of sampling and control
instances during the test cycle.

5.1. Physical Evaluation Metrics
Our first metric is the time averaged square of physical state error (PSE),

PSE =
1

ttot

n

Â
i=0

⇣
xi � xre f

⌘2
ti. (8)

This metric provides an all-encompassing look into how well all states are being regu-
lated. Because average error does not address control inputs that may saturate actuators, we
introduce an additional metric, maximum state error (MSE), which evaluates the maximum
deviation of the plant states from the reference,

MSE = max
⇣

xi � xre f

⌘2
. (9)

For control effort, we introduced a metric capturing the time weighted average of the
square of the control input (i.e., control effort (CE)),

CE =
1

ttot

n

Â
i=0

u2
i ti (10)

where ttot is the total simulation time (in seconds), ti is the length of time for the ith
simulation step, n is the total number of simulation steps, ui = u[k] = const. on kTd 

t < (k + 1)Td. This metric provides an indicator of energy and power usage. We also
introduced a metric to quantify the energy cost W for the UAS in one entire flight test
process. The power required to produce a given thrust is P =

q
T3

2rA , where T is the rotor
thrust, A is the area of the spinning propeller, and r is the air fluid density [10]. Then the
energy cost W in the whole process can be denoted as

W =
1

ttot

n

Â
i=0

P ti, (11)

as an additional way to evaluate the controller efficiency.

5.2. Computational Evaluation Metrics
On the computational side, we evaluated the sampling and control task resource

utilization by counting the number of sampling instances and control instances, respec-
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tively, during the test time. Let ksample represent the execution cycle (time index) of the
sampling task, incrementing each time the sampling task runs. We introduce the sampling
computational time (SCT) metric as

SCT = ksample. (12)

Similarly, we define the control computational time (CCT) metric as

CCT = kcontrol , (13)

where kcontrol represents the execution cycle (time index) of the control task.

6. Results

In this section, we deploy different sampling strategies on a multicopter UAS nonlinear
simulation and compare the resulting flight control performances and resource consump-
tion. The UAS state consists of the vehicle’s position (x, y, z)T , velocity in R3, orientation in
roll (f), pitch (q) and yaw (y) angles, and angular rate of change in yaw [12]

xp = (x, y, z, f, q, y, ẋ, ẏ, ż, ẏ)T .

A lower-level attitude controller was integrated with the UAS, which accepts the
desired thrust (T), roll angle (f), pitch angle (q), and body yaw rate (r) as inputs [12]. Thus
the control input for the UAS is up = (f, q, r, T)T . The equations of motion of the UAS
model are 2

4
p̈n
p̈e
p̈d

3

5 = �
T
m

2

4
cos f sin q cos y + sin f sin y
cos f sin q sin y � sin f cos y

cos f cos q

3

5+

2

4
0
0
g

3

5

where m is the total mass of the UAS, and g is gravity [12]. These nonlinear equations of mo-
tion were employed to build the high-fidelity UAS flight simulation. The controllers were
designed using a linearized state-space system model, such as (1), by linearizing the model
at a stable hover equilibrium point. To compare and analyze the control performances and
resource consumption among different sampling strategies, we developed fixed-periodic,
event-triggered, self-triggered, and co-regulated controllers for this UAS and conducted
the tests in unified environments. We leveraged the nonlinear equations of motion of the
UAS to build this high-fidelity test environment to simulate the UAS performances when
operated under different strategies.

6.1. Simulation Setup
The comparison test was conducted in a simulation environment that was built in

Matlab R2017a on a 2.3 GHz Intel i5 processor computer. The control and computational
performances of the UAS were recorded and quantified using the evaluation metrics in
Section 5. The UAS parameters are specific to the “Ascending Technologies Hummingbird”
and are listed in Table 2. More detailed specs of the UAS can be found in [29]. To study
the effects of computing and timing, the fixed-periodic, event-triggered, self-triggered,
and co-regulated controllers were all designed based on a unified optimal DLQR control
algorithm with unified parameters. The controller parameters Q and R were manually
tuned, and are shown in Table 2. The selection of computational gain Kcp and kc parameters
for co-regulation are based on the optimization scheme in [10] that targets minimizing a
cost function composed of terms measuring resource usage, control performance, and en-
ergy consumption.
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Table 2. System constants.

Parameter Value Parameter Value

g 9.80665 m/s2 m 0.515 kg
Q I10⇥10q R I4⇥4r
q = [130 130 130 150 150 150 2 2 2 1]T r = [180 180 180 3]T

Kcp = [1 1 1 1 1 1 1 1 1 1] Kc = 1

The sampling rate of the fixed-periodic control was set to 10 Hz as it could provide a
sufficient control performance for this multicopter UAS. The internal sampling interval Td
for event- and self-triggered control was set to 10 Hz, the resulting discrete system model
and control gain matrix were the same as the fixed-periodic control. The triggering param-
eters for this multicopter UAS model were manually tuned as s = 0.9 (event-triggered
control) and µ = 0.6 (self-triggered control) based on the system response to perform the
“best” trade-off among resource utilization and control performance. The selected trigger-
ing parameters were located in the range where the system stability for the multicopter
UAS model could be guaranteed [27]. For co-regulation, the reference sampling rate xc1,re f
was set to 1 Hz as the minimum resource we allocated to the control task. The time-varying
control gain K[k] was calculated at runtime to provide performance guaranteed control.

6.2. Test Results
We compared the system performances of fixed-periodic control, event-triggered

control, self-triggered control, and co-regulation in a UAS waypoint in the following
scenario. In the first test, we set a single reference waypoint for the UAS to test the step
response. The initial state of the UAS was set to a stable hover at one meter above the
origin of the inertial frame, the single reference waypoint was set to two meters away in
the x direction. Each test was timed for a total of 15 s, and we manually added a wind
disturbance of 0.2 N in the positive x direction from 7 to 9 s.

In this work, we assumed the magnitude and direction of the wind disturbance was
constant to simplify the analysis. In an extended trajectory with varying disturbances,
the system will adapt as “error” from the controller increases. The results are depicted in
Figure 5, and quantified by evaluation metrics in Table 3. The “Position (x)” in Figure 5
depicts the UAS moving trajectory in the x direction in meters, which reflects the UAS
flight control performance. Those transient responses in “Position (x)” that have smaller
deviations from the reference (2 m) exhibited better performances. The controllers were
designed as waypoint followers, which took position information as references. Waypoint
following is the most ubiquitous type of multicopter control strategy in deployment.

The system performances from different sampling and control strategies are compared
and depicted in Figure 5. In general, fixed-periodic control provides the “gold standard”
of control performance but also utilizes the most computing resources [13]. Thus, a per-
formance that is closer to the fixed-periodic controller generally indicates better control.
The number of sampling and control instances reflects the resource consumption. Higher
computational efficiency is exemplified by sparser instances. When compared with fixed-
periodic control (Figure 5a), event-triggered control (Figure 5b) can save computational
resources at the cost of significantly degraded control performance. The event-triggered
controlled UAS has a 20% longer settling time and a 60% higher overshoot than when
being controlled by the fixed-periodic controller. For the self-triggered control performance
(Figure 5c), more computational resources can be saved since both sampling instances and
control instances are reduced. In terms of physical control performance, self-triggered
control has a similar settling time to event-triggered control, but has a 10% lower overshoot.
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(a) (b) (c) (d)

Figure 5. Performance comparison of fixed-periodic, event-triggered, self-triggered control,
and co-regulation. (a) fixed-periodic DLQR; (b) event-triggered control; (c) self-triggered control;
(d) co-regulation.

