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Abstract
We consider optimization algorithms that successively minimize simple Taylor-like
models of the objective function. Methods of Gauss–Newton type for minimizing the
composition of a convex function and a smooth map are common examples. Our main
result is an explicit relationship between the step-size of any such algorithm and the
slope of the function at a nearby point. Consequently, we (1) show that the step-sizes
can be reliably used to terminate the algorithm, (2) prove that as long as the step-
sizes tend to zero, every limit point of the iterates is stationary, and (3) show that
conditions, akin to classical quadratic growth, imply that the step-sizes linearly bound
thedistanceof the iterates to the solution set. The latter so-called error boundproperty is
typically used to establish linear (or faster) convergence guarantees. Analogous results
hold when the step-size is replaced by the square root of the decrease in the model’s
value. We complete the paper with extensions to when the models are minimized only
inexactly.

Keywords Taylor-like model · Error-bound · Slope · Subregularity ·
Kurdyka–Łojasiewicz inequality · Ekeland’s principle

Research of Drusvyatskiy was partially supported by the AFOSR YIP award FA9550-15-1-0237. Research
of Lewis was supported in part by National Science Foundation Grant DMS-1208338. Research of all
three authors was supported in part by by the US-Israel Binational Science Foundation Grant 2014241.

B D. Drusvyatskiy
ddrusv@uw.edu
http://www.math.washington.edu/∼ddrusv

A. D. Ioffe
ioffe@tx.technion.ac.il

A. S. Lewis
http://people.orie.cornell.edu/∼aslewis

1 Department of Mathematics, University of Washington, Seattle, WA 98195, USA

2 Department of Mathematics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

3 School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01432-w&domain=pdf
http://orcid.org/0000-0001-5245-0458


358 D. Drusvyatskiy et al.

Mathematics Subject Classification 65K05 · 90C30 · 49M37 · 65K10

1 Introduction

A basic algorithmic strategy for minimizing a function f on Rn is to successively
minimize simple “models” of the function, agreeing with f at least up to first-order
near the current iterate. We will broadly refer to such models as “Taylor-like”. Some
classical examples will help ground the exposition. When f is smooth, common algo-
rithms given a current iterate xk declare the next iterate xk+1 to be a minimizer of the
quadratic model

mk(x) := f (xk) + 〈∇ f (xk), x − xk〉 + 1

2
〈Bk(x − xk), x − xk〉. (1.1)

When thematrix Bk is amultiple of the identity, the scheme reduces to gradient descent;
when Bk is the Hessian∇2 f (xk), one recovers Newton’s method; adaptively changing
Bk based on accumulated information covers Quasi-Newton algorithms. Higher-order
models can also appear; the cubicly regularized Newton’s method of Nesterov–Polyak
[42] uses the models

mk(x) := f (xk) + 〈∇ f (xk), x − xk〉
+ 1

2
〈∇2 f (xk)(x − xk), x − xk〉 + M

6
‖x − xk‖3.

For more details on Taylor-like models in smooth minimization, see Nocedal-Wright
[47].

The algorithmic strategy generalizes far beyond smooth minimization. One impor-
tant arena, and the motivation for the current work, is the class of convex composite
problems

min
x

g(x) + h(c(x)). (1.2)

Here g is a closed convex function (possibly taking infinite values), h is a finite-valued
Lipschitz convex function, and c is a smooth map. Algorithms for this problem class
have been studied extensively, notably in [9,28,52,53,60,61] and more recently in
[13,23,25,38]. Given a current iterate xk , common algorithms declare the next iterate
xk+1 to be a minimizer of

mk(x) := g(x) + h
(

c(xk) + ∇c(xk)(x − xk)
)

+ 1

2
〈Bk(x − xk), x − xk〉. (1.3)

The underlying assumption is that the minimizer of mk can be efficiently computed.
This is the case for example, when interior-point methods can be directly applied to the
convex subproblem or when evaluating c and ∇c is already the computational bottle-
neck. The latter setting is ubiquitous in derivative free optimization; see for example the
discussion inWild [59]. The model mk in (1.3) is indeed Taylor-like, even when g and
h are nonconvex, since the inequality |mk(y) − f (y)| ≤ Lip(h)Lip(∇c)+‖Bk‖

2 ‖y − xk‖2
holds for all points y, as the reader can readily verify. When Bk is a multiple of the
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identity, the resulting method is called the “prox-linear algorithm” in [23,38], and it
subsumes a great variety of schemes.

In the setting h = 0, the prox-linear algorithm reduces to the proximal-pointmethod
on the function g [40,41,55].When cmaps to the real line and h is the identity function,
the scheme is the proximal gradient algorithm on the function g+c [4,46]. Setting g =
0 and h = ‖·‖yields a variant of theGauss–Newtonmethod for nonlinear least squares.
Allowing Bk to vary with accumulated information results in variable metric variants
of the aforementioned algorithms; see e.g. [9,12,58]. Extensions where h and g are
not necessarily convex, but are nonetheless simple, are also important and interesting,
in large part because of nonconvex penalties and regularizers common in machine
learning applications. Other important variants interlace the model minimization step
with inertial corrector steps, such as in accelerated gradient methods [31,43], cubically
regularized Newton [45], and convex composite algorithms [25].

In this work, we take a broader view of nonsmooth optimization algorithms that
use Taylor-like models. Rather than developing new algorithms, we aim to elucidate
existing algorithms for nonsmooth optimization and their “primal-only” termination
criteria.1 Setting the stage, consider the optimization problem

min
x

f (x)

for an arbitrary lower-semicontinuous function f onRn . The model-based algorithms
we investigate simply iterate the steps: xk+1 is a minimizer of somemodel fxk (·) based
at xk . In light of the discussion above, we assume that the models fxk approximate f
(uniformly) up to first-order, meaning

| fxk (x) − f (x)| ≤ ω(‖x − xk‖) for all k ∈ N and x ∈ Rn, (1.4)

where ω is any C1-smooth function satisfying ω(0) = ω′(0) = 0. We will call ω a
growth function. Themost import growth function is certainly the quadraticω(x, y) =
1
2‖y − x‖2. More generally, one can allow power functions ω(x, y) = ‖x − y‖1+ν ,
which naturally arise when using high-order derivative expansions (e.g. cubic regu-
larization) or when derivates are only Hölder continuous. For uses of a wider class of
models for bundle methods, based on cutting planes, see Noll–Prot–Rondepierre [48].
In this great generality, we begin with the following basic question.

When should one terminate an algorithm that uses Taylor-like models?

For smooth nonconvex optimization, the traditional way to reliably terminate the
algorithm is to stop when the norm of the gradient at the current iterate is smaller than
some tolerance. For nonsmooth problems, termination criteria based on optimality
conditions along the iterates may be meaningless as they may never be satisfied even
in the limit. For example, one can easily exhibit a convex composite problem so that
the iterates generated by the prox-linear algorithm described above converge to a

1 Since the first version of this work [22], a number of new algorithmswere developed building on our view-
point. For example [16] analyze stochastic subgradient methods, [35,54] consider algorithms for adversarial
learning and saddle-point problems, while [49] discuss generic line-search procedures using Taylor-like
models built from Bregman divergences.
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stationary point, while the optimality conditions at the iterates are not satisfied even
in the limit.2 Such lack of natural stopping criteria for nonsmooth first-order methods
has been often remarked (and is one advantage of bundle-type methods).

