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THE STRUCTURE OF CONSERVATIVE GRADIENT FIELDS*

ADRIAN S. LEWIST AND TONGHUA TIANT

Abstract. The classical Clarke subdifferential alone is inadequate for understanding automatic
differentiation in nonsmooth contexts. Instead, we can sometimes rely on enlarged generalized gra-
dients called “conservative fields,” defined through the natural pathwise chain rule: one application
is the convergence analysis of gradient-based deep learning algorithms. In the semialgebraic case, we
show that all conservative fields are in fact just Clarke subdifferentials plus normals of manifolds in
underlying Whitney stratifications.
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1. Introduction. Popular deep learning solvers like PyTorch [11] and Tensor-
Flow [6] increasingly rely on automatic differentiation for gradient-based optimization
algorithms. Given an input point € R", the solver returns a gradient-like vector
g € R" that depends not just on the objective function f itself but rather on its
algorithmic representation. At least when f is smooth, we might hope that ¢ is
the gradient V f(x), but even then, nonsmooth algorithmic ingredients may produce
surprises. For example, the formula

fls) = ((73)"' + s) — st (seR)

(where st = max{0, s}) always outputs the value zero, and yet one implementation [3,
Appendix A.2] of automatic differentiation in TensorFlow outputs the derivative

(11) sw={1 02

For other discussions of the same issue, see [7, Chapter 14] and [9, 10].

Despite this disconcerting behavior, practitioners widely apply automatic differ-
entiation to nonsmooth objective functions f: R" — R, as discussed in [8]. For
the particular case of stochastic subgradient descent algorithms, see [5]. Fortunately,
as demonstrated by [2], automatic differentiation at points z € R"™ typically does
produce outputs g(z) € R" with gradient-like properties: time-dependent absolutely
continuous trajectories x(-) satisfy the chain rule

(1.2) Lf(z) = (Lz,9(z)) for almost all t,

thereby justifying the convergence of the stochastic subgradient descent method [5].
Thus motivated, Bolte and Pauwels [2] develop a novel and elegant notion of
generalized derivative for locally Lipschitz objectives f precisely around the chain
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rule. They consider conservative ficlds: closed set-valued mappings G: R* =3 R"
with the property that the chain rule (1.2) holds providing that we always select
g(x) € G(z). For example, backpropagation for deep neural networks in practice
produces conservative fields [2, Corollary 6].

Being locally Lipschitz, f is differentiable on a full-measure set Q C R™. As
observed in [2], the value G(z) for any conservative field G' must contain the set

{liy;an(z,-) 1Ty, To,.. . €8, 2 T}

and hence, if convex, also its convex hull 8f(z), the Clarke subdifferential [4].

An objective function with a conservative field is called path differentiable. The
theoretical existence question has a long history, surveyed in [2] and dating back
to [12], but in practice, objectives are always path differentiable: examples include
smooth and convex functions and their sums and differences, as well as semialgebraic
(or, more generally, tame [13]) functions. The Clarke subdifferential is the minimal
convex-valued conservative field for any path differentiable objective. However, as
the example (1.1) makes clear for automatic differentiation, we are forced to consider
conservative fields larger than the Clarke subdifferential. What do they look like in
general?

In this work we focus on the most concrete case, where objective functions and
conservative fields are semialgebraic. (The tame generalization is immediate, but
we do not pursue it here.) We prove an intuitive structural result, characterizing
the conservative fields of an objective function as modest modifications of its Clarke
subdifferential, arising simply by including normals to manifolds comprising Whit-
ney stratifications of R". For example, the conservative field (1.1) can arise from the
stratification R = (—o0,0)U{0}U(0, +0oc). Thus, while the important idea of a conser-
vative field is arrived at very differently from the notion of the Clarke subdifferential,
in practice the two ideas are very close.

2. Characterizing conservative fields. Turning to the formal development,
we consider set-valued operators on R™, by which we mean set-valued mappings
G:R"™ 3 R". The sum of two operators G and H maps points x € R" to the sum
G(zx) + H(z). We call G closed if its graph {(z,y) € R" x R" : y € G(x)} is closed
and locally bounded if every point in R™ has a neighborhood 2 C R"™ whose image
G(Q) is bounded. A selection of G is an operator whose graph is contained in the
graph of G. The following definition is from [2, Lemma 2].

