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Abstract
We show that the asynchronous block-iterative primal-dual projective splitting frame-
work introduced by P. L. Combettes and J. Eckstein in their 2018 Math. Program.
paper can be viewed as an instantiation of the recently proposed warped proximal
algorithm.
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In [4], the warped proximal algorithm was proposed and its pertinence was illustrated
through the ability to unify existing methods such as those of [1, 6, 10, 11], and to
design novel flexible algorithms for solving challenging monotone inclusions. Let us
state a version of [4,Theorem 4.2].

Proposition 1 Let H be a real Hilbert space, let M: H — 2 be a maximally monotone
operator such that zer M # &, let Xg € H, let ¢ € 10, 1], let ¢ € 10, 400, and let
B € [a, +ool. For every n € N, let K,: H — H be a-strongly monotone and B-
Lipschitzian, and let 1, € [¢, 2 — ¢]. Iterate

forn=0,1,...
takeX, € H
Y, = (Ko + M)~ (K,%,)
y, = KX, — Kpy,
if Xn =Y, | Y) ><0 v M
)‘n X, — Y, yn *
Xpp] =Xy — ————————Y
e ly; 112 "
else
L an+] = Xjp.
Then the following hold:
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(1) (Xp)neN is bounded.
(D) e 1Xnt1 = Xnll? < 400,
(i) (V1 € N) (¢ — ¥, 15 < e Y50 X1 — Xl
(iv) Suppose that X,, — X, — 0. Then (X,)nen converges weakly to a point in zer M.

Proof We deduce from [4,Proposition 3.9(i)[d]&(ii)[b]] that (1) is a special case of
[4,Eq. (4.5)].

(1): An inspection of the proof of [4,Theorem 4.2] reveals that (X,),en is Fejér
monotone with respect to zer M, thatis, (Vz € zer M)(Vn € N) || X,,+-1 —2| < |[|X,—2]|.
Therefore, the boundedness of (X;),cn follows from [3,Proposition 5.4(i)].

(i1): [4,Theorem 4.2(1)].

(iii): [4,Egs. (4.8), (4.9), and (4.4)].

(iv): Combine [4,Theorem 4.2(ii)] and [4,Remark 4.3]. m]

A problem of interest in modern nonlinear analysis is the following (see, e.g., [1,
5-7] and the references therein for discussions on this problem).

Problem 2 Let (H;)ic; and (Gy)rekx be finite families of real Hilbert spaces. For
everyi € [ andevery k € K, let A;: H; — 2Mi and Bi: Gy — 29 be maximally
monotone, let 77 € H;, let rp € Gy, and let Ly ;: ‘H; — Gy be linear and bounded.
The problem is to

find (x;)ier € X H;i and (v))rex € X Gk such that

iel keK
(Viel)zy =) LiU € A%
keK (2)
(Vk € K) Y Lii%i —ri € B 'v.
iel

The set of solutions to (2) is denoted by Z.

The first asynchronous block-iterative algorithm to solve Problem 2 was proposed in
[7,Algorithm 12] as an extension of the projective splitting techniques found in [1, 8].
The goal of this short note is to interpret these projective splitting frameworks in simple
terms as warped proximal iterations. More precisely, we show that [7,Algorithm 12]
can be viewed as an instantiation of (1). To this end, we first derive an abstract weak
convergence principle from Proposition 1. (We refer the reader to [3] for background
on monotone operator theory and nonlinear analysis.)

Theorem 3 Let H be a real Hilbert space, let A: H — 24 be a maximally monotone
operator, and let S: H — H be a bounded linear operator such that S* = —S. In
addition, let xo € H, let ¢ € 10, 1], let « € ]0, +o0[, let p € [a, +o0[, and for
everyn € N, let F,: H — H be «-strongly monotone and p-Lipschitzian, and let
An € &, 2 — ¢]. Iterate
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forn=0,1,...
takeu, € H, e} € H, andf, € H
u’ =F,u, —Su, +e; +f;

Y, =+ A
a:; = u:; - Fnyn

y, =a, +Sy,

T = O | Y3) = (Y, | @) )
ifm, >0
T = lly; 2
On = AnTtn/Th
Xp 1 = X, — Op Y
else
L an+1 = Xp.

