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1. Introduction

Active set methods for optimization and more general variational problems proceed, either explicitly or im-
plicitly, in two phases. The first phase relies on a globally convergent process to identify activity in the
underlying constraints at the solution. After correct identification, the problem simplifies locally: the algorithm
transitions to a second phase with accelerated local convergence, typically as a result of linearizing the sim-
plified problem. Standard texts like Nocedal and Wright [40] and Facchinei and Pang [10] include overviews of
active set methods for traditional nonlinear programming and variational inequalities, but the algorithmic
philosophy also extends to less classical large-scale settings (Lee and Wright [21], Lewis and Wright [26],
Liang [28], Liang et al. [30]).

The idea of partial smoothness, introduced in Lewis [24], formalizes the property driving the first phase:
“identifiability.” This term originated in Wright [45], with precursors in Calamai and Moré [5], Dunn [9],
Burke and Moré [4], Burke [3], Al-Khayyal and Kyparisis [1], Ferris [13], and Fldm [14]. Applications to
convergence and sensitivity analysis for large-scale convex optimization include Liang et al. [29], Liang et al. [32],
Liang et al. [31], Vaiter et al. [44], Liang et al. [30], Vaiter et al. [43], and Fadili et al. [12]. Rather than active sets
of constraints, partly smooth geometry focuses on the “active manifold” defined by those constraints. The
equivalence with identifiability is explored in detail in Drusvyatskiy and Lewis [8].

In contrast with most of this prior literature, in this work we concentrate on the second phase of active set
methods: in partly smooth settings, how should we understand accelerated local convergence? A formalism
parallel to partial smoothness with related algorithmic ambitions, “VU theory,” emerged in Lemaréchal and
Sagastizabal [22] and includes Lemaréchal et al. [23], Mifflin and Sagastizabal [33], Mifflin and Sagastizabal [36],
Mifflin and Sagastizdbal [35], Hare and Sagastizéabal [16], Mifflin and Sagastizabal [34], and most recently, the
survey Sagastizdbal [42]. Algorithms exploiting the active manifold structure, and the resulting connections
between partial smoothness, VU theory, and classical nonlinear programming were explored in Miller and
Malick [37]. Our aims here, rooted in the partly smooth framework, are more general, formal, and geometric.

In essence, as explained in Lewis and Liang [25], partial smoothness is a constant rank property. Assuming
this simple differential geometric condition, the underlying problem reduces, locally, to finding the unique
point in two manifolds that intersect transversally. Just like the classical Newton method for solving
equations, via linearization we arrive at fast local algorithms.

A standard illustration (see Lewis and Liang [25]) involves C?-smooth functions g; : R* — R, for indices
i=1,2,3...,m, and a corresponding set

F={x:gix) <0 Vil
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Given a cost vector ¢ € R”, the first-order optimality condition for the optimization problem sup, . (C, x) is a
generalized equation involving the normal cone to F:

¢ € Np(x). (1)
Consider any feasible point x € F for which the constraint gradients Vg;(x) for i in the active set
I(x) = {i: gi(x) = 0}

are linearly independent: for such points, we can describe the normal cone operator using Lagrange multiplier
vectors A € R™:

Ni(x) = {Z AVGi(x): A >0, ;=0 (i ¢ I(x))}.

Let us focus on a particular such point, ¥, that solves Equation (1), with corresponding multiplier A. Assuming
strict complementarity (meaning A; > 0 for all i € I(x)), the operator Nr is partly smooth at ¥ (for ¢): around the
pair (%,¢), its graph, gph Nf, is a manifold, and the canonical projection is constant rank and maps gph Nr
locally onto the active manifold

M ={x:gi(x) =0 (i € I(%))}.

In particular, for any nearby pair (x,c) in the graph, the point x must lie in M and so, has the same active set:
this is the property of identifiability. For more details in the setting of this standard example, see Lewis and
Liang [25].

Now, however, suppose in addition that the given point x also satisfies the standard second-order sufficient
conditions: the Lagrangian }; )_\,-Vgi — ¢ is not only critical at X, but also, its Hessian is positive definite on the
tangent space to M:

{d e R": (Vgi(),d) = 0 (i € I(%))}.

In that case, locally around the pair (¥,¢), the graph of the normal cone operator, gph Nr, and the space
R" x {c} are manifolds intersecting at the unique point (x,¢), and furthermore, the intersection is transversal.
Based at a nearby point (x,c) € gph Nr, we could linearize gph Nr, calculate the intersection point of the
resulting tangent space with R" X {¢}, restore this point to gph Np, and repeat. As we discuss later, such a
process fundamentally underlies the philosophy of classical sequential quadratic programming.