There are, on the other hand, two appealing stopping criteria one can try: terminate
the algorithm when either the step-size ‖xk+1 − xk‖ or the model decrease f (xk) −
inf fxk is sufficiently small.Wewill prove that both of these simple termination criteria
are indeed reliable in the following sense. Theorem 3.1 and Corollary 5.4 show that
if either the step-size ‖xk+1 − xk‖ or the model decrease f (xk) − inf fxk is small,
then there exists a point x̂ close to xk+1 in both distance and in function value, which
is nearly stationary for the problem. Determining the point x̂ is usually difficult but
is not important; the only role of x̂ is to certify that the current iterate xk is “close
to near-stationarity” in the sense above. Theorem 3.1 follows quickly from Ekeland’s
variational principle [27]—a standard variational analytic tool. For other uses of the
technique in variational analysis, see for example the survey [33]. Stopping criterion
based on small near-by subgradients has appeared in many other contexts such as in
descent methods of [32] and gradient sampling schemes of [11].

It is worthwhile to compare the viewpoint we advocate with more classical primal–
dual termination criterion. In this work, we explore simple and intuitive stopping
criteria that are both independent of the explicit presentation of the objective function
and involves only the primal iterates. We justify the use of such criteria in terms
of proximity to nearly stationary points. For particular cases, such as the composite
class (1.2), KKT-residual-based stopping criteria are often available for algorithms
attuned to the special structure in the objective. Such termination criteria, however,
can be narrow in scope. For example, KKT based conditions do not allow one to
compare such algorithms tomethods that ignore the composite structure completely. To
illustrate, consider applying a subgradient method to the problem (1.2). The composite
structure is irrelevant for the subgradient method, and therefore measuring progress
using the KKT residual is unnatural in this context. In contrast, using the primal only
guarantees that we advocate here allow for a more fair and direct comparison between
the subgradient and the prox-linear methods, as well their stochastic variants [16]. For
a discussion, see Sect. 4.

Two interesting consequences for convergence analysis flow fromour interpretation
of the step-size and model decrease as measuring proximity to near-stationarity. Sup-
pose that the models are chosen in such a way that the steps ‖xk+1 − xk‖ tend to zero.
This assumption is often enforced by ensuring that f (xk+1) is smaller than f (xk) by at
least a multiple of ‖xk+1−xk‖2 (a sufficient decrease condition) using a back-tracking
procedure or by safeguarding the minimal eigenvalue of Bk . Then assuming for sim-
plicity that f is continuous on its domain, any limit point x∗ of the iterate sequence xk

will be stationary for the problem (Corollary 3.3).3 Analogous results hold with the
step-size replaced by f (xk) − inf fxk . We note that a concise algorithmic framework,
influenced by our techniques, appears in the recent manuscript [49].

2 One such univariate example is minx f (x) = | 12 x2+ x |. The prox-linear algorithm for convex composite
minimization [23, Algorithm 5.1] initiated to the right of the origin—a minimizer of f —will generate a
sequence xk → 0 with | f ′(xk )| → 1.
3 By stationary, we mean that zero is a limiting subgradient of the function at the point.
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The subsequence convergence result is satisfying, since very little is assumed about
the underlying algorithm. A finer analysis of linear, or faster, convergence rates relies
on some regularity of the function f near a limit point x∗ of the iterate sequence xk . One
of the weakest such regularity assumptions is that for all x near x∗, the “slope” of f at
x linearly bounds the distance of x to the set of stationary points S—the “error”. Here,
we call this property the slope error-bound. To put it in perspective, we note that the
slope error-bound always entails a classical quadratic growth condition away from S
(see [19,24,62]), and is equivalent to it whenever f is convex (see [1,36]).Moreover, as
an aside, we observe in Theorem 3.7 and Proposition 3.8 that under mild conditions,
the slope error-bound is equivalent to the “Kurdyka–Łojasiewicz inequality” with
exponent 1/2—an influential condition also often used to prove linear convergence.
To the best of our knowledge, the earliest instance of algorithm analysis based on the
latter inequality is [51].

Assuming the slope error-bound, a typical convergence analysis strategy aims to
deduce that the step-sizes ‖xk+1 − xk‖ linearly bound the distance dist(xk; S). Fol-
lowing Luo-Tseng [39], we call the latter property the step-size error-bound. We show
in Theorem 3.5 that the slope error-bound indeed always implies the step-size error-
bound, under the common assumption that the growth function ω(·) is a quadratic.
The proof is a straightforward consequence of the relationship we have established
between the step-size and the slope at a nearby point—underscoring the power of the
technique.

In practice, exactminimization of themodel function fxk can be impossible. Instead,
one can obtain a point xk+1 that is only nearly optimal or nearly stationary for the
problem min fxk . For example, the efficiency of the inexact prox-linear method is
often remarked in the early works of Burke and Ferris [10], Fletcher [29], Nesterov
[44], Wright [60], etc. More recent works [3,14,26] have extensive numerical exam-
ples of the prox-linear method for phase retrieval, blind deconvolution, and low-rank
SDP problems, where the subproblems are solved by specialized first-order meth-
ods (ADMM). Even from the worst-case perspective, the complexity of an inexact
prox-linear method is superior to its natural competitor, the sugradient method; see
Remark 4.1. Section 5 shows that all the results above generalize to this more realistic
setting. In particular, somewhat surprisingly, we argue that limit points of the iterates
will be stationary even if the tolerances on optimality (or stationarity) and the step-
sizes ‖xk+1 − xk‖ tend to zero at independent rates. The arguments in this inexact
setting follow by applying the key result, Theorem 3.1, to small perturbations of f
and fxk , thus illustrating the flexibility of the theorem.

The convex composite problem (1.2) and the prox-linear algorithm (along with its
variablemetric variants) is a fertile application arena for the techniques developed here.
An early variant of the key Theorem 3.1 in this setting appeared recently in [23, The-
orem 5.3] and was used there to establish sublinear, linear, and quadratic convergence
guarantees for the prox-linear method under appropriate regularity conditions. We
review these results in Sect. 4, as an illustration of our techniques. An important devi-
ation of ours from earlier work is the use of the step-size as the fundamental analytic
tool, in contrast to the Δ measures of Burke [9] and the criticality measures in Cartis–
Gould–Toint [13]. To the best of our knowledge, the derived relationship between the
step-size and stationarity at a nearby point is entirely new. The fact that the slope
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error-bound implies that both the step-size and the square root of the model decrease
linearly bounds the distance to the solution set (step-size and model error-bounds) is
entirely new as well; previous related results have assumed that h is polyhedral.

The assumption (1.4) is appealing in its simplicity and modeling flexibility. To
illustrate further, let us briefly mention two examples beyond the convex compos-
ite setting. Consider the problem, minx h(c(x)), where h is now smooth while c(·)
is Lipschitz continuous. Then an easy computation shows that the model fx (y) =
h(c(x)) + 〈h(c(x)), c(y) − c(x)〉 + L

2 ‖y − x‖2 is Taylor-like for any L > 0. The
minimization of the model fx (·)may be straightforward. For instance, if c(·) takes the
form c(x) = (c1(x1), . . . , c1(xn)), then the model function is completely separable
and therefore the minimization can be done in parallel. Indeed, such separable prob-
lems are common in a variety of nonlinear regression tasks (see, e.g. [30, Section 4]).
If in addition c(·) is smooth, one can linearize the map for the purpose of simplifying
computation, all the while preserving the Taylor-like behavior. As the second example,
consider the problem, minx f (x) = maxλ∈Λ f (x, λ), where the functions f (·, λ) are
smoothwith gradients that areβ-Lipschitz. Thenwemay simply take as themodels the
function fx (y) = maxλ∈Λ f (x, λ)+〈∇ f (x, λ), y − x〉+ L

2 ‖y − x‖2. More generally
still, one can imagine a min-max problem where f (·, λ) are convex composite. One
can then create a model by using the standard convex-composite models within the
maximization, thereby underscoring the flexibility of the framework. Working out the
algorithmic implications for all such examples would take us far off field. Instead, our
goal here is succinct: to highlight the Taylor-like models as the unifying principle in
nonsmooth optimization, while emphasizing the role of the stepsize as a termination
criterion.

