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ABSTRACT

The generalized minimax concave (GMC) penalty is a newly proposed regularizer that
can maintain the convexity of the objective function. This paper deals with signal re-
covery with the linearly involved GMC penalty. First, we propose a new method to set
the matrix parameter in the penalty via solving a feasibility problem. The new method
possesses appealing advantages over the existing method. Second, we recast the linearly
involved GMC model as a saddle-point problem and use the primal-dual hybrid gradient
(PDHG) algorithm to compute the solution. Another important work in this paper is that
we provide guidance on the tuning parameter selection by proving desirable properties
of the solution path. Finally, we apply the linearly involved GMC penalty to 1-D signal
recovery and matrix regression. Numerical results show that the linearly involved GMC
penalty can obtain better recovery performance and preserve the signal structure more

successfully in comparison with the total variation (TV) regularizer.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The task of recovering a sparse representation is ubiquitous
in signal and image recovery and is often formulated as the fol-
lowing optimization problem:

1
minimize F(x) = §||y - Axll% + uyp(x), (D)

where y € R™ is the vector of observations, A € R™" is a ma-
trix, and ¢ : R" — R is a sparsity promoting penalty function.
The nonnegative tuning parameter u trades off the emphasis on
the least squares data-fidelity term and the sparsity level in x.
Many applications in signal processing fall under the frame-
work of solving (1), for instance, signal denoising (Chen et al.,
1998) and signal smoothing (Selesnick, 2015). In statistics, (1)
corresponds to the sparse linear regression problem, where y is
the response vector, A is the design matrix, and ¢ is the reg-
ularizer to promote sparsity in the vector of coefficients x. A
commonly used regularizer is the /;-norm y¥(x) = ||x||;, which
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is a convex function. Convexity ensures that all local minimiz-
ers are global. Nonetheless, the /;-norm regularizer also intro-
duces estimation bias, namely the solution to (1) tends to under-
estimate large magnitude components of x (Chen et al., 1998;
Tibshirani, 1996). To deal with this issue, several nonconvex
sparse regularizers have been proposed to mitigate the estima-
tion bias and consequently more accurately recover the signal.
However, with a nonconvex regularizer y, the convexity of F is
no longer guaranteed. Therefore, (1) could have multiple sub-
optimal local minimizers which are undesirable.

To overcome the drawbacks of nonconvex optimization but
enjoy the less biased estimation of nonconvex regularizers,
convexity-preserving nonconvex strategies were introduced in
Blake and Zisserman (1987); Nikolova (1998); Nikolova et al.
(2010), and further investigated in Bayram (2015); Selesnick
(2017b); Zou et al. (2018). The basic idea of convexity-
preserving nonconvex strategies is to use a nonconvex regu-
larizer but keep the optimization problem convex. Selesnick
(2017a) introduced the generalized minimax concave (GMC)
penalty, which can maintain the convexity of F under a modest
regularity condition. The GMC penalty is defined as:



1
yB(x) = Il —Ivlel]}glnl{IIVIlﬁzllB(X—V)II%}, 2

where B € R"™" is a parameter for 5. The objective function
F in (1) is convex if ATA — uB'B is positive semidefinite.

Abe et al. (2019) proposed a linearly involved convexity-
preserving model by composing a linear operator with the GMC
penalty. The linearly involved GMC model is:

1
minimize Fy,(x) = =|ly — Ax|[3 + g o L(x), 3)
xeR” 2

where L € R>" is a linear operator and B € R/ is a matrix pa-
rameter. Here we call g oL the linearly involved GMC penalty
which includes the original GMC penalty (2) as a special case
by taking L as the identity operator. When the signal is sup-
posed to be piece-wise constant, a typical choice for L is the
first-order difference operator defined as

-1 1

D(l) — e R(n—l)xn' (4)
-1 1

Abe et al. (2019) states that problem (3) maintains its convexity
when B satisfies the following convexity-preserving condition:

ATA - uL"™B'BL > O, 6)

There are basically three issues in the context of the GMC
penalization method. First, guidance on setting the matrix pa-
rameter B for the GMC family of penalties is still limited. Se-
lesnick (2017a) chose to set B = +/6/uA with 6 € (0, 1) for
the original GMC penalty. Abe et al. (2019) provided a method
based on Schur complement to find a feasible matrix B for the
linearly involved GMC penalty, which only applies to L. with
full row rank. Two recent papers on matrix-parametric non-
convex penalization methods also discussed how to set the ma-
trix parameter in their models. Lanza et al. (2019) developed a
general parametric nonconvex nonseparable regularizer for im-
age processing and they produced the matrix B by rescaling
the eigenvalues of ATA. Selesnick et al. (2020) introduced the
generalized Moreau envelope for the nonconvex total variation
regularization and they set the matrix B as a filter with L = Df,l) ,
but prior information and additional parameters need to be spec-
ified in that case. Second, computation of the GMC family of
optimization problems warrants further exploration. Selesnick
(2017a) applied the forward-backward (FB) algorithm to com-
pute the solution of the original GMC model. Lanza et al.
(2019) and Selesnick et al. (2020) also used the FB algorithm
and its variant to solve the corresponding optimization prob-
lems. Unfortunately, the FB algorithm is no longer applicable
to the linearly involved GMC problem due to the existence of
the linear operator. Third, discussion on how to select the cru-
cial tuning parameter u in the current literature is rare. All the
references cited above manually set u, which is not efficient or
robust in practice. These existing issues motivate the work in
this paper.

This paper focuses on the linearly involved convexity-
preserving model (3) and makes the following contributions:
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1. Firstly, and most importantly, we propose a new method
to set a matrix B satisfying condition (5). We focus on
producing the matrix uB"B, instead of B. We formulate
the task of producing uB'B as a feasibility problem and
present two algorithms to solve the problem. The advan-
tage of our method is that it applies to L of any structure
and can find different feasible B matrices by setting differ-
ent initial values for the algorithms.

2. We provide a fast algorithm, primal-dual hybrid gradient
(PDHQG), to solve problem (3).

3. We prove theoretical properties of the solution path of (3).
These properties in turn expedite the computation in the
numerical experiments and provide guidance on selecting
the tuning parameter u.

Note that since the original GMC penalty (2) is a special case
of the linearly involved GMC penalty (3), all the contributions
in this work also apply to the original GMC method.

The rest of this paper is organized as follows. In section 2, we
introduce our method to compute matrix B, or uB"B to be exact,
to ensure the convexity of problem (3). We briefly review the
CQ and ADMM algorithms and then derive specific instances
of each of them to compute a feasible B. In section 3, we pose
problem (3) as a saddle-point problem and apply the PDHG
algorithm to compute the solution. In section 4, we characterize
the solution path theoretically. In section 5, we present two
numerical examples to show the advantage of our new method
of computing B as well as to highlight performance gains of the
linearly involved GMC model in signal recovery. In section 6,
we summarize our work and discuss future directions. Proofs
are included in the appendix.

2. Algorithms for computing matrix B

Throughout, vectors are denoted by boldface lowercase let-
ters (e.g. x € R") and matrices by boldface capital letters (e.g.
A € R™M"), 0,5 € R™" and O,, € R™" stands for the zero ma-
trices and I,, € R™" the identity matrix. For a matrix A € R"™",
AT € R™™ represents the Moore—Penrose inverse of A, and
vec(A) denotes the column-major vectorization of A, namely
the vector obtained by stacking the columns of A on top of each
other. We denote the i-th row of A by A;. and the j-th column of
A by A.;. The inner product between two matrices is defined as
(A,B) = vec(A)" vec (B). For a symmetric matrix A € R"™",
A;j(A) indicates the j-th largest eigenvalue of A for 1 < j < n.
A > O, means A is positive semidefinite and A > O, indicates
the positive definiteness of A.

For model (3), the convexity-preserving condition (5) im-
poses a constraint on the matrix parameter B, or equivalently
on uB™B. We first focus our attention on finding a matrix
Z = uB"B € R¥ satisfying condition (5). It is straightfor-
ward to verify that identifying a matrix B satisfying condition
(5) is equivalent to identifying a pair of symmetric matrices Z
and D satisfying the following three conditions
L'ZL =D,

Z >0, and ATA-D > O0,. (6)



The singular value decomposition of a matrix Z satisfying (6)
can be used to construct a matrix B. We will see, however, that
we do not need to explicitly construct B. We next discuss two
algorithms to obtain a feasible Z matrix.

2.1. CQ algorithm

Let C and Q be nonempty closed convex sets in RV and R¥,
respectively, and H € RM*VN The split feasibility problem seeks
to find a point z such that z € C and Hz € (Q, if such a z exists.
We can formulate the split feasibility problem as the following
constrained optimization problem

1
minimize f(z) = §||Hz - PQ(HZ)H% subjecttoze C. (7)

Noting that the objective function f is differentiable with gra-
dient Vf(z) = H'Hz — H'P,(Hz), Byrne (2002) proposed the
CQ algorithm to solve the split feasibility problem by solving
(7) with projected gradient descent.

We now formulate the task of computing a matrix Z satisfy-
ing (6) as a split feasibility problem. Let C be the set of matri-
ces Z € R™! that are positive semidefinite and Q be the set of
symmetric matrices D € R™" such that A j(ATA - D) > oy for
1 < j<n,where oy =(1-60)1,(ATA) > 0and 6 € (0,1). If Z
is a solution to the following split feasibility problem

Find Z € C with LTZL € Q, (8)

then Z satisfies (6). Note that we use oy = (1 — §)A,(ATA),
instead of 0, to lower bound the eigenvalues of ATA-L"ZL to
control the convexity of model (3) by the so-called convexity-
preserving parameter 6.

It is well known that C is a closed and convex set. The proof
of the closedness and convexity of Q is given in the appendix.
Since both C and Q are closed convex sets, we can apply the CQ
algorithm to compute a target Z matrix. We rewrite problem (8)
in terms of the vectorization of Z, denoted by z, as follows:

Find z € C with Hz € Q, )

where H = LT ® LT and ® denotes the Kronecker prod-
uct between two matrices. This follows from the fact that
vec(L'ZL) = LT ® LT vec(Z). For notational simplicity, we
overload our definition of the sets C and Q in (8) and (9),
namely z € C is equivalent to Z € C. We solve problem (9)
with the CQ algorithm, specifically an accelerated version of
the CQ algorithm (Qu and Xiu, 2005).

The CQ algorithm requires projections onto the sets C and Q.
The projection of Z onto C is given by Pc(Z) = UT(A, ou’,
where UAU is the eigendecomposition of Z and T(A, o) is the
diagonal matrix whose ith diagonal entry is the projection of
A; onto the interval [0, 00), namely max{4;,o}. The projection
onto Q is given in proposition 1.

Proposition 1. Let D be a symmetric matrix and the matrix
ATA — D have eigendecomposition UAU'. Then the projection
of D onto Q is given by

Po(D) = ATA - UT(A, 0p)U".

Algorithm 1 summarizes the CQ algorithm for computing Z
in (8). Here, y € (0, o) with H= LT @ LT.

Algorithm 1 CQ algorithm for computing matrix Z

Initialize Zy € R and set zy = vec(Zo)
Initialize 8,y € (0, 1) and ap € (0, 00)
min < min(ao, y)
fork=1,2,...do
ap < Qo
2t — Pc(z — arVf(z)
while f(z*) > yf(z) - Vf(2) (% —z*) do
ay — max(Bak, Umin)
2" — Pc(z — arV f(z1))
end while
Ziy — 2"
: end for

R e A A Rl e

_ =
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2.2. ADMM algorithm

The ADMM algorithm (or specifically, parallel projections)
proposed by Boyd et al. (2011) is a classical method to solve
the convexity feasibility problem, which is to find a point in the
intersection of a collection of nonempty closed convex sets.

Let us define three sets in the space ® = R x R™",

G:{{Z,D}e@:D:LTZL},
C' ={Z,D)e®:ZeC},
0 ={{Z,D}c®:De Q}.

The sets C and Q are the ones defined in (8). It is straight-
forward to verify that G, C’ and Q' are nonempty, closed and
convex. Then finding a matrix Z satisfying (6) is equivalent to
finding a point in the intersection of C’, G and Q’. The ADMM
algorithm requires projections onto C’, G and Q’. The projec-
tion onto G is given in Proposition 2.

Proposition 2. Ler H = LT @ L.
{Z,D} € ® onto G is given by

Then the projection of

P(Z,D) = {Z LTZL}
2= (H'H+1:) (HTd+z),
where z = vec(Z),d = vec(D), and Z = Vec(Z).

We close this section by noting that both CQ and ADMM
have no assumption on the structure of L, meaning that the two
algorithms are very general and applicable to any L. This over-
comes the drawback of the existing method to compute B in
Abe et al. (2019) that it only applies to L with full row rank.

3. Algorithm for the linearly involved GMC model

The linearly involved GMC model (3) can be written as the
following saddle-point problem

minmax f(x) + v Px — g(v), (10)

x€R" veR!
where f(x) = 3|ly — Ax|3 — 5IBLx|3 + ul[Lx]l; is convex under
the convexity-preserving condition (5), g(v) = %HBVH% + ulIvll;
is convex in general, and P = uB"BL = ZL is a linear operator.



We propose using the PDHG (Goldstein et al., 2013, 2015)
algorithm to solve (10) to take advantage of the special struc-
ture of the method we have introduced for computing B. Note
that using the matrix Z, rather than B, avoids redundant com-
putations. The GMC penalty (2) depends on BB, not B it-
self (Selesnick, 2017a). Thus problem (3) only depends on
uBTB, which is exactly the Z matrix computed by the CQ or
the ADMM algorithm. We get further computational gains by
using an adaptive PDHG algorithm to speed up the conver-
gence (Goldstein et al., 2013, 2015).

4. Properties of the solution path

A key practical question is how to choose the tuning parame-
ter u or, in other words, perform model selection. The extended
Bayesian Information Criterion (eBIC) proposed in Chen and
Chen (2008, 2012) is commonly used for tuning parameter se-
lection in fitting structured sparse models as in (3). In this pa-
per, we calculate eBIC on a grid of values of u and select the
u corresponding to the smallest value of eBIC. As we need to
solve a sequence of optimization problems, we next describe
two properties of the solution to the optimization problem (3)
as a function of the tuning parameter y that can help expedite
our model selection step. We write a minimizer to (3) as x*(u)
to denote this dependency.

The first property establishes under modest assumptions that
x*(u) not only exists and is unique but is also a continuous func-
tion of u. In other words, x*(u) traces out a continuous solution
path as u varies. Note that Proposition 8 in Lanza et al. (2019)
claims the existence and uniqueness of the solution to a convex
nonconvex model, which includes model (3) in this paper. We
emphasize, however, that our main contribution is actually the
continuity of the solution path, which is not discussed in Lanza
et al. (2019) but quite important for model selection.

Theorem 1. Suppose ATA—uL"B"BL > O, then the solution
X* () to (3) exists, is unique, and is continuous in (.

The existence and uniqueness of x*(u) indicate that problem
(3) is well-posed. The continuity of x* (1) suggests a homotopy
strategy for reducing computation time in computing x* (u;) for
i=1,...,Nand gy < pyp < uz < --- < uy. Suppose we
have already computed x* (i), ..., x*(u;) and wish to compute
X*(uiy1). Since x*(u) is continuous in u, we can initialize, or
warm start, our PHDG algorithm at x*(u;) which will likely be
closer to x*(u;;1) than a random initialization.

The second property identifies a maximum value of u of in-
terest for performing model selection. One may intuitively ex-
pect that for sufficiently large u that a solution to (3) coincides
with a solution to the constrained optimization problem

1
minimize 5||y — Ax|)3 subjectto Lx=0. (11)

This is indeed the case.

Theorem 2. Let X be a solution to (11). Then Fy(X) in (3) is
minimized by X for all u greater than

o = IAT(AZ = y)ll2 /0 min(L),

where o min(L) is the smallest singular value of L.
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For example, if L is the first-order difference operator, Theo-

rem 2 tells us that X* (i) = 1{:—%11 for u > .

The practical value of Theorem 2 is that when choosing p,
it is sufficient to only compute x*(u) for u between 0 and po
to sample the full dynamic range between least smoothed and
most smoothed values of x*(u). Computing yyp is straightfor-
ward since computing X requires solving a linear system. This
follows from the fact that (11) is an equality constrained convex
quadratic program.

We close this section by noting that the two properties of
x*(u) are inherent to the optimization problem (3) and conse-
quently independent of how x*(u) is computed.

5. Numerical experiments

We present two simulated examples to investigate the per-
formance of our new method to compute the matrix B and the
effectiveness of the linearly involved GMC penalty. The first
example is a 1-D signal recovery problem where L is the first-
order difference operator (4). In this case, L has full row rank,
therefore both the CQ and ADMM algorithms as well as the ex-
isting method in Abe et al. (2019) can be applied to compute B.
We will show that CQ and ADMM enjoy some advantages over
the existing method. The second example is a matrix regression
problem where L has more rows than columns. As a result, the
existing method in Abe et al. (2019) is no longer applicable,
but both CQ and ADMM can be applied without any limitation.
In both examples, we present the recovery performance of the
linearly involved GMC method in different aspects.

5.1. 1-D signal recovery

This example applies the linearly involved GMC penalty on
1-D signal recovery by considering L as the first-order differ-
ence operator. The true signal x € R!? is piece-wise con-
stant and generated by the MakeSignal function in the R pack-
age rwavelet. The observed data y € R!% is generated by
y = Ax + €, where € € R!% is additive white Gaussion noise
with unit variance, and entries of A are i.i.d. standard normal.

We first focus on the computation of the matrix B. Since L
has full row rank, we use three methods to produce a feasible
matrix B for the linearly involved GMC penalty: the existing
method in Abe et al. (2019), the CQ and ADMM algorithms
in this paper. For a fixed § = 0.9, we set the initial values
Zo = OLHTATAL and Dy = L'ZyL for CQ and ADMM. It
turns out that both CQ and ADMM obtain the same matrix B as
that from the method in Abe et al. (2019).

After obtaining a feasible matrix B, we then move to recover
the piece-wise constant signal by the linearly involved GMC
penalty. We measure the accuracy of the recovered signal X
by the mean squared error (MSE) defined as the average of
SE = ||x — f(ll% over 20 independent replicates. We compare the
performance of the linearly involved GMC with the TV regu-
larization.

We first discuss the dependency of the recovery performance
on the tuning parameter u. Figure 1 displays the log(MSE) as a
function of log(u). It can be seen that (i) the linearly involved
GMC can achieve better accuracy (a lower MSE) than the TV
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Figure 1. log(MSE) as a function of log(u). The limit of log(MSE) is ob-
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Figure 2. The true piece-wise constant signal (in black) and the recovered
signals from the TV regularization (in blue) and the linearly involved GMC
method (in red).

method; (ii) to obtain the best recovery, the linearly involved
GMC prefers a larger u than the TV method; (iii) log(MSE)
indeed goes to the constant limit as predicted in Theorem 2.

Next, to further illustrate the effectiveness of the linearly in-
volved GMC penalty, Figure 2 compares the recovered signals
(selected by eBIC) from the linearly involved GMC method and
the TV regularization. From Figure 2, we observe that (i) the
linearly involved GMC can recover the “jumps” in the signal
better than the TV method, which means that the linearly in-
volved GMC estimator has less estimation bias on larger mag-
nitude components of the signal difference; (ii) the linearly in-
volved GMC recovers smoother signals over the constant seg-
ments than the TV method, which indicates that the linearly in-
volved GMC tends to recover signals with sparser discrete first
derivatives.

Finally, we emphasize the advantage of our method to com-
pute the matrix B. We have shown that given specific initial
values, both CQ and ADMM can produce the same B com-
puted from the existing method in Abe et al. (2019). Since the
feasible matrix B is not necessarily unique, we can get different
feasible B matrices by varying the initializations for CQ and
ADMM. For instance, in this experiment, if we set Zg = HBEBO
and Dy = L'ZoL where entries of By are i.i.d. standard nor-
mally distributed, we can get two different B matrices from the
CQ and ADMM algorithms, and both of them are different from
the one that is produced by the existing method. When we plug
the three different B matrices into the linearly involved GMC
model, we find that the matrix B computed by the ADMM al-
gorithm gives a slightly lower MSE than the other two. Due
to space limitations, we have not included plots of the MSE or
recovered signals here. Nonetheless, it is still an open question
how to choose the matrix B subject to the convexity preserving
condition to maximize accuracy in the recovered signal. Our al-
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gorithms, which have the flexibility of producing different fea-
sible B matrices by setting different initial values, can provide
a way to explore alternative choices of B that can give insight
into how to best design B.

5.2. Matrix regression

In this experiment, we consider the linearly involved GMC
method for matrix regression (Wang et al., 2017). Matrix re-
gression is a generalization of the classical linear regression,
where covariates are matrices. A typical matrix regression
model is

y=(X,S) +¢, (12)

where y is the response, X € RP*? is the matrix covariate,
S € RPX is the coefficient matrix, and € is the additive white
Gaussian noise. Zhou and Li (2014) investigated a class of reg-
ularized matrix regression methods based on spectral regular-
ization to estimate signal S of a low rank structure. When the
signal S is piecewiese constant, we can apply the TV regularizer
on both rows and columns of S, which leads to

1 m 5 q )4
iMimi . Q. Q.
mgéﬁggzezg(y[—<x,,8>> +4 ;IID,, szj||1+;||nq Silli |

(13)
where DE,D and D(ql) are the first-order difference operators. We
can rewrite (13) as a regularized least squares problem

| 2
minimize zlly — As|;+ullLsll;, (14)

where y € R™ is the response vector, s = vec (S) is the vector-
ization of S, and A € R"™ P4 whose i-th row is vec (X;). Here
the linear operator L is given by

I, o D
L=|14 p
R

Obviously, we can apply the linearly involved GMC penalty
on this regularized matrix regression problem (14) to recover
the signal S. An important point here is that the number of
rows of L, p(g — 1) + g(p — 1), is larger than its number of
columns, pg. Consequently, L cannot have full row rank thus
the existing method in Abe et al. (2019) to compute B for the
linearly involved GMC cannot be used in this case.

We use two different image signals, as shown in Figure 3.
For each case, the true signal S € R?™*? has binary entries 1
(black) and —1 (white). The vector of observations y € R is
generated by y; = vec(X;)T vec(S) + €, where X; are covariate
matrices whose elements are standard normal and € € R is
the additive white Gaussian noise with standard deviation o.

Regarding the computation of the matrix B for the linearly
involved GMC penalty, both CQ and ADMM are applicable
here since they both have no restriction on the structure of L.
We again set 6 = 0.9 and Zy = (LT)TATAL', Dy = LTZL to
initialize CQ and ADMM and finally obtain the same B from
the two algorithms.

In terms of the recovery performance, we use the squared er-
ror defined as SE = IIS - Sllé as a metric of the accuracy of the
recovered image S. We conduct the same analysis of how the



Cross Triangle

Figure 3. The true image signals.

MSE varies with the tuning parameter u for a fixed noise level
o = 1. The conclusions from both the cross and triangle sig-
nals are similar with what we obtained in Section 5.1. That is,
the linearly involved GMC method reaches a lower MSE at a
larger value of u in comparison with the TV method. Our main
goal in this simulation example is to investigate how the linearly
involved GMC penalty and the TV regularizer perform at dif-
ferent noise levels. To that end, we set a sequence of values for
the standard deviation of noise o € {0.1,0.5,1,2,3}. At each
noise level, we set a grid of values of u to obtain the solution
paths from the two methods and apply the eBIC for model se-
lection. Figure 4 displays the recovery performance of the two
different methods at different noise levels. The results show that
(1) the linearly involved GMC method consistently outperforms
the TV method at different noise levels for both cross and trian-
gle signals; (ii) both methods perform worse as the noise level
increases, but the performance of the TV method is affected by
the noise level more severely.

6. Discussion

For the linearly involved GMC model (3), we proposed a new
method to produce the matrix parameter B satisfying condition
(5). That is, we first produce a feasible matrix Z = uB'B and
then compute B by the singular value decomposition of Z. We
formulated computing Z as solving a feasibility problem and
offered two algorithms, CQ and ADMM, to solve the prob-
lem. Then, we cast problem (3) as a saddle-point problem and
adopted the PDHG algorithm to compute the solution. We also
provided guidance on the tuning parameter selection for model
(3) via theoretical properties of its solution path.

We presented two numerical experiments on 1-D signal re-
covery and matrix regression where the linear operator L has
different structures. The simulation results showed that both
CQ and ADMM work well to produce a feasible matrix B. Un-
like the existing method in Abe et al. (2019), they do not have
any requirement on the structure of the linear operator L and
have the advantage of producing different B by setting differ-
ent initial values. With respect to recovery performance, the
linearly involved GMC penalty achieved better accuracy than
the TV regularizer in both examples. Moreover, the linearly
involved GMC method maintained this advantage in recovery
accuracy across different noise levels.

There are several directions that we leave for further study.
The matrix parameter in the GMC penalization method plays
an important role in its recovery performance. One limitation
of our work is on the discussion of choice of B or how to ini-
tialize the CQ and ADMM algorithms. Determining what type

30
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-*- LIGMC-Cross
o= LIGMC-Triangle
-+ TV-Cross

-A TV-Triangle

0.1 05 1 2 3
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Figure 4. Average performance plus/minus one standard error based on 20
simulation replicates for each method

of B gives better recovery warrants further investigation. Addi-
tionally, the statistical properties, e.g. consistency and support
recovery, of the linearly involved GMC estimator are left for
future work. Finally, we note that the GMC penalization ap-
proach can be extended to other sparse learning problems in
both signal processing and statistical learning.
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Appendix A

A.l. Proof of the closedness and convexity of Q set

The matrix set Q = {D € R™"|D is symmetric with A j(ATA—
D) > og for 1 < j < n}. Here 4; indicates the j-th largest
eigenvalue and oy = (1 - 0)/1,,(ATA) > 0withf € (0,1)is a
specified number.

First, to show Q is closed, suppose a sequence of matrices
Dien € O, and suppose D, — D as k — oo, that is |[|[D; —
D|lr — 0 as k — oo. We only need to show D € Q.

Let My = ATA — Dy, then we have A (M) > o for all
1 < j < n Denote M = ATA — D, then M; — M since
D, —» Dask — oo. Since M € R™" is symmetric, it has
eigen decompostion and there exists a unit Eulidean length
vector u such that u'Mu = A,(M). Let g : R™ — R,
¢(X) = u'Xu, then gM) = 1,(M), and oy < 1,(M) <
u'M;u = g(M;). Note than g is an affine thus a continuous
function, so limy_,. g(My) = gM) = 4,(M). Therefore, we get
A,(M) > gy, thus D € Q.

The convexity of Q can be proved by the definition of convex
set. We leave it as an exercise for the reader.



A.2. Proof of Proposition 1

The projection of D onto the Q, ﬁ, is the solution of the op-
timization problem

inimize ||D — X||% = minimize |[(ATA — D) — (ATA - X)|IA
minimize Il Il minimize II¢ ) —( )][7

= minimize |[M - Y|,

(A.1)
ATA-YeQ

where M = ATA — D. Since Y is symmetric, we can express Y
with its eigendecomposition Y = VEV'. Moreover, 1 (YY) =0y
since ATA =Y € Q. Then M - Y|? = [VIMV - X|2. Let
B = VIMV and B;; be the (i, j) element, then ||[M — YII% =
Yt Bizj +20 (Bi— X;1)?. Therefore, Y is the solution of (A.1)
if and only if

B;; =0, 1<i#j<n
Eii = maX(Bii,O'g), 1 < I <n

Suppose M has the eigen decomposition M = UAUT, plugging
itinto B, we get VIUAU'V is diagonal. Hence U = V and B =
A. So the solution Y = VEV' = UT(A, 0)U", where T(A, o)
is the diagonal matrix whose ith diagonal entry is max(A;;, 0y).
Therefore, the projection of D onto Q is

PoD)=ATA-Y = ATA - UT(A, 0)U".

A.3. Proof of Proposition 2

The projection of (Z, D) onto the G, P;(Z, D), is the solution
of the optimization problem
minimize | Z-X|3+|[D-Y|% =

X, Y)eG XeRX,Y=LT
(A.2)

Denote z = vec(Z),d = vec(D),x = vec(X),and H = LT ®

LT, then (A.2) is equivalent to

minimize g(x) = ||z — x||3 + [|d — Hx][3.

(A.3)
xeR?, y=Hx

Since g is differentiable, (x,y) solves (A.3) if and only if x is
the solution to the following linear system of equations

HH+I)x=H'd+z,

and y = Hx. Transforming the vector solutions into matrices,
we get
Po(Z,D) = (Z,L'ZL),

with vee(2) = (HTH + 1) ' (H'd + 2).

A.4. Proof of Theorem 1

Recall that a coercive and strictly convex function has a
unique minimizer on its domain. We rewrite Fy, in (3) as

1 H
FL) = Slly-AxIb =S IBLX; +ul[Lxili -+ max g(x, v), (A4)
where g(x,v) = (L'B"Bv, x) — 1|IBv||? —|vl; is affine in x. The

last term in (A.4) is convex as it is the pointwise maximum of
a set of convex functions. Hence, Fy, is strongly convex thus

minimize [|Z—X]|2+|D-L"XLI2.
XL
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strictly convex when ATA — uL"B"BL > O,,. It is straightfor-
ward to verify that limyy—e FL(X) = +00, so Fy, is coercive.
Hence the solution to (3) exists and is unique.

Next, we prove the continuity of the solution path. Here, we
write Fp, as

1 . 1
FL) = 5 lly = A1 + p{ [Tl = minlvlly + SIBLx = vl |

For Y(x,u) € (R",R*), Fy, is a jointly continuous function of
(x, 1) by the convexity of Fy,, and

. 1
ILx]l; = miniviiy + Z{IBLx — W[5
1
2 |[Lxl; = x|l + SIB(Lx — Lx)l; = 0.

Therefore, Fy, is non-decreasing in u. Hence, for any subinter-
val [a, b] C (0, +0c0) and for Yuy € [a, b],

Fr(x(uo), @) < FrL(X(uo), to) < FL(0, po) < FL(0, D).