In this classical example, we see that our theme just results in a standard methodology, namely sequential
quadratic programming for nonlinear programming. Nonetheless, as should be apparent, even the concise
summary we gave inevitably involves an extended setup involving active constraint indices, Lagrange mul-
tipliers, strict complementarity, and second-order sufficient conditions. Rather than algorithmic innovation, in
this case our contribution is conceptual. By contrast with the traditional development, our theme is simpler
and geometric, involving just fundamental ideas about manifolds: tangent spaces, transversality, and constant
rank maps. In summary, although we hope that the ideas we develop here may help illuminate numerical
methods in less traditional settings, our primary goal is not the immediate design of new algorithms. Rather,
our aim is a simple unifying framework in which to study active-set-type acceleration techniques for a much
broader class of optimization and variational problems.

2. Manifolds
We begin our more formal development with a brief summary of terminology for manifolds. We refer the
reader to Lee [20] for basic background in differential geometry.

We consider manifolds in a Euclidean space E, by which we mean sets defined, locally, by smooth equations
with linearly independent gradients. More precisely, a set X C E is a C"-manifold around a point z € X (for
some degree r = 1,2,3,...) if there exists a C"-smooth map F : E — R™ (for some number m) with surjective
derivative DF(z) such that the inverse image F~1(0) is a neighborhood of z in X. Equivalently, there exists a
number k, an open neighborhood U of zero in Rf, and a C"”-smooth map G: U — E with value G(0) =z,
everywhere injective derivative, and range G(U) a neighborhood of z in &. In that case the number k =
dim E —m is called the dimension of the manifold X around z, and we refer to G as a local coordinate system.
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With the notation, the tangent and normal spaces, respectively, to X’ at z are given by

Tx(x) = Null(DF(z)) = Range(DG(0))
Nx(x) = Range(DF(z)*) = Null(DG(0)").

These two orthogonal complements are independent of the choice of maps F and G. We say that two
C®@-manifolds around z intersect transversally there if the two corresponding normal spaces intersect trivially.

3. A Newton Method for Intersecting Manifolds
The following simple scheme, illustrated in Figure 1, uses standard ideas. We study the intersection of two
manifolds by linearizing just one of them.

Theorem 1 (Semilinearization Error). In a Euclidean space, consider an isolated point of intersection z of two C?-manifolds
X and Y around z, and suppose that the intersection is transversal. Then, there exists an open neighborhood W of z such that,
for all points x € X N'W, the linear approximation x + T x(x) intersects the set Y N W at a unique point y(x), which satisfies

ly(x) -2zl = O(lx —2") asx >z )

Proof. Because the manifolds X’ and ) intersect at a singleton, transversally their dimensions sum to dim E. We can
represent X using a local coordinate system: an open neighborhood U of zero in R¥ and a C?-smooth map G : U —
E with value G(0) = z, everywhere injective derivative, and range G(U) an open neighborhood of z in X. By
definition, there also exists a C?-smooth map F : E — R¥ with surjective derivative DF(z) such that the inverse
image F~!(0) is a neighborhood of z in Y.

The transversality condition is

{0} = Nx(z) N Ny(z) = Null(DG(0)*) N Range(DF(z)*).
Hence, all vectors v € RF satisfy
DG(0)*(DF(z)'v) =0 <« DF(z)*v=0.

By assumption, the adjoint map DF(z)" is injective, so the right-hand side is equivalent to v = 0. Consequently,
the composition DG(0)* o DF(z)” is injective, so its adjoint DF(z) o DG(0) : R¥ — RF is surjective and hence, in
fact, invertible. By the inverse function theorem, the composite map Fo G : R* — RF has a C?-smooth inverse
map around zero.

We can express any point x € X' near z as x = G(u) for some small vector u € R¥. In that case, the point we seek has
the form y(x) = G(u) + DG(u)v for some small vector v € R¥, where

F(G(u) + DG(u)v) = 0. 3)

The function of (1,v) on the left-hand side, which we denote H(u,v), is CM-smooth. Its value at (1, v) = (0,0) is
zero, and its derivative there with respect to v is D,H(0,0) = DF(z) o DG(0). Because this derivative is invertible,

Figure 1. Semilinearized Newton method.
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the implicit function theorem implies that, for all small vectors u € R, Equation (3) has a unique small solution
o(u) € R¥, depending smoothly on u, and satisfying ©(0) = 0.
Because the map G is C?-smooth, we have

G(u + v) = G(u) + DG(u)v + O(|v|?) 4)

for all small vectors u and v. Because the map F is Lipschitz, we deduce

F(G(u +0(w)) = F(G(w) + DG(uyo(w) + O(fo(w)P?)|
= F(G(u) + DG(u)o(u)) + O(|U(M)|2)
= O(lo(u)P?)

