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Abstract

Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although
the existing control can assist cyclic movements during locomotion of amputee users, the function
of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based
on human efferent neural signals from the central nervous system to peripheral muscles for
movement production). Neuromuscular control signals can be recorded from muscles, called
electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb
prostheses control has been an emerging research topic in the field for the past decade to address
novel prosthesis functionality and adaptability to different environments and task contexts. The
objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded

from residual muscles in individuals with lower limb amputations. Approach. We performed a
literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding
algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review
highlights the promise of EMG control for enabling new functionalities in robotic lower limb
prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research
topic from human motor control and clinical practice perspectives. Significance. This review may
guide the future collaborations among researchers in neuromechanics, neural engineering, assistive
technologies, and amputee clinics in order to build and translate true bionic lower limbs to
individuals with lower limb amputations for improved motor function.

1. Introduction

A human controlling a prosthetic limb as if it were
their own biological limb has fascinated biomed-
ical researchers for many decades [1-6]. At the cen-
ter of this idea is a direct link between the human
nervous system and the prosthesis actuators, allowing
for commands from the user to the prosthetic limb.
Electromyography (EMG) provides an additional way
to decode peripheral efferent signals from muscles in
the residual limb [7]. EMG signals are common con-
trol signals for powered upper limb prostheses and
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have been in use for over 50 years [8]. In contrast,
EMG control of robotic lower limb prostheses is still
in its infancy. This is largely because: (a) motorized,
robotic lower limb prostheses have only been prac-
tical as devices in the past decade, and (b) autonom-
ous control of robotic lower limb prostheses has been
sufficient to support basic locomotive activities in
amputee users [9-15].

The time is ripe to develop myoelectric control
of lower limb prostheses to maximally restore motor
function of individuals with lower limb amputations.
The mechatronics of robotic lower limb prostheses


https://doi.org/10.1088/1741-2552/ac1176
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac1176&domain=pdf&date_stamp=2021-7-27
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6373-6021
https://orcid.org/0000-0001-5581-1423
mailto:dferris@bme.ufl.edu
mailto:hhuang11@ncsu.edu

10P Publishing

J. Neural Eng. 18 (2021) 041004

have become more mature, practical, and accessible
[15-17], yet these modern, robotic devices are still
limited in function, partly because the devices are pre-
programed autonomous machines [10, 11, 18-22]
unable to directly take user input. Current autonom-
ous prosthesis controllers are sufficient to actively
assist cyclic stepping motions in predictable environ-
ments (e.g. a clean floor in clinics), however they are
inadequate to actively assist versatile daily tasks that
require coordination with user intent (e.g. anticipat-
ory postural adjustments in standing or walking, per-
forming leisure activities) [23, 24]. They also do not
provide adaptation to varying, unconstructed envir-
onments and task contexts (e.g. change of load car-
riage or walking on uneven terrains) [4, 25]. While
increasingly complex autonomous control designs are
being developed to incrementally address these draw-
backs, myoelectric control, on the other hand, can
be a simple and viable solution to resolve these lim-
itations because the human motor control system is
highly flexible and adaptable to changing tasks and
environments.

Publications on EMG control of robotic lower-
limb prostheses have started to emerge and accu-
mulate in the last decade [4, 5, 26-29]. Decoding
algorithms and control frameworks have signific-
antly advanced since the early foundational EMG
control analysis [1, 30, 31]. These pioneering stud-
ies explored different EMG decoding algorithms and
control frameworks, brought forth novel functional-
ity in robotic prosthetic legs which cannot be easily
achieved by autonomous control, and showed feasib-
ility and promise in amputee testing. However, none
of these existing methods have been adopted by com-
mercial robotic prostheses so far. As myoelectric con-
trol of robotic lower-limb prostheses is a growing
topic of interest in the field, and review of the related
literature has been very limited, there is a pressing
need to summarize existing methods on this topic,
understand challenges facing translation to the com-
munity, and highlight their potential applications and
future directions.

Hence, this paper aims to summarize the liter-
ature related to EMG control of robotic lower-limb
prostheses and highlight existing challenges, potential
solutions, and opportunities related to its widespread
clinical implementation. One goal of this review is to
emphasize the need for more fundamental research
on the neuromechanics of lower-limb amputees using
neurally controlled prostheses. A second goal is
to highlight the need for innovations in neural-
machine interfacing technologies in lower-limb pros-
theses. Lastly, we hope to inspire more collaborations
across disciplines to further our understanding on
the potential and limitations of EMG control of
robotic lower-limb prostheses, compared to current
autonomous control. To address our goals, we first
review the different surgical approaches/muscle nerve
configurations and how they could influence EMG
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control. We then summarize the current methods
for measuring EMG and the existing EMG control
paradigms. Finally, we address current opportunities
for EMG control to improve autonomous Prosthesis
control. The resulting knowledge may provide a novel
control framework for robotic lower-limb prostheses,
shared by both autonomy and humans, to maximize
the mobility of individuals with lower-limb amputa-
tions in the future.

2. Literature review

Considerations of the biological configuration of
residual muscles, existing sensor technology and cur-
rent control strategies will be needed to advance the
field of EMG prosthesis control. This section reviews
the current state of each of those areas to provide a full
perspective of the state of EMG control in lower-limb
prosthetics. We start with residual muscle configur-
ations to summarize existing amputation procedures
and how they could impact EMG residual muscle sig-
nal quality. Section 2.2 reviews current methods for
measuring residual muscle EMG inside the prosthetic
socket. Section 2.3 summarizes current EMG control
paradigms, in which we focus on supervisory control
(i.e. hierarchical combination of an EMG decoder for
locomotion mode recognition with state-machine-
based autonomous control) and direct control (i.e.
continuous EMG control of prosthetic joint mechan-
ics). Within each control paradigm, we layout con-
siderations/approaches as well as evaluation methods
and reported results. Tables 1 and 2 in the appendix
provide additional information about study methods
and controller information for the reviewed studies.