Suppose that zer(A 4+ S) # @. Then the following hold:

@) Ypen Xnt1 — X )1? < 400,
(ii) Suppose that u, —X, — 0, that € — 0, that (f}),en is bounded, and that there
exists 8 € 10, 1[ such that

<un - yn | f:) = —5(“,1 —Yu | Fnun - Fnyn>

Vn e N
€M) @t 1 su, — e | £) < sl + Su, — e

“

Then (X,),eN converges weakly to a point in zer(A + S).
Proof Set M = A + S and (Vn € N) K, = F, — S. Then, it follows from
[3,Example 20.35 and Corollary 25.5(i)] that M is maximally monotone with zer M #
&. Now take n € N. We have
K,+M=F, +A. 5)
Since $* = —S, we deduce that

K,, is a-strongly monotone and B-Lipschitzian, (6)

where 8 = p + ||S||. Thus, [3,Corollary 20.28 and Proposition 22.11(ii)] guarantee
that there exists X,, € H such that

= KXo ™
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Hence, by (3) and (5),

y, = K, + M) (K, X,) and y'=u’ —F,y, +Sy, =KX, —K.y,. (8

At the same time, we have (y,, | Sy,,) = 0 and it thus results from (3) that

T = (Xo | Yp) — (Y, | @, +SY,) = (X =Y, | Y, )

Altogether, (3) is a special case of (1).

(i): Proposition 1(ii).

(ii): In the light of Proposition 1(iv), it suffices to verify that X, — x,, — 0. For
everyn € N,since K, +M is maximally monotone [3,Corollary 25.5(i)] and «-strongly
monotone, [3,Example 22.7 and Proposition 22.11(ii)] implies that (K, + M)':H-—
His (1/«)-Lipschitzian. Therefore, we derive from (3), (5), [4,Proposition 3.10(i)], and
(6) that (Vz € zer M)(Vn € N) a|ly,, — 2| = o[|(K,+M)~'u — (K, + M)~ (K, 2)|| <
lu; — Kzl = (K, — Kz + € + £l < [Kyu, — Kozl + €] + [f5] <
Bllu, —z|| + ||| + ||f;||. Thus, since Proposition 1(i) and our assumption imply that
(u,)nen is bounded, it follows that (y,),cn is bounded. At the same time, for every
n € N, we get from (3) that

y: = Fnun - Fnyn + e;: +f; - (Sun - Syn) = Knun - Knyn + e: +fz (10)

and, thus, from (6) that [y}l < K, — Kay, Il + lleXll + 151 < Bllus — y, Il +
ekl + [If]l. Thus, (y*),en is bounded, from which, (i), and Proposition 1(iii) we
obtain m(xn -y, | y:) <0.Inturn, since X, —u, — 0and e — 0, it results from
(10) and (4) that

0> 1lim(x, —y, | y;)
=Tm (U, —y, |V + % —uy [ ¥5))
= lim(u, —y, | y})
—Tim ((u, —y, [ Fat —Foy, + &) +£) = (u, —y, | Su, —Sy,))
=Tim ((u, =y, | Fat, — Foy, +£5) + (u, —y, | e))
> lim ((1—8)(u, —y, | Fau, —Fyy,) + (u, —y, | €))
> Tima(1 — 8)[lu, —y,,II°

> Tima(l — 8)p 2||IF,u, — Fuy, I (11)
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Hence, F,u, — F,y, — 0. On the other hand, since (f;)neN is bounded and since (3)
yields (a4 Su, — €}),en = (Fou, — Fuy, + f),en, we derive from (4) that
im(1 — 8)[f;)* = n = Fay, | £5)+ (1= O)IF1*)

(F,u
Fou, — Fuy, + 5 | £5) —8[f5)1%)

IA [l
| E] 5| s|

8|IF,u, — Fry, + 511> — 81£501%)

(«
(«
(
(

lim (8IF,u, — Fuy,|I* + 28(F,u, — Fuy, | £5))
0. (12)

3

Therefore, f; — 0.Consequently, by (6), (7), and (3), «[|X, —X, || < [|K, X —Ku X, |l =
IKou, — KX, + e + 11 < Bllu, —x, |l + llej || + [If ] — 0. o

We are now ready to recover [7,Theorem 13]; see also [7,Remark 4] for comments
on the error sequences (€; )neN,icl, and (fx,n)neN kek, 1n (15). The reader is referred
to [7] for discussions on the features of the algorithm (15). Recall that, given a real
Hilbert space H with identity operator Id, the resolvent of an operator A: H — 2%
isJqg={d+ A~

Corollary 4 ([7]) Consider the setting of Problem 2 and suppose that Z # &. Let
(In)nen be nonempty subsets of I and (Ky),eN be nonempty subsets of K such that

n+T n+T
Iy=1, Ko=K, and AT eN)(¥neN) | JI;=1Tand | JK; =K. (13)
j=n j=n

In addition, let D € N, let ¢ € 10, 1[, let (Ay)nen be in [e,2 — €], and for everyi €
and every k € K, let (¢c;i(n))nen and (drx(n))nen be in N such that