The co-regulated controller (Figure 5d) provided the best balance of control and com-
putational performances among all sampling strategies. On the control side, co-regulation
could achieve a nearly identical physical control performance compared with the fixed-
periodic control, which retained significant advantages over event- and self-triggered
controllers. On the computational side, co-regulated control required the fewest sampling
instances, providing the greatest computational efficiency. In this test, the fixed-periodic,
event-triggered, self-triggered, and co-regulated controllers all responded similarly to
disturbances. Uniquely, however, when a disturbance occurred, the sample rate of the
co-regulated controller quickly increased, allowing the system to promptly respond to the
state deviation induced by the disturbance and maintain robust performance.

In Table 3, we show quantified results for the comparison test based on evaluation
metrics. The results are normalized to provide a more straightforward comparison. The
physical control performances best illustrate the PSE and MSE metrics; fixed-periodic
control and co-regulation can provide approximately the same level of control perfor-
mances, significantly better than event-triggered and self-triggered strategies. The control
performances in the fixed-periodic control and co-regulation also lead to better energy
efficiency presented by lower CE and lower W. The computational system performances
are best illustrated by the SCT and CCT metrics. In all cases, the decrease of SCT and CCT
metrics denoting less computational resources were allocated to the sampling and control
task. The fixed-periodic DLQR controller consumed the most computational resources
among all strategies. The event-triggered and self-triggered controllers could perform
considerable savings in computing resources as a trade-off for degraded physical control
performances. Event-triggered control consumed the least control instances during this test
process. However, since it required consistently monitoring of the system states, the compu-
tational resource consumption for state sampling was the highest. Co-regulation consumed
the least resource in sampling, and the physical control performance was far better than
event-triggered and self-triggered strategies. From the results, co-regulation provided the
most significant computing resources savings with minimal loss of physical performance.
That is, the co-regulated system could achieve an (approximately) identical physical system
performance as the fixed-rate controllers while saving significant computational resources
similar to event-triggered and self-triggered controllers.
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Table 3. Evaluation metrics of different sampling and control strategies (the lower value denotes
better performance).

Control Strategy
Physical Computational

MSE PSE CE W CCT SCT

Fixed-periodic 1.0000 1.0000 1.0000 1.0000 3.2609 2.7778
Event-triggered 2.1752 2.4783 1.0917 1.0426 1.0000 2.7778
Self-triggered 1.7726 2.3041 1.0778 1.0376 1.3478 1.1481
Co-regulation 1.0031 1.0270 1.0002 1.0001 1.1739 1.0000

PSE : physical state error; MSE: maximum state error; CE: control effort; W: energy cost; SCT: sampling computa-
tional time; CCT: control computational time.

Figure 6 demonstrates a top view of the UAS waypoint following performance un-
der disturbances. This can provide a more straightforward comparison of how the UAS
responds to disturbance under different sampling strategies. Two consecutive reference
waypoints are set to 1 m away in the x direction, then 2 m away in the y direction. A distur-
bance of 0.3 N is set in the positive x direction when the UAS moves towards the second
waypoint. The results show that all four sampling strategies can provide robust perfor-
mances against the disturbance. However, fixed-periodic control and co-regulation show
better robustness to disturbances as the trajectory deviation caused by disturbances are
smaller than event-triggered and self-triggered controllers.

Figure 6. Waypoint following performance under disturbances.

7. Discussion

The primary benefits of the co-regulation strategy in computing resource saving
and physical control performance were discussed, based on the comparison test results.
Moreover, the proposed co-regulation design has some unique advantages, from the design
prospective, when compared with event-triggered and self-triggered control strategies. It
can overcome the disadvantages of not being able to distinguish lack of new information
from detection/communication failures in an event-triggered control. For self-triggered
systems, the only information provided at each time step is the next sampling instance.
Co-regulation has the advantage of knowing precisely when the next sampling instant will
be unless it is changed. That is, in the absence of a computational control law, it reverts to a
fixed-rate control—a strong robustness characteristic.

