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Abstract. In optimization, the notion of a partly smooth objective function is powerful for3
applications in algorithmic convergence and post-optimality analysis, and yet is complex to define.4
A shift in focus to the first-order optimality conditions reduces the concept to a simple constant-rank5
condition. In this view, partial smoothness extends to more general variational systems, encompass-6
ing in particular the saddlepoint operators underlying popular primal-dual splitting algorithms. For7
a broad class of semi-algebraic generalized equations, partial smoothness holds generically.8
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1. Introduction. A variety of optimization algorithms, ranging from classical12

active set methods to contemporary first-order algorithms for machine learning and13

high-dimensional statistics, “identify” structure associated with optimal solutions.14

The structure in question might be the active constraint set in a classical nonlinear15

program or, more specifically, the sparsity pattern of solution vectors in a machine16

learning problem. In the underlying Euclidean variable space U, the algorithm gen-17

erates iterates that eventually lie in a subset M ⇢ U of feasible solutions with that18

particular structure. That subset M, in the case of nonlinear programming, is exactly19

the “identifiable surface” [37] of the feasible region defined by the constraints active20

at optimality.21

A simple but quite extensive model of this phenomenon, following the philosophy22

of [37], is as follows. We consider minimizing a lower semicontinuous objective function23

f : U ! R (convex, for now), and assume that the set M of interest is a smooth24

surface, or more precisely a manifold around an optimal solution ū, meaning that25

locally it consists of solutions of a system of C
(2)-smooth equations with linearly26

independent gradients. Identification amounts to the property27

(1.1) vk 2 @f(uk), uk ! ū, vk ! 0 ) uk 2 M eventually,28

where @f denotes the classical subdi↵erential operator. Earlier versions of this iden-29

tifiability idea include [4, 14, 3, 2, 1, 16, 17].30

Closely related to the identification property (1.1) is the idea that the function f31

is partly smooth at the point ū relative to the manifold M. This property combines32

smoothness conditions on f when restricted to M with a sharpness property of f33

in directions normal to M. More precisely, around the point ū the restrictions of34

the function f and its subdi↵erential @f to the manifold M should be C
(2)-smooth35

and continuous respectively, and the a�ne span of @f(ū) should be a translate of the36

normal space to M at ū. This property, along with the nondegeneracy assumption37

that zero lies in the relative interior of @f(ū), together su�ce to ensure identifiability38

(1.1), as shown in [29, Thm 4.10].39
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As a simple example, the function f on the space R2 defined by f(x, y) = |x|+y
240

is partly smooth at its minimizer (0, 0) relative to the manifold {0} ⇥ R, and zero41

lies in the relative interior of the subdi↵erential @f(0, 0) = [�1, 1] ⇥ {0}. Hence the42

identifiability property (1.1) holds, as is easy to verify directly.43

The terminology and original definition of partly smooth sets and functions orig-44

inated in [26]. A closely related thread of research, known as “VU theory”, emerged45

from original work in [25]: subsequent explorations include [24, 31, 34, 33, 19, 32].46

Inevitably, it seems, the formal definition of partly smooth sets and functions, and47

their VU analogues, are rather involved. The definition of an identifiable surface in48

[37] is not simple either, despite the transparency of the identifiability property (1.1).49

As an approach to identifiability, considering partly smooth functions seems50

roundabout: our aim, the property (1.1), involves only the subdi↵erential operator51

@f , and not the underlying function f . It turns out that we can indeed characterize52

identifiability more naturally through a simple and fundamental property of the un-53

derlying operator @f . Simply put, if the graph of the operator (in the product space54

U ⇥ U) is a smooth manifold around the point (ū, 0), and the canonical projection55

of nearby points (u, v) in the graph to u 2 U is constant rank (meaning that the pro-56

jected tangent spaces at those points have constant dimension), then the identifiability57

property (1.1) follows.58

In summary, this work’s main contribution is to simplify and clarify the notion59

of partial smoothness, and how it relates to identifiability, revealing these ideas in60

essence as constant-rank properties. By simplifying the definition, we hope to pro-61

mote partial smoothness as a conceptual tool. After reviewing basic ideas about62

manifolds in section 2, we present the new definition and its consequences in sec-63

tion 3. In section 4, we refine a remarkable Sard-type result of Io↵e [21], showing64

that semi-algebraic generalized equations are “regular” for generic data values. Con-65

sequently, such equations reduce to intersection problems that are numerically stable66

due to a transversality condition. In common settings — subdi↵erential criticality67

conditions, variational inequalities and complementarity problems — we prove that68

partial smoothness also holds generically. Some technical representation tools follow69

in section 5, before we verify, in section 6, that the new definition does indeed capture70

the full force of previous notions of partial smoothness. This new perspective not71

only clarifies our understanding of these powerful tools, but broadens their potential72

application beyond the basic optimality condition 0 2 @f(ū) to more general varia-73

tional conditions. As an example, in section 7, we consider the saddlepoint optimality74

conditions associated with primal-dual splitting methods like the Chambolle-Pock al-75

gorithm [5]. We end, in section 8, with a brief discussion of the second-order optimality76

conditions in this new perspective.77

2. Manifolds. Throughout this work we consider mappings between two Euclid-78

ean spaces U and V. We begin our more formal development by summarizing some79

elementary ideas about manifolds, following the terminology of [22]. To this end,80

consider a set M ⇢ U that has the structure of a smooth manifold locally, around a81

point ū 2 M. By “smooth”, we mean C
(1)-smooth, unless we state otherwise. We82

can consider such sets M using “local coordinates”, as follows.83

We denote the open ball of radius � > 0 around the point ū by B�(ū). In84

elementary language, M is a smooth manifold around ū when there exists a Euclidean85

space W and a map H : W ! U that is smooth around 0, with the derivative86

rH(0) : W ! U injective and H(0) = ū, and such that, for all small � > 0,87

M = H
�
B�(ū)

�
around ū.88
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More formally [22, Chapter 8], some open neighborhood of ū in M is an embedded89

submanifold of U. Any small vector w 2 W constitutes the local coordinates centered90

around ū for the point H(w) 2 M. The tangent space at such a point is given simply91

by92

TM
�
H(w)

�
= Range

�
rH(w)

�
.93

Its dimension (the dimension of M around ū) is a constant, namely dimW. The94

normal space is the orthogonal complement:95

NM
�
H(w)

�
= Null

�
rH(w)⇤

�
.96

Given another Euclidean space V, a map F : M ! V is smooth around ū when97

there exists a map G : U ! V that is smooth around ū and agrees with F on a98

neighborhood of ū in M. In that case, the rank of F at ū is dim
�
rG(ū)TM(ū)

�
.99

Equivalently, F is smooth around ū when the composition F � H is smooth around100

0, and its rank at ū is then rank of the derivative r(F �H)(0) : W ! V as a linear101

map.102

The map H defines a di↵eomorphism from the open ball B�(0) ⇢ W (for small103

� > 0) to an open neighborhood of the point ū in the manifold M. We can describe104

the inverse of this di↵eomorphism via a map G : U ! W, smooth around the point105

ū, and satisfying106

(2.1) G
�
H(w)

�
= w for all small vectors w 2 W.107

The restriction G|M, around ū, is the inverse of the di↵eomorphism H.108

Adopting a dual approach, we can equivalently define a set M ⇢ U to be a109

smooth manifold around a point ū when there exists a Euclidean space X and a map110

P : U ! X that is smooth around ū, with the derivative rP (ū) : U ! X surjective111

and P (ū) = 0, and such that112

M = P
�1(0) = {u 2 U : P (u) = 0} around ū.113

Then the tangent and normal spaces are given by114

TM(u) = Null
�
rP (u)

�
115

NM(u) = Range
�
rP (u)⇤

�
116

at all points u 2 M near ū. The normal space has the same dimension as X.117

We can naturally decompose the space U as a direct sum:118

U = TM(ū)�NM(ū).119

With this decomposition, the two derivatives rH(0) : W ! U and rP (ū) : U ! X120

are given by121

rH(0)w = (Dw, 0)122

rP (ū)(r, s) = Es123

for some invertible linear maps D : W ! TM(ū) and E : NM(ū) ! X. Furthermore,124

the derivative rG(ū) : U ! W, restricted to TM(ū), is just the inverse map D
�1.125
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3. Partly smooth mappings. We are now ready to define the property central126

to this work. We consider the canonical projection proj : U ⇥ V ! U defined by127

proj(u, v) = u.128

Definition 3.1 (Partly smooth mappings). A set-valued mapping � : U !! V is129

called partly smooth at a point ū 2 U for a value v̄ 2 �(ū) when the graph gph�130

is a smooth manifold around (ū, v̄) and the projection proj restricted to gph� has131

constant rank around (ū, v̄). The dimension of � at ū for v̄ is then just the dimension132

of its graph around (ū, v̄).133

Note. An example is when the inverse mapping ��1 : V !! U is locally single-valued,134

smooth and constant-rank around v̄ for ū. In this case, � is in particular “strongly135

(metrically) regular” at ū for v̄, in the terminology of [35].136

By definition, the constant rank condition means that the subspace137

proj
�
Tgph�(u, v)

�
138

and its orthogonal complement (called, in variational analysis [35], the coderivative of139

the mapping �)140

D
⇤�(u, v)(0) =

�
w 2 U : (w, 0) 2 Ngph�(u, v)

 
,141

or equivalently, the subspace142

Ngph�(u, v) \ (U⇥ {0})143

all have constant dimension for points (u, v) near (ū, v̄).144

Consider, for example, the set-valued mapping � : R !! R defined by145

�(u) =

⇢
{±

p
u} (u � 0)

; (u < 0).
146

The graph is of � is the manifold {(u, v) 2 R2 : u = v
2}. However, � is not partly147

smooth at 0 for 0, because the projection proj restricted to gph� has rank zero at148

the point (0, 0) but rank one at all nearby points.149

Proposition 3.2. If a set-valued mapping � : U !! V is partly smooth at a point150

ū 2 U for a value v̄ 2 �(ū), then there exists a set M ⇢ U, uniquely defined around151

ū, that is a smooth manifold around ū, and satisfies152

M =
�
u 2 B✏(ū) : 9v 2 �(u) \B✏(v̄)

 
around ū,153

for all small ✏ > 0. We call any such set M the active manifold.154

Proof. For any small ✏ > 0, the set155

G✏ = gph� \
�
B✏(ū)⇥B✏(v̄)

�
156

is a manifold, and the projection proj restricted to G✏ is a constant-rank map. By157

the Constant Rank Theorem [22], the resulting image158

M✏ =
�
u 2 B✏(ū) : 9v 2 �(u) \B✏(v̄)

 
159

is a manifold of dimension dimprojTG✏(ū, v̄). This dimension is constant, for small160

✏ > 0, since the tangent space satisfies TG✏(ū, v̄) = Tgph�(ū, v̄). For any ✏
0 2 (0, ✏),161

we know M✏0 ⇢ M✏, but these sets are manifolds around ū of the same dimension,162

so must be identical around ū.163
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We use the following definition [12].164

Definition 3.3. A setM ⇢ U is identifiable for a set-valued mapping � : U !! V165

at a point ū 2 U for a value v̄ 2 �(ū) when gph� ⇢ M⇥V around the point (ū, v̄).166

The following proposition is then immediate.167

Proposition 3.4. If a set-valued mapping � : U !! V is partly smooth at a point168

ū 2 U for a value v̄ 2 �(ū), then the active manifold is an identifiable set.169

In fact, as we see later in our development, the active manifold is a locally minimal170

identifiable set.171

4. A Sard-type theorem for generalized equations. A value v 2 V is172

regular for a set-valued mapping � : U !! V if the graph of � intersects U ⇥ {v}173

everywhere transversally: using the language of coderivatives [35],174

0 2 D
⇤�(u, v)(w) ) w = 0 (u 2 U, w 2 V).175

The numerical solution of equations involving a su�ciently smooth single-valued map176

� is buttressed by the classical Sard theorem, which guarantees that almost all values177

v 2 V are regular, or equivalently, that the derivative of � is surjective throughout178

the inverse image ��1(v). In computational practice, we make no attempt to verify179

regularity in advance: rather it is a reassuring generic property.180

Sard-type theorems also hold for a large class of concrete set-valued mappings181

� : U !! V, and in particular for those with semi-algebraic graphs [21]. A subset of a182

Euclidean space is semi-algebraic if it is a finite union of sets defined by finitely-many183

polynomial inequalities [7]. Such sets comprise a rich and robust class, representa-184

tive of many concrete variational settings [27]. Our next result incorporates partial185

smoothness into a semi-algebraic Sard-type result. Thus even without verifying par-186

tial smoothness in advance, for generic data we may reasonably assume it. For a more187

detailed analysis in the case of certain variational inequalities, see [23].188

Theorem 4.1 (Generic partial smoothness). If the graph of a set-valued mapping189

� : U !! V is semi-algebraic and of dimension no larger than dimV, then regularity190

holds for almost all values v 2 V, along with the property of partial smoothness191

throughout the inverse image ��1(v). These two properties hold in particular on a192

full-measure union of open semi-algebraic sets Vi ⇢ V (for i = 0, 1, 2, . . . , k), on each193

of which the inverse image ��1(·) has constant cardinality i and the representation194

��1(v) = {Gj
i (v) : j = 1, 2, 3, . . . , i}195

for single-valued, analytic, semi-algebraic, constant-rank maps G
j
i : Vi ! U.196

Proof. By [11, Proposition 4.3], there exists an integer k � 0 such that the inverse197

image ��1(v) has cardinality at most k for almost all values v 2 V. Hence the union198

of the following semi-algebraic sets is full-measure in V:199

Ṽi = {v 2 V : ��1(v) has cardinality i} (i = 0, 1, 2, . . . , k).200

For vectors x, y 2 Rn, the lexicographic relationship x � y means that for some201

j = 1, 2, 3, . . . , n, we have xi = yi for all i < j and xj > yj . By identifying the space202

V with Rn, we thereby arrive at a strict total order � on V, with semi-algebraic203

graph. Now define semi-algebraic maps G
j
i : Ṽi ! U, for each i = 0, 1, 2, . . . , k and204

j = 1, 2, 3, . . . , i, as follows. For any value v 2 Ṽi, we write205

��1(v) = {u1, u2, u3, . . . , ui} with u1 � u2 � u3 � · · · � ui,206
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and then define G
j
i (v) = uj .207

Using a standard stratification argument (see [18] and [10, Theorem 3.4]), we208

can partition each set Ṽi into a disjoint finite union of “strata” — semi-algebraic209

analytic manifolds of various dimensions — on each of which all the maps G
j
i (for210

j = 1, 2, 3, . . . , i) are analytic and constant-rank. The union of all these strata (for211

i = 0, 1, 2, . . . , k) is full-measure in V, and hence so is the union of just the open212

strata, since lower-dimensional manifolds have measure zero. We can therefore define213

each set Vi to be the union of just the open strata for Ṽi.214

Consider any value v̄ in the set Vi, for some i = 0, 1, 2, . . . , k. Any point ū with215

v̄ 2 �(ū) can be written ū = G
j
i (v̄) for some j = 1, 2, 3, . . . , i. Since Vi is open, we216

then have217

gph� = {(Gj
i (v), v) : v 2 Vi} around (ū, v̄).218

Thus the graph of � is locally identical to the graph of an analytic map (after reorder-219

ing the variables). A standard exercise shows that its tangent space at any nearby220

point (u, v) 2 gph� is221

Tgph�(u, v) = {(rG
j
i (v)w,w) : w 2 V},222

so we deduce223

proj
�
Tgph�(u, v)

�
= Range

�
rG

j
i (v)

�
.224

Since the map G
j
i is constant-rank, � is partly smooth at ū for v̄.225

It remains to check that the graph of � intersects U ⇥ {v̄} transversally at the226

point (ū, v̄). This follows from the fact that the graph is locally a manifold, and the227

tangent spaces228

Tgph�(ū, v̄) = {(rG
j
i (v̄)w,w) : w 2 V}229

TU⇥{v̄}(ū, v̄) = U⇥ {0},230

together span U⇥V.231

Examples of set-valued mappings � : V !! V with semi-algebraic graphs of di-232

mension no larger than dimV include subdi↵erentials of semi-algebraic functions233

f : V ! R (see [9, 11]). However, such mappings also appear in settings beyond234

optimization. Generalized equations such as variational inequalities and complemen-235

tarity problems [15, 8] often involve mappings � that decompose into a sum of a236

single-valued map F : V ! V and a maximal monotone operator  : V !! V. By237

Minty’s Theorem [35, Theorem 12.15], we have238

gph(F + ) =
��

R (v), F
�
R (v)

�
+R �1(v)

�
: v 2 V

 
,239

where the resolvents R = (I+ )�1 and R �1 = (I+ �1)�1 are both single-valued.240

If F and  are both semi-algebraic, then so are the two resolvents, and hence, being a241

single-valued semi-algebraic image of V, the graph of the sum F + is semi-algebraic242

and of dimension no larger than dimV.243

Theorem 4.1 thus shows, for concrete variational problems with generic data,244

that we can expect both partial smoothness and regularity to hold at a solution.245

These properties together open the door to “active-set Newton methods”, generalizing246

sequential quadratic programming approaches for traditional nonlinear programming:247

for a full development, see [28, Theorem 3]. Of course, in practice, data may not be248

generic, but we would likely not try to verify partial smoothness or regularity in249

advance any more than we would verify, before using a numerical solver, a nonzero250

derivative at the solution of a scalar equation. Nonetheless, both those assumptions251

may be natural first steps in sensitivity analysis and algorithm design.252
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5. Representations of partly smooth mappings. In this section we develop253

two useful concrete representations of partly smooth mappings. The proofs, while254

routine, are a little fussy, and the reader might wish to pass them over at first. The255

first result gives a representation of a partly smooth mapping using local coordinates.256

Theorem 5.1 (Coordinate representation). A set-valued mapping � : U !! V257

is partly smooth at a point ū 2 U for a value v̄ 2 �(ū) if and only if it has a local258

representation of the following form: there exist Euclidean spaces W and Z, maps259

H : W ! U, smooth around 0 with H(0) = ū and rH(0) injective, and G : W⇥Z !260

V, smooth around (0, 0) with G(0, 0) = v̄, such that,261

(5.1) w 2 W, z 2 Z, rH(0)w = 0 and rG(0, 0)(w, z) = 0 ) w = 0 and z = 0,262

and for all small � > 0,263

(5.2) gph� =
��

H(w), G(w, z)
�
: w 2 B�(0), z 2 B�(0)

 
around (ū, v̄).264

In this case, the dimension of � at ū for v̄ is dimW+dimZ, and the active manifold265

is H
�
B�(0)

�
around ū, providing � > 0 is su�ciently small.266

Proof. Assuming the local representation, we first prove that � is partly smooth at267

ū for v̄. Consider the map P : W⇥Z ! U⇥V defined by P (w, z) =
�
H(w), G(w, z)

�
268

for w 2 W and z 2 Z. This map is smooth around the point (0, 0), with derivative269

rP (w, z)(r, s) =
�
rH(w)r,rG(w, z)(r, s)

�
,270

for all small w 2 W and z 2 Z, and vectors r 2 W and s 2 Z. By assumption,271

the derivative rP (0, 0) is injective, so gph� is a smooth manifold around (0, 0), with272

tangent space at such points (w, z) given by273

Tgph�

�
H(w), G(w, z)

�
=

��
rH(w)r,rG(w, z)(r, s)

�
: r 2 W, s 2 Z

 
.274

Its image under the projection map proj : gph�! U is simply the range of rH(w).275

Since rH(0) is injective, the projection has locally constant rank dimW. Partial276

smoothness follows, and the local description of the active manifold follows from277

Proposition 3.2.278

Conversely, suppose � : U !! V is partly smooth at ū for v̄ 2 �(ū). By the279

Constant Rank Theorem, we can consider the projection map proj as having the form280

(w, z) 7! (w, 0) 2 W ⇥ Y, where (w, z) 2 W ⇥ Z (for Euclidean spaces W and Z)281

defines local coordinates for the manifold gph�, centered at (ū, v̄), and (w, y) 2 W⇥Y282

(for a Euclidean space Y) defines local coordinates for U centered around ū.283

More explicitly, there exist maps284

F : W ⇥ Z ! U, smooth around (0, 0),with F (0, 0) = ū285

G : W ⇥ Z ! V, smooth around (0, 0),with G(0, 0) = v̄286

Q : W ⇥Y ! U, smooth around (0, 0),with Q(0, 0) = ū287

with288
�
rF (0, 0),rG(0, 0)

�
: W ⇥ Z ! U⇥V289

rQ(0, 0) : W ⇥Y ! U290

both injective, and for all small � > 0,291

gph� =
��

F (w, z), G(w, z)
�
: w 2 B�(0), z 2 B�(0)

 
around (ū, v̄)292

U =
�
Q(w, y) : w 2 B�(0), y 2 B�(0)

 
around v̄,293
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8 A.S. LEWIS, JINGWEI LIANG, AND TONGHUA TIAN

and furthermore, F (w, z) = Q(w, 0) for all small w 2 W and z 2 Z.294

Now define a map H : W ! U by H(w) = Q(w, 0), for w 2 W, and notice295

rF (0, 0) = (rH(0), 0). Then, for points w 2 W and z 2 Z, whenever 0 = rH(0)w =296

rF (0, 0)(w, z) and rG(0, 0)(w, z) = 0, we must have w = 0 and z = 0. The result297

now follows.298

One consequence is the locally minimal identifiability of active manifolds we men-299

tioned above, as we show next. Along the way, we prove that partly smooth mappings300

have smooth selections.301

Corollary 5.2 (Minimal identifiability). If a set-valued mapping � : U !! V302

is partly smooth at a point ū 2 U for a value v̄ 2 �(ū), then the active manifold M303

has the following properties.304

• There exists a map F : M ! V, smooth around ū, such that F (ū) = v̄ and305

F (u) 2 �(u) for all points u 2 M near ū.306

• For any set M0 ⇢ U containing ū, and any map F
0 : M0 ! V that is con-307

tinuous at ’ū and satisfies F (ū) = v̄ and F (u) 2 �(u) for all points u 2 M0308

near ū, we must have M0 ⇢ M around ū.309

• M is a locally minimal identifiable set at ū for v̄.310

Proof. To see the first property, we apply the coordinate representation guaran-311

teed by Theorem 5.1, and define the map F by F
�
H(w)

�
= G(w, 0) for small vectors312

w 2 W. The last property follows, since we just need to show the following inner313

semicontinuity property (see [12, Proposition 2.8 ]): for any sequence of points ur ! ū314

in the active manifold M, there exists a sequence of values vr ! v̄ with vr 2 �(ur)315

for all large indices r. To see this, simply set vr = F (ur).316

To see the second property, consider any sequence ur 2 M0 converging to ū.317

By assumption, the sequence
�
ur, F

0(ur)
�
2 gph� converges to the point (ū, v̄), so318

ur 2 M for all large indices r by Proposition 3.4.319

We also have the following calculus rule.320

Corollary 5.3 (Sum rule). Consider a set-valued mapping � : U !! V that is321

partly smooth at a point ū 2 U for a value v̄ 2 �(ū). If the function F : U ! V322

is smooth around ū, then the set-valued mapping � + F is partly smooth at ū for323

v̄ + F (ū), with the same dimension and active manifold.324

Proof. In terms of the coordinate representation guaranteed by Theorem 5.1, we325

have326

gph(�+ F ) =
��

H(w), G̃(w, z)
�
: w 2 B�(0), z 2 B�(0)

 
around (ū, v̄),327

where the map G̃ : W ⇥ Z ! V is defined by328

G̃(w, z) = G(w, z) + F
�
H(w)

�
(w 2 W, z 2 Z).329

This map is smooth around the point (0, 0) with G̃(0, 0) = v̄ + F (ū). Furthermore,330

by assumption,331

w 2 W, z 2 Z, rH(0)w = 0 and rG̃(0, 0)(w, z) = 0 ) w = 0 and z = 0,332

since333

rG̃(0, 0)(w, z) = rG(0, 0)(w, z) +rF (ū)rH(0)w.334

The result now follows by Theorem 5.1.335

This manuscript is for review purposes only.



PARTIAL SMOOTHNESS AND CONSTANT RANK 9

As with manifolds, a dual representation is sometimes more useful.336

Theorem 5.4 (Dual representation). A set-valued mapping � : U !! V is partly337

smooth at a point ū 2 U for a value v̄ 2 �(ū) if and only if it has a local representation338

of the following form: there exist Euclidean spaces X and Y, maps P : U ! X, smooth339

around ū with P (ū) = 0 and rP (ū) surjective, and Q : U⇥V ! Y, smooth around340

(ū, v̄) with Q(ū, v̄) = 0 and rvQ(ū, v̄) surjective, such that341

gph� =
�
(u, v) 2 U⇥V : P (u) = 0, Q(u, v) = 0

 
around (ū, v̄).342

The active manifold (around ū) is then the inverse image P
�1(0).343

Proof. Assuming the given representation, define a map R : U⇥V ! X⇥Y by344

R(u, v) =
�
P (u), Q(u, v)

�
for points u 2 U and values v 2 V . Clearly R is smooth345

around the point (ū, v̄), with R(ū, v̄) = (0, 0). The derivative rR(ū, v̄) : U ⇥ V !346

X⇥Y is surjective, because for any values x 2 X and y 2 Y we can first find r 2 U347

satisfying rP (ū)r = x, and then find s 2 V satisfying rvQ(ū, v̄)s = y�ruQ(ū, v̄)r,348

and in that case we have349

rR(ū, v̄)(r, s) =
�
rP (ū)r,ruQ(ū, v̄)r +rvQ(ū, v̄)s

�
= (x, y).350

Since gph� = R
�1(0, 0) around the point (ū, v̄), we deduce that the graph of � is a351

manifold around (ū, v̄).352

For points (u, v) 2 gph� near the point (ū, v̄), we have353

Tgph�(u, v) = Null
�
rR(u, v)

�
354

=
�
(r, s) 2 U⇥V : rP (u)r = 0, ruQ(u, v)r +rvQ(u, v)s = 0

 
,355

so, since the partial derivative rvQ(u, v) is surjective, we deduce356

proj
�
Tgph�(u, v)

�
= Null

�
rP (u)

�
.357

Since the derivative rP (u) is surjective, this space has constant dimension for u near358

ū, namely dimU� dimX, so partial smoothness follows.359

Clearly the active manifold is contained in the inverse image P
�1(0) around ū.360

We claim these sets in fact agree around ū. If not, there exists a sequence of points361

uk ! ū in P
�1(0) lying outside the active manifold. By the implicit function theorem,362

since the derivative rvQ(ū, v̄) is surjective, there exists a sequence of values vk ! v̄363

such that Q(uk, vk) = 0 and hence vk 2 �(uk) for all large k. But this contradicts364

the definition of the active manifold.365

Conversely, suppose the mapping � is partly smooth at the point ū 2 U for366

the value v̄ 2 �(ū). Using Theorem 5.1 (Coordinate representation), there exists a367

Euclidean space W and a map H : W ! U, smooth around 0 with H(0) = ū and368

derivative rH(0) injective, such that the active manifold is M = H
�
B�(0)

�
around369

ū providing � > 0 is su�ciently small.370

Consider the map G : U ! W discussed in section 2, satisfying the property371

(2.1), so its restriction G|M is the inverse of the di↵eomorphism H around the point372

ū. Since gph� is a manifold and contained in M⇥V around the point (ū, v̄), the set373

⇤ =
��

G(u), v
�
: (u, v) 2 gph�, u 2 B�(ū), v 2 B�(v̄)

 
374

is a manifold around the point (0, v̄) 2 W ⇥V. Hence ⇤ = S
�1(0) around (0, v̄), for375

some map S : W⇥V ! Y (a Euclidean space), smooth around the point (0, v̄) with376

S(0, v̄) = 0 and rS(0, v̄) surjective. Equivalently, we have377

gph� =
��

H(w), v
�
: S(w, v) = 0, w 2 B�(0), v 2 B�(v̄)

 
around (ū, v̄).378
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We claim, more precisely, that the partial derivative rvS(0, v̄) : V ! Y is sur-379

jective. If not, there exists a nonzero vector y 2 Y such that rvS(0, v̄)⇤y = 0. By380

Corollary 5.2 (Minimal identifiability), there exists a function F : W ! V, smooth381

around 0, such that F (0) = v̄ and F (w) 2 �
�
H(w)

�
for all small vectors w 2 W. We382

deduce S
�
w,F (w)

�
= 0 for all small w 2 W, so383

rwS(0, v̄) +rvS(0, v̄)rF (0) = 0.384

Taking adjoints shows rwS(0, v̄)⇤y = 0, so in fact rS(0, v̄)⇤y = 0, contradicting the385

surjectivity of rS(0, v̄).386

There exists a Euclidean spaceX and a map P : U ! X, smooth around the point387

ū, with P (ū) = 0 and rP (ū) surjective, such that the active manifold is M = P
�1(0)388

around ū. Furthermore, if we define a map Q : U⇥V ! Y by Q(u, v) = S
�
G(u), v

�
,389

then the desired representation now follows, since the partial derivative390

rvQ(ū, v̄) = rvS(0, v̄)391

is surjective.392

6. The normal bundle and partial smoothness. The canonical example of393

a partly smooth mapping is the normal space operator associated with a manifold.394

More precisely, given a manifold M ⇢ U around a point ū 2 M, we can consider the395

normal space as a set-valued mapping NM : U !! U, where we define NM(u) = ; if396

u 62 M.397

Theorem 6.1 (Normal space). If the set M ⇢ U is a C
(2)-smooth manifold398

around a point ū 2 M, then the normal space mapping NM : U !! U is partly smooth399

at ū for any value v̄ 2 NM(ū), with dimension dimU and active manifold M.400

Proof. We apply Theorem 5.1 (Coordinate representation). Following the nota-401

tion of Section 2, there exists a vector x̄ 2 X satisfying rP (ū)⇤x̄ = v̄. We claim402

gphNM =
��

H(w),rP
�
H(w)

�⇤
x
�
: w 2 B�(0), x 2 B�(x̄)

 
, around (ū, v̄),403

providing � > 0 is su�ciently small. The inclusion “�” is clear, so it su�ces to prove404

the inclusion “⇢”.405

For su�ciently small � > 0, the map H gives a di↵eomorphism between the open406

ball B�(0) ⇢ W and an open neighborhood of the point ū in the manifold M. For407

such �, if the desired inclusion fails, then there exists a sequence of points ur ! ū in408

M and a sequence of normals vr 2 NM(ur) approaching v̄, such that the sequence409

(ur, vr) is disjoint from the right-hand side. There must therefore exist a sequence410

of vectors wr ! 0 in W satisfying H(wr) = