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PARTIAL SMOOTHNESS AND CONSTANT RANK*

A.S. LEWIST, JINGWEI LIANG!, AND TONGHUA TIAN$

Abstract. In optimization, the notion of a partly smooth objective function is powerful for
applications in algorithmic convergence and post-optimality analysis, and yet is complex to define.
A shift in focus to the first-order optimality conditions reduces the concept to a simple constant-rank
condition. In this view, partial smoothness extends to more general variational systems, encompass-
ing in particular the saddlepoint operators underlying popular primal-dual splitting algorithms. For
a broad class of semi-algebraic generalized equations, partial smoothness holds generically.

Key words. partial smoothness, active set identification, nonsmooth optimization, subdifferen-
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1. Introduction. A variety of optimization algorithms, ranging from classical
active set methods to contemporary first-order algorithms for machine learning and
high-dimensional statistics, “identify” structure associated with optimal solutions.
The structure in question might be the active constraint set in a classical nonlinear
program or, more specifically, the sparsity pattern of solution vectors in a machine
learning problem. In the underlying Euclidean variable space U, the algorithm gen-
erates iterates that eventually lie in a subset M C U of feasible solutions with that
particular structure. That subset M, in the case of nonlinear programming, is exactly
the “identifiable surface” [37] of the feasible region defined by the constraints active
at optimality.

A simple but quite extensive model of this phenomenon, following the philosophy
of [37], is as follows. We consider minimizing a lower semicontinuous objective function
f: U = R (convex, for now), and assume that the set M of interest is a smooth
surface, or more precisely a manifold around an optimal solution @, meaning that
locally it consists of solutions of a system of C'®-smooth equations with linearly
independent gradients. Identification amounts to the property

(1.1) vk € 0f(uk), ux—a, vg—0 = ur €M eventually,

where Of denotes the classical subdifferential operator. Earlier versions of this iden-
tifiability idea include [4, 14, 3, 2, 1, 16, 17].

Closely related to the identification property (1.1) is the idea that the function f
is partly smooth at the point u relative to the manifold M. This property combines
smoothness conditions on f when restricted to M with a sharpness property of f
in directions normal to M. More precisely, around the point @ the restrictions of
the function f and its subdifferential df to the manifold M should be C®-smooth
and continuous respectively, and the affine span of 9f(@) should be a translate of the
normal space to M at @. This property, along with the nondegeneracy assumption
that zero lies in the relative interior of 9f (@), together suffice to ensure identifiability
(1.1), as shown in [29, Thm 4.10].
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2 A.S. LEWIS, JINGWEI LIANG, AND TONGHUA TIAN

As a simple example, the function f on the space R? defined by f(z,y) = |z|+y?
is partly smooth at its minimizer (0,0) relative to the manifold {0} x R, and zero
lies in the relative interior of the subdifferential 9f(0,0) = [—1,1] x {0}. Hence the
identifiability property (1.1) holds, as is easy to verify directly.

The terminology and original definition of partly smooth sets and functions orig-
inated in [26]. A closely related thread of research, known as “VU theory”, emerged
from original work in [25]: subsequent explorations include [24, 31, 34, 33, 19, 32].
Inevitably, it seems, the formal definition of partly smooth sets and functions, and
their VU analogues, are rather involved. The definition of an identifiable surface in
[37] is not simple either, despite the transparency of the identifiability property (1.1).

As an approach to identifiability, considering partly smooth functions seems
roundabout: our aim, the property (1.1), involves only the subdifferential operator
df, and not the underlying function f. It turns out that we can indeed characterize
identifiability more naturally through a simple and fundamental property of the un-
derlying operator df. Simply put, if the graph of the operator (in the product space
U x U) is a smooth manifold around the point (@, 0), and the canonical projection
of nearby points (u, v) in the graph to u € U is constant rank (meaning that the pro-
jected tangent spaces at those points have constant dimension), then the identifiability
property (1.1) follows.

In summary, this work’s main contribution is to simplify and clarify the notion
of partial smoothness, and how it relates to identifiability, revealing these ideas in
essence as constant-rank properties. By simplifying the definition, we hope to pro-
mote partial smoothness as a conceptual tool. After reviewing basic ideas about
manifolds in section 2, we present the new definition and its consequences in sec-
tion 3. In section 4, we refine a remarkable Sard-type result of Toffe [21], showing
that semi-algebraic generalized equations are “regular” for generic data values. Con-
sequently, such equations reduce to intersection problems that are numerically stable
due to a transversality condition. In common settings — subdifferential criticality
conditions, variational inequalities and complementarity problems — we prove that
partial smoothness also holds generically. Some technical representation tools follow
in section 5, before we verify, in section 6, that the new definition does indeed capture
the full force of previous notions of partial smoothness. This new perspective not
only clarifies our understanding of these powerful tools, but broadens their potential
application beyond the basic optimality condition 0 € df(@) to more general varia-
tional conditions. As an example, in section 7, we consider the saddlepoint optimality
conditions associated with primal-dual splitting methods like the Chambolle-Pock al-
gorithm [5]. We end, in section 8, with a brief discussion of the second-order optimality
conditions in this new perspective.