2.1. Amputated muscle/nerve configuration
The configuration of the muscle-nerve attachment
(i.e. to bone or tendon) in the residual limb determ-
ines how existing biological signaling pathways can
be used for prosthetic feedback and neuromuscu-
lar control [32-34]. Many factors, such as the cause
of amputation (e.g. traumatic or dysvascular), resid-
ual limb length and shape, and subsequent muscle
atrophy, can influence existing number of motor
units, proprioceptors, and afferent neurons, which
alter muscle fiber function and quality [35-38]. The
type of surgical technique used for limb amputa-
tion is crucial for preservation of muscle tone and
length, motor unit recruitment, and proprioception.
For example, residual muscles must be stabilized to
either muscle or bone at appropriate tensions [39, 40]
because insufficient or too high tension can lead to
atrophy, contractures, and/or pain. These resulting
issues can affect residual muscle activity [39-41] and
the quality of EMG signals in prosthesis control.
Traditional surgical techniques for lower limb
amputations have had little evolution and do not
consider the neural interface for prosthesis control
[42]. The most common surgery for transtibial and



10P Publishing

J. Neural Eng. 18 (2021) 041004

transfemoral amputees discards distal tissue around
the amputation site and fixes isolated muscle bellies
through a combination of myodesis and myoplasty
[39, 43, 44]. Myoplasty sews opposing muscle groups
together while myodesis attaches muscles directly to
bone [39]. The nerves are transected and positioned
in soft tissue away from scar tissue, the incision, or
areas subject to prosthetic socket irritation, with the
goal of minimizing painful neuromas [39]. Residual
muscles after traditional amputation surgery can still
be activated by the brain and spinal cord, but the
EMG patterns during walking are often different from
the patterns in physically intact humans [45-47].

Recently, novel surgical techniques have been
developed that consider the human—machine inter-
face of a powered lower limb prosthesis. The goal
of the surgical techniques is not just to reshape
the residual limb, but to improve the neural inter-
face for adaptable, reliable neuromuscular control
of lower limb prostheses in dynamic real-world
environments.

One surgical technique, the agonist-antagonist
myoneural interface (AMI), attempts to use the
body’s natural mechanisms for proprioceptive feed-
back to enhance prosthetic control and embodiment.
In the AMI, surgeons reconnect agonist—antagonist
residual muscle pairs to restore reciprocal muscle
function [48]. When the agonist contracts, the mech-
anical linkage stretches the antagonist and vice versa.
Such reciprocal contractions engage length and force
receptors in both muscle-tendon units, resulting in
a more natural sensation of position and velocity
for improved motor control of residual muscles
[32, 48, 49]. One individual who received the AMI
procedure produced more isolated contractions of
antagonist residual muscles and improved stability
in gait-related tasks when using an EMG controlled
two-degree-of-freedom prosthetic ankle compared to
amputees without the AMI [32]. The individual also
exhibited reflexive prosthesis motions indicating a
higher level of embodiment. In order to produce this
antagonist mechanical linkage for individuals who
have already received a ‘traditional’ amputation sur-
gery, a regenerative neural interface has been pro-
posed to implement AMI through the use of tar-
geted muscle reinnervation (TMR) and muscle grafts
[50, 51].

TMR is a surgical technique that aims to restore
neuromuscular control sources in amputees by trans-
ferring residual nerves to muscles that are no longer
biomechanically functional [33, 34, 52]. The rein-
nervated muscles act as a biological amplifier to
restore EMG recording sites for the missing joint
control [33, 34]. For example, the tibial nerve
branch for transfemoral amputees can be connec-
ted to the semitendinosis and the common peroneal
nerve branch can be inserted into the long head
of the biceps femoris [53]. The EMG signals from
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these reinnervated thigh muscles can convey neur-
omuscular control signals for the prosthetic ankle
joint. Combining peripheral nerve surgery with EMG
based control strategies for prosthetics has led to
more coordinated control of multi-jointed prosthetic
devices. The majority of studies using TMR have been
on individuals with upper-limb amputations [33, 54,
55], but there is increasing focus on shifting to indi-
viduals with lower-limb amputations [53].

2.2. Neural interfaces

One of the most critical aspects of neural prosthesis
control is the accurate and robust sensing of neur-
omuscular activity (i.e. the control input). The limb—
socket interface of lower-limb prostheses, which are
subject to weight bearing forces, sweat accumulation,
changes in limb volume, make EMG sensing chal-
lenging (discussed more in section 3). A majority
of existing studies on myoelectric control of lower
limb prostheses have used bipolar surface EMG elec-
trodes to record neuromuscular control signals. One
major challenge with this approach is the attach-
ment of EMG electrodes within the prosthetic socket
or liner for reliable EMG recordings without com-
promising socket suspension or user comfort. One
study developed several socket-EMG interfaces that
integrated commercial EMG electrodes on the pros-
thesis socket directly [56]. Additionally, fluctuations
in residual limb volume over time can compromise
reliable skin contact with the sensor inside the socket.
Recent studies have used low profile, neonatal EMG
sensors within the prosthetic socket for successful
myoelectric prosthesis ankle control [57, 58]. A novel
prosthetic liner with embedded dome electrodes and
conductive textile fibers [59] can ease the sensor
placement and wire management and yield reliable
skin-electrode contact. Furthermore, new flexible,
low-profile EMG sensors [60] have the potential to be
fabricated directly within the prosthetic liner, ensur-
ing comfort and reducing skin contact problems that
arise from limb volume fluctuations.

Another challenge with myoelectric control of
lower limb prostheses can be the placement of bipolar
EMG electrodes to target specific residual muscles.
Although the volume of lower-limb muscles is rel-
atively large compared to those in the upper limbs,
identifying specific muscles is often challenged by
atrophy of residual musculature and lack of know-
ledge on amputation procedure. Fite et al used prin-
cipal component analysis of surface EMG to reduce
the effect of variation in measured residual muscle
activity caused by differences in sensor placement
across days [27]. This provided some success at stand-
ardizing the myoelectric signals for prosthetic control.

Implantable EMG sensor interfaces can mitigate
limitations accompanying bipolar surface electrodes.
Wireless intramuscular EMG sensors have been
developed recently to transmit muscle activity signals



10P Publishing

J. Neural Eng. 18 (2021) 041004

from residual muscles to the prosthesis without any
transcutaneous leads [61-66]. This interface has sig-
nificant potential to target specific residual muscles
not reachable with surface EMG and could be sur-
gically implanted in parallel with other surgical pro-
cedures such as osseointegration or nerve reinnerv-
ation. These invasive neural interfaces have been,
however, primarily tested in upper limb amputees
to date. We are aware of only one study that
implanted wireless intramuscular EMG sensors in
lower-limb amputees for prosthesis control [64].
Another promising technology is high-density, flex-
ible surface EMG. It may provide more informa-
tion and greater resolution of residual muscle activ-
ations for prosthesis control. High-density EMG
was first used with amputees to confirm reinnerv-
ation of residual muscles [67, 68]. Other studies
have used high-density EMG to remove motion arti-
facts [69, 70] in walking and measure muscular
activity from ankle flexors/extensors and invertors/
evertors for prosthetic control [71]. High-density
EMG shows significant potential for future prosthesis
control development through integration of indi-
vidual motor unit activations with prosthetic control,
targeting specific muscle locations easily, and remov-
ing artifacts caused by movement.

2.3. EMG control paradigms

Current commercialized robotic prosthetic legs (e.g.
PowerKnee™, Ossur, Iceland; EmPower, Otto bock,
Germany) do not rely on active neuromuscular
human input for control but instead use onboard kin-
etic/kinematic sensing to drive autonomous control-
lers for pre-programmed activities [72]. These com-
mercial devices employ finite-state machines to adjust
knee and/or ankle joint impedance or position the
joints based on predefined states such as the gait phase
(e.g. swing and stance) and locomotion mode (e.g.
stair ascent and level-ground walking) [10, 11, 18].
Transitions between gait phases can be triggered by
measurements of intrinsic sensors (e.g. a load cell or
motion sensor) in the prosthesis, while transitions
between locomotion modes often requires input from
the human user (e.g. specific body motions meas-
ured by sensors) [14, 73-75]. Existing autonomous
control approaches are sufficient to assist amputees
walking in well-defined environments, but they
are inadequate for unconstrained tasks that require
dynamic user intent and/or adaptation with vary-
ing environments (e.g. trail hiking, jumping, catch-
ing objects). These limitations have sparked interest
in the research community to develop neural/EMG
control that might improve adaptability and versat-
ility of robotic lower-limb prostheses. There have
been two prominent approaches to integrate amputee
users’ efferent neural signals (i.e. EMG signals) for
lower-limb prosthesis control in the current liter-
ature: supervisory EMG control and direct EMG
control (figures 1 and 2).
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2.3.1. Supervisory EMG control

In current commercial robotic lower limb prostheses,
transitions between locomotion modes are achieved
manually, which is cumbersome. Instead, super-
visory EMG control automatically recognizes the
user’s locomotion mode by EMG pattern recognition
(figure 1). By monitoring EMG patterns, prostheses
can hierarchically adjust low-level autonomous con-
trol (e.g. finite state machine) to switch control based
on recognized locomotion modes (2, 4, 29, 76, 77].
Essentially, supervisory EMG controllers are built
upon autonomous locomotion-mode-dependent
prosthesis control, where the joint mechanics in each
mode are dominated by the low-level autonomous
control. In this manner, the supervisory EMG con-
troller acts as a part of a finite-state machine and it
adjusts the mechanics of prosthesis joints only at the
locomotion mode transitions.

2.3.1.1. Input signals

In past studies, researchers used EMG signals recor-
ded from residual limb muscles as neural inputs
for locomotion mode recognition [4, 29, 78-81].
EMG electrodes are typically placed on the resid-
ual limb based on intact muscle anatomical loca-
tion, palpation, and visual inspection of EMG sig-
nals [11, 29, 82]. Because EMG pattern recognition
classified the locomotion mode based on multi-
channel signal pattern, cross-talk in EMG recordings
did not significantly influence classification perform-
ance. Within the existing studies, as many as nine
EMG electrodes on a residual thigh [4] or four elec-
trodes on a residual shank [80] were used. Groups
also experimented with augmenting classifier inputs
with muscles above the amputation level (e.g. the
gluteus maximus on transfemoral amputees or the
thigh muscles of transtibial amputees) [4, 83, 84].
However, adding sensors to intact muscles requires
additional sensors outside the prosthetic socket,
increasing the complexity for daily use and sensor
setup. Another group found TMR surgery on a
transfemoral amputee enhanced myoelectric con-
trol information recorded from reinnervated resid-
ual muscles, improving prosthesis control [29, 85].
The participants with TMR surgery had around
a 40% error reduction rate during virtual move-
ments compared to the amputee participants without
TMR [29]. Furthermore, pattern recognition that
combined EMG signals with intrinsic mechanical
measures (neuromuscular—-mechanical fusion) fur-
ther improved the accuracy and reliability of loco-
motion mode recognition [26, 73, 85]. This fusion-
based approach outperformed the algorithm that
solely used EMG or only used mechanical meas-
urements as system inputs [26]. With this, a source
selection study showed EMG signals were essential
for accurate prediction of user locomotion mode
transitions compared to mechanical measurements
alone [78].
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Figure 1. Supervisory EMG control paradigm for robotic lower-limb prosthesis. In supervisory EMG control, EMG signals
and gait events are used to classify the user’s locomotion mode (such as level-ground walking, stair ascent/descent, ramp
ascent/descent). The classifier’s decision determines transitions between the predefined finite-states and thus the specified
low-level control (e.g. impedance control) for prosthesis operation associated with the identified locomotion mode.

2.3.1.2. EMG feature extraction and phase-dependent
EMG pattern classification

EMG pattern recognition has been widely used for
upper limb prosthesis control [3, 8, 86-89], but
adjustments are necessary for lower-limb prosthesis
control. For control of upper-limb prosthesis move-
ments (e.g. hand open), the human user must attempt
the hand motion and hold the posture of the phantom
hand. During this period, the EMG signals are con-
sidered to be stationary, i.e. the distribution of the
stochastic signals does not change, and therefore the
EMG activation pattern is consistent for the classifier
to identify the user intended motion for continu-
ous prosthesis control. In contrast, EMG signals in
the lower limbs during walking are non-stationary
over a full gait cycle. As a result, a different EMG
pattern recognition strategy is necessary for lower
limb prosthesis control compared to upper limb pros-
thesis control. If we assume that: (a) gait EMG is
quasi-stationary within a gait phase, and (b) EMG
patterns recorded from residual muscles are differ-
ent between locomotion modes, but consistent within
the same mode, then a phase-dependent EMG pat-
tern recognition strategy can be implemented. This
approach has been enacted with a system consisting
of multiple pattern classifiers, each corresponding to
a gait phase [4] (figure 1).

In each phase, the pattern recognition includes
feature extraction, dimension reduction (optional),
pattern classification, and post processing of classi-
fication decisions (optional). Feature extraction is
an important step for accurate pattern classification.

Selected features from the input data sources should
maximally extract information that can distin-
guish between locomotion modes (classes). Focus-
ing on EMG features, time domain (e.g. number
of zero crossings, mean absolute value, and slope
sign change) [26, 29, 80, 90] and frequency domain
(e.g. medium frequency [76], bi-spectrum [77]) fea-
tures have been used previously. Additionally, adding
autoregression coefficients for EMG features can
account for potential signal degradation, fatigue,
and motion artifacts [29, 73, 91-93]. Groups have
also used dimension reduction techniques, such as
principal component analysis, to reduce the dimen-
sion of feature vectors and prevent model overfit-
ting [79, 83, 92, 94]. Other feature/source reduction
methods explored in lower-limb prosthesis control
include sequential forward and backward selection
and  minimum-redundancy-maximum-relevance
algorithms [78]. The extracted features were fed to
a pattern classifier for locomotion mode recognition.
A variety of commonly used classifiers have been
used, e.g. artificial neural networks, support vector
machine (SVM), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), and dynamic
Bayesian networks (DBNs). DBN can be combined
with LDA to provide time history and feed forward
information to the classifier [92]. The DBN model
predicts the future locomotion model, while LDA
labels the previous stride. This structure is especially
helpful with EMG inputs because the classifier can
re-learn EMG patterns over time or across multiple
training sessions. Finally, a post-processing method,
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such as majority vote [26], has been considered to
further reduce classification errors, but increased the
system delay for real-time applications.

