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Abstract

We show that the asynchronous block-iterative primal-dual projective splitting frame-

work introduced by P. L. Combettes and J. Eckstein in their 2018 Math. Program.

paper can be viewed as an instantiation of the recently proposed warped proximal

algorithm.

Keywords Warped proximal algorithm · Projective splitting · Primal-dual algorithm ·

Splitting algorithm · Monotone inclusion · Monotone operator

In [4], the warped proximal algorithm was proposed and its pertinence was illustrated

through the ability to unify existing methods such as those of [1, 6, 10, 11], and to

design novel flexible algorithms for solving challenging monotone inclusions. Let us

state a version of [4,Theorem 4.2].

Proposition 1 LetH be a real Hilbert space, letM : H → 2H be a maximally monotone

operator such that zer M �= ∅, let x0 ∈ H, let ε ∈ ]0, 1[, let α ∈ ]0,+∞[, and let

β ∈ [α,+∞[. For every n ∈ N, let Kn : H → H be α-strongly monotone and β-

Lipschitzian, and let λn ∈ [ε, 2 − ε]. Iterate

for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

take x̃n ∈ H

yn = (Kn + M)−1(Kn x̃n)

y∗
n = Kn x̃n − Knyn

if 〈xn − yn | y∗
n〉 > 0⌊

xn+1 = xn −
λn〈xn − yn | y∗

n〉

‖y∗
n‖

2
y∗

n

else⌊
xn+1 = xn .

(1)

Then the following hold:
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(i) (xn)n∈N is bounded.

(ii)
∑

n∈N
‖xn+1 − xn‖2 < +∞.

(iii) (∀n ∈ N) 〈xn − yn | y∗
n〉 ≤ ε−1‖y∗

n‖ ‖xn+1 − xn‖.

(iv) Suppose that x̃n − xn → 0. Then (xn)n∈N converges weakly to a point in zer M.

Proof We deduce from [4,Proposition 3.9(i)[d]&(ii)[b]] that (1) is a special case of

[4,Eq. (4.5)].

(i): An inspection of the proof of [4,Theorem 4.2] reveals that (xn)n∈N is Fejér

monotone with respect to zer M, that is, (∀z ∈ zer M)(∀n ∈ N) ‖xn+1−z‖ ≤ ‖xn −z‖.

Therefore, the boundedness of (xn)n∈N follows from [3,Proposition 5.4(i)].

(ii): [4,Theorem 4.2(i)].

(iii): [4,Eqs. (4.8), (4.9), and (4.4)].

(iv): Combine [4,Theorem 4.2(ii)] and [4,Remark 4.3]. �


A problem of interest in modern nonlinear analysis is the following (see, e.g., [1,

5–7] and the references therein for discussions on this problem).

Problem 2 Let (Hi )i∈I and (Gk)k∈K be finite families of real Hilbert spaces. For

every i ∈ I and every k ∈ K , let Ai : Hi → 2Hi and Bk : Gk → 2Gk be maximally

monotone, let z∗
i ∈ Hi , let rk ∈ Gk , and let Lk,i : Hi → Gk be linear and bounded.

The problem is to

find (x i )i∈I ∈×
i∈I

Hi and (v∗
k)k∈K ∈×

k∈K

Gk such that

⎧
⎪⎪⎨
⎪⎪⎩

(∀i ∈ I ) z∗
i −

∑

k∈K

L∗
k,iv

∗
k ∈ Ai x i

(∀k ∈ K )
∑

i∈I

Lk,i x i − rk ∈ B−1
k v∗

k .
(2)

The set of solutions to (2) is denoted by Z.

The first asynchronous block-iterative algorithm to solve Problem 2 was proposed in

[7,Algorithm 12] as an extension of the projective splitting techniques found in [1, 8].

The goal of this short note is to interpret these projective splitting frameworks in simple

terms as warped proximal iterations. More precisely, we show that [7,Algorithm 12]

can be viewed as an instantiation of (1). To this end, we first derive an abstract weak

convergence principle from Proposition 1. (We refer the reader to [3] for background

on monotone operator theory and nonlinear analysis.)

Theorem 3 Let H be a real Hilbert space, let A : H → 2H be a maximally monotone

operator, and let S : H → H be a bounded linear operator such that S∗ = −S. In

addition, let x0 ∈ H, let ε ∈ ]0, 1[, let α ∈ ]0,+∞[, let ρ ∈ [α,+∞[, and for

every n ∈ N, let Fn : H → H be α-strongly monotone and ρ-Lipschitzian, and let

λn ∈ [ε, 2 − ε]. Iterate
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for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

takeun ∈ H, e∗
n ∈ H, and f∗n ∈ H

u∗
n = Fnun − Sun + e∗

n + f∗n

yn = (Fn + A)−1u∗
n

a∗
n = u∗

n − Fnyn

y∗
n = a∗

n + Syn

πn = 〈xn | y∗
n〉 − 〈yn | a∗

n〉

if πn > 0
⎢⎢⎢⎢⎣

τn = ‖y∗
n‖2

θn = λnπn/τn

xn+1 = xn − θny
∗
n

else
⌊
xn+1 = xn .

(3)

Suppose that zer(A + S) �= ∅. Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞.

(ii) Suppose that un − xn → 0, that e∗
n → 0, that (f∗n)n∈N is bounded, and that there

exists δ ∈ ]0, 1[ such that

(∀n ∈ N)

{
〈un − yn | f∗n〉 ≥ −δ〈un − yn | Fnun − Fnyn〉

〈a∗
n + Sun − e∗

n | f∗n〉 ≤ δ‖a∗
n + Sun − e∗

n‖2.
(4)

Then (xn)n∈N converges weakly to a point in zer(A + S).

Proof Set M = A + S and (∀n ∈ N) Kn = Fn − S. Then, it follows from

[3,Example 20.35 and Corollary 25.5(i)] that M is maximally monotone with zer M �=

∅. Now take n ∈ N. We have

Kn + M = Fn + A. (5)

Since S∗ = −S, we deduce that

Kn is α-strongly monotone and β-Lipschitzian, (6)

where β = ρ + ‖S‖. Thus, [3,Corollary 20.28 and Proposition 22.11(ii)] guarantee

that there exists x̃n ∈ H such that

u∗
n = Kn x̃n . (7)
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Hence, by (3) and (5),

yn = (Kn + M)−1(Kn x̃n) and y∗
n = u∗

n − Fnyn + Syn = Kn x̃n − Knyn . (8)

At the same time, we have 〈yn | Syn〉 = 0 and it thus results from (3) that

πn = 〈xn | y∗
n〉 − 〈yn | a∗

n + Syn〉 = 〈xn − yn | y∗
n〉. (9)

Altogether, (3) is a special case of (1).

(i): Proposition 1(ii).

(ii): In the light of Proposition 1(iv), it suffices to verify that x̃n − xn → 0. For

every n ∈ N, sinceKn+M is maximally monotone [3,Corollary 25.5(i)] and α-strongly

monotone, [3,Example 22.7 and Proposition 22.11(ii)] implies that (Kn +M)−1 : H →

H is (1/α)-Lipschitzian. Therefore, we derive from (3), (5), [4,Proposition 3.10(i)], and

(6) that (∀z ∈ zer M)(∀n ∈ N) α‖yn −z‖ = α‖(Kn +M)−1u∗
n −(Kn +M)−1(Knz)‖ ≤

‖u∗
n − Knz‖ = ‖Knun − Knz + e∗

n + f∗n‖ ≤ ‖Knun − Knz‖ + ‖e∗
n‖ + ‖f∗n‖ ≤

β‖un − z‖+‖e∗
n‖+‖f∗n‖. Thus, since Proposition 1(i) and our assumption imply that

(un)n∈N is bounded, it follows that (yn)n∈N is bounded. At the same time, for every

n ∈ N, we get from (3) that

y∗
n = Fnun − Fnyn + e∗

n + f∗n − (Sun − Syn) = Knun − Knyn + e∗
n + f∗n (10)

and, thus, from (6) that ‖y∗
n‖ ≤ ‖Knun − Knyn‖ + ‖e∗

n‖ + ‖f∗n‖ ≤ β‖un − yn‖ +

‖e∗
n‖ + ‖f∗n‖. Thus, (y∗

n)n∈N is bounded, from which, (i), and Proposition 1(iii) we

obtain lim〈xn − yn | y∗
n〉 ≤ 0. In turn, since xn −un → 0 and e∗

n → 0, it results from

(10) and (4) that

0 ≥ lim〈xn − yn | y∗
n〉

= lim
(
〈un − yn | y∗

n〉 + 〈xn − un | y∗
n〉

)

= lim〈un − yn | y∗
n〉

= lim
(
〈un − yn | Fnun − Fnyn + e∗

n + f∗n〉 − 〈un − yn | Sun − Syn〉
)

= lim
(
〈un − yn | Fnun − Fnyn + f∗n〉 + 〈un − yn | e∗

n〉
)

≥ lim
(
(1 − δ)〈un − yn | Fnun − Fnyn〉 + 〈un − yn | e∗

n〉
)

≥ lim α(1 − δ)‖un − yn‖2

≥ lim α(1 − δ)ρ−2‖Fnun − Fnyn‖2. (11)
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Hence, Fnun − Fnyn → 0. On the other hand, since (f∗n)n∈N is bounded and since (3)

yields (a∗
n + Sun − e∗

n)n∈N = (Fnun − Fnyn + f∗n)n∈N, we derive from (4) that

lim(1 − δ)‖f∗n‖
2 = lim

(
〈Fnun − Fnyn | f∗n〉 + (1 − δ)‖f∗n‖2

)

= lim
(
〈Fnun − Fnyn + f∗n | f∗n〉 − δ‖f∗n‖2

)

≤ lim
(
δ‖Fnun − Fnyn + f∗n‖2 − δ‖f∗n‖2

)

= lim
(
δ‖Fnun − Fnyn‖

2 + 2δ〈Fnun − Fnyn | f∗n〉
)

= 0. (12)

Therefore, f∗n → 0. Consequently, by (6), (7), and (3),α‖̃xn−xn‖ ≤ ‖Kn x̃n−Knxn‖ =

‖Knun − Knxn + e∗
n + f∗n‖ ≤ β‖un − xn‖ + ‖e∗

n‖ + ‖f∗n‖ → 0. �


We are now ready to recover [7,Theorem 13]; see also [7,Remark 4] for comments

on the error sequences (ei,n)n∈N,i∈In
and ( fk,n)n∈N,k∈Kn

in (15). The reader is referred

to [7] for discussions on the features of the algorithm (15). Recall that, given a real

Hilbert space H with identity operator Id, the resolvent of an operator A : H → 2H

is JA = (Id + A)−1.

Corollary 4 ([7]) Consider the setting of Problem 2 and suppose that Z �= ∅. Let

(In)n∈N be nonempty subsets of I and (Kn)n∈N be nonempty subsets of K such that

I0 = I , K0 = K , and (∃ T ∈ N)(∀n ∈ N)

n+T⋃

j=n

I j = I and

n+T⋃

j=n

K j = K . (13)

In addition, let D ∈ N, let ε ∈ ]0, 1[, let (λn)n∈N be in [ε, 2 − ε], and for every i ∈ I

and every k ∈ K , let (ci (n))n∈N and (dk(n))n∈N be in N such that

(∀n ∈ N) n − D ≤ ci (n) ≤ n and n − D ≤ dk(n) ≤ n, (14)

let (γi,n)n∈N and (μk,n)n∈N be in [ε, 1/ε], let xi,0 ∈ Hi , and let v∗
k,0 ∈ Gk . Iterate
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for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for every i ∈ In⎢⎢⎢⎢⎢⎣

take ei,n ∈ Hi

l∗i,n =
∑

k∈K L∗
k,iv

∗
k,ci (n)

ai,n = Jγi,ci (n) Ai

(
xi,ci (n) + γi,ci (n)(z

∗
i − l∗i,n) + ei,n

)

a∗
i,n = γ −1

i,ci (n)
(xi,ci (n) − ai,n + ei,n) − l∗i,n

for every i ∈ I � In⌊
ai,n = ai,n−1

a∗
i,n = a∗

i,n−1

for every k ∈ Kn⎢⎢⎢⎢⎢⎢⎢⎣

take fk,n ∈ Gk

lk,n =
∑

i∈I Lk,i xi,dk (n)

bk,n = rk + Jμk,dk (n) Bk

(
lk,n + μk,dk (n)v

∗
k,dk (n)

+ fk,n − rk

)

b∗
k,n = v∗

k,dk (n)
+ μ−1

k,dk (n)
(lk,n − bk,n + fk,n)

tk,n = bk,n −
∑

i∈I Lk,i ai,n

for every k ∈ K � Kn⎢⎢⎢⎣
bk,n = bk,n−1

b∗
k,n = b∗

k,n−1

tk,n = bk,n −
∑

i∈I Lk,i ai,n

for every i ∈ I⌊
t∗i,n = a∗

i,n +
∑

k∈K L∗
k,i b

∗
k,n

πn =
∑

i∈I

(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗

i,n〉
)
+

∑
k∈K

(
〈tk,n | v∗

k,n〉 − 〈bk,n | b∗
k,n〉

)

if πn > 0⌊
τn =

∑
i∈I ‖t∗i,n‖2 +

∑
k∈K ‖tk,n‖2

θn = λnπn/τn

else⌊
θn = 0

for every i ∈ I⌊
xi,n+1 = xi,n − θn t∗i,n

for every k ∈ K⌊
v∗

k,n+1 = v∗
k,n − θn tk,n .

(15)

In addition, suppose that there exist η ∈ ]0,+∞[, χ ∈ ]0,+∞[, σ ∈ ]0, 1[, and

ζ ∈ ]0, 1[ such that

(∀n ∈ N)(∀i ∈ In)

⎧
⎪⎨
⎪⎩

‖ei,n‖ ≤ η

〈xi,ci (n) − ai,n | ei,n〉 ≥ −σ‖xi,ci (n) − ai,n‖2

〈ei,n | a∗
i,n + l∗i,n〉 ≤ σγi,ci (n)‖a∗

i,n + l∗i,n‖2

(16)

and that
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(∀n ∈ N)(∀k ∈ Kn)

⎧
⎪⎨
⎪⎩

‖ fk,n‖ ≤ χ

〈lk,n − bk,n | fk,n〉 ≥ −ζ‖lk,n − bk,n‖2

〈 fk,n | b∗
k,n − v∗

k,dk (n)
〉 ≤ ζμk,dk (n)‖b∗

k,n − v∗
k,dk (n)

‖2.

(17)

Then ((xi,n)i∈I , (v
∗
k,n)k∈K )n∈N converges weakly to a point in Z.

Proof Denote by H and G the Hilbert direct sums of (Hi )i∈I and (Gk)k∈K , set H =

H ⊕ G, and define the operators

A : H → 2H :
(
(xi )i∈I , (v

∗
k )k∈K

)
�→

(
×
i∈I

(
−z∗

i +Ai xi

) )
×

(
×
k∈K

(
rk+B−1

k v∗
k

) )

(18)

and

S : H → H :
(
(xi )i∈I , (v

∗
k )k∈K

)
�→

( ( ∑

k∈K

L∗
k,iv

∗
k

)

i∈I

,

(
−

∑

i∈I

Lk,i xi

)

k∈K

)
.

(19)

Using the maximal monotonicity of the operators (Ai )i∈I and (Bk)k∈K , we deduce

from [3,Propositions 20.22 and 20.23] that A is maximally monotone. In addition, we

observe that S is a bounded linear operator with S∗ = −S. At the same time, it results

from (18), (19), and (2) that

zer(A + S) = Z �= ∅. (20)

Furthermore, (15) yields

[
(∀i ∈ I )(∀n ∈ N) a∗

i,n ∈ −z∗
i + Ai ai,n

]
and

[
(∀k ∈ K )(∀n ∈ N) bk,n ∈ rk + B−1

k b∗
k,n

]
. (21)

Next, define

(∀k ∈ K )(∀n ∈ N) ϑk(n) = max
{

j ∈ N | j ≤ n and k ∈ K j

}
and

ϑk(n) = dk

(
ϑk(n)

)
, (22)

and

(∀i ∈ I )(∀n ∈ N)

⎧
⎪⎪⎨
⎪⎪⎩

�i (n) = max
{

j ∈ N | j ≤ n and i ∈ I j

}
, �i (n) = ci

(
�i (n)

)

u∗
i,n = γ −1

i,�i (n)
xi,�i (n) − l∗

i,�i (n)
+ γ −1

i,�i (n)
ei,�i (n)

w∗
i,n =

∑
k∈K L∗

k,iv
∗
k,ϑk (n)

− l∗
i,�i (n)

.

(23)

Then, for every i ∈ I and every n ∈ N, it follows from (15) and [3,Proposition 23.17(ii)]

that

ai,n = ai,�i (n) = Jγi,�i (n) Ai

(
γi,�i (n)(u

∗
i,n +z∗

i )
)

=
(
γ −1

i,�i (n)
Id−z∗

i + Ai

)−1
u∗

i,n (24)
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and, therefore, that

a∗
i,n = a∗

i,�i (n)
= u∗

i,n − γ −1
i,�i (n)

ai,�i (n) = u∗
i,n − γ −1

i,�i (n)
ai,n . (25)

Likewise, for every k ∈ K and every n ∈ N, upon setting

{
vk,n = μk,ϑk (n)v

∗
k,ϑk (n)

+ lk,ϑk (n) + fk,ϑk (n)

wk,n = lk,ϑk (n) −
∑

i∈I Lk,i xi,�i (n)

(26)

as well as invoking (22), we get from (15) and [3,Proposition 23.17(iii)] that

bk,n = bk,ϑk (n) = Jμk,ϑk (n) Bk ( ·−rk )vk,n (27)

and, in turn, from (15) and [3,Proposition 23.20] that

b∗
k,n = b∗

k,ϑk (n)
(28)

= μ−1
k,ϑk (n)

(
vk,n − bk,ϑk (n)

)

= μ−1
k,ϑk (n)

(vk,n − bk,n) (29)

= J
μ−1

k,ϑk (n)
(rk+B−1

k )

(
μ−1

k,ϑk (n)
vk,n

)

=
(
μk,ϑk (n)Id + rk + B−1

k

)−1
vk,n . (30)

Let us set

(∀n ∈ N)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn =
(
(xi,n)i∈I , (v

∗
k,n)k∈K

)
, un =

( (
xi,�i (n)

)
i∈I

,
(
v∗

k,ϑk (n)

)
k∈K

)

e∗
n =

(
(w∗

i,n)i∈I , (wk,n)k∈K

)
, f∗n =

( (
γ −1

i,�i (n)
ei,�i (n)

)
i∈I

,
(

fk,ϑk (n)

)
k∈K

)

u∗
n =

(
(u∗

i,n)i∈I , (vk,n)k∈K

)
, yn =

(
(ai,n)i∈I , (b

∗
k,n)k∈K

)

a∗
n =

(
(a∗

i,n)i∈I , (bk,n)k∈K

)
, y∗

n =
(
(t∗i,n)i∈I , (tk,n)k∈K

)

Fn : H → H :
(
(xi )i∈I , (v

∗
k )k∈K

)
�→

( (
γ −1

i,�i (n)
xi

)
i∈I

,
(
μk,ϑk (n)v

∗
k

)
k∈K

)
.

(31)

Then, the operators (Fn)n∈N are ε-strongly monotone and (1/ε)-Lipschitzian. For

every n ∈ N, by virtue of (23) and (26), we deduce from (19) that

Sun − e∗
n =

( (
l∗
i,�i (n)

)
i∈I

,
(
−lk,ϑk (n)

)
k∈K

)
, (32)

which yields

u∗
n = Fnun − Sun + e∗

n + f∗n . (33)

Furthermore, we infer from (24), (30), and (18) that

(∀n ∈ N) yn = (Fn + A)−1u∗
n . (34)

123
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At the same time, (25) and (29) imply that

(∀n ∈ N) a∗
n = u∗

n − Fnyn, (35)

while (31), (15), and (19) guarantee that

(∀n ∈ N) y∗
n = a∗

n + Syn and πn = 〈xn | y∗
n〉 − 〈yn | a∗

n〉. (36)

Altogether, it follows from (33)–(36) that (15) is an instantiation of (3). Hence, Theo-

rem 3(i) yields
∑

n∈N
‖xn+1 − xn‖2 < +∞. In turn, using (13), (14), (22), and (23),

we deduce from [5,Lemma A.3] that, for every i ∈ I and every k ∈ K , we have

x�i (n) − xn → 0 and xϑk (n) − xn → 0. This and (31) imply that

un − xn → 0. (37)

Moreover, in view of (15), we deduce from (23) that

(∀i ∈ I ) ‖w∗
i,n‖ ≤

∑

k∈K

‖L∗
k,i‖

∥∥v∗
k,ϑk (n) − v∗

k,�i (n)

∥∥

≤
∑

k∈K

‖L∗
k,i‖ ‖xϑk (n) − x�i (n)‖ → 0 (38)

and from (26) that

(∀k ∈ K ) ‖wk,n‖ ≤
∑

i∈I

‖Lk,i‖ ‖xi,ϑk (n) − xi,�i (n)‖

≤
∑

i∈I

‖Lk,i‖ ‖xϑk (n) − x�i (n)‖ → 0. (39)

Therefore, e∗
n → 0. By (16) and (17), (f∗n)n∈N is bounded. In view of (31), (16), (17),

and (32), we deduce that

(∀n ∈ N) 〈un − yn | f∗n〉 =
∑

i∈I

〈
xi,�i (n) − ai,n | γ −1

i,�i (n)
ei,�i (n)

〉

+
∑

k∈K

〈
v∗

k,ϑk (n) − b∗
k,n | fk,ϑk (n)

〉

≥−σ
∑

i∈I

γ −1
i,�i (n)

‖xi,�i (n) − ai,n‖2

− ζ
∑

k∈K

μk,ϑk (n)‖v
∗
k,ϑk (n) − b∗

k,n‖2

≥− max{σ, ζ }〈un − yn | Fnun − Fnyn〉 (40)
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and that

〈a∗
n + Sun − e∗

n | f∗n〉 =
∑

i∈I

〈
a∗

i,�i (n)
+ l∗

i,�i (n)
| γ −1

i,�i (n)
ei,�i (n)

〉

+
∑

k∈K

〈
bk,ϑk (n) − lk,ϑk (n) | fk,ϑk (n)

〉

≤σ
∑

i∈I

∥∥a∗

i,�i (n)
+ l∗

i,�i (n)

∥∥2
+ ζ

∑

k∈K

∥∥bk,ϑk (n) − lk,ϑk (n)

∥∥2

≤ max{σ, ζ }‖a∗
n + Sun − e∗

n‖2. (41)

Altogether, the conclusion follows from Theorem 3(ii). �


Remark 5 Here are a few comments on Corollary 4.

(i) Using similar arguments, one can show that the asynchronous strongly convergent

block-iterative method [7,Algorithm 14] and its special case [2,Eq. (3.10)] can be

viewed as instances of [4,Theorem 4.8].

(ii) In the special case of (15) where I = {1} and

(∀n ∈ N) Kn = K and

{
e1,n = 0, c1(n) = n

(∀k ∈ K ) fk,n = 0, dk(n) = n,
(42)

the connection between [7,Theorem 13] and an instance of the warped proximal

algorithm was established in [9,Proposition 19]. Nevertheless, it does not seem

possible to prove [7,Theorem 13] in its full generality by using the techniques of

[9].

Remark 6 Take n ∈ N. Then, upon setting

Hn =
{
x ∈ H | 〈x − yn | y∗

n〉 ≤ 0
}

(43)

as well as invoking (9) and (31), we deduce that the update step

πn =
∑

i∈I

(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗

i,n〉
)
+

∑
k∈K

(
〈tk,n | v∗

k,n〉 − 〈bk,n | b∗
k,n〉

)

if πn > 0⌊
τn =

∑
i∈I ‖t∗i,n‖2 +

∑
k∈K ‖tk,n‖2

θn = λnπn/τn

else⌊
θn = 0

for every i ∈ I⌊
xi,n+1 = xi,n − θn t∗i,n

for every k ∈ K⌊
v∗

k,n+1 = v∗
k,n − θn tk,n

(44)
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of (15) can be rewritten as

xn+1 = xn + λn(projHn
xn − xn), (45)

which is the same as that of [7,Algorithm 12]; see [7,Eq. (22)]. Since S∗ = −S, we

derive from (36) and (31) that

πn = 〈xn − yn | y∗
n〉 and ‖y∗

n‖2 =
∑

i∈I

‖t∗i,n‖2 +
∑

k∈K

‖tk,n‖2, (46)

from which we obtain the implication πn > 0 ⇒ τn = ‖y∗
n‖2 > 0.
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