2. Manifolds. Throughout this work we consider mappings between two Euclid-
ean spaces U and V. We begin our more formal development by summarizing some
elementary ideas about manifolds, following the terminology of [22]. To this end,
consider a set M C U that has the structure of a smooth manifold locally, around a
point @ € M. By “smooth”, we mean C'(Y-smooth, unless we state otherwise. We
can consider such sets M using “local coordinates”, as follows.

We denote the open ball of radius 6 > 0 around the point @ by Bs(a). In
elementary language, M is a smooth manifold around @ when there exists a Euclidean
space W and a map H: W — U that is smooth around 0, with the derivative
VH(0): W — U injective and H(0) = @, and such that, for all small § > 0,

M = H(Bs(u)) around 4.

This manuscript is for review purposes only.
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PARTIAL SMOOTHNESS AND CONSTANT RANK 3

More formally [22, Chapter 8|, some open neighborhood of @ in M is an embedded
submanifold of U. Any small vector w € W constitutes the local coordinates centered
around @ for the point H(w) € M. The tangent space at such a point is given simply
by

Tom(H(w)) = Range(VH (w)).

Its dimension (the dimension of M around @) is a constant, namely dim W. The
normal space is the orthogonal complement:

N (H(w)) = Null(VH(w)*).

Given another Euclidean space V, a map F': M — V is smooth around u when
there exists a map G: U — V that is smooth around @ and agrees with F' on a
neighborhood of @ in M. In that case, the rank of F at @ is dim(VG(@)Ta(1)).
Equivalently, F' is smooth around # when the composition F' o H is smooth around
0, and its rank at @ is then rank of the derivative V(F o H)(0): W — V as a linear
map.

The map H defines a diffeomorphism from the open ball Bs(0) C W (for small
d > 0) to an open neighborhood of the point @ in the manifold M. We can describe
the inverse of this diffeomorphism via a map G: U — W, smooth around the point
u, and satisfying

(2.1) G(H(w)) =w for all small vectors w € W.

The restriction G|, around @, is the inverse of the diffeomorphism H.

Adopting a dual approach, we can equivalently define a set M C U to be a
smooth manifold around a point & when there exists a Euclidean space X and a map
P: U — X that is smooth around @, with the derivative VP(@): U — X surjective
and P(@) = 0, and such that

M = P10) = {ucU: P(u) =0} around .
Then the tangent and normal spaces are given by

Thm(u) = Null(VP(u))
N(u) = Range(VP(u)*)

at all points u € M near 4. The normal space has the same dimension as X.
We can naturally decompose the space U as a direct sum:

U =Tnm(a) & Na(a).

With this decomposition, the two derivatives VH(0): W — U and VP(u): U - X
are given by

VH(0)w = (Dw,0)
VP(a)(r,s) = Es

for some invertible linear maps D: W — T (u) and E: Nag(@) — X. Furthermore,
the derivative VG (u): U — W, restricted to Ty (@), is just the inverse map D~1.

This manuscript is for review purposes only.
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4 A.S. LEWIS, JINGWEI LIANG, AND TONGHUA TIAN

3. Partly smooth mappings. We are now ready to define the property central
to this work. We consider the canonical projection proj: U x V — U defined by
proj(u,v) = u.

DEFINITION 3.1 (Partly smooth mappings). A set-valued mapping ®: U =X V is
called partly smooth at a point @ € U for a value v € ®(u) when the graph gph ®
is a smooth manifold around (@,?) and the projection proj restricted to gph ® has
constant rank around (@, 7). The dimension of ® at @ for ¥ is then just the dimension
of its graph around (u, v).

Note. An example is when the inverse mapping ®~': V = U is locally single-valued,
smooth and constant-rank around o for 4. In this case, ® is in particular “strongly
(metrically) regular” at @ for @, in the terminology of [35].

By definition, the constant rank condition means that the subspace

proj (Typn o (u, v))
and its orthogonal complement (called, in variational analysis [35], the coderivative of
the mapping @)
D*®(u,v)(0) = {weU: (w,0) € Ngpnao(u,v)},
or equivalently, the subspace
Nepna (u,v) N (U x {0})

all have constant dimension for points (u,v) near (4, v).
Consider, for example, the set-valued mapping ®: R = R defined by

_ [ {=Vu} (u>0)
(u) = { 0 (u < 0).

The graph is of ® is the manifold {(u,v) € R? : u = v?}. However, ® is not partly
smooth at 0 for 0, because the projection proj restricted to gph ® has rank zero at
the point (0,0) but rank one at all nearby points.