as u — 0, and hence,

u+ o) = Offo(w)P),

because the inverse map (F o G)! is Lipschitz. However, because
1
()] <l + Ju + 0@)| = Jul + O(jo()) < Jul + 3 lo(w)]

for all small u, we deduce [v(u)| < 2|u|. Equation (4) implies

y(x) —z = G(u) + DG(u)o(u) — z = G(u + v(u)) + O(lv(w)]*) - z
= G(O(jo(u)P) — z + O(Jo(u)P)
= O(lo(u)P) = O(|ul’) = O(IG(u) = z*) = O(lx — =)

as claimed. O

How we compute the point y(x) in concrete settings depends on our representation of the manifolds X
and Y. For example, we discuss one particularly interesting case arising in the study of variational inequalities
in Section 6.

If we can somehow restore the point y(x) in the manifold ) to a nearby point in the manifold X, by iterating
we rapidly converge to the intersection point z. Based on this idea, illustrated in Figure 1, the following simple
result is the foundation for all the Newton schemes we consider.

Corollary 1 (Semilinearization for Intersecting Manifolds). Following the framework of Theorem 1, consider two manifolds X
and Y intersecting transversally at their unique common point z and in addition, a Lipschitz map R : Y — X satisfying
R(z) = z. Then, starting from any point x € X near z, the iteration

x — R(y(x))

converges quadratically to z.

Proof. Using the fixed point and Lipschitz properties and Equation (2), we deduce

IR(y()) - 2| = [R(y(x)) = R(2)| = O(ly(x) - 2I) = O(|x - zF’),
for all points x € X near z, as required. O

Because X is a C?-smooth manifold around the point z, a natural candidate for the restoration map R is
Proj,, the corresponding nearest-point projection map onto X, which is CV-smooth and hence, Lipschitz
around z and which obviously leaves z fixed. However, in the broad scenario that we have in mind, this
projection may not be the most natural choice. We describe this scenario next.
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4. Generalized Equations
Henceforth, we fix a Euclidean space U and consider the problem of finding a zero of a set-valued mapping ®
or in other words, a solution of the generalized equation

0 € O(u).

Henceforth, we rely on standard terminology from variational analysis, as presented in monographs such as
Rockafellar and Wets [41] and Mordukhovich [39].

Assuming that the graph of ® is a manifold, locally we can frame this equation as an intersection problem as
in the previous section and Theorem 1. The underlying Euclidean space is now E = U?, the sets X and ) are
the graphs of ® and the zero mapping, respectively:

X = gph® = {(u,0) € U : v € D(u)}
Y =Ux{0},

and the intersection point is z = (i1,0). The transversality condition is
Ngpha(it, 0) N Nuxqoy(i2,0) = {(0,0)}.

Automatically, then, we must have dim gph® = dim U.
Using the language of coderivatives, we have by definition for any set-valued mapping ® the relation

(v,-Y) € Ngphoo(i1,0) & v e D*D(u|0)(y).

In this definition, N denotes the limiting normal cone, which coincides with the classical normal space for
manifolds. Hence, because

NUx{O}(ﬂ, 0)={0} x U,
we can rewrite the transversality condition as in the following assumption.

Assumption 1. The point it € U is an isolated zero of a set-valued mapping ®:U =3 U. Furthermore, the graph of ® is a
C@-smooth manifold around the point (ii,0), and the transversality condition

0e D*O®@|0)(y) = y=0. (5)
holds.

We remark in passing that the coderivative criterion (5) plays a fundamental role throughout the variational
analysis literature. For any set-valued mapping ® with closed graph and satisfying 0 € ®(i1), it is equivalent to
metric reqularity (Rockafellar and Wets [41, theorem 9.43]): the ratio of two distances

dist(u, ®71(v))
dist(v, D(u))

is uniformly bounded above for pairs (1,v) near (i1,0) (where we interpret J = 0).
Turning to the linearization step in Theorem 1, given a current point u € U and a current value v € ®(u),
using the language of graphical derivatives, we have by definition

(u',0) € (u,v) + Tgpho(u,v) & —v e DD(ulo)(u’ — u). (6)

In this definition, T denotes the standard tangent cone, which coincides with the classical tangent space for
manifolds. Having calculated the new point 4’ € U from this relationship, to apply Corollary 1 we need a
Lipschitz map to restore the point (1/,0) to a nearby point on gph .