2.3.1.3. EMG pattern recognition based prosthesis
control
In practice, EMG or data fusion-based decoders
require model training before applying them to
real-time prosthesis control. Model training requires
collection of labeled training data (i.e. input data with
class labels), followed by establishing the parameters
in the classifiers. Collecting enough training data
for multiple conditions, such as sit-to-stand, ramps,
stairs, and level-ground walking across multiple
speeds could take hours, on top of time needed for
tuning/customizing prosthesis control parameters for
each user [29]. In addition, daily recollection of EMG
training data for each individual user is required for
reliable performance [29, 78]. A means for efficient
and automatic training data collection could minim-
ize users’ time and effort to calibrate the system [95].
During real-time operation, the trained EMG
classifier estimates the locomotion mode, which trig-
gers task state transitions in the finite-state machine
for robotic leg control (figure 1). One challenge is
EMG pattern recognition approaches are sensitive
to EMG signal variability caused by disturbances
(like motion artifacts and electrode location shifts
over time/multiple sessions) or physiological changes
(such as muscle fatigue) [80, 93, 96-99], which
threatens the reliability of the supervisory EMG con-
trol system and user safety. Beyond re-training the
pattern classifier, other solutions have been proposed
to improve the robustness of locomotion mode recog-
nition system. For example, classifiers with redund-
ant EMG sensors can detect abnormal signals, reject
corrupted EMG channels, and only select viable EMG
signals and mechanical sensor inputs for robust per-
formance [96]. Adaptive pattern recognition, which
can update the parameters in the classifier while
using it in real-time, can be another promising solu-
tion to allow for robust classifiers better equipped to
handle real-world settings [92, 100]. Another chal-
lenge for supervisory EMG control is the definition
of timing to trigger the switch for low-level pros-
thesis control mode [101]. Although EMG pattern
recognition provides real-time decisions regarding
the user’s locomotion mode, the low-level controller
parameter only updates at one critical timing that is
defined for each type of task transition. For example,
Huang et al defined the critical timing for transitions
from level-ground walking to stair ascent at the pros-
thesis foot toe-off before stepping on the staircase
to ensure a smooth and safe switch of walking ter-
rain in amputee users [26]. Table 1 in the appendix
summarizes existing literature related to EMG-based
locomotion mode recognition and supervisory con-
trol with detailed approaches used in each study. Note
we only included the studies that tested the system

6

A Fleming et al

on individuals with lower-limb amputations in this
table.

2.3.1.4. Performance/evaluation metrics

The performance of supervisory EMG control sys-
tems is typically evaluated by classification error/
accuracy rate, the confusion matrix during steady
state activity, and/or prediction accuracy of task
transition and prediction time. The reported accuracy
rate ranges from 75% to 99%. Usually task transition
can be predicted accurately before the defined critical
timings [ 26, 77, 92, 93]. The most common classifica-
tion error is between ramps and level-ground walking
[29, 92, 102]. However, how these engineering per-
formance metrics influence the amputee user’s loco-
motion performance is unclear. Zhang et al system-
atically studied the influence of errors and delays in
supervisory EMG control of robotic knee prostheses
on human walking stability [101, 103]. The research
found that not all errors disturb measured dynamic
stability and the user’s perceived walking stability; it
depends on the timing and cumulated mechanical
work change around the prosthesis knee joint. The
group also suggested a range of timing for switching
prosthesis control mode that ensures user safety dur-
ing terrain transitions [101].

Supervisory EMG controllers are inherently
autonomous finite-state-machine-based controllers
where the low-level autonomous control law domin-
ates the joint mechanics. Even though the EMG sig-
nals are included in the control algorithm, the EMG
control only functions during locomotion mode (i.e.
state) transitions and the approach is inadequate to
enable the prosthesis to assist tasks that have not been
preprogramed in the low-level control. This approach
is also problematic for tasks that do not readily con-
form to the autonomous finite-state-based controller
(e.g. dancing, sports activities).

2.3.2. Direct EMG control

While most lower-limb prosthesis controllers meas-
ure prosthesis activity or human muscle activity
to inform a state prediction for autonomous con-
trol, direct EMG control uses active and continu-
ous input from the human user muscle activity to
determine prosthesis dynamics. Thus, direct EMG
control mimics the biological neural control path-
way in an intact musculoskeletal system. The effer-
ent neural signals (EMG) of the residual agonist—
antagonist muscle pairs are used to directly modu-
late prosthesis joint mechanics (i.e. impedance, angle,
and/or torque) (figure 2). The prosthesis joint mech-
anics can be determined by the human feedforward
neural output. This method has shown increasing
success in improving various activity performance
and postural control in a recent study [58]. Note that
direct EMG control here is defined as a myoeletric
control method for powered prostheses, which fol-
lows antagonistic muscle function around a joint for
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Figure 2. Direct EMG control paradigm for robotic lower-limb prosthesis. In direct EMG control, the magnitude of of EMG
signals recorded from antagonistic residual muscles directly and continuously modulate the prosthesis joint dynamics. Various
control laws can be used to continuously map EMG activity to ankle control torque to drive prosthesis dynamics. For example,
EMG magnitude of residual ankle antagonistic muscles (ul and u2) can activate an EMG-driven musculoskeletal model to

estimate intended ankle control torque.

movement control. Therefore, non-biomimicry map-
pings of EMG signals to joint mechanics, such as
neural networks, are not discussed in this section.

2.3.2.1. EMG decoding methods and control
The inputs of the decoder for direct EMG control
are the EMG signals recorded from residual ant-
agonistic muscles. Most commonly, the magnitude
of the EMG signals proportionally increases a pros-
thetic joint parameter [5, 104]. One challenge of this
approach is that the antagonist residual muscle some-
times inadvertently contracts as the amputee intends
to activate the agonist muscle only, causing a certain
level of involuntary co-activation [27, 45]. Involun-
tary co-activation limits the ability of amputees to
access portions of the control input space like isol-
ated joint flexion or extension. To avoid this prob-
lem, one approach incorporates an EMG classifier in
the direct EMG control scheme to identify the isolated
intended joint motion (e.g. flexion vs extension) first
[94]. This approach has been evaluated on individu-
als with amputations in the sitting position, but not
during walking. Another solution first transforms the
multiple-channel EMG inputs via principal compon-
ent analysis [27] or non-negative matrix factorization
[71] to obtain the isolated ‘motor primitive’ repres-
enting the voluntary control for each studied motion.
These decoding algorithms may help amputees with
involuntary co-activation [45]. However, it remains
to be seen whether amputees are capable of generat-
ing more isolated residual muscle contractions given
sufficient training.