PROPOSITION 3.2. If a set-valued mapping ®: U = V is partly smooth at a point
@ € U for a value U € (), then there exists a set M C U, uniquely defined around
u, that is a smooth manifold around @, and satisfies

M = {u€Bc(u):Ive P(u)NB(v)} around u,
for all small e > 0. We call any such set M the active manifold.
Proof. For any small € > 0, the set
Ge = gph® N (Bc(u) x B(v))

is a manifold, and the projection proj restricted to G, is a constant-rank map. By
the Constant Rank Theorem [22], the resulting image

M. = {u€ B(u):Ive ®(u)NB(v)}

is a manifold of dimension dim projT¢, (4, 7). This dimension is constant, for small
€ > 0, since the tangent space satisfies Tg_ (1, ¥) = Tgpnh o (%, U). For any ¢’ € (0,¢),
we know M. C M., but these sets are manifolds around # of the same dimension,
so must be identical around u. O
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PARTIAL SMOOTHNESS AND CONSTANT RANK 5

We use the following definition [12].

DEFINITION 3.3. A set M C U is identifiable for a set-valued mapping ®: U = 'V
at a point @ € U for a value v € ®(a) when gph ® C M x V around the point (@, v).

The following proposition is then immediate.

PROPOSITION 3.4. If a set-valued mapping ®: U =2 'V is partly smooth at a point
u € U for a value v € ®(u), then the active manifold is an identifiable set.

In fact, as we see later in our development, the active manifold is a locally minimal
identifiable set.

4. A Sard-type theorem for generalized equations. A value v € V is
regular for a set-valued mapping ®: U = V if the graph of ® intersects U x {v}
everywhere transversally: using the language of coderivatives [35],

0€ D*®(u,v)(w) = w=0 (ueU, weV).

The numerical solution of equations involving a sufficiently smooth single-valued map
® is buttressed by the classical Sard theorem, which guarantees that almost all values
v € V are regular, or equivalently, that the derivative of ® is surjective throughout
the inverse image ®~1(v). In computational practice, we make no attempt to verify
regularity in advance: rather it is a reassuring generic property.

Sard-type theorems also hold for a large class of concrete set-valued mappings
®: U =V, and in particular for those with semi-algebraic graphs [21]. A subset of a
Euclidean space is semi-algebraic if it is a finite union of sets defined by finitely-many
polynomial inequalities [7]. Such sets comprise a rich and robust class, representa-
tive of many concrete variational settings [27]. Our next result incorporates partial
smoothness into a semi-algebraic Sard-type result. Thus even without verifying par-
tial smoothness in advance, for generic data we may reasonably assume it. For a more
detailed analysis in the case of certain variational inequalities, see [23].

THEOREM 4.1 (Generic partial smoothness). If the graph of a set-valued mapping
®: U =V is semi-algebraic and of dimension no larger than dim'V, then regularity
holds for almost all values v € V, along with the property of partial smoothness
throughout the inverse image ®~1(v). These two properties hold in particular on a
full-measure union of open semi-algebraic sets V; C'V (fori=0,1,2,... k), on each
of which the inverse image ®~1(-) has constant cardinality i and the representation

7 tw) = {GIw):j=1,2,3,...,i}

for single-valued, analytic, semi-algebraic, constant-rank maps Gf: V., — U.

Proof. By [11, Proposition 4.3], there exists an integer k& > 0 such that the inverse
image ®~!(v) has cardinality at most k for almost all values v € V. Hence the union
of the following semi-algebraic sets is full-measure in V:

Vi = {veV:d v) has cardinality i} (1=0,1,2,...,k).

For vectors x,y € R™, the lexicographic relationship = > y means that for some
j=1,2,3,...,n, we have z; = y; for all i < j and x; > y;. By identifying the space
V with R", we thereby arrive at a strict total order > on V, with semi-algebraic
graph. Now define semi-algebraic maps G : V; — U, for each i = 0,1,2,...,k and
i=1,2,3,...,14, as follows. For any value v € f/i, we write

@71(1)) = {ul,’uQ,u;}»,...,ui} with Uy > Uz > U3 > *++ > Uy,

This manuscript is for review purposes only.
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and then define G?(v) = u;.

Using a standard stratification argument (see [18] and [10, Theorem 3.4]), we
can partition each set V; into a disjoint finite union of “strata” — semi-algebraic
analytic manifolds of various dimensions — on each of which all the maps G} (for
j =1,2,3,...,i) are analytic and constant-rank. The union of all these strata (for
1 =0,1,2,...,k) is full-measure in V, and hence so is the union of just the open
strata, since lower-dimensional manifolds have measure zero. We can therefore define
each set V; to be the union of just the open strata for V.

Consider any value ¥ in the set V;, for some 7 = 0,1,2,...,k. Any point @ with
v € ®(u) can be written u = G?(v) for some j = 1,2,3,...,4. Since V; is open, we
then have

gph® = {(GI(v),v):veV;} around (7).
Thus the graph of @ is locally identical to the graph of an analytic map (after reorder-

ing the variables). A standard exercise shows that its tangent space at any nearby
point (u,v) € gph ® is

Typha(u,0) = {(VG](v)w,w) 1w eV},

so we deduce |
proj (Tgph<I>(U7U)) = Range(VGg (v))

Since the map Gg is constant-rank, ® is partly smooth at @ for .