Though the discussion above takes place over the Euclidean space Rn , the most
appropriate setting for most of our development is over an arbitrary complete metric
space. This is the setting of the paper. The outline is as follows. In Sect. 2, we establish
basic notation and recall Ekeland’s variational principle. Section 3 contains our main
results. Section 4 illustrates the techniques for the prox-linear algorithm in composite
minimization, while Sect. 5 explores extensions when the subproblems are solved
inexactly.

2 Notation

Fix a complete metric space X with the metric d(·, ·). We denote the open unit ball of
radius r > 0 around a point x by Br (x). The distance from x to a set Q ⊂ X is

dist(x; Q) := inf
y∈Q

d(x, y).

We will be interested in minimizing functions mapping X to the extended real line
R := R∪{±∞}. A function f : X → R is called lower-semicontinuous (or closed) if
the inequality liminfx→x̄ f (x) ≥ f (x̄) holds for all points x̄ ∈ X . We always assume
that the functions we consider are proper, meaning that they are never −∞ and are
not always +∞.
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Consider a closed function f : X → R and a point x̄ with f (x̄) finite. The slope
of f at x̄ is simply its maximal instantaneous rate of decrease:

|∇ f |(x̄) := limsup
x→x̄

( f (x̄) − f (x))+

d(x̄, x)
.

Here, we use the notation r+ = max{0, r}. If f is a differentiable function on a
Euclidean space, the slope |∇ f |(x̄) simply coincides with the norm of the gradient
‖∇ f (x̄)‖, and hence the notation. For a convex function f , the slope |∇ f |(x̄) equals
the norm of the shortest subgradient v ∈ ∂ f (x̄). The slope originates in the work of
De Giorgi et al. [17]; for more details on the slope and its uses in optimization, see
the survey [33], monograph [34], or the thesis [18].

The function x �→ |∇ f |(x) lacks basic lower-semicontinuity properties.As a result,
it is important to introduce the limiting slope

|∇ f |(x̄) := liminf
x→x̄, f (x)→ f (x̄)

|∇ f |(x).

In particular, if f is continuous on its domain, then |∇ f | is simply the lower-
semicontinuous envelope of |∇ f |. We say that a point x̄ is stationary for f if equality
|∇ f |(x̄) = 0 holds.

We will be interested in locally approximating functions up to first-order. Seeking
to measure the “error in approximation”, we introduce the following definition.

Definition 2.1 (Growth function) A differentiable univariate function ω : R+ → R+
is called a growth function if it satisfies ω(0) = ω′(0) = 0 and ω′ > 0 on (0,∞). If
in addition, equalities limt→0 ω′(t) = limt→0 ω(t)/ω′(t) = 0 hold, we say that ω is
a proper growth function.

The main examples of proper growth functions are ω(t) := η
r · tr for real η > 0 and

r > 1.
The following result, proved in [27], will be ourmain tool. The gist of the theorem is

that if a point x̄ nearly minimizes a closed function, then x̄ is close to a true minimizer
of a slightly perturbed function.

Theorem 2.2 (Ekeland’s variational principle) Consider a closed function g : X → R
that is bounded from below. Suppose that for some ε > 0 and x̄ ∈ Rn, we have
g(x̄) ≤ inf g + ε. Then for any real ρ > 0, there exists a point x̂ satisfying

1. g(x̂) ≤ g(x̄),
2. d(x̄, x̂) ≤ ε/ρ,
3. x̂ is the unique minimizer of the perturbed function x �→ g(x) + ρ · d(x, x̂).

Notice that property 3 in Ekeland’s principle directly implies the inequality |∇g|(x̂) ≤
ρ. Thus if a point x̄ nearly minimizes g, then the slope of g is small at some nearby
point.
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2.1 Slope and subdifferentials

The slope is a purely metric creature. However, for a function f on Rn , the slope is
closely related to “subdifferentials”, which may be more familiar to the audience. We
explain the relationship here following [34]. Since the discussion will not be used in
the sequel, the reader can safely skip it and move on to Sect. 3.

A vector v̄ ∈ Rn is called a Fréchet subgradient of a function f : Rn → R at a
point x̄ if the inequality

f (x) ≥ f (x̄) + 〈v̄, x − x̄〉 + o(‖x − x̄‖) holds as x → x̄ .

The set of all Fréchet subgradients of f at x̄ is theFréchet subdifferential and is denoted
by ∂̂ f (x̄). The connection of the slope |∇ f |(x̄) to subgradients is immediate. A vector
v̄ lies in ∂̂ f (x̄) if and only if the slope of the linearly tilted function f (·) − 〈v̄, ·〉 at x̄
is zero. Moreover the inequality

|∇ f |(x̄) ≤ dist(0, ∂̂ f (x̄)) holds. (2.1)

The limiting subdifferential of f at x̄ , denoted ∂ f (x̄), consists of all vectors v̄ such that
there exists sequences xi and vi ∈ ∂̂ f (xi ) satisfying (x, f (xi ), vi ) → (x̄, f (x̄), v̄).
Assuming that f is closed, a vector v̄ lies in ∂ f (x) if and only if the limiting slope of
the linearly tilted function f (·) − 〈v̄, ·〉 at x̄ is zero. Moreover, Proposition 8.5 in [34]
shows that the exact equality

|∇ f |(x̄) = dist(0, ∂ f (x̄)) holds. (2.2)

In particular, stationarity of f at x̄ amounts to the inclusion 0 ∈ ∂ f (x̄).

3 Main results

For the rest of the paper, fix a closed function f : X → R on a complete metric
space X , and a point x with f (x) finite. The following theorem is our main result. It
shows that for any function fx (·) (the “model”), such that the error in approximation
| fx (y) − f (y)| is controlled by a growth function of the norm d(x, y), the distance
between x and the minimizer x+ of fx (·) prescribes near-stationarity of f at some
nearby point x̂ .

Theorem 3.1 (Perturbation result) Consider a closed function fx : X → R such that
the inequality

| fx (y) − f (y)| ≤ ω(d(x, y)) holds for all y ∈ X , (3.1)

where ω is some growth function, and let x+ be a minimizer of fx . If x+ coincides
with x, then the slope |∇ f |(x) is zero. On the other hand, if x and x+ are distinct,
then there exists a point x̂ ∈ X satisfying
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1. (point proximity) d(x+, x̂) ≤ 2 · ω(d(x+,x))
ω′(d(x+,x))

,

2. (value proximity) f (x̂) ≤ f (x+) + ω(d(x+, x)),
3. (near-stationarity) |∇ f |(x̂) ≤ ω′(d(x+, x)) + ω′(d(x̂, x)).

Proof A quick computation shows the equality |∇ fx |(x) = |∇ f |(x). Thus if x+
coincides with x , the slope |∇ f |(x) must be zero, as claimed. Therefore, for the
remainder of the proof, we will assume that x+ and x are distinct.

Observe now the inequality

f (y) ≥ fx (y) − ω(d(x, y)) ≥ fx (x+) − ω(d(x, y)).

Define the function g(y) := f (y)+ω(d(x, y)) and note inf g ≥ fx (x+). We deduce

g(x+) − inf g ≤ f (x+) − fx (x+) + ω(d(x+, x)) ≤ 2 · ω(d(x+, x)). (3.2)

An easy argument now shows the inequality

|∇g|(z) ≥ |∇ f |(z) − ω′(d(z, x)) for all z ∈ X .

Setting ε := 2ω(d(x+, x)) and applying Ekeland’s variational principle (Theo-
rem 2.2), we obtain for any ρ > 0 a point x̂ satisfying

g(x̂) ≤ g(x+), d(x+, x̂) ≤ ε

ρ
, and |∇g|(x̂) ≤ ρ.