4.1. Example: Classical Newton Method

For illustration, consider the case where the mapping @ is just a single-valued C?-smooth map F : U — U. The
transversality condition (5) reduces to invertibility of the derivative map DF(ii). At the current pair (1, F(1)) € gphF,
the linearization step (6) results in a new pair (u/,0) € Ux {0} where u’ = u — (DF(u))"'F(u). Rather than
trying to project (1/,0) onto gphF, we can use the natural restoration map R defined by (v’,0) — (', F(1')),
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which fixes the point (i1, 0) and obviously inherits the Lipschitz property of F. Corollary 1 now simply recovers
the quadratic convergence of the classical Newton iteration for solving F(u) = 0.

4.2. Example: Variational Inequalities
More generally, consider the case

O=F+V¥

for a single-valued C®-smooth map F : U — U and a maximal monotone operator W : U= U. In particular, W
might be the subdifferential operator d¢ for a proper closed convex function g : U — R. This case includes two
important examples: the special case when F is the derivative Vf of a smooth function f : U — R, corre-
sponding to the optimization problem inf{f + g}, and the special case when g is the indicator function for a
closed convex set K ¢ U, corresponding to the wariational inequality

VI(K,F): 0 € F(u) + N(u).

We assume that the point # € U is an isolated zero of the mapping F + W and that the graph of the operator
V¥ is a C®-smooth manifold around the point (i, —F(i1)). Standard nonsmooth calculus (or direct calcula-
tion) implies

D*(F + W)(u1|0)(y) = DF(i1)*y + D*W (i1| — F(i1))(y)
D(F + W) (u|F(u) + w)(s) = DF(u)s + DW (ulw)(s)
for w € W(u). Hence, the transversality condition (5) becomes
—-DF()*y € D'W(ii| - F))(y) = y=0.

Given a current vector u € U and a vector w € W(u) corresponding to the choice v = F(u) + w in the relation (6),
the linearization step is defined by

—F(u) —w € DF(u)(u’ — u) + DV (uw)(u’ — u).

It remains to find a Lipschitz map restoring the new point (#/,0) to gph(F + W¥). To that end we can use
Minty’s Theorem (Rockafellar and Wets [41, theorem 12.15]), which guarantees that, for any choice of A >0,
the resolvent map (I + AW)™! : U — U is single valued and nonexpansive. Define a Lipschitz map Q : U — U by

Q(u) = (I + AW) " (u — AF(u)). (7)

Clearly, zeros of the mapping F + W coincide with fixed points of Q, and simple calculations show
1
Q(u),x(u - Q(u)) = F(u) + F(Q(u))| € gph (F+W¥) forallueU.

Hence, we can use the restoration map R: U x {0} — gph (F + W) defined by setting R(u,0) to the left-hand
side of this inclusion. This map is clearly Lipschitz and fixes the point (i1, 0), as required.

In the smooth case (W =0), we arrive at a slight variant of the classical Newton method for the smooth
equation F(u) = 0 that we saw in the previous example (and coinciding with it in the limiting case A = 0). A
simple extension is when the mapping WV is the normal cone operator Ny, for a linear subspace L C U, in which
case we arrive at a slight variant of the natural projected Newton scheme for solving F(u) =0, u € L.

5. Identifying Primal Activity: Partial Smoothness
Corollary 1 describes the basic Newton-type approach to the manifold intersection scenario

xXnY={z}
and more particularly, for the special case associated generalized equation 0 € O(u):
gph @ N (U x{0}) = {(#,0)}.

The Newton iteration depends fundamentally on a Lipschitz restoration map R from the manifold X into the
manifold Y that fixes the intersection point z. In general, it may be unclear how to construct such a map,
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and even in special cases when a closed form is available, as in the previous maximal monotone examples, the
resulting conceptual algorithm is not transparent and involves simultaneous coupled updates to primal
variables (in the domain of the mapping ®) and dual variables (in the range of ®).

In this section, we describe a systematic approach to the restoration map R, motivated by traditional active-
set optimization algorithms. We decouple updates to the primal and dual variables, thereby decomposing R
into a composition of two maps. The first map updates the primal variables by identifying an underlying
active submanifold in the primal manifold ) = U x {0}. The second map fixes the primal variables and updates
the dual variables to restore the iterate to the manifold X = gph®. This approach depends crucially on the
existence of a constant rank map from X into ): in the special case of the generalized equation 0 € ®(u), this
assumption amounts to the “partial smoothness” of the mapping @, language that we argue elsewhere is
convenient for the philosophy of active set identification.