It remains to check that the graph of ® intersects U x {v} transversally at the
point (@, v). This follows from the fact that the graph is locally a manifold, and the
tangent spaces

Teph o (U, V) = {(VG{(TJ)mw) cw eV}
TUX{E} (ﬂvﬁ) =Ux {O}a
together span U x V. 0

Examples of set-valued mappings ®: V = V with semi-algebraic graphs of di-
mension no larger than dimV include subdifferentials of semi-algebraic functions
f:V = R (see [9, 11]). However, such mappings also appear in settings beyond
optimization. Generalized equations such as variational inequalities and complemen-
tarity problems [15, 8] often involve mappings ® that decompose into a sum of a
single-valued map F: V — V and a maximal monotone operator ¥: V = V. By
Minty’s Theorem [35, Theorem 12.15], we have

gph(F + V) = {(Ry(v), F(Ry(v)) + Ryg-1(v)) :v € V},

where the resolvents Ry = (I+V¥)~! and Ry-1 = (I+¥~1)~! are both single-valued.
If F and ¥ are both semi-algebraic, then so are the two resolvents, and hence, being a
single-valued semi-algebraic image of V, the graph of the sum F'+ ¥ is semi-algebraic
and of dimension no larger than dim V.

Theorem 4.1 thus shows, for concrete variational problems with generic data,
that we can expect both partial smoothness and regularity to hold at a solution.
These properties together open the door to “active-set Newton methods”, generalizing
sequential quadratic programming approaches for traditional nonlinear programming:
for a full development, see [28, Theorem 3|. Of course, in practice, data may not be
generic, but we would likely not try to verify partial smoothness or regularity in
advance any more than we would verify, before using a numerical solver, a nonzero
derivative at the solution of a scalar equation. Nonetheless, both those assumptions
may be natural first steps in sensitivity analysis and algorithm design.

This manuscript is for review purposes only.
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PARTIAL SMOOTHNESS AND CONSTANT RANK 7

5. Representations of partly smooth mappings. In this section we develop
two useful concrete representations of partly smooth mappings. The proofs, while
routine, are a little fussy, and the reader might wish to pass them over at first. The
first result gives a representation of a partly smooth mapping using local coordinates.

THEOREM 5.1 (Coordinate representation). A set-valued mapping ®: U = V
is partly smooth at a point @ € U for a value v € ®(a) if and only if it has a local
representation of the following form: there exist Euclidean spaces W and Z, maps
H: W — U, smooth around 0 with H(0) = @ and VH(0) injective, and G: W X Z —
V., smooth around (0,0) with G(0,0) = v, such that,

(5.1) weW, z€Z, VH(O)w =0 and VG(0,0)(w,2) =0 = w=0and z=0,
and for all small § > 0,
(5.2) gph® = {(H(w),G(w,z)) : w € Bs(0), z € Bs(0)} around (u,v).

In this case, the dimension of ® at u for v is dim W +dim Z, and the active manifold
is H(B[;(O)) around u, providing 6 > 0 is sufficiently small.

Proof. Assuming the local representation, we first prove that @ is partly smooth at
@ for v. Consider the map P: W x Z — U x V defined by P(w, 2) = (H(w), G(w, z))
for w € W and z € Z. This map is smooth around the point (0,0), with derivative

VP(w,z)(r,s) = (VH(w)r, VG(w, z)(r, s)),

for all small w € W and z € Z, and vectors r € W and s € Z. By assumption,
the derivative VP(0,0) is injective, so gph ® is a smooth manifold around (0,0), with
tangent space at such points (w, z) given by

Tepho(H(w),G(w,2)) = {(VH(w)r,VG(w,z)(r,s)) :7 € W, s € Z}.

Its image under the projection map proj: gph® — U is simply the range of VH (w).
Since VH(0) is injective, the projection has locally constant rank dim W. Partial
smoothness follows, and the local description of the active manifold follows from
Proposition 3.2.

Conversely, suppose ®: U = V is partly smooth at @ for ¥ € ®(u). By the
Constant Rank Theorem, we can consider the projection map proj as having the form
(w,z) = (w,0) € W xY, where (w,z) € W x Z (for Euclidean spaces W and Z)
defines local coordinates for the manifold gph @, centered at (4, ), and (w,y) € WxY
(for a Euclidean space Y) defines local coordinates for U centered around .

More explicitly, there exist maps

F: W x Z — U, smooth around (0, 0), with F(0,0) =@
G: W x Z — V, smooth around (0,0), with G(0,0) =7v
Q: W xY — U, smooth around (0,0), with @(0,0) =a

with
(VE(0,0),VG(0,0)): W x Z — U x V
VQ(0,0): WxY — U
both injective, and for all small § > 0,
gph ® = {(F(w,2),G(w,z)) : w € Bs(0), z € Bs(0)} around (u,?)
U = {Q(w,y) : w € Bs(0), y € B5(0)} around v,

This manuscript is for review purposes only.
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and furthermore, F(w, z) = Q(w, 0) for all small w € W and z € Z.