VneN) n—D<cin)<n and n— D <dir(n) <n, (14)

let (Vi n)nenN and (Jk.n)neN be in [g, 1/€], let x; o € H;, and let v,f,o € Gy. Iterate
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forn=0,1,...

for everyi € I,

take e; , € 'H;

= 2kek LEiVE iy

Ain =y comAi (Xicitn) + Vieery @ = 1F,) +¢ein)
_a;k,n = Vi,_ci(n)(xi,c,-(n) —ain+tein) — l?i,,
foreveryi € I \ I

djn = djn—1

_a;k,n = ai*,n—l

for everyk € K,

take fk,n € G

len = 2 ier Lii%i,dion)

b =1k + I g B (lien + ko () Ve ey T fon — Tk )

b;:,n = U;:,dk(n) + M];;k(n)(lk,n - bk,n + fk,n)

Ltkn = bk,n - Ziel Lk,iai,n

foreveryk € K \ K,

bk,n = bk,n—l

bz,n = bz,n—l

L tkon = bk,n - Ziel Lk,iai,n

foreveryi € 1

Ltifn = a;k,n + ZkEK Lz,ibz‘n

T =Y ier (i 165, = {ain 1a5,) )+ 2per ((rn | 0F,) = (bkn | BE,))
ifmry, >0

{fn = ier 15,17 + ek el

On = ATty /Ty
else
|6, =0

foreveryi € 1
in,n+1 =Xin — 9,11‘;'?’1
foreveryk € K
k — a3k
| Lo i1 = Vi = Onticn:

(15)
In addition, suppose that there exist n € 10, +oo[, x € ]0,4oo[, o € 10, 1[, and
¢ €10, 1[ such that

lleinll <n
Vn e N)(Vi € 1) { (Xic;n) — Gin | €in) = —0 |1 Xici(m) — Gin || (16)

2
(einla;, +17,) <oviamla, +17,I

and that
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”fk,n” =X
(Vn e N)(Vk € Kp)  { (lin — brn | fin) = = llkn — bicn

(fen L BF = VF 4y < Clde 1B, = O g o I
(17)
Then ((xi n)iel, (v,zk 2kek)neN converges weakly to a point in Z.

Proof Denote by H and G the Hilbert direct sums of (H;);e; and (Gx)kek, set H =
H & G, and define the operators

A:H— 2% (()ier, Wkek ) = (X (—zf+Aixi ) )x < X (re+B; v )>

iel keK
(18)
and
S:H— H: ((x)ier, Wkek ) — ( (Z LZ,iU}f) , <_2Lk,ixi ) )
keK iel iel keK
(19)

Using the maximal monotonicity of the operators (A;);e; and (By)iex, we deduce
from [3,Propositions 20.22 and 20.23] that A is maximally monotone. In addition, we
observe that S is a bounded linear operator with $* = —S. At the same time, it results
from (18), (19), and (2) that

zer(A+S)=2Z # 2. (20)
Furthermore, (15) yields

[(Vi e )(Vn €N) af, € —z] + Aja;, | and
[(Yk € K)(Yn € N) by € 1 + By b}, |- 1)

Next, define

(Vk € K)(¥n € N) 9p(n) =max {jeN|j<nand ke K;} and
D (n) = di (9x(n) ), (22)
and
finy=max {j eN|j<nandi€l;}, £in)=c ((;(n))
Vi e DO eN) Ui, = VigwSiam =g o+ Vigmem
w;K.n = ZkeK Lz,ivz,ﬂk(n) - li*,z,-(n)'
(23)

Then, foreveryi € I andeveryn € N, itfollows from (15) and [3,Proposition 23.17(ii)]
that

—1 -1
in = 1) = Ty i (Vi Wi, +20)) = (yi’e[(n)ld—z;-kthi) uy, (24)
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and, therefore, that

* % _ ok _ -1 _ _ % =1 .
Gin =% 5 = Hin ~VYim%Gm = Yin = Vigm%in (25)

Likewise, for every k € K and every n € N, upon setting

Vk,n = Mk’l?k(")v;:,ﬁk(n) + lk,gk(n) + fk,gk(n) (26)
Wi = 5oy — 2ier Lki%igm)

as well as invoking (22), we get from (15) and [3,Proposition 23.17(iii)] that
bin = bk,ﬁk(n) = ‘]Mk,ﬂk(n)Bk(‘*rk)vk»” 27)
and, in turn, from (15) and [3,Proposition 23.20] that
* *
bk,n bk 191((") (28)

= “k,zsk(n) (vk,,, = b 5o )

= Mk_,gk(n)(vk’" - bk,n) (29)
—1
B J“I:,;k(n)(rk+3,:l) (/’Lk,ﬁk(n)vk,n )
—1\—1

= (kold + 7+ B ') v (30)

Let us set
((x, n)teh (Uk n)kEK ) u, = ( (Xi,l;(n) )iel’ (v:.ﬁk(n) )kEK )
t = ((w iel, (Wi n)kek ) f: = ((%Tei(mei,zi(n) )iel’ (fkﬁk(n) )keK )

(YneN) Fuy= (@] icr, Winkek )s ¥, = (@inier, (bf Dkek )

a; = ((a,,n),el (brkek ) Vi = (@ Diets tkndkek )
Fo: H— H: ((xier, Wkex ) — ( (V[g{.(”)xi )icrr (ke V) ) ek )-
31)
Then, the operators (F,),cn are e-strongly monotone and (1/¢)-Lipschitzian. For
every n € N, by virtue of (23) and (26), we deduce from (19) that

Su, —e, = ( (l:E(n) )ie]’ (_lkﬁk(") )keK )’ G2

which yields
u' =F,u, —Su, +e;, +f. (33)

Furthermore, we infer from (24), (30), and (18) that
(VneN) y,=(F, + A 'ui. (34)
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At the same time, (25) and (29) imply that
(VneN) a'=u’ —Fy,, (35)
while (31), (15), and (19) guarantee that
(YneN) y, =a, +8y, and m = (X, |y,) —(y, |a,). (36)

Altogether, it follows from (33)—(36) that (15) is an instantiation of (3). Hence, Theo-
rem 3(i) yields D, cn [Xn41 — Xy > < 4o00. In turn, using (13), (14), (22), and (23),
we deduce from [5,Lemma A.3] that, for every i € I and every k € K, we have
X¢;(n) — Xn — 0and Xy, () — X, — 0. This and (31) imply that

u, —x, — 0. 37

Moreover, in view of (15), we deduce from (23) that

vVielD |w,l =< Z Ll ” Ve )~ VE.4i () H
keK

< D L I o) = Xesomll = 0 (38)
keK

and from (26) that

(Vk € K) Nwinll < Y Lk ll 1%, 00000 — Xi s |

iel

=< Z I Lki Il 11Xy ) — Xe; oy | = 0. (39)

iel

Therefore, e — 0. By (16) and (17), (f:)neN is bounded. In view of (31), (16), (17),
and (32), we deduce that

VneN) (i —y, 1§ =" (xiem —ain | Vi meizm)

iel
+ > (Ve =i | femm )
keK
—1 2
>0 Y Vot — ainll
iel
2
=) ke 1V g,y — Binl

keK
>—max{o, (}{u, —y, | F,u, — Foy,) (40)
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and that

* * * * * —1
(a; +Su, — e | ) =) @z + it | Yetm®itm )

iel
+ Z e 50 = e | Feeom )
keK
2 2
=0 Z ”ai*jl-(n) + li*,Z,-(n) “ +¢ Z ”bkﬁk(n) ~ b 5w ”
iel keK
<max{o, ¢}||a’ + Su, — e} . (41)
Altogether, the conclusion follows from Theorem 3(ii). O

Remark 5 Here are a few comments on Corollary 4.

(i) Using similar arguments, one can show that the asynchronous strongly convergent
block-iterative method [7,Algorithm 14] and its special case [2,Eq. (3.10)] can be
viewed as instances of [4,Theorem 4.8].

(i1) In the special case of (15) where I = {1} and

eln=0, ci(n)=n

(42)
(Vk € K) fin =0, di(n) =n,

(VvneN) K,=K and {

the connection between [7,Theorem 13] and an instance of the warped proximal
algorithm was established in [9,Proposition 19]. Nevertheless, it does not seem
possible to prove [7,Theorem 13] in its full generality by using the techniques of
[9].

Remark 6 Take n € N. Then, upon setting
H,= {xeH|(x-y, |y} =<0} 43)
as well as invoking (9) and (31), we deduce that the update step

TTp = ZiE] ((xi,n | t;j,,) —{ain | al*n) ) + Zke]{ ((tk,n | U]f,n> — (b | b]t’n> )
ifr, >0
Lrn =Y 15,17 + ek ltknll®

Op = AT /Ty
else
L@n =0
foreveryi € I
in,n—i-l = Xi,n — ent;‘jn
foreveryk € K
va,n+l = Ulf,n - entk!n

(44)
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of (15) can be rewritten as
Xptr1 = X, + )»n(PTOanXn — X)), (45)

which is the same as that of [7,Algorithm 12]; see [7,Eq. (22)]. Since $* = —S, we
derive from (36) and (31) that

o= (X0 =Y, |y3) and |lyil> =Y U017+ D llwall®,  (46)
iel keK

from which we obtain the implication 7, > 0 = 1, = ||y} I > 0.
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