A large portion of work has used impedance con-
trol laws, where neuromuscular activity modulate one
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or multiple joint impedance parameters (i.e. set stiff-
ness, equilibrium position, etc). Initial efforts with
impedance control used residual muscle activity to
proportionally modulate equilibrium velocity (i.e.
rate of change of the equilibrium point) [27, 94].
Subsequent studies incorporated relative co-activity
from residual muscles to additionally modulate the
set stiffness value in the impedance control law [27,
28, 48, 71]. These studies have shown the ability
for amputees to volitionally modulate both stiffness
and position of the prosthesis, showing promise for
its commercial use. Another common output of the
decoder is joint torque. While using the impedance
control law described above, Fite et al also incor-
porated additional torque gain terms for the resid-
ual thigh flexors/extensors to proportionally gen-
erate control torque for a prosthetic knee [104].
This allowed the direct torque terms to be weighted
depending on phase of gait (stance vs. swing) and
for the impedance control to be more responsible
for limb kinematics during the swing. Using a pneu-
matically actuated prosthetic ankle, Huang et al used
EMG magnitude of the residual gastrocnemius (GAS)
to proportionally modulate plantar-flexor torque
[5, 105], and this control method has been extended
to two agonist—antagonistic residual muscles to con-
trol both dorsi- and plantar-flexor torques [57, 58].
Musculoskeletal models are another possible
means of EMG decoding method for direct EMG con-
trol (figure 2). The EMG magnitude, extracted from
EMG signals of residual agonist—antagonist muscles,
activates a virtual musculoskeletal model (similar to a
human biological joint) to estimate the missing joint
mechanics. However, this type of control has only
been tested with a virtual ankle joint for transtibial
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amputees in a sitting position [81] and with able-
bodied individuals walking with a bent-knee adapter
[106].

2.3.2.2. Activity evaluation

The gold-standard task to evaluate direct EMG con-
trol paradigms in the literature has been locomotion.
For transfemoral amputees, direct EMG control has
been tested for over-ground walking [27, 107] and
stair ascent [104]. These preliminary studies with an
individual amputee showed potential for amputees
to adapt residual thigh muscles to control prosthetic
knee torque during cyclic movements like walking.
For transtibial amputees, direct EMG control has
been tested in over-ground walking using the resid-
ual GAS [5, 105]. Amputees successfully adapted
their residual muscle activation once given feedback
of the prosthetic ankle state. Clites et al incorpor-
ated multiple residual muscles into prosthesis control
for stair ascent and descent for transtibial amputees
[48]. Direct EMG control was also tested in stair
ascent/descent and over-ground walking on a tran-
stibial amputee after receiving an AMI surgery [48].
The AMI recipient demonstrated restored reflexive
muscle activity and improved prosthesis embodi-
ment, compared to amputees without AMI proced-
ures using direct EMG control.

One of the benefits for direct EMG control is that
it is not constrained to rhythmic locomotor tasks.
Instead, direct EMG enables prosthesis assistance for
a variety of activities in daily living. Unfortunately,
there has been limited work to understand amputees’
ability to use direct EMG control for other daily
activities. Rogers et al demonstrated the ability for
EMG control of a novel powered ankle prosthesis to
augment rock climbing in a person with transtibial
amputation [108]. One preliminary study investig-
ated direct EMG control use during situations with
expected perturbations [57]. This study showed a
transtibial amputee could produce anticipatory pos-
tural adjustments on an EMG-controlled prosthetic
ankle to significantly improve stability after a per-
turbation. They also studied the ability for a transt-
ibial amputee to control a variety of standing pos-
tural control tasks like quiet standing on firm and
compliant surfaces as well as load transfer tasks [58].
The results demonstrated the ability for an amputee
to significantly improve bilateral EMG activation syn-
chronization and standing postural control with dir-
ect EMG control of a prosthesis ankle after extended,
guided training with a physical therapist. These afore-
mentioned activities have never been demonstrated
by autonomous or EMG supervisory prosthesis con-
trol. The existing designs of direct EMG control dis-
cussed in this section are summarized in table 2 in the
appendix along with critical study components (i.e.
measured muscle activity, EMG decoding methods,
control parameters, level of amputation, and activity
used for evaluation).
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Figure 3. A human motor control framework (adopted
from the framework reported in [109] to guide future
research in myoelectric control of robotic lower limb
prostheses. The actual state of the distal limb is disrupted
after limb amputation (red dashed lines). When motor
commands (EMG signals of residual muscles) are used to
drive a robotic prosthetic limb, humans need to adapt
internal model control parameters (the inverse model and
forward model) via repetitive motor practice to minimize
errors between the desired state and the predicted state,
between the desired state and the actual state, and between
the predicted state and actual state. This review presents the
framework as a means to facilitate future research
improving an amputee’s capability to produce appropriate
motor commands (residual muscle EMG activity) and
control the robotic prosthesis.

3. Current challenges and opportunities

3.1. Questions from motor control perspective
and future research directions
The existing literature has shown scattered ideas for
using EMG signals to control the robotic lower limb
prostheses, from using EMG to switch the prosthesis
control mode (supervisory control) to using EMG for
continuous control of joint torque (direct control).
Despite promising pilot results, the future design of
EMG control, in our opinion, should be guided by a
systematic framework, built upon theory or mechan-
istic approaches. We argue that if the goal of EMG
control of robotic prostheses is to enable intuitive
prosthesis use and bionic function, human motor
control theory is a necessary framework to consider.
Internal models have been one of the estab-
lished theoretical frameworks to interpret human
motor control, although the detailed interpretations
of the motor representations and applied computa-
tional models vary across groups [109-113]. Here,
we adopted the framework reported by Frith et al
(figure 3), which we use to examine the abnormal-
ities of motor control in different patient popu-
lations, including amputees. The key to proficient
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motor performance is the establishment of a rela-
tionship between motor commands and actual sys-
tem state (i.e. internal models). Note the state here-
after means the human motor control system state as
distinguished from the state in a finite-state machine.
Awareness of discrepancies among the desired state
(related to the goal of the system), actual state, and
predicted state enables the update of internal mod-
els for improved motor performance via repetitive
practice. When biological muscles and skeletons are
placed with artificial actuators and machines, the ori-
ginal internal models are disrupted and need to be
updated (re-learned) to capture the new relationship
between motor commands (including EMG signals of
residual muscles) and system state (including state of
prosthesis) (figure 3). Hence, we use this framework
of human motor control to guide our discussion on
open questions and future research opportunities in
EMG-based lower limb prosthesis control.

3.1.1. Are lower limb amputees capable of producing
needed muscle activity (motor commands in figure 3)
sufficiently to learn appropriate internal models for
prosthesis control?

In order to apply this motor control framework in
figure 3, we must begin by characterizing the pos-
sible control inputs that can be used to learn new
internal models, post-amputation, for prosthesis con-
trol. Because EMG signals are the source of control,
answering this question is the key to the success
of neural prosthesis control. Many existing studies
assume activity of residual muscles is similar to activ-
ity of intact muscles. However, this assumption is
not necessarily true, evidenced by studies that found
abnormalities in residual muscle activation patterns
during walking [46, 47]. When asked to voluntar-
ily coordinate the activation of residual antagon-
istic ankle muscles (i.e. the residual tibialis anterior
(TA) and GAS), transtibial amputees showed large
variation in their capability to reach certain levels
of coactivation [45]. One amputee demonstrated an
extensive capability in co-activation of the residual
TA and GAS, while some amputees could only activ-
ate one muscle at a time. In the latter case, design-
ing a direct EMG prosthesis controller requiring flex-
ible coactivation of antagonistic muscles to function
is probably not suitable for these individuals. Sim-
ilarly, limited co-activation patterns among resid-
ual muscles may constrain the number of move-
ment classes distinguishable by an EMG pattern
recognition-based decoder.

One fundamental unanswered question is what
causes the abnormality and large inter-individual
variations in activation and coordination of residual
muscles in individuals with limb loss. As previously
discussed, surgical techniques and altered peripheral
nerve/muscle configurations due to limb amputa-
tions can be contributors. In addition, the lack of
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sensory feedback and discontinued use of the ampu-
tated limb causes changes in the motor control sys-
tem and motor representations, which may modify
the feedforward motor commands over time. Evid-
ence providing greater insight into these possibil-
ities has been limited. Further research efforts in
understanding the alteration of physiology in resid-
ual muscles and the peripheral and central nervous
system after limb amputation may unveil the cause of
abnormality and variations in coactivation of residual
muscles. The results would help find solutions (e.g.
a new combination of surgical techniques, implants
[114], efferent and afferent neural interfaces) to fur-
ther improve EMG control (enriched neural inform-
ation, improved reliability, and voluntary controllab-
ility) and determine appropriate and practical EMG
decoding designs.

3.1.2. Can lower limb amputees adapt and learn how
to produce appropriate EMG activation for prosthesis
control (i.e. updates of internal models in figure 3)?
EMG decoding methods might influence the capab-
ility of amputees to adapt and reliably use EMG con-
trolled robotic prostheses. Previously, there have been
two basic concepts in designing EMG decoders. One
uses humans’ adaptability to learn how to use an EMG
decoder with a biomimetic and straightforward map-
ping, such as proportional EMG control [5]. In this
case, when errors between desired and actual pros-
thesis states occur (see figure 3), amputees can learn
to adjust the activation level of residual muscles to
achieve an intended motion. Another design is based
on machine learning algorithms with the hope that
artificial intelligence can adapt to the human’s exist-
ing EMG activation pattern without requirement of
human adaptation, such as EMG pattern recognition
(4, 26, 80, 84, 91]. However, such a design might limit
human adaptation and learning. For example, in the
supervised EMG control, when EMG pattern recog-
nition error happens, users may not even sense the
error between desired and actual state of the pros-
thesis as observed in our previous study [103]. Even if
the users can sense the error, how to modify residual
muscles’ activity to correct errors is not straightfor-
ward to the users because the mapping from resid-
ual muscle pattern to movement classes is a black
box. Determining appropriate characteristics in EMG
decoder design (e.g. continuous vs discrete, black box
vs white box mapping) that enable human adapta-
tion will be important for future prosthesis techno-
logy. It may even lead to the merging of the two design
concepts, leveraging both machine adaptation and
human adaptation for faster and more robust EMG
prosthesis control.

To our knowledge, in-depth studies examining
the systematic training of lower limb amputees in
using EMG controlled lower limb prostheses are miss-
ing from the literature. These types of studies are
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needed to understand the potential and limits of
EMG control for restoring the motor function of indi-
viduals with lower-limb amputations. Collaborations
between researchers in physical therapy and engin-
eering are needed to develop effective training meth-
ods and protocols that enhance human adaptation in
using EMG controlled prostheses for activities of daily
living. This line of research could also open many
exciting opportunities to address questions related to
amputee motor control and learning in gait and pos-
ture. For example, exploring adaptations in muscle
activation patterns after training in using EMG pros-
thesis control may reveal neuroplasticity of motor
control mechanisms in amputees. Human motor
control models [110, 113, 115-117] may explain
variations of training effects across individuals and
identify potential factors (such as physiological con-
straints or peripheral nerve injuries) that limit adapt-
ability in using EMG controlled lower limb pros-
theses. These factors can be also used to predict an
individual amputee’s capability for using an EMG
controlled prosthesis for improved motor function in
the future.

3.1.3. Does EMG control of robotic prosthetic legs
increase mental load?

Walking, the most common daily activity involving
lower limbs, requires little cognitive effort in able-
bodied adults [118]. The question often facing
researchers, when designing EMG controlled robotic
prosthetic legs, is whether the amputee user has to
‘think’ about how to activate residual muscles and
‘pay attention’ to prosthesis joint motion at all times,
which is undesirable because it increases the user’s
cognitive load. Additional mental load could be det-
rimental to postural stability and balance confid-
ence in walking [119, 120], especially for individuals
with lower limb amputations since they have already
reported the need to ‘concentrate on every step’ [119]
without neuromuscular control.

Though cognitive load has been quantified for
the lower limb amputee population [121], we are
unaware of any research quantifying effects of lower-
limb prosthesis control approaches (particularly
EMG control approaches) on cognitive load. Super-
visory EMG control avoids the need for continuous
neuromuscular control [4, 26, 29] and may have
advantages in reducing cognitive load. The EMG
decoder is discrete and only acts during task mode
transitions. Therefore, it does not impose additional
mental load to amputees in using neuromuscular
control most of the time in walking. For direct EMG
control, extra mental processes while learning how
to use EMG to operate a prosthesis joint during task
performance are initially needed [5, 58, 107]. How-
ever, mental load may reduce after training. In addi-
tion, as direct EMG prosthesis control mimics human
neuromuscular control mechanisms for the biological
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limb, we postulate that long-term use of direct EMG
control may restore original motor pathways for miss-
ing limb control and normalize the mental workload
needed in lower limb amputees in walking. Testing
this hypothesis would enhance our understanding
of how training alters human—machine performance
in the long run. To achieve this aim, future research
needs to identify methodologies and novel technolo-
gies (e.g. mobile EEG [122, 123]) that can quantify
human cognitive load in locomotion beyond tradi-
tional dual task paradigms [124] or questionnaires
[125].