Now define a map H: W — U by H(w) = Q(w,0), for w € W, and notice
VF(0,0) = (VH(0),0). Then, for points w € W and z € Z, whenever 0 = VH (0)w =
VF(0,0)(w,z) and VG(0,0)(w, z) = 0, we must have w = 0 and z = 0. The result
now follows. |

One consequence is the locally minimal identifiability of active manifolds we men-
tioned above, as we show next. Along the way, we prove that partly smooth mappings
have smooth selections.

COROLLARY 5.2 (Minimal identifiability). If a set-valued mapping ®: U = V
is partly smooth at a point @ € U for a value U € ®(u), then the active manifold M
has the following properties.
e There exists a map F: M — V, smooth around @, such that F(a) = v and
F(u) € ®(u) for all points u € M near @.
e For any set M' C U containing 4, and any map F': M’ — V that is con-
tinuous at i and satisfies F(u) = 0 and F(u) € ®(u) for all points u € M’
near 4, we must have M’ C M around .
e M is a locally minimal identifiable set at u for v.

Proof. To see the first property, we apply the coordinate representation guaran-
teed by Theorem 5.1, and define the map F by F(H(w)) = G(w,0) for small vectors
w € W. The last property follows, since we just need to show the following inner
semicontinuity property (see [12, Proposition 2.8 ]): for any sequence of points u, — 4
in the active manifold M, there exists a sequence of values v, — ¥ with v, € ®(u,.)
for all large indices r. To see this, simply set v, = F(u,).

To see the second property, consider any sequence u, € M’ converging to 4.
By assumption, the sequence (umF’(u,«)) € gph ® converges to the point (4, ), so
u, € M for all large indices r by Proposition 3.4. 0

We also have the following calculus rule.

COROLLARY 5.3 (Sum rule). Consider a set-valued mapping ®: U = V that is
partly smooth at a point © € U for a value v € ®(u). If the function F: U — 'V
is smooth around u, then the set-valued mapping ® + F is partly smooth at u for
U+ F(u), with the same dimension and active manifold.

Proof. In terms of the coordinate representation guaranteed by Theorem 5.1, we
have

gph(® + F) = {(H(w),é(w,z)) :w € Bs(0), z € Bs(0)} around (a,?),
where the map G: W x Z — V is defined by

G(w,z) =G(w,z) + F(Hw)) (weW, z€Z).

This map is smooth around the point (0,0) with G(0,0) = & + F(@). Furthermore,
by assumption,

weW, z€Z, VH(0)w=0 and VG(0,0)(w,z) =0 = w=0and z=0,

since

VG(0,0)(w, z) = VG(0,0)(w, 2) + VF(2)VH(0)w.
5.1

The result now follows by Theorem 5.1. 0
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PARTIAL SMOOTHNESS AND CONSTANT RANK 9

As with manifolds, a dual representation is sometimes more useful.

THEOREM 5.4 (Dual representation). A set-valued mapping ®: U =V is partly
smooth at a point @ € U for a value © € ®(@) if and only if it has a local representation
of the following form: there exist Fuclidean spaces X and Y, maps P: U — X, smooth
around @ with P(@) = 0 and VP(a) surjective, and Q: U x V — Y, smooth around
(u,v) with Q(u,v) =0 and V,Q(u, ) surjective, such that

gph® = {(u,v) e Ux V:P(u)=0, Q(u,v) =0} around (u,v).
The active manifold (around i) is then the inverse image P~*(0).

Proof. Assuming the given representation, define a map R: U xV — X x Y by
R(u,v) = (P(u),Q(u,v)) for points u € U and values v € V. Clearly R is smooth
around the point (@, ), with R(@,v) = (0,0). The derivative VR(@,7): U x V —
X x Y is surjective, because for any values z € X and y € Y we can first find r € U
satisfying VP(@)r = x, and then find s € V satisfying V,Q(@,7)s = y — V,Q (@, 0)r,
and in that case we have

VR(a,v)(r,s) = (VP(E)T,VuQ(ﬂ,TJ)r—i—VvQ(ﬂ,TJ)s) = (z,y).

Since gph ® = R~1(0,0) around the point (u,%), we deduce that the graph of ® is a
manifold around (@, ).
For points (u,v) € gph ® near the point (u,v), we have

Topn o (u,v) = Null(VR(u,v))
= {(r,s) eUXxV:VPur=0, V,Q(u,v)r + V,Q(u,v)s = 0}7
so, since the partial derivative V,Q(u,v) is surjective, we deduce
proj (Typho(u,v)) = Null(VP(u)).

Since the derivative VP (u) is surjective, this space has constant dimension for u near
u, namely dim U — dim X, so partial smoothness follows.