Since Fi,(x,a) is coercive in X, S = {x : F(X,a) < F1(0,b)} is
compact. Hence x(ug) € S is bounded for Yuq € [a, b]. Suppose
X(u) is not continuous at some point . Choose a, b such that
o € [a, b], then there exists gy > 0 and a sequence {u,},en €
[a, b] such that u, — o but ||x(w,,)—x(uo)|l>> € for Yn € N. We
have seen that for each n, x(1,,) € S, a compact set, hence x(u,)
is a bounded sequence. So there exists a subsequence x(uy, ),
such that x(u,, ) —» X € S, and

Fr(x(up, ), ptn) < FL(x(uo), fhn,)- (A.S)

By the joint continuity of Fy, taking limit on both sides of
(A.5), we get FL(X,u9) < Fr(x(uop),uo). By the unique-
ness of the solution path, X = x(up), which contradicts with
[x(u,) — X(uo)ll2> € for Vn € N. Therefore, the solution path
x(w) is continuously dependent on .

A.5. Proof of Theorem 2

For the proof of Theorem 2, we need an auxiliary lemma,
denoted as Lemma 1 in the following.

Lemma 1. Suppose f is a convex and differentiable function,
if the solution set C = arg rEin0 fx) # 0, then ¥x* € C,
X LX=
(Vf(x*),0) = 0 holds for ¥ 0 such that LO = 0. In particu-

lar, the conclusion holds for f(x) = %Ily - Axllg.

Proof of Lemma 1. Take x* € C, suppose there exists one 6
such that L8 = 0, but (Vf(x*), 8) # 0. Without lose of general-
ization, suppose (V f(x*), 8) < 0, then the directional derivative
of fatx™is

S+ h) — f(x7)
h

dpf(x") = lim =(Vf(x"),6) <0,

which is in contradiction with x* € C. Therefore, (V f(x*), 0) =
0 for V@ such that L6 = 0.



In particular, f(x) = %Hy - AXII% is convex and differentiable.
And the solution set

1 1
C = arg min §||y - Ax||§ = arg min §||y - aAl||§

x:Lx=0 aeR

1 1
arg min §||A1||%a2 -y, Al)a + EH)’H%

aeR

1
is always nonempty. Therefore, for ¥ x* € arg min §||y - Ax||§,
x:Lx=0
and for V 6 such that L6 = 0, we have
(Vf(x"),0) = (AT(AX" - ), 6) = 0.

Proof of Theorem 2. A point X furnishes a global min-
imum of the convex function Fp,(x) if and only if all for-
ward directional derivatives dyF1,(X) at X are nonnegative. Let
&) = 3lly - Ax|[3 and m(x) = miny||v|; + 5IB(Lx - v)|[3, then

FLX + h0) — FL(X)

dpFL(X) = lim

h
- - (A.6)
L ho)l; —||IL
= V7,0 + ptim OO T g5
Suppose LX = 0, we first show that
%+ ho) — m(K
dgm(%) = lim m& + h6) - m®) _

h

Note that m(X + hf) = ||V||1+%|IB(L(h0) - V)II% where ¥ satis-
fies B'B(hLO — ¥) € 9|7\ by Fermat’s rule. If v = 0, then
IB'B(ELO — ¥)||o= ||HB"BLO)||.< 1 for all sufficiently small 4.
Therefore, m(X + h@) = %I|BLO|I§ for all sufficiently small 4. It
is straightforward to verify that m(X) = 0. Hence, dgm(X) = 0
for all § by L’Hopital’s rule.

Therefore, (A.6) becomes

doF,(X) = (Vf(X),0) + pllLO|;.

‘We now show that there exists some pg such that for Yu > o,
F1, is minimized by X, namely dyFy,(X) > O for all 8. Since L is
not of full column rank, we can express L via the singular value
decomposition as
D O T
L=[U U [0 0] Vi Vo] .
Take V6 € R" which can be written as a linear combination of

the columns of V| and V;, namely 8 = V,a; + V,a@,. Then
L6 = U,Da; and LV,a, = 0. Therefore,

doFL(X) = (Vf(X), Via1) + (Vf(X), Vo) + p|[U Da |,
=(Vf(X), Via) + pllUDa,|l;  (by Lemma I)
> pllUiDall; = IVfEL[IViaill
= plDa |l = IV f&)ll2lla: [l2
2 prominllai |l = IV ®ll2lle: 2
= (uomin — IVS®)I)IV]OIL  (since a; = V]6)
where o, 1S the smallest singular value of L. Note that the
first inequality is obtained by the Cauchy-Schwarz inequality

and the fact that ||z||; > ||zl|, for all z.

In conclusion, we have dyF1,(X) > O for all 8, when u > uy =
IV/®l> _ [ATAZ-yl

O min O min
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