3.1.4. Does restoration of haptics and proprioception of
prosthetic limbs further assist feedforward
neuromuscular control of robotic legs?

This question is motivated by the human motor con-
trol framework in figure 3, in which the feedback
of actual limb state is necessary but is missing in
individuals with lower-limb amputations. In general,
the actual lower-limb state is fed back via haptics
sensation in the foot and proprioception in lower
limbs. Therefore, we discuss these sensory modality
individually.

Haptic sensation is important for humans to
interact with environments, such as object manip-
ulation via hands [126], identifying terrain type
[127], and proper foot placement [128]. For indi-
viduals with lower-limb amputations, haptic sensa-
tion is reduced with current prosthesis technology.
Although haptic sensation of prosthesis foot con-
tact can be received via the residual limb within
the socket interface or residual bones via osseoin-
tegration [129], the sensation lacks spatial resolution
to directly map plantar foot contact areas with the
ground. Recent technologies in afferent nerve stim-
ulation [130-132] aim to evoke haptic sensation of
the missing feet in individuals with lower limb ampu-
tations. A case study has shown promising prelim-
inary results in improving gait stability, energetic
efficiency, and cognitive load even with a passive pros-
thesis [131]. Coupling novel afferent interfaces with
feedforward neuromuscular control for closed-loop
prosthesis operation has not been fully demonstrated
yet. Understanding the effects of haptic sensation of a
prosthetic foot on the ability of amputees to coordin-
ate residual muscle activity for EMG prosthesis con-
trol is an exciting area for future work.

Proprioception (feedback of joint position,
muscle force, and movement) also plays a critical
role in human movement control. Artificial afferent
nerve stimulations or targeted sensory reinnervation
[133] seldomly evoke proprioceptive sensations. The
innovative AMI procedure (discussed previously)
combined with muscle stimulation has been the most
promising method to evoke proprioception so far
[48]. A patient case study has shown more normative
activity (reduced coactivation and tonic activation)
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of residual muscles in a transtibial amputee with AMI
surgery, partially due to increased proprioception.

For individuals who have no access to the AMI
procedure, can they be aware of and predict pros-
thesis motion? Based on the human motor control
framework (figure 3), training of amputees in direct
EMG control of a prosthesis itself may aid the sense
of prosthesis motion. This is because estimation of
the actual motor system state (such as limb move-
ment and position) depends not only on the affer-
ent feedback, but also from the stream of efferent
movement commands (efference copy) to the residual
muscles (figure 3) [109, 112]. This may explain why
amputees can still sense the ‘movement’ the miss-
ing limb, even though the peripheral receptors no
longer exist. The perception of missing joint move-
ment gradually diminishes due to internal model
updates. When the function of efferent motor com-
mands (EMG signals) is restored for prosthetic joint
control, through practice, the internal models could
be re-built. Therefore, we postulate that through dir-
ect EMG prosthesis control and sufficient training of
amputees in learning internal models (relationship
between EMG commands and action of prosthesis),
perhaps amputees could regain awareness and pre-
diction of prosthetic limb movement/position, even
without artificial proprioceptive feedback or visual
feedback of the prosthetic limb. Additional research
is needed to test this hypothesis.

3.2. Current challenges from a clinical practice
perspective and potential solutions

Since prostheses are assistive devices for daily use, we
also want to highlight the research and technology
development needed towards making EMG control
clinically viable.

3.2.1. Are EMG signals too noisy for daily practice?

Physical disturbances within the prosthetic socket can
affect the interface between the skin and the surface
EMG electrodes (such as humidity, shift of elec-
trode contact, motions and collision). These disturb-
ances elicit variations in time and frequency com-
ponents of EMG recordings, interfering with EMG
control [134, 135]. One study reported that socket
pressure was highly associated with EMG activity
of residual muscles [136]. Unfortunately, system-
atic investigation of the key factors of socket design
and fit that affect EMG signals of residual limb
muscles is lacking. Maintenance of the EMG interface
is critical for successful application of EMG-based
prosthesis control in everyday settings. Implantable
EMG sensors [61, 63, 137], flexible and stretch-
able EMG sensors and sensor arrays [69, 138], and
new prosthesis attachment methods (e.g. osseointeg-
ration [129]), provide potential to eliminate com-
plications caused by physical disturbances of EMG
interfaces within a socket and promote EMG-based
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prosthetic control for daily use. In fact, some excit-
ing feasibility study of implantable EMG sensors for
lower limb prosthesis control has already been car-
ried out on a lower limb amputee [64], which shows
improve robustness in EMG recordings for real-
time prosthesis control compared to surface EMG
recordings.

EMG signals are random processes often deemed
noisy and unreliable for prosthesis control. We argue
that the reliability of EMG decoders depends on what
and how information in the EMG signals is extrac-
ted. As reviewed, information of EMG signals used
for prosthesis control has been extracted by various
features (e.g. mean absolute value, number of zero
crossings, median frequency of the power spectrum
density), estimated from the signals in a time win-
dow. Some features are sensitive to the aforemen-
tioned physical or physiological disturbances, while
other features can be more resilient to these disturb-
ances [99]. Identifying reliable EMG features more
responsive to user movement intent and less sensit-
ive to noise and disturbances can further improve the
robustness of EMG decoders. One promising feature
is the firing rate of motor units captured by high-
density surface EMG recordings [139, 140]. This fea-
ture counts the number of motor unit action poten-
tials per time bin, which is less influenced by sig-
nal noises or magnitude and frequency drift. It is a
promising method to address the reliability of EMG
decoding methods. It is not hard to imagine that a
soft, high-density EMG grid could be built into the
prosthesis liner for prosthesis control in the future.
Another potential method is deep learning, which
can automatically learn features for accurate and reli-
able classification. This method has been explored in
EMG pattern recognition for upper limb motion clas-
sification recently [141], and can be extended into
EMG signals in lower limbs. In addition, various ran-
dom signal processing techniques and fault-tolerance
mechanisms [134] can be explored in the future to
address the robustness of EMG control of robotic
prostheses.

3.2.2. Are EMG controlled prostheses safe to use?

The failure of lower-limb prosthesis control might
lead to falls and injuries in lower-limb amputees.
Understanding the amputee user’s safety when rely-
ing on an EMG controlled prosthesis is essential to
evaluate the device’s practical value. Previous stud-
ies have investigated effects of EMG pattern recogni-
tion errors selecting locomotion mode [101, 103] and
identified a set of critical pattern recognition decision
errors that disturb the user’s walking stability and per-
ceived stability. Future work should focus on how to
eliminate these critical errors to ensure the user’s bal-
ance and safety. For continuous, direct EMG con-
trol, the error correction and tolerance become the
responsibility of the human motor control system
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[142]. Future research may focus on how to train
individuals with lower-limb amputations to calibrate
the forward model (figure 3) for error tolerance and
correction when performing tasks with direct EMG
control of a robotic prosthetic leg.

3.2.3. What are the benefits and limitations of EMG
prosthesis control, compared to existing autonomous
prosthesis control, for daily prosthesis use?
Understanding the benefits and limitations of
EMG prosthesis control, compared to the existing
autonomous approach, is necessary for future clinical
translation. In terms of function, robotic machines
are good at tasks in known contexts with precision
and fast feedback control rates but lack adaptabil-
ity and flexibility. On the other hand, human motor
control systems are slow and have large variation
in movement output but are highly adaptable to
deal with varied environments and versatile activ-
ities. This view is applicable to autonomous con-
trol versus EMG-based control of robotic lower limb
prostheses. Existing autonomous controllers are very
reliable for biomechanically well-established, stereo-
typical tasks (such as walking). However, they are
inadequate to handle unstructured daily environ-
ments and activities that cannot be easily predicted or
pre-programmed. On the other hand, EMG control
of lower-limb prostheses enables versatile prosthesis
function adaptive to various contexts, but control can
be limited by the lack of accuracy and capability of
amputees to produce needed EMG control signals.
One way to explore the benefits and limits of the two
approaches in the future is via task allocation [143].
We can classify whether a task can be achieved by
only one method or both autonomous and human
neuromuscular control; in the latter case, additional
research should compare the two methods on system
design complexity and the user’s task performance.
The gained knowledge could guide future design of
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robotic lower-limb prosthesis control, shared by both
autonomous and human motor controllers.

In terms of utility and user acceptance, we should
also consider evaluating both autonomous and EMG
control methods by measuring the user’s learning
rate, cognitive workload, trust in the robotic pros-
thesis, satisfaction, and sense of embodiment. To
our knowledge, these user-centered evaluations have
not been systematically quantified and reported, even
on existing autonomous prosthesis control schemes.
Collaboration with researchers in cognitive ergonom-
ics and clinical outcome measurements are needed to
evaluate the user’s acceptance and utility of various
controllers for robotic lower limb prostheses.

While the challenges and opportunities we have
discussed here are important, this is not an exhaustive
list. Several factors, such as device cost, limited pros-
thesis reimbursement, and power requirements stand
as challenges in the path translating new prosthesis
technology to end users. The introduction of EMG
control will likely face these challenges as well. How-
ever, the benefits of EMG control to prosthesis func-
tion, reviewed here, demonstrates the value of con-
tinued investment in its development. Further, these
challenges likely do not all need to be addressed before
this control can begin to be introduced in new lower-
limb prosthetic technology.
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Table 2. Direct EMG control review summary.

A Fleming et al

Modulated
EMG decoding control Amputation
Author® Muscle® method parameters type Activity
Haetal [94]  Quadriceps, Envelope (2 Hz Reference angular Transfemoral Virtual tracking
hamstring cutoff), 20% MVC  velocity task (sitting)
(unspecified) threshold QDA
Hoover et al VL, VM, RE, BF Envelope (5-10 Hz Flexion/extension Transfemoral Level-ground
[107] cutoff). torque walking
Hoover et al BE RE, ST, VL, Envelope (2.5 Hz Flexion/extension Transfemoral Stair ascent
[104] VM cutoff) torque
Dawley etal  Quadriceps, Initial processing not Reference angular Transfemoral Level-ground
[27] hamstring, described, principal  velocity, joint walking
(unspecified) component analysis  stiffness
(flexion/extension)
Wang et al GAS (unspecified Low-pass filtered Plantar flexor torque Transtibial ~ Level-ground
[28] head) (15 Hz), rectified gain (push-off only) walking
envelope (200 ms
moving average
window)
Alcaide- TA Envelope (10 Hz Virtual object Transtibial ~ Virtual tracking
Aguirre et al cutoff) acceleration task (sitting)
[150]
Chen et al TA, GAS Envelope (2.5 Hz Reference angular Transtibial ~ Virtual target
[151] (unspecified cutoff), PCA (flexion/ velocity, joint hitting (sitting)
head) extension) stiffness
Huang et al GASL Envelope (2 Hz Pneumatic artificial ~ Transtibial ~ Level-ground
[105] cutoff) muscle force walking
Huang et al [5] GASM or GASL Envelope (2 Hz Pneumatic artificial ~ Transtibial Level-ground
cutoff) muscle force walking
Huang et al TA, GASM or Envelope (2 Hz Virtual object Transtibial ~ Virtual ballistic
[152] GASL cutoff) position target hitting
(sitting)
Clites et al [48] TA, GASL, TP, Envelope (100 ms Flexion/extension Transtibial Virtual target
PL moving average torque hitting, stair
window) ascent/
descent, obstacle
walking
Fleming etal  TA, GASL Envelope (2 Hz Virtual spring Transtibial ~ Virtual balancing
[23] cutoff) stiffness inverted pendulum
(sitting)
Huang et al TA, GASL Envelope (2 Hz Virtual cursor Transtibial ~ Virtual control
[45] cutoff) position input space filling
(sitting)
Dimitrov etal TA, GASM, Envelope (5 Hz Equilibrium angle, Transtibial Target hitting
[71] GASL cutoff), non-negative joint stiffness (standing),
matrix factorization walking (with
(125 ms windows) passive device)
Flemingetal = TA, GASL Envelope (2 Hz Pneumatic artificial ~ Transtibial  Quiet standing

(58]

cutoff)

muscle force

(vision, no vision,
foam and firm
surfaces), Sit-to-
stand, load
transfer.

2 Authors are listed in order of year published.

b Muscle abbreviations: biceps femoris (BF), gastrocnemius (GAS), gastrocnemius medialis (GASM), gastrocnemius lateralis (GASL),

peroneus longus (PL), rectus femoris (RF), semitendinosus (ST), soleus (SOL), tibialis anterior (TA), vastus lateralis (VL), vastus
medialis (VM), tibialis posterior (TP).
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