DEFINITION 2.1. A conservative field for a locally Lipschitz function f: R" -+ R
is a closed, locally bounded, nonempty-set-valued operator G on R™ such that all
absolutely continuous curves z: [0,1] — R™ satisfy the following chain rule: for almost

allt €[0,1],
Lf(x(t) = (La(t),g) for allge G(z(t)).

We next consider smooth stratifications of sets in a Euclidean space E; in all
of our discussions of functions and manifolds, “smooth” simply means continuously
differentiable. For any smooth manifold M C E, we denote the tangent and normal
spaces to M at any point z € M by Tam(z) and Naq(z). A finite collection W of
disjoint smooth manifolds in E comprise a Whitney stratification (of their union) if
the following condition holds for all manifolds M and M’ in W:

z1,Z2,... € M, ¥y € Np(z,) N M' CeadM,
.z M, Yoy y € Ny ().
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In particular, we can associate any Whitney stratification W of R™ with a closed
normal operator ®y, on R™ by setting @y, = Ny on each manifold M in W. We
call W semialgebraic if each M in W is semialgebraic.

We can now state our result.

THEOREM 2.2 (semialgebraic conservative fields). Given a semialgebraic locally
Lipschitz function f: R" — R, a semialgebraic set-valued operator is a conservative
Jield for f if and only if il is a closed, locally bounded, nonempty-valued selection of
the sum of the Clarke subdifferential df and the normal operator for a semialgebraic
Whitney stratification of R".

Proof. Consider any semialgebraic conservative field G for f. By [2, Theorem 4],
there exists a Whitney stratification W of R™ such that f is smooth on each manifold
M in W, and at each point z € M, the Riemannian gradient Vg f(z) € Ta(z)
satisfies

(2.1) Glz) € Vauf(z) + Nu(z).

The proof in (2], using stratification techniques from [13], makes clear that we can
assume W to be semialgebraic. By [1, Lemma 8], there exists a semialgebraic Whitney
stratification of the graph of f that maps via the canonical projection R" x R — R"
onto a semialgebraic Whitney stratification W’ of R™ that is “compatible” with W:
in other words, each manifold in W is a union of manifolds in W',

Now consider any point € R™. There exist unique manifolds M in W and M’
in W containing z, and M’ must be a submanifold of M, so

(2.2) Np(z) © Naplz).
By the definition of the Riemannian gradient, we have
(2.3) VYl (@) € Varf(x) + Nae(z)-
On the other hand, by [1, Proposition 4], we have

af(x) © Varf(@) + Nay ().
Since f is locally Lipschitz, there exists a vector g € df(z). We deduce
(2.4) Varf(@)+ Naw (@) = g+ Naela) C© 0f(x) + Ny ().
Combining the inclusions (2.1), (2.2), (2.3), and (2.4), we deduce

G(z) C 8f(x) + Ny (),

so G is a selection of the sum df + ®yy, as required.

Conversely, consider a semialgebraic Whitney stratification W of R™. By [2,
Corollary 2 and Proposition 2], the subdifferential 8f is a conservative field for f. On
the other hand, for any radius 7 > 0, the truncated normal operator defined by

& (x) = dw(z)NrB (z € R™),
where B C R" is the closed unit ball, is a conservative field for the identically zero

function, by [2, Theorem 3]. Hence df + @7, is a conservative field for f, by [2,
Corollary 4].
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Now consider any closed, locally bounded, nonempty-valued selection G of the
operator df + ®yy. If G is not a conservative field, then Definition 2.1 fails for some
absolutely continuous curve z: [0,1] — R". The image C' = z([0,1]) is compact, so
since G is locally bounded, the image G(C') is bounded. Since f is locally Lipschitz,
the image df(C) is also bounded. We deduce G(C) — 9f(C) C rB for some radius
r > 0. All points z € C therefore satisfy G(x) C @f(x)+®3, (x), since, by assumption,
for any vector g € G(x) there exists a subgradient y € 9 f(x) such that g € y+ Py (z),
so in fact g € y + @}, (x). But f + ©, is conservative, contradicting the failure of
Definition 2.1. n]
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