Event-triggered and self-triggered control algorithms add additional tuning and trig-
gering parameters, which can bring extra uncertainties in the control performance. Thus,
the system robustness can be reduced when compared with fixed-periodic and co-regulated
controllers. During the test process, we found event-triggered and self-triggered control
algorithms are very sensitive to parameter changes; that is, a tiny change in the triggering
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parameter can lead to huge changes in system performance. The UAS step responses
under different triggering parameter values are recorded. Figure 7a,b, shows the UAS
performance difference when the triggering parameter (s) value is changed from 0.7 to
0.9, the resulting number of control instances decreases from 27 to 22, but the control
performance is dramatically changed.

(a) s = 0.66 (b) s = 0.77

Figure 7. Event-triggered control performances with different s values.

In self-triggered control, the system performance is even more sensitive to triggering
parameter changes. Figure 8a,b shows the UAS performance difference when the triggering
parameter µ value changes from 0.7 to 0.9, the resulting number of control instances
decreases from 30 to 26, and the control performance is greatly affected.

The performances of event/self-triggered controllers can become more robust when
we select more conservative triggering parameters. However, the sampling and control
instances will increase to approximately the same level as a high-rate fixed-periodic con-
troller, which will lose the advantages in conserving computing resources. On the other
hand, less conservative triggering parameters of event-triggered and self-triggered con-
trols can lead to more savings of resources at the cost of decreased system robustness.
Co-regulation, as opposed to event/self-triggered control strategies, can provide much
more robust and consistent system performances when we change either Q and R param-
eters for the physical system controller or Kcp and Kc parameters for the computational
system controller.
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(a) µ = 0.7 (b) µ = 0.9

Figure 8. Self-triggered control performances with different µ values.

Recent research studies have provided more advanced designs for event-triggered and
self-triggered controls, where better trade-offs among resources and performances could be
achieved. An important issue surrounding event-triggered and self-triggered controls is the
complexity of the algorithms used for the online implementation that decides the sampling
interval [30]. Such complex calculations can be challenging to real-time implementations,
especially for applications where fast system dynamics are required. However, the co-
regulation scheme calculates the sampling rate trajectory by a separate computational
controller that can be executed extremely fast (complexity O(1)) with negligible resource
consumption, such as a PID controller [9]. The physical controller can also be customized
depending on different application requirements. The proposed GSDLQR algorithm for co-
regulated systems can be implemented as a lookup table, which can be executed fast enough
to meet real-time requirements in highly dynamic applications [10]. By detaching the
computational and physical system, co-regulation can provide a higher degree of freedom
for system design, as well as a highly robust framework that can provide performance
guarantees for different application scenarios. Though discussed in the context of UAS in
this work, co-regulation design is broadly applicable to cyber-physical vehicle and robotics
systems, particularly those where careful allocation of resources is desirable (e.g., size,
weight, and power constrained vehicles). More detailed information of a co-regulated
control algorithm [10,12] and co-regulated system stability analysis [11] can be found in
our previous work. Our future work will focus on extending the co-regulation design to
different vehicle and robotic systems.

8. Conclusions

In this paper, we analyzed the trade-offs between computing resource utilizations,
represented by sampling rate and control performance, to further explore an opportunity
for more intelligent design strategies for UAS, to accomplish more with fewer resources.
We conducted a comparison test of different sampling strategies to demonstrate how
computing and timing can affect control performance. We highlighted the benefits of our
proposed cyber-physical co-regulation strategy in overcoming the drawbacks of event-
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triggered and self-triggered controllers, while saving far more resources compared with
traditional fixed-periodic strategies.

To make UAS more intelligent, they need the ability to adjust behavior (performance)
and resources to meet increasing demands in uncertain environments. This type of rethink-
ing of the foundations of autonomy is required to build the next generation of autonomous
robotic systems. Co-regulation does exactly this, and can form the core of a new intelligent
control system to meet this challenge. We anticipate this will make autonomous robotic
systems more efficient, robust, and capable of adapting to changes.
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