Theorem 2 (Active Set Method for Manifold Intersection). In a Euclidean space, consider an isolated point of intersection z of
two C®-manifolds X and Y around z, and suppose that the intersection is transversal. Suppose furthermore that there exists a
map P: X — Y that fixes the point z and is CP-smooth and constant rank nearby. Then, for any sufficiently small
neighborhood W of z, the image

M=PXNnW)cy

is a C®-manifold around z, and for all points x € X N'W, the linear approximation x + Tx(x) intersects the set Y N W
at a unique point y(x). Furthermore, given any two Lipschitz maps that fix z,

S: YNW->M and Q: MNW — X,
if Q is a right inverse for P, meaning
PQw)=w foralwe MnNW,
then starting from any point x € X near z, the iteration
x = Q(S(()
converges quadratically to z. Examples of such maps S and Q are the projections

S=Proj, : YNW > M and Qw) = Projp.,,(w) forallwe MW,
respectively.

Proof. The manifold property of the image M follows from the Constant Rank Theorem. The projection example
for the map S follows from the well-known fact that the projection onto a C?-manifold around a point z is
C-smooth around z. The remainder of the result follows from Corollary 1, with the exception of the projection
example for the map Q: we just need to show that this map is in fact C-smooth around z.

By the Constant Rank Theorem, there exist local coordinate systems for the manifolds X' and ) around the point z
with respect to which the map P is linear and in fact, maps the point with coordinate vector (1,v) € U XV to the
point with coordinate vector (u,0) € U X W, for suitable Euclidean spaces U, V, and W. To be more precise, there
exist C?-smooth maps G: UxV — E and H : UX W — E (the coordinate systems for X and ), respectively),
satisfying G(0,0) = z = H(0,0) and with injective derivatives DG(0,0) and DH(0, 0), and such that

P(G(u,v)) = H(u,0) for all small u €U, veV.

Around z, the manifold M then just consists of points of the form H(u,0) for small vectors € U. An obvious
example of a right inverse map Q with the desired properties is given by

Q(H(u,0)) = G(u,0) for all small u e U

because then we have
P(Q(H(u,0))) = P(G(1,0)) = H(u,0) for all small u € U.
For any small 6 > 0, the coordinate map G is a diffeomorphism from the compact set

{(u,v) e UXV :|u| <9, |[v] <6}
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onto a compact neighborhood X of the point z in the manifold X, and the map u +— H(1,0) is a diffeo-
morphism from the compact set {u € U: |u| <6} onto a compact neighborhood of z in the manifold M.
Furthermore, for all u € U satisfying |u| < 6, we have

PY(H(u,0) N X = {G(u,v) :v eV, [v] <}

Thus, for all small u, projecting the point w = H(u,0) onto the set P~}(w) amounts to solving the optimiza-
tion problem

. B 2.
Z1}2\f/{|G(u, v) — H(u, 0)]” : [o| < 6}.

The infimum is attained, by compactness. By an easy continuity argument, if u is sufficiently small, any
optimal v satisfies || < 0 and hence, also the first-order necessary condition

DUG(M/ v)*(G(u, U) - H(Ll, O)) = (0/ O) (8)
The left-hand side of this equation is CV-smooth. When u = 0, the equation reduces to
D,G(0,v)*(G(0,v)) = (0,0).

The derivative at v = 0 of the map on the left-hand side is D,G(0, 0)*D,G(0,0), which is invertible because
D,G(0,0) is injective. By the implicit function theorem, for all small u € U, Equation (8) has a unique small
solution v(u), depending smoothly on u, and clearly v(0) = 0. Because we have shown, for such u, the property

Proj (H(u,0)) = G(u, v(u)),
P-L(H(u,0))

the result now follows. O

Returning to the setting of generalized equations 0 € ®(u), for a variable u in a Euclidean space U and a set-
valued mapping @: U= U, we next introduce the notion of partial smoothness developed in Lewis and
Liang [25].

Definition 1 (Partly Smooth Mappings). For any degree r = 1,2,3,..., a set-valued mapping ®:U S U is called
C"-partly smooth at a point it € U for a value 9 € ®(i1) when its graph is a C"-smooth manifold around the point
(it,9) and the map defined by (u,v) — u for (1,v) € gph ® is constant rank nearby.

By definition, the constant rank condition means that the coderivative,
D*®(u,v)(0) = {w € U : (w,0) € Ngph o(u,0)},
is a subspace of constant dimension for points (1, v) near (i1,7). The following result is Lewis and Liang [25,
proposition 3.2].

Proposition 1 (Active Manifold). Assuming Definition 1, there exists a set M in the space U such that any point (u,v)
sufficiently near the point (i, 9) in the graph of the mapping ® satisfies u € M. Any such set M is a C"-smooth manifold
around © and is locally unique: that is, any two such sets are identical around i1.

We call the set M in this result the active manifold at u for v.
With this terminology, we can specialize Theorem 2 to generalized equations.