Clearly the active manifold is contained in the inverse image P~!(0) around .
We claim these sets in fact agree around u. If not, there exists a sequence of points
uy, — 4 in P~1(0) lying outside the active manifold. By the implicit function theorem,
since the derivative V,Q(@, v) is surjective, there exists a sequence of values vy — ¥
such that Q(ug,vr) = 0 and hence vy, € ®(uy) for all large k. But this contradicts
the definition of the active manifold.

Conversely, suppose the mapping ® is partly smooth at the point @ € U for
the value o € ®(@). Using Theorem 5.1 (Coordinate representation), there exists a
Euclidean space W and a map H: W — U, smooth around 0 with H(0) = @ and
derivative VH(0) injective, such that the active manifold is M = H (Bs(0)) around
u providing d > 0 is sufficiently small.

Consider the map G: U — W discussed in section 2, satisfying the property
(2.1), so its restriction G| is the inverse of the diffeomorphism H around the point
@. Since gph @ is a manifold and contained in M x V around the point (@, 7), the set

A = {(G(u),v) : (u,v) € gph @, u € Bs(a), v € Bg(ﬂ)}

is a manifold around the point (0,7) € W x V. Hence A = S~1(0) around
some map S: W x V =Y (a Euclidean space), smooth around the point (
S(0,0) =0 and V.S(0,7) surjective. Equivalently, we have

gph® = {(H(w),v) : S(w,v) =0, w € B;(0), v € Bs(v)} around (,v).

), for

(0,
0,7) with

This manuscript is for review purposes only.
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We claim, more precisely, that the partial derivative V,.5(0,7): V — Y is sur-
jective. If not, there exists a nonzero vector y € Y such that V,S(0,9)*y = 0. By
Corollary 5.2 (Minimal identifiability), there exists a function F': W — V| smooth
around 0, such that F(0) = o and F(w) € ®(H(w)) for all small vectors w € W. We
deduce S(w, F(w)) = 0 for all small w € W, so

V.5(0,7) + V,5(0,9)VF(0) = 0.

Taking adjoints shows V,,5(0,9)*y = 0, so in fact V.S(0,7)*y = 0, contradicting the
surjectivity of V.S(0, 7).

There exists a Euclidean space X and a map P: U — X, smooth around the point
@, with P(2) = 0 and VP(u) surjective, such that the active manifold is M = P~1(0)
around 4. Furthermore, if we define a map Q: U xV — Y by Q(u,v) = S(G(u), v),
then the desired representation now follows, since the partial derivative

V.Q(a,v) = V,5(0,0)

is surjective. a

6. The normal bundle and partial smoothness. The canonical example of
a partly smooth mapping is the normal space operator associated with a manifold.
More precisely, given a manifold M C U around a point @ € M, we can consider the
normal space as a set-valued mapping Npq: U = U, where we define Npq(u) = 0 if
u g M.

THEOREM 6.1 (Normal space). If the set M C U is a C®-smooth manifold
around a point 4 € M, then the normal space mapping Naq: U = U is partly smooth
at w for any value v € Npq(@), with dimension dimU and active manifold M.

Proof. We apply Theorem 5.1 (Coordinate representation). Following the nota-
tion of Section 2, there exists a vector Z € X satisfying VP(u)*z = v. We claim

gph Nag = {(H(w), VP(H(w)) z) : w € Bs(0), = € Bs(z)}, around (,v),

providing ¢ > 0 is sufficiently small. The inclusion “D>” is clear, so it suffices to prove
the inclusion “C”.

For sufficiently small § > 0, the map H gives a diffeomorphism between the open
ball B5(0) C W and an open neighborhood of the point @ in the manifold M. For
such ¢, if the desired inclusion fails, then there exists a sequence of points u,, — @ in
M and a sequence of normals v, € Ny(u,) approaching o, such that the sequence
(ur,vy) is disjoint from the right-hand side. There must therefore exist a sequence
of vectors w, — 0 in W satisfying H(w,) = w,, and a sequence of vectors x, € X
satisfying

VP(u, )z, =v, = 9=VP(a)z.

Since the linear map VP (u) is surjective, we can represent it with respect to some
orthonormal bases by the matrix (A 0), where the matrix A is invertible. Denote the
corresponding representation of VP(u,) by (4, C.), where A, — A and C, — 0.
The property above ensures Az, — ATZ and hence z, — 7, contradicting our
assumption that x, & Bs(T).

Now define a map G: W x X — U by

G(w,z) = VP(H(U}))*(:E+Z) (for w e W, z € X).

This manuscript is for review purposes only.
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Clearly G is smooth around the point (0,0), with G(0,0) = ©. Furthermore, around
the point (@, v), the graph of ® has the representation (5.2), as we have just seen. It
remains to verify the regularity condition (5.1). By assumption, Null(VH(O)) = {0},
so we just need to check that vectors z € X satisfy the property

VG(0,0)(0,2) =0 = z=0.

However, VG(0,0)(0, z) = VP(u)*z, and VP(a) is surjective. Notice that the dimen-
sion of N, is

dim W + dim X = dim T (@) + dim Naq(@) = dim U,

so the result now follows. 0

We can generalize this result substantially. In the variational analysis that follows,
we follow the terminology and notation of [35]. The original definition of a partly
smooth set appeared in [26]. Here we use a slightly modified directional version [12].

DEFINITION 6.2. Consider a closed set @ C U, a point @ € @, and a normal
vector 0 € Ng(uw). We call Q partly smooth at @ for v with respect to a set M C Q
when all of the following properties hold.

e () is prox-regular at u for v.
M is a C®-smooth manifold around .
The regular normal cone NQ (u) spans the normal space Ny ().
For some neighborhood W of 4, the mapping u +— Ng(u) N W is inner semi-
continuous at u relative to M.

Since this definition is rather technical, a more concrete model is helpful. Consider
the fully amenable case [35] when the set @) coincides around @ with an inverse image
F~1(D) where F is a C®)_-smooth mapping and D is a closed convex set satisfying
Np(F(a))NN(VF(u)) = {0} (as holds in particular if Q is closed and convex). Then
the prox-regularity condition holds, and the normal and regular normal cones, Ng (%)
and NQ (u), coincide. The inner semicontinuity condition means that, for any normal
vector v € Ng(u) near ¥, and any sequence of points u, — @ in M, there exists a
corresponding sequence of normals v, € Ng(u,) approaching v.

We then have the following result.

THEOREM 6.3 (Partly smooth sets). Consider a closed set Q C U, a point @ € Q,
a regular normal vector v € NQ(TL), and suppose that M C Q is a C®-smooth
manifold around u. Then the following properties are equivalent for the normal cone
mapping Nq.

(i) Ng is partly smooth at @ for v, with active manifold M.

(if) M is identifiable for Ng at @ for v.

(iii) Q s partly smooth at @ for v with respect to M, and v € ri NQ(E)

(iv) gph Ng = gph Ny around (4, ).
When these properties hold, the dimension of Naq at w for v is just dimU.

Proof. The implication (i) = (ii) follows from Proposition 3.4. The equivalence
of the properties (ii), (iii), and (iv) follows from [12, Proposition 8.4]. The implication
(iv) = (i) follows from Theorem 6.1. |

The definition of a partly smooth function parallels that for sets. Again we use a
directional version of the original idea in [26], following [13].
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DEFINITION 6.4. Consider a closed function f: U — R, a point @ € U, and a
subgradient o € 9f(u). We call f partly smooth at @ for v with respect to a set M C U
when all of the following properties hold.

e f is prox-regular at u for v.

e The restriction f|n is C®-smooth around .

e The regular subdifferential df () is a translate of the normal space Na(@).

e For some neighborhood W of @, the mapping w — Jf(u) N W is inner semi-
continuous at 4 relative to M.

We then have the following result.

THEOREM 6.5 (Partly smooth functions). Consider a closed function f: U —
R, a point u € U, and a reqular subgradient v € éf(ﬂ) Suppose that [ is subdiffer-
entially continuous at @ for . Suppose furthermore that M C Q is a C® -smooth
manifold around @, and that the restriction f|aq is C®-smooth around u. Then
there exists a function f: U — R that is both C®-smooth and satisfies flpm = flm
around @, and for any such function the following properties are equivalent for the
subdifferential mapping Of .

(i) The mapping Of is partly smooth at u for v, with active manifold M.

(ii) The manifold M is identifiable for Of at u for v.

(iii) The function f is partly smooth at @ for v with respect to M, and v € ri O f (4).

(iv) Around (u,v) we have

gphdf = {(u, Vf(u)+v):ue M, ve Ny(u)}.

When these properties hold, the dimension of Of at u for v is just dimU.

Proof. The existence of the function f is just the definition smoothness of f|x,.
The implication (i) = (ii) follows from Proposition 3.4. The equivalence of the prop-
erties (ii), (iii), and (iv) follows from [13, Proposition 10.12]. The implication (iv) =
(i) follows from Theorem 6.1 and Corollary 5.3 (Sum rule). 0

Again, the assumptions are rather technical, so we illustrate with a more concrete
model, sufficient to cover many objective functions in practice. Consider the fully
amenable case when the function f is finite at  and agrees around @ with a composite
function g o F', where the mapping F is C(®-smooth around @ and the function g is
lower semicontinuous and convex, satisfying

Ncl(dom g) (F(ﬂ)) N N(VF({L)) = {0}

(When F is simply the identity mapping, we recover the case when f is lower semi-
continuous and convex). Then both the subdifferential continuity and prox-regularity
condition holds, and the normal and regular subdifferentials, df(u) and df(u), coin-
cide.

7. Identifiability for primal-dual splitting. As well as focusing attention
on the fundamental feature underlying partly smooth geometry—the constant rank
property—the formalism we have developed in this work extends beyond mere sub-
differential mappings. We illustrate with a recent popular primal-dual setting.

We consider the saddlepoint problem

inf sup{(f +p)(@) + (Az,y) — (9 + 9)(y)}
TEX ycY

This manuscript is for review purposes only.
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for Euclidean spaces X and Y, lower semicontinuous convex functions f: X — R and
g: Y = R, C®-smooth convex functions p: X — R and ¢: Y — R, and a linear
map A: X — Y. Saddlepoints (z,y) satisfy the inclusion

(0,0) € ®(z,y)
where the set-valued mapping ®: X x Y = X x Y is defined by
O(z,y) = (9f (x) + Vp(x) + A"y) x (— Az +dg(y) + Va(y)).-

The following method (following [30]) covers a variety of primal-dual algorithms
[5, 36, 6, 20]. As usual, we denote by prox(x) the unique minimizer of the function

O+ 5l ==

Algorithm 7.1 Primal-dual splitting

Choose vy, > 0. For k=0, 20 € X, 1o € Y,
while not done do
Trp1 = prox, s (zx — yVp(zr) — vA*yr),
Yr1 = Prox,,, (yk — pVq(ys) + pAQRzk 41 — 1)),
k=k+1;
end while

Assuming suitable conditions [30, Theorem 3.3], there exists a saddlepoint (Z, ) sat-
isfying

(7.1) (zx,yx) — (Z,7) and dist((0,0),fI)(xk,yk)) — 0.

Assume furthermore, again following [30], that the function f is partly smooth
at T for —Vp(Z) — A*y with respect to some set M C X, that the function g is
partly smooth at g for —V¢q(y) + AZ with respect to some set N’ C Y, and that the
nondegeneracy conditions

—Vp(z) — A*g €ridf(z) and — Vq(g) + Az € 11dg(y)

hold. Theorem 6.5 implies that the mapping 0f is partly smooth at Z for —Vp(z)—A*y
with respect to M, and the mapping Jg is partly smooth at § for —Vq(y) + AZ
with respect to N. It follows immediately that the set-valued mapping (x,y) —
Of(r) x Og(y) is partly smooth at (z,y) for (—=Vp(z) — A*y, —Vq(y) + Az) with
respect to M x N and hence by the sum rule that the set-valued mapping ® is partly
smooth at (z,7) for (0,0) with respect to M x A. By Proposition 3.4, M x N is
identifiable for ® at (z,7) for (0,0), so the convergence property (7.1) implies 2, € M
and y, € N eventually: exactly the conclusion of [30, Theorem 3.3].

8. Example: smooth optimization on a manifold. We end with a brief but
representative example to illustrate the interplay between partial smoothness and the
second-order sufficient conditions. This interplay sheds new light on local algorithms
of active-set type, as discussed further in [28].

Suppose M C U is a C®-smooth manifold around a point @ € M, and f: M —
R is a C'®-smooth function. We can consider a corresponding extended-valued func-
tion f: U — R defined by

2oy flu) (uweM)
f(u)_{+oo (u g M).
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Its subdifferential map is given by

0w — { Va0 Nua) (€ M)

where Vo f(u) € Ta(u) denotes the covariant derivative (as discussed in [29]). By
Corollary 5.3 (Sum rule), this set-valued mapping 0 f is partly smooth at @ for any
value in the set Vo f (@) + Naq(@). In particular, assuming the first-order necessary
condition

Vmf(a) =0,

then df is partly smooth at @ for 0, with dimension dim U and active manifold M.
Now suppose further that « is a local minimizer around which f grows quadrati-
cally: for some § > 0,

f(u) > f(@) + 8lu—al* for all u € M near .

Equivalently, in addition to the first-order condition, f satisfies the second-order suf-
ficient condition: the covariant Hessian V3, f(u): Ta(u) = Ta(u) (a self-adjoint
linear map) is positive definite when u = @. We also have (from [29]):

Nepnof(t,0) = {(z,w) : w € Tiq() and z + Vi, f(@)w € Naq(a) }.
Hence gph df intersects the subspace U x {0} transversally at (i, 0). To see this, note
(Z,U)) € nghaf(’a70) N NUX{O}(ﬂ7O)

if and only if
w € Tpq(a), 2+ Vi f(@)w e Ny(a), z=0.

Since Vﬁ/[ f (@) is positive definite, the latter property holds if and only if z = 0 and
w = 0, as required. Consequently, (,0) is an isolated transversal point of intersection
of the two manifolds gph df and U x {0}.

To summarize, satisfying the first-order optimality conditions for minimizing the
smooth function f on the manifold M C U amounts to finding a point in the inter-
section of the space U x {0} and the graph of the subdifferential of the corresponding
extended-valued function f . Assuming the second-order sufficient conditions, the sub-
differential is a partly smooth mapping of dimension dim U, and its graph (which is
locally a manifold) intersects the subspace U x {0} transversally at an isolated point.
This simple geometry underlies many standard local algorithms of active-set type [28].

Acknowledgments. Thanks to Artur Gorokh for many helpful comments dur-
ing the early development of these results, and to an anonymous referee for several
suggestions, leading in particular to the discussion in section 4.
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