We conclude |∇ f |(x̂) ≤ ρ +ω′(d(x̂, x)). Setting ρ := ω′(d(x+, x)) yields the result.
��

Note that the distance d(x̂, x) appears on the right hand-side of the near-stationarity
property. By the triangle-inequality and point proximity, however, it can be upper
bounded by d(x+, x)+2· ω(d(x+,x))

ω′(d(x+,x))
, a quantity independent of x̂ . To better internalize

this result, let us look at the most important setting of Theorem 3.1 where the growth
function is a quadratic ω(t) = η

2 t2 for some real η > 0.

Corollary 3.2 (Quadratic error) Consider a closed function fx : X → R and suppose
that with some real η > 0 the inequality

| fx (y) − f (y)| ≤ η

2
· d2(x, y) holds for all y ∈ X .

Define x+ to be the minimizer of fx . Then there exists a point x̂ ∈ Rn satisfying

1. (point proximity) d(x+, x̂) ≤ d(x+, x),
2. (value proximity) f (x̂) ≤ f (x+) + η

2 · d2(x+, x),
3. (near-stationarity) |∇ f |(x̂) ≤ 5η · d(x+, x).

An immediate consequence of Theorem 3.1 is the following subsequence conver-
gence result.

123



366 D. Drusvyatskiy et al.

Corollary 3.3 (Subsequence convergence to stationary points) Consider a sequence of
points xk and closed functions fxk : X → R satisfying xk+1 = argminy fxk (y) and
d(xk+1, xk) → 0. Suppose moreover that the inequality

| fxk (y) − f (y)| ≤ ω(d(y, xk)) holds for all indices k and points y ∈ X ,

where ω is a proper growth function. If (x∗, f (x∗)) is a limit point of the sequence
(xk, f (xk)), then x∗ is stationary for f .

Proof Fix a subsequence xki with (xki , f (xki )) → (x∗, f (x∗)), and consider the
points x̂ki guaranteed to exist by Theorem 3.1. By point proximity, we deduce

d(xki , x̂ki −1) ≤ ω(d(xki ,xki −1))

ω′(d(xki ,xki −1))
, and the fact that the right hand-side tends to zero, we

conclude that x̂ki −1 converge to x∗. The functional proximity, f (x̂ki −1) ≤ f (xki ) +
ω(d(xki , xki −1)) implies limsupi→∞ f (x̂ki −1) ≤ limsupi→∞ f (xki ) = f (x∗). Lower-
semicontinuity of f then implies the equality limi→∞ f (x̂ki −1) = f (x∗). Finally, the
near-stationarity,

|∇ f |(x̂ki −1) ≤ ω′(d(xki , xki −1)) + ω′(d(x̂ki −1, xki −1)),

implies |∇ f |(x̂ki −1) → 0. Thus x∗ is a stationary point of f . ��
Remark 3.4 (Asymptotic convergence to critical points) Corollary 3.3 proves some-
thing stronger than stated. An unbounded sequence zk is asymptotically critical for
f if it satisfies |∇ f |(zk) → 0. The proof of Corollary 3.3 shows that if the sequence
xk is unbounded, then there exists an asymptotically critical sequence zk satisfying
d(xk, zk) → 0.

Corollary 3.3 is fairly satisfying since very little is assumed about the model func-
tions. More sophisticated linear, or faster, rates of convergence rely on some regularity
of the function f near a limit point x∗ of the iterate sequence xk . A classical example
in nonlinear programming is the second-order sufficient condition for optimality. The
literature on regularity concepts for broader nonsmooth problems is vast, relying on
set-valued generalizations of the classical inverse function theorem and transversality
concepts. We refer the reader to the monographs of Dontchev–Rockafellar [57] and
Ioffe [34] for details, as well the paper of Bolte et al. [6].

Let S denote the set of stationary points of f . One of the weakest regularity assump-
tions is that the slope |∇ f |(x) linearly bounds the distance dist(x; S) for all x near x∗.
Indeed, this property, which we call the slope error-bound, always entails a classical
quadratic growth condition away from S (see [19,24]), and is equivalent to it whenever
f is a convex function on Rn (see [1,36]).
Assuming such regularity, a typical convergence analysis strategy, explored for

example by Luo–Tseng [39], aims to deduce that the step-sizes d(xk+1, xk) linearly
bound the distance dist(xk; S). The latter is called the step-size error-bound property.
We now show that slope error-bound always implies the step-size error-bound, under
the mild and natural assumption that the models fxk deviate form f by a quadratic
error in the distance.
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Theorem 3.5 (Slope and step-size error-bounds) Let S be an arbitrary set and fix a
point x∗ ∈ S satisfying the condition

– (Slope error-bound) dist(x; S) ≤ L · |∇ f |(x) for all x ∈ Bγ (x∗).

Consider a closed function fx : X → R and suppose that for some η > 0 the
inequality

| fx (y) − f (y)| ≤ η

2
d2(y, x) holds for all y ∈ X .

Then letting x+ be any minimizer of fx , the following holds:

– (Step-size error-bound)

dist(x, S) ≤ (3Lη + 2) · d(x+, x) when x, x+ ∈ Bγ /3(x∗).

Proof Suppose that the points x and x+ lie in Bγ /3(x∗). Let x̂ be the point guaranteed
to exist by Corollary 3.2. We deduce

d(x̂, x∗) ≤ d(x̂, x+) + d(x+, x∗) ≤ d(x+, x) + d(x+, x∗) < γ.

Thus x̂ lies in Bγ (x∗) and we obtain

L · |∇ f |(x̂) ≥ dist
(
x̂; S

) ≥ dist (x; S) − d(x+, x̂) − d(x+, x)

≥ dist (x; S) − 2d(x+, x).

Taking into account the inequality |∇ f |(x̂) ≤ 3η · d(x+, x), we conclude

dist (x; S) ≤ (3Lη + 2) · d(x+, x),

as claimed. ��
Remark 3.6 (Slope and subdifferential error-bounds) It is instructive to put the slope
error-bound property in perspective for those more familiar with subdifferentials. To
this end, suppose that f is defined onRn and consider the subdifferential error-bound
condition

dist(x; S) ≤ L · dist(0; ∂̂ f (x)) for all x ∈ Bγ (x∗). (3.3)

Clearly in light of the inequality (2.1), the slope error-bound implies the subdifferential
error-bound (3.3). Indeed, the slope and subdifferential error-bounds are equivalent. To
see this, suppose (3.3) holds and consider an arbitrary point x ∈ Bγ (x∗). Appealing
to the equality (2.2), we obtain sequences xi and vi ∈ ∂̂ f (xi ) satisfying xi → x
and ‖vi‖ → |∇ f |(x). Inequality (3.3) then implies dist(xi ; S) ≤ L · ‖vi‖ for each
sufficiently large index i . Letting i tend to infinity yields the inequality, dist(x; S) ≤
L · |∇ f |(x) ≤ L · |∇ f |(x), and therefore the slope error-bound is valid.
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Lately, a different condition now called the Kurdyka–Łojasiewicz inequality [5,37]
with exponent 1/2 has been often used to study linear rates of convergence, beginning
with Polyak [51]. The manuscripts [2,8] are influential recent examples. We finish the
section with the observation that the Kurdyka–Łojasiewicz inequality always implies
the slope error-bound relative to a sublevel set S; that is, the KŁ inequality is no more
general than the slope error-bound. A different argument for (semi) convex functions
based on subgradient flow appears in [7, Theorem 5]. In Proposition 3.8 we will also
observe that the converse implication holds for all prox-regular functions. Henceforth,
we will use the sublevel set notation [ f ≤ b] := {x : f (x) ≤ b} and similarly
[a < f < b] := {x : a < f (x) < b}.
Theorem 3.7 (KŁ-inequality implies the slope error-bound)
Suppose that there is a nonempty open set U in X such that the inequalities

( f (x) − f ∗)θ ≤ α · |∇ f (x)| hold for all x ∈ U ∩ [ f ∗ < f < r ],

where θ ∈ (0, 1), α > 0, f ∗, and r > f ∗ are real numbers. Then there exists a
nonempty open set Û and a real number r̂ so that the inequalities

d(x; [ f ≤ f ∗]) ≤ αθ−1

1 − θ
· |∇ f | 1−θ

θ (x) hold for all x ∈ Û ∩ [ f ∗ < f < r̂ ].

In the case U = X , we can ensure Û = X and r̂ = r .

Proof Define the function g(x) = (max{0, f (x) − f ∗})1−θ . Note the inequality
|∇g|(x) ≥ 1−θ

α
for all x ∈ U ∩ [ f ∗ < f < r ]. Let R > 0 be strictly smaller

than the largest radius of a ball contained in U and define ε := min
{

r − f ∗, (1−θ)R
α

}
.

Define the nonempty set Û := {x ∈ U : BR(x) ⊆ U} and fix a point x ∈ Û ∩ [ f ∗ <

f < f ∗ + ε].
Observe now for any point u ∈ [ f ∗ < f < f ∗+ε]with d(x, u) ≤ R, the inclusion

u ∈ U ∩ [ f ∗ < f < r ] holds, and hence |∇g|(u) ≥ 1−θ
α

. Appealing to [20, Lemma
2.5] (or [33, Chapter 1, Basic Lemma]), we deduce the estimate

d(x; [ f ≤ f ∗]) ≤ α

1 − θ
· g(x) = α

1 − θ
· ( f (x) − f ∗)1−θ ≤ αθ−1

1 − θ
· (|∇ f |(x))

1−θ
θ .

The proof is complete. ��
The converse of Theorem 3.7 holds for “prox-regular functions” on Rn , and in

particular for “lower-C2 functions”. The latter are functions f onRn such that around
each point there is a neighborhood U and a real l > 0 such that f + l

2‖ · ‖2 is convex
on U .

Proposition 3.8 (Slope error-bound implies KŁ-inequality) Consider a closed func-
tion f : Rn → R. Fix a real number f ∗ and a nonempty set S ⊆ [ f ≤ f ∗]. Suppose
that there is a set U , and constants L, l, ε, and r > f ∗ such that the inequalities
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f (y) ≥ f (x) + 〈v, y − x〉 − l

2
‖y − x‖2,

dist(x; S) ≤ L · dist(0; ∂ f (x)),

hold for all x ∈ U ∩ [ f ∗ < f < r ], y ∈ X , and v ∈ ∂ f (x) ∩ Bε(0). Then the
inequalities

√
f (x) − f ∗ ≤

√
L + l L2/2 · dist(0; ∂ f (x)),

hold for all x ∈ U ∩ [ f ∗ < f < r̂ ] where we set r̂ := min{r , (L + l L2/2)ε2}.
Proof Consider a point x ∈ U∩[ f ∗ < f < r̂ ]. Suppose first dist(0; ∂ f (x)) ≥ ε. Then
we deduce

√
f (x) − f ∗ ≤ √

r̂ ≤ √
L + l L2/2 · ε ≤ √

L + l L2/2 · dist(0; ∂ f (x)),
as claimed. Hence we may suppose there exists a subgradient v ∈ ∂ f (x)∩Bε(0). We
deduce

f ∗ ≥ f (y) ≥ f (x) + 〈v, y − x〉 − l

2
‖y − x‖2

≥ f (x) − ‖v‖ · ‖y − x‖ − l

2
‖y − x‖2.

Choosing v, y such that ‖v‖ and ‖y − x‖ attain dist(0; ∂ f (x)) and dist(x; S),

respectively, we deduce f (x) − f ∗ ≤
(

L + l L2

2

)
· dist2(0; ∂ f (x)). The result

follows. ��

4 Illustration: convex composite minimization

In this section, we briefly illustrate the results of the previous section in the context of
composite minimization, and recall some consequences already derived in [23] from
preliminary versions of the material presented in the current paper. This section will
not be used in the rest of the paper, and so the reader can safely skip it if needed.

The notation and much of discussion follows that set out in [23]. Consider the
minimization problem

min
x

f (x) := g(x) + h(c(x)), (4.1)

where g : Rn → R is a closed convex function, h : Rm → R is a finite-valued l-
Lipschitz convex function, and c : Rn → Rm is a C1-smooth map with the Jacobian
∇c(·) that is β-Lipschitz continuous. Define the model function

fx (y) := g(y) + h
(

c(x) + ∇c(x)(y − x)
)

+ lβ

2
‖y − x‖2.

One can readily verify the inequality

0 ≤ fx (y) − f (y) ≤ lβ

2
‖y − x‖2 for all x, y ∈ Rn .
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In particular, the models fx are “Taylor-like”. The prox-linear algorithm iterates the
steps

xk+1 = argmin
y

fxk (y). (4.2)

The following is a rudimentary convergence guarantee of the scheme [23, Section 5]:

k∑
i=1

‖xi+1 − xi‖2 ≤ 2( f (x1) − f ∗)
lβ

, (4.3)

where f ∗ is the limit of the decreasing sequence { f (xk)}. In particular, the step-sizes
‖xi+1−xi‖ tend to zero. Moreover, one can readily verify that for any limit point x∗ of
the iterate sequence xk , equality f ∗ = f (x∗) holds. Consequently, by Corollary 3.3,
the point x∗ is stationary for f :

0 ∈ ∂ f (x∗) = ∂g(x∗) + ∇c(x∗)T ∂h(c(x∗)).

We note that stationarity of the limit point x∗ is well-known and can be proved by
other means; see for example the discussion in [13]. From (4.3), one also concludes
the rate

min
i=1,...,k

‖xi+1 − xi‖2 ≤ 2( f (x1) − f ∗)
lβ · k

.

What is the relationship of this rate to near-stationary of the iterate xk? Corollary 3.2
shows that after 2lβ( f (x1)− f ∗)

25·ε2 iterations, one is guaranteed to find an iterate xk such
that there exists a point x̂ satisfying

5lβ · ‖x̂ − xk+1‖
5
√
2lβ · √

( f (x̂) − f (xk+1))+

dist(0; ∂ f (x̂))

⎫⎪⎪⎬
⎪⎪⎭

≤ ε.

Let us nowmove on to linear rates of convergence. Fix a limit point x∗ of the iterate
sequence xk and let S be the set of stationary points of f . Then Theorem 3.5 shows
that the regularity condition

– (Slope error-bound)

dist(x; S) ≤ 1

α
· dist(0; ∂ f (x)) for all x ∈ Bγ (x∗).

implies
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– (Step-size error-bound)

dist(xk, S) ≤ (3lβ/α + 2) · ‖xk+1 − xk‖ when xk, xk+1 ∈ Bγ /3(x∗).

Additionally, in the next section (Corollary 5.7)wewill show that the slope error-bound
also implies

– (Model error-bound)

dist(xk; S) ≤
(

α−1
√
12lβ + 2√

3lβ

)
· √

f (xk) − inf fxk ,

whenever f (xk) − inf fxk <
3lβγ 2

16 and xk lies in Bγ /2(x∗).

It was, in fact, proved in [23, Theorem 5.10] that the slope and step-size error
bounds are equivalent up to a change of constants. Moreover, as advertised in the
introduction, the above implications were used in [23, Theorem 5.5] to show that if
the slope error-bound holds then the function values converge linearly:

f (xk+1) − f ∗ ≤ q( f (xk) − f ∗) for all large k,

where

q ≈ 1 −
(

α

lβ

)2

.

The rate improves to q ≈ 1 − α
Lβ

under a stronger regularity condition, called tilt-
stability [23, Theorem6.3],while a local quadratic rate of convergence is assured under
a sharpness property [23, Theorem 7.2]. The arguments of the better local rates again
crucially employ a comparison of step-lengths and subgradients at near-by points.

Our underlying assumption is that the models fxk are easy to minimize, by an
interior point method for example. This assumption may not be realistic in some
large-scale applications. Instead, one must solve the subproblems (4.2) inexactly by
a first-order method. The recent manuscript [25] investigates efficiency estimates of
such methods in the first-order oracle model.

Remark 4.1 (Primal vs. primal–dual termination criteria) We propose a general, sim-
ple, intuitive stopping criterion that is both independent of the explicit presentation
of the objective function and involves only the primal iterates. For particular cases,
such as the compositional problems considered in this section, KKT-residual-based
stopping criteria are often available. Such termination criteria, however, can be nar-
row in scope. For example, KKT based conditions do not allow one to compare such
algorithms to methods that ignore the composite structure completely.

To lillustrate, suppose for simplicity g = 0 and consider applying a subgradient
method to the problem (4.1), namely

xk+1 = xk − αkvk with vk ∈ ∂ f (xk).
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Here αk has to be appropriately chosen (roughly in the order of 1/
√

T , where T
is the total number of iterations) The recent paper [16] shows that the convergence
rate of this method can be succinctly summarized exactly in terms described here.
The iterates become ε-close to an ε-stationary point after O(1/ε4) iterations. The
analogous iteration complexity for the prox-linear method is O(1/ε2), and even if the
subproblems are solved inexactly by first-order methods, the number of matrix-vector
multiplications required is at most O(1/ε3) [25]. The composite structure is irrelevant
for the subgradient method, and therefore measuring progress using the KKT residual
is unnatural in this context. In contrast, using primal only guarantees that we advocate
here allow for a more fair and direct comparison.

There are other reasons to focus on primal-only guarantees. (1) Proximity to nearly
stationary points is an intuitive principle, while the impact of the KKT residual being
small on the primal iterate—one we primarily care about—is more opaque. (2) Com-
plexity guarantees for solving the primal–dual pair can in general be much worse than
for approximately solving the primal problem only. That is, the dual iterate may lag
behind the primal. Therefore the impact of the small stepsize on the primal iterates
alone appears meaningful. (3) The error bound property of the step-size is in general
much weaker than the error bound for the KKT system, as it involves stability only in
the primal. It is this property that underlies rapid convergence of primal-only methods.

5 Inexact extensions andmodel decrease as termination criteria

Often, it may be impossible to obtain an exact minimizer x+ of a model function
fx . What can one say then when x+ minimizes the model function fx only approxi-
mately? By “approximately”, one can mean a number of concepts. Two most natural
candidates are that x+ is ε-optimal, meaning fx (x+) ≤ inf fx + ε, or that x+ is ε-
stationary, meaning |∇ fx |(x+) ≤ ε. In both cases, all the results of Sect. 3 generalize
quickly by bootstrapping Theorem 3.1; under a mild condition, both of the two notions
above imply that x+ is a minimizer of a slightly perturbed function, to which the key
Theorem 3.1 can be directly applied.

5.1 Near-optimality for the subproblems

We begin with ε-optimality, and discuss ε-stationarity in Sect. 5.3. The following is an
inexact analogue of Theorem 3.1. Though the statement may appear cumbersome at
first glance, it simplifies dramatically in themost important casewhereω is a quadratic;
this case is recorded in Corollary 5.2.

Theorem 5.1 (Perturbation result under approximate optimality) Consider a closed
function fx : X → R such that the inequality

| fx (y) − f (y)| ≤ ω(d(x, y)) holds for all y ∈ X ,

where ω is some growth function. Let x+ be a point satisfying fx (x+) ≤ inf fx + ε.
Then for any constant ρ > 0, there exist two points z and x̂ satisfying the following.
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1. (point proximity) The inequalities

d(x+, z) ≤ ε

ρ
and d(z, x̂) ≤ 2 · ω(d(z, x))

ω′(d(z, x))
hold,

under the convention 0
0 = 0,

2. (value proximity) f (x̂) ≤ f (x+) + 2ω(d(z, x)) + ω(d(x+, x)),
3. (near-stationarity) |∇ f |(x̂) ≤ ρ + ω′(d(z, x)) + ω′(d(x̂, x)).

Proof By Theorem 2.2, for any ρ > 0 there exists a point z satisfying fx (z) ≤
fx (x+), d(z, x+) ≤ ε

ρ
, and so that z is the unique minimizer of the function y �→

fx (y) + ρ · d(y, z). Define the functions f̃ (y) := f (y) + ρ · d(y, z) and f̃x (y) :=
fx (y) + ρ · d(y, z). Notice the inequality

| f̃x (y) − f̃ (y)| ≤ ω(d(x, y)) for all y.

Thus applying Theorem 3.1, we deduce that there exists a point x̂ satisfying d(z, x̂) ≤
2· ω(d(z,x))

ω′(d(z,x))
, f̃ (x̂) ≤ f̃ (z)+ω(d(z, x)), and |∇ f̃ |(x̂) ≤ ω′(d(z, x))+ω′(d(x̂, x)). The

point proximity claim is immediate. The value proximity follows from the inequality

f (x̂) ≤ f̃ (x̂) ≤ f (z) + ω(d(z, x)) ≤ fx (z) + 2ω(d(z, x)) ≤ fx (x+) + 2ω(d(z, x))

≤ f (x+) + 2ω(d(z, x)) + ω(d(x+, x)).

Finally, the inequalities

|∇ f |(x̂) ≤ ρ + |∇ f̃ |(x̂) ≤ ρ + ω′(d(z, x)) + ω′(d(x̂, x))

imply the near-stationarity claim. ��

Specializing to when ω is a quadratic yields the following.

Corollary 5.2 (Perturbationunder quadratic error)Consider a closed function fx : X →
R and suppose that with some real η > 0 the inequality

| fx (y) − f (y)| ≤ η

2
d2(x, y) holds for all y ∈ X .

Let x+ be a point satisfying fx (x+) ≤ inf fx +ε. Then there exists a point x̂ satisfying
the following.

1. (point proximity) d(x+, x̂) ≤
√

4ε
3η + d(x+, x),

2. (value proximity) f (x̂) ≤ f (x+) + η
(√

ε
3η + d(x+, x)

)2 + η
2d2(x+, x),

3. (near-stationarity) |∇ f |(x̂) ≤ √
12ηε + 3η · d(x+, x).
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Proof Consider the two point x̂ and z guaranteed to exist by Theorem 5.1. Observe
the inequalities

d(z, x) ≤ d(z, x+) + d(x+, x) ≤ ε

ρ
+ d(x+, x),

and

d(x+, x̂) ≤ d(x+, z) + d(z, x̂) ≤ ε

ρ
+ d(z, x) ≤ 2

ε

ρ
+ d(x+, x).

Hence we obtain

f (x̂) ≤ f (x+) + η

(
ε

ρ
+ d(x+, x)

)2

+ η

2
d2(x+, x),

and

|∇ f |(x̂) ≤ ρ + η

(
ε

ρ
+ d(x+, x)

)
+ η · d(x̂, x) ≤

(
ρ + 3ηε

ρ

)
+ 3η · d(x+, x).

Minimizing the right-hand-side of the last inequality in ρ > 0 yields the choice
ρ = √

3ηε. The result follows. ��
An immediate consequence of Theorem 5.1 is a subsequence converge result anal-

ogous to Corollary 3.3.

Corollary 5.3 (Subsequence convergence under near-optimality) Consider a sequence
of points xk and closed functions fxk : X → R satisfying d(xk+1, xk) → 0 and
f (xk+1) ≤ inf fxk + εk for some sequence εk → 0. Suppose moreover that the
inequality

| fxk (y) − f (y)| ≤ ω(d(y, xk)) holds for all indices k and points y ∈ X ,

where ω is a proper growth function. If (x∗, f (x∗)) is a limit point of the sequence
(xk, f (xk)), then x∗ is stationary for f .

Proof The proof is virtually identical to the proof of Corollary 3.3, except that Theo-
rem 5.1 replaces Theorem 3.1 with ρk = √

εk . We leave the details to the reader. ��

5.2 Model decrease as a stopping criterion

The underlying premise of our work so far is that the step-size d(xk+1, xk) can be
reliably used to terminate the model-based algorithm in the sense of Theorem 3.1.
We now prove that the same can be said for termination criteria based on the model
decrease Δx := f (xk) − inf fxk . Indeed, this follows quickly by setting x+ := x ,
ε := √

Δx , and ρ a multiple of
√

Δx in Theorem 5.1.
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Corollary 5.4 (Perturbation result for model decrease) Consider a closed function
fx : X → R such that the inequality

| fx (y) − f (y)| ≤ ω(d(x, y)) holds for all y ∈ X ,

where ω is some growth function. Define the model decrease Δx := f (x) − inf fx .
Then for any constant c > 0, there exist two points z and x̂ satisfying the following.

1. (point proximity) The inequalities

d(x, z) ≤ c−1
√

Δx and d(z, x̂) ≤ 2 · ω(d(z, x))

ω′(d(z, x))
hold,

under the convention 0
0 = 0,

2. (value proximity) f (x̂) ≤ f (x) + 2ω(d(z, x)),
3. (near-stationarity) |∇ f |(x̂) ≤ c

√
Δx + ω′(d(z, x)) + ω′(d(x̂, x)).

Proof Simply set x+ := x , ε := √
Δx , and ρ = c

√
Δx in Theorem 5.1. ��

To better internalize the estimates, let us look at the case when ω is a quadratic.

Corollary 5.5 (Perturbation formodel decreasewith quadratic error)Consider a closed
function fx : X → R and suppose that with some real η > 0 the inequality

| fx (y) − f (y)| ≤ η

2
d2(x, y) holds for all y ∈ X .

Define the model decrease

Δx := f (x) − inf
y

fx (y).

Then there exists a point x̂ satisfying

1. (point proximity) d(x̂, x) ≤
√

4
3η · √

Δx ,

2. (value proximity) f (x̂) ≤ f (x) + 1
3 · Δx ,

3. (near-stationarity) |∇ f |(x̂) ≤ √
12η · √Δx .

Proof Simply set x+ := x and ε := √
Δx in Corollary 5.2. ��

The subsequential convergence result in Corollary 5.3 assumes that the step-sizes
d(xk+1, xk) tend to zero. Now, it is easy to see that an analogous conclusion holds if
instead the model decreases f (xk) − fxk (xk+1) tend to zero.

Corollary 5.6 (Subsequence convergence under approximate optimality II) Consider
a sequence of points xk and closed functions fxk : X → R satisfying fxk (xk+1) ≤
inf fxk + εk for some sequence εk → 0. Suppose that the inequality

| fxk (y) − f (y)| ≤ ω(d(y, xk)) holds for all indices k and points y ∈ X ,
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where ω is a proper growth function. Suppose moreover that the model decreases
f (xk) − fxk (xk+1) tend to zero. If (x∗, f (x∗)) is a limit point of the sequence
(xk, f (xk)), then x∗ is stationary for f .

Following the pattern of the previous sections, we next pass to error-bounds. The
following result shows that the slope error-bound implies that, not only do the step-sizes
d(xk+1, xk) linearly bound the distance of xk to the stationary-point set (Theorem 3.5),
but so do the values

√
f (xk) − inf fxk .

Corollary 5.7 (Slope and model error-bounds) Let S be an arbitrary set and fix a point
x∗ ∈ S satisfying the condition:

– (Slope error-bound) dist(x; S) ≤ L · |∇ f |(x) for all x ∈ Bγ (x∗).

Consider a closed function fx : X → R and suppose that for some η > 0 the
inequality

| fx (y) − f (y)| ≤ η

2
d2(y, x) holds for all y ∈ X .

Then the following holds:

– (Model error-bound)

dist(x; S) ≤
(

L
√
12η + 2√

3η

)
· √

f (x) − inf fx ,

whenever f (x) − inf fx <
3ηγ 2

16 and x lies in Bγ /2(x∗).

Proof Suppose the inequality f (x)−inf fx <
3ηγ 2

16 holds and x lies inBε/2(x∗).Define
Δx := f (x) − inf fx and let x̂ be the point guaranteed to exist by Corollary 5.5. We
deduce

d(x̂, x∗) ≤ d(x̂, x) + d(x, x∗) ≤
√

4

3η
· √

Δx + d(x, x∗) < γ.

Thus x̂ lies in Bγ (x∗) and we obtain

L · |∇ f |(x̂) ≥ dist
(
x̂; S

) ≥ dist (x; S) − d(x, x̂) ≥ dist(x; S) −
√

4

3η
· √

Δx .

Taking into account the inequality |∇ f |(x̂) ≤ √
12η · √Δx , the result follows. ��

Finally in the inexact regime, the slope error-bound (as in Theorem 3.5) implies an
inexact error-bound condition.

Corollary 5.8 (Error-bounds under approximate optimality) Let S be an arbitrary set
and fix a point x∗ ∈ S satisfying the condition
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– (Slope error-bound) dist(x; S) ≤ L · |∇ f |(x) for all x ∈ Bγ (x∗).

Consider a closed function fx : X → R and suppose that for some η > 0 the
inequality

| fx (y) − f (y)| ≤ η

2
d2(y, x) holds for all y ∈ X .

Define the constant μ := 2
√

L(5Lη + 4). Then letting x+ be any point satisfying
fx (x+) ≤ inf fx + ε, the following two error-bounds hold:

– (Step-size error-bound)

dist(x; S) ≤ μ
√

ε + (7Lη + 6) · d(x+, x)

whenever
√

ε < γμ/12L, d(x+, x) < γ/9, and x+ lies in Bγ /3(x∗).
– (Model error-bound)

dist(x; S) ≤
(

L
√
12η + 2√

3η

) √
f (x) − fx (x+) + ε.

whenever f (x) − inf fx <
3ηγ 2

16 and x lies in Bγ /2(x∗).

Proof Consider two points x, x+ satisfying
√

ε ≤ γμ/12L , d(x+, x) < γ/9, and
x+ ∈ Bγ /3(x∗). Let x̂, z be the points guaranteed to exist by Corollary 3.2 for some
ρ; we will decide on the value of ρ > 0 momentarily. First, easy manipulations using
the triangle inequality yield

d(x̂, z) ≤ d(z, x), d(z, x+) ≤ d(z, x) + d(x+, x),

d(z, x) ≤ ε/ρ + d(x+, x), d(x+, x̂) ≤ 4ε/ρ + 5d(x+, x).

Suppose for themoment x̂ lies inBγ (x+); wewill show after choosing ρ appropriately
that this is the case. Then we obtain the inequality

L · |∇ f |(x̂) ≥ dist
(
x̂; S

) ≥ dist (x; S) − d(x+, x̂) − d(x+, x)

≥ dist(x; S) − 4ε/ρk − 6d(x+, x).

Taking into account the inequality

|∇ f |(x̂) ≤ ρ + η(d(z, x) + d(x̂, x)) ≤ ρ + η(5ε/ρ + 7d(x+, x)),

we conclude

dist (x; S) ≤ Lρ + 5Lηε

ρ
+ 4ε

ρ
+ (7Lη + 6) · d(x+, x),
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as claimed. Minimizing the right-hand-side in ρ yields ρ :=
√

(5Lη+4)ε
L . With this

choice, the inequality above becomes

dist (x; S) ≤ 2
√

L(5Lη + 4)ε + (7Lη + 6) · d(x+, x).

Finally, let us verify that x̂ indeed lies in Bγ (x∗). To see this, simply observe

d(x̂, x∗) ≤ d(x̂, z) + d(z, x+) + d(x+, x∗) ≤ 2d(z, x) + d(x+, x) + d(x+, x∗)
≤ 2εk/ρk + 3d(x+, x) + d(x+, x∗) < γ.

The result follows. The step-size error bound condition follows. The functional error-
bound is immediate from Corollary 5.7. ��

In particular, in the notation of Corollary 5.8, if one wishes the error d(x+, x) to
linearly bound the distance d(x; S), then one should ensure that the tolerance ε is on
the order of d2(x+, x).

5.3 Near-stationarity for the subproblems

In this section, we explore the setting where x+ is only ε-stationary for fx . To make
progress in this regime, however, we must first assume a linear structure on the metric
space. We suppose throughout that X is a Banach space, and denote its dual by X ∗.
For any dual element v ∈ X ∗ and a point x ∈ X , we use the notation 〈v, x〉 := v(x).
Second, the property |∇ fx |(x+) ≤ ε alone appears to be too weak. Instead, we will
require a type of uniformity in the slopes. In the simplest case, we will assume that
x+ is such that the function fx majorizes the simple quadratic

fx (x+) + 〈v, · − x+〉 − η‖ · −x+‖2

where v ∈ X ∗ is some dual element satisfying ‖v‖ ≤ ε. In the language of variational
analysis, v is a proximal subgradient of fx at x+; see e.g. [15,56]. A quick compu-
tation immediately shows the inequality |∇ fx |(x+) ≤ ε. Assuming that η is uniform
throughout the iterative process will allow us to generalize the results of Sect. 3. Such
uniformity is immediately implied by prox-regularity [50] for example—a broad and
common setting for nonsmooth optimization.

Corollary 5.9 (Perturbation result under approximate stationarity) Consider a closed
function fx : X → R on a Banach space X such that the inequality

| fx (y) − f (y)| ≤ ω1(d(x, y)) holds for all y ∈ X ,

where ω1 is some growth function. Suppose moreover that for some point x+ ∈ X , a
dual element v ∈ X ∗, and a growth function ω2, the inequality

fx (y) ≥ fx (x+) + 〈v, y − x+〉 − ω2(d(y, x+)) holds for all y ∈ X .
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Then there exists a point x̂ satisfying

1. (point proximity) d(x+, x̂) ≤ 2 · ω1(d(x+,x))

ω′
1(d(x+,x))

,

2. (value proximity)

f (x̂) ≤ f (x+) + 〈v, x̂ − x+〉 + ω1(d(x+, x)) − ω2(d(x̂, x+)),

3. (near-stationarity)

|∇ f |(x̂) ≤ ‖v‖ + ω′
1(d(x+, x)) + ω′

1(d(x̂, x)) + ω′
2(d(x̂, x+)).

Proof Define the functions f̃ (y) := f (y)−〈v, y − x+〉+ω2(d(y, x+)) and f̃x (y) :=
fx (y)−〈v, y−x+〉+ω2(d(y, x+)). Note that x+ minimizes f̃x and that the inequality

| f̃x (y) − f̃ (y)| ≤ ω1(d(x, y)) holds for all y ∈ X .

Applying Theorem 3.1, we obtain a point x̂ satisfying the point proximity claim, along
with the inequalities f̃ (x̂) ≤ f̃ (x+) + ω1(d(x+, x)) and |∇ f̃ |(x̂) ≤ ω′

1(d(x+, x)) +
ω′
1(d(x̂, x)). The value proximity claim follows directly from definitions, while the

near-stationarity is immediate from the inequality, |∇ f̃ |(x̂) ≥ |∇ f |(x̂) − ‖v‖ −
ω′
2(d(x̂, x+)). The result follows. ��
As an immediate consequence, we obtain the subsequence convergence result.

Corollary 5.10 (Convergence under approximate optimality) Consider a sequence of
points xk and closed functions fxk : X → R satisfying

| fxk (y) − f (y)| ≤ ω1(d(y, xk)) for all indices k and points y ∈ X ,

where ω1 is some proper growth function. Suppose that the inequality

fxk (y) ≥ fxk (xk+1) + 〈vk+1, y − xk+1〉 − ω2(d(y, xk+1))

holds for all k and all y ∈ X , where ω2 is some proper growth function and vk ∈ X ∗
are some dual elements. Assume moreover that d(xk+1, xk) and ‖vk‖ tend to zero. If
(x∗, f (x∗)) is a limit point of the sequence (xk, f (xk)), then x∗ is stationary for f .

Finally, the following inexact error-bound result holds, akin to Theorem 3.5.

Corollary 5.11 (Error-bounds under approximate stationarity) Let S be an arbitrary
set and fix a point x∗ ∈ S satisfying the condition

– (Slope error-bound) dist(x, S) ≤ L · |∇ f |(x) for all x ∈ Bγ (x∗).

Consider a closed function fx : X → R and suppose that for some η > 0 the
inequality

| fx (y) − f (y)| ≤ η

2
· ‖y − x‖2 holds for all y ∈ X .
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Fix a point x+ and a dual element v ∈ X ∗ so that the inequality

fx (y) ≥ fx (x+) + 〈v, y − x+〉 − η

2
‖y − x+‖2 holds for all y ∈ X .

Then the approximate error-bound holds:

– (Step-size error-bound)

dist (x; S) ≤ L‖v‖ + (4ηL + 2)‖x+ − x‖ when x, x+ ∈ Bγ /3(x∗).

Proof The proof is entirely analogous to that of Theorem 3.5. Consider two points
x, x+ ∈ Bγ /3(x∗). Let x̂ be the point guaranteed to exist by Corollary 5.9. We deduce

d(x̂, x∗) ≤ d(x̂, x+) + d(x+, x∗) ≤ d(x+, x) + d(x+, x∗) < γ.

Thus x̂ lies in Bε(x∗) and we deduce

L · |∇ f |(x̂) ≥ dist
(
x̂; S

) ≥ dist (x; S) − d(x+, x̂) − d(x+, x)

≥ dist (x; S) − 2d(x+, x).

Taking into account the inequality |∇ f |(x̂) ≤ ‖v‖ + 4η‖x+ − x‖, we conclude

dist (x; S) ≤ L‖v‖ + (4ηL + 2) · ‖x+ − x‖,

as claimed. ��

Conclusion

In this paper, we considered a general class of nonsmooth minimization algorithms
that use Taylor-like models. We showed that both the step-size and the decrease in
the model’s value can be used as reliable stopping criteria. We deduced subsequence
convergence to stationary points, and error-bound conditions under natural regularity
properties of the function. The results fully generalized to the regimewhere themodels
are minimized inexactly. Ekeland’s variation principle (Theorem 2.2) underlies all of
our current work. Despite the wide uses of the principle in variational analysis, its
impact on convergence of basic algorithms, such as those covered here and in [21,23],
is not as commonplace as it should be. We believe that this work takes an important
step towards rectifying this disparity and the techniques presented here will pave the
way for future algorithmic insight.

Acknowledgements We thank the two anonymous referees and the Associate Editor for their insightful
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