Theorem 3 (Active Set Method for Generalized Equations). Consider an isolated zero i € U for a set-valued mapping
®:US U. Suppose that ® is CP-partly smooth at @ for 0, with active manifold M C U, and assume the trans-

versality condition
0eD*®®@0)(y) = y=0.

Then, given any sufficiently small neighborhood W of i, for all points (11,v) € gph @ near (it,0), the linearized equation
—v € DO(ulv)(w —u), weW
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has a unique solution w(u,v). Furthermore, given any Lipschitz map S: W — M that fixes the point i, and any
Lipschitz map Q: M NW — U satisfying Q(i1) = 0 and

Qu) e d(u) forallue MNW,
starting from any point (u,v) € gph ® near (it,0), the iteration
u «— S(w(u,v)), v Qu)
converges quadratically to (i1,0). Examples of such maps S and Q are the projections

S=Proj : W—->M and Q(u)="Proj(0) forallue MnW,
M D(u1)

respectively.

Proof. We simply apply Theorem 2 in the framework of Section 4:

X =gph ®, Y =Ux{0}
P(u,v) = (u,0) for (u,v) € gph D.

The result follows immediately. O

Theorem 3 describes a Newton-type method for generalized equations of the form 0 € ®(u), under a
transversality condition equivalent (as we observed after Assumption 1) to metric regularity of the mapping ®
at the solution. An extensive literature treats nonsmooth Newton methods under metric regularity as-
sumptions: for variational inequalities and nonlinear programs in particular, one standard reference is
Bonnans [2]. Such methods typically linearize a “semismooth” single-valued ingredient while leaving a set-
valued ingredient unchanged, and the underlying assumption is “strong metric subregularity.” Contemporary
monographs treating Newton-type methods in this context include Klatte and Kummer [19], Facchinei and
Pang [10], Dontchev and Rockafellar [6], and Izmailov and Solodov [17], and the recent survey by Izmailov
and Solodov [18] is instructive. Algorithms, like that described in the recent manuscript by Gfrerer and
Outrata [15], that are based on linearizing the underlying set-valued mapping itself are more rare: our
approach is just such a technique.

6. Partly Smooth Variational Inequalities
Consider an isolated solution i of the variational inequality VI(K, F):

0 € F(u) + Nk(u),

for a C?-smooth map F : U — U and a closed (possibly nonconvex) set K ¢ U. (In particular, if F = Vf for some
C®-smooth function f : U — R, then the variational inequality reduces to the first-order condition for the
optimization problem infx f.) Our aim is to apply Theorem 3 (active set method for generalized equations).

To this end, we suppose throughout this section that the set K is prox-regular at —F(iz) and that i is in fact
(following standard terminology of Facchinei and Pang [10]) a nondegenerate solution:

—F(i1) € i Nk(i0).

The practically important but much more complex case where nondegeneracy fails is analyzed in Fadili
et al. [12]. Earlier discussions for nonlinear programming and complementarity problems include Facchinei
et al. [11] and Izmailov and Solodov [17, chapter 3.4].

We assume furthermore that K is C®)-partly smooth at it for —F(i) relative to some C®-manifold M c K
around i, by which we mean that the normal cone mapping Nx is inner semicontinuous at i relative to M and
satisfies the sharpness condition

span Ng(it) = Naq(ii).
In this case, we have the local property (Drusvyatskiy and Lewis [8])
gph Nk = gph Ny around (i1, —F(i1)). )
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(The graph of N is sometimes called the normal bundle for the manifold M.) It is precisely this property that
underlies active set approaches to the original problem.

6.1. Example: The Basic Projection Algorithm
To illustrate, suppose for this example that the set K is convex. For any constant a > 0, by defining a con-
tinuous map y,: U — Q by

1) = Proj 1= |

for points u € U, following a standard route (Facchinei and Pang [10, section 12.1]) we can convert the
variational inequality into a fixed point problem: u solves VI(K, F) if and only if y,(u) = u. Indeed, the map is
just a special case of the map (7) that we defined for more general maximal monotone operators. In the
example of convex optimization, where F is the gradient of a smooth convex function, the iteration u < y,(u) is
just the projected gradient method. Again specializing our earlier discussion, by definition we have

a(u — ya(u)) — F(u) € N (ya(w))

for all points u € U. Under certain general conditions (Facchinei and Pang [10, theorem 12.1.2]), any sequence
of iterates u; € U (for k =0,1,2,...) must converge to the solution ii. By continuity, we have

Yk = Ya(ux) — 1,

and also,

v = a(ux — yx) — F(ux) — —F(i0),
with

Uk € NK(]/k)-

Hence, by the reduction property (9), we deduce y; € M eventually: in other words, the sequence vy identifies
the active manifold M. In the case of the projected gradient method for convex optimization, this is exactly the
result of Wright [45], based on earlier work in Dunn [9]. The monograph (Facchinei and Pang [10]) includes a
wide-ranging discussion of general solution algorithms for variational inequalities: the identification behavior
holds for quite broad classes. Global techniques often aim to drive down the natural residual |ju — y,(u)|
indirectly by driving down a merit function such as the regularized gap

a
Ou(u) = sygf{mu), u—y) =5l -yl

or the D-gap given by the function 8, — 0;, for some constant b in the interval (0,a) (see Facchinei and Pang [10,
propositions 10.3.7 and 10.3.8]). Such approaches also lead to identification: if the iterates u; converge to some
limit #, and the corresponding residuals converge to zero, then continuity ensures that it is a fixed point of the
map Y, and hence, a solution of the variational inequality; so, under the partial smoothness assumptions, the
nearby sequence y,(i) eventually lies in the manifold M.

Returning to the general case, property (9) shows that, locally, around the solution ii, the original variational
inequality VI(K,F) is equivalent to the variational inequality VI(M, F):

0e€ F(u) + NM(M)

As we remarked, this reduction captures the essence of the active set philosophy: we can henceforth focus on
applying Theorem 3 for the mapping @ = F + Na.

Following Lewis and Liang [25], the normal space mapping N is C?-partly smooth at i for —F(i), with
active manifold M, so by an easy calculus rule by Lewis and Liang [25], the mapping F + Ny is C?-partly
smooth at # for zero, as we need to apply Theorem 3. The theorem involves two more key ingredients. The
first is the transversality condition to check, which we can write

—(DF(i))'y € D'Nm(@il - F@)(y) = y=0,
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using routine coderivative calculus (Rockafellar and Wets [41, example 10.43]). The second is the linearized
equation: given points u € U near # and small v € F(u) + Na(u), we solve

—v € DF(u)(w — 1) + DN p(ufo — F(u))(w — u)

for the new iterate w. Here, once again we have applied some standard calculus, this time for derivatives
(Rockafellar and Wets [41, example 10.43]).
In this light, we therefore next discuss how to compute the derivative and coderivative maps

DNa(ulz) and D*Nay(ulz) (10)

for u € M and z € Np(u). These are second-order concepts because N = do . Indeed, using the notation of
the Mordukhovich generalized Hessian (Mordukhovich [38]), we have

D*Na = Pom.

The Hessian of a C?-smooth function f : U — R has an important symmetry property that we can express as
the relationship

D(Vf) = D*(Vf).

By contrast, for general sets M, there is no relationship between the derivative and coderivative map-
pings (10). On the other hand, for fully amenable sets (and hence, in particular, for manifolds), we always have
the derivative-coderivative inclusion

DNum(ulz) € D* Ni(ul2);

see Rockafellar and Wets [41, theorem 13.57]. Our next result shows that, for manifolds, this inclusion in fact
holds with equality: informally, second derivatives of manifold indicator functions are symmetric.

Theorem 4 (Derivative-Coderivative Equality for Manifolds). Consider a C?-smooth manifold M c U around a point
u € M and a normal vector v € N (). Then, the normal mapping N . : U 33 U satisfies the derivative-coderivative equality

DN r(ufv) = D* Ny (uo).

Proof. By definition, we can suppose the manifold M to be defined as the set of common zeros near the point 1 of
C®-smooth functions h; : U — R (for i = 1,2,3,...,m), where the gradients Vh;(u) are linearly independent, and
that v = 3; A;Vh;(u) for some vector A € R™. Define a corresponding self-adjoint linear map H: U — U by
H = 3; A;V?h;(u). By definition, for vectors u, w € U we have

z € DN p(ufo)(w)
if and only if
(@,2) € T gphny (1, 0),
which is equivalent (by Lewis and Zhang [27, theorem 2.8]) to
we Tap(u) and z— Hw € Np(u). (11)
On the other hand, we have
z € D* Ny (ulo)(w)
if and only if
(z, —w) € Ngphn,, (1, 0),
which is also equivalent (by Lewis and Zhang [27, theorem 2.8]) to condition (11). &

As an aside, we note an elegant consequence of this result: again informally speaking, partly smooth
functions have symmetric second derivatives. To be precise, we gather together in the next result various
properties of functions f : U — R that are partly smooth in the sense of Drusvyatskiy and Lewis [7], the
functional version of the definition for sets in Drusvyatskiy and Lewis [8]. This idea is a slight variant of
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the original notion from Lewis [24]: it corresponds closely to our current notion of partial smoothness applied
to the subdifferential mapping Jf.

Corollary 2. Consider a C-smooth manifold M C U around a point it € M, for some degree r > 1. Suppose a subgradient v
of a function f : U — R at i satisfies the nondegeneracy condition

5 € ridf (i),

as well as the following conditions:
o f is prox-regqular and subdifferentially continuous at i for v;
* f agrees with some C"-smooth function f : U — R on M around u;
o the affine span of the reqular subdifferential Jf (it) is a translate of the normal space Naq(it);
e for some neighborhood W of v, the mapping u — df () N W is inner semicontinuous at i relative to M.

Then, the subdifferential mapping df is CV~V-partly smooth at i for B, with active manifold M, and locally, satisfies
gphdf = {(u, Vf(u) +0) :u € M, v € Np(u)} around (i1, D).
Furthermore, the following derivative-coderivative equality holds:
D(of ) (o) = D*(9f ) (o) = 0*f (o) = V2f(it) + D(N ) (@0 — VF(it)).
Note that the bulleted properties (without the assumption of subdifferential continuity) together constitute

the definition of partial smoothness of f at u for 0.

Proof. All except the final claim are simply a restatement from Lewis and Liang [25]. The final claim follows from
the fact that the graphs of the mappings df and Vf + N agree around the point (iz, 5), and hence, these mappings
have the same derivative and coderivative mappings. The result now follows from derivative and coderivative
calculus and Theorem 4. O

Having calculated the relevant derivatives and coderivatives in Theorem 4, we can now interpret the active
set method described in Theorem 3 for the variational inequality VI(K,F). Under the partial smoothness
assumptions at the beginning of this section, the problem reduces locally around the solution # to the
variational inequality

0 € F(u) + Na(u)

or equivalently, using the notation of the proof of Theorem 4, to the system

F(u) + Zml )Ll-Vhi(u) =0 (12)
i=1
W) =0 (i=1,23,...,m). (13)

in the variables u € U and A € R™. By assumption, there exists a unique vector A € R™ such that the function
G =F+ X;A;Vh; is zero at .
As we have seen, the transversality condition is

—(DF(#))'y € D" Nm(ill - F@)(y) = y=0,
or equivalently, by property (11),
y€Tm(i) and DG(@)'y e Npm(i) = y=0.

Not surprisingly, this simply amounts to the invertibility of the system (12) and (13) linearized around the
solution (i1, A). In particular, under these conditions the fact that # is an isolated solution is an automatic
consequence. In the case of optimization (where the map F is a gradient), the condition reduces to non-
singularity of the Hessian of the Lagrangian function, projected onto the tangent space T a4(i).

In other terminology, as we observed earlier, the transversality condition is also equivalent to metric
regularity of the mapping F + N, at the point iz for the value zero. Invertibility of the system (12) and (13) in
fact guarantees strong metric reqularity: localized around #, the mapping has a single-valued Lipschitz inverse



Lewis and Wylie: Active-Set Newton Methods and Partial Smoothness
724 Mathematics of Operations Research, 2021, vol. 46, no. 2, pp. 712-725, © 2021 INFORMS

around zero. This fact is analogous to the equivalence of metric regularity and strong metric regularity for
Karush-Kuhn-Tucker mappings (Dontchev and Rockafellar [6, theorem 4I.1]).

Turning to the linearized equation, we consider a current point 2 € U near i and small vector v € F(u) + N (1),
which we can write as L(u), where

L=F+ Z /\iVI’li
i
is the Lagrangian, for some unique multiplier vector A € R”. We must solve

—v € DF(u)s + DN (u’ > AiVhi(u)|s

for the Newton step s and then update u «— u +s. We can write this equation equivalently, by property (11), as
the linear system

se€ Ty(u) and L(u)+ DL(u)s € Na(u),

so this step amounts to seeking a critical point of the Lagrangian restricted to the tangent space, a familiar
operation in sequential quadratic programming approaches.

We can now interpret Theorem 3, after using this active set approach to reduce to the concrete system (12)
and (13). We linearize this system around the current iterate u and current Lagrange multiplier estimate
A € R™ and solve for the new pair (1/,1”). We then resort to exact feasibility restoration—often unrealistic in
practice but nonetheless useful conceptually. To be precise, we map the first component " back onto a new
iterate u on the active manifold M defined by Equation (13): conceptually, we could simply consider the
nearest-point projection, especially if the original set K is convex, because then the projections Proj, and Proj ,,
agree near the solution. Finally, we estimate a new multiplier vector A € R": for example, by minimizing
IF(u) + X AiVhi(u)||. Repeating this process generates iterates (u,1) converging quadratically to the solution
pair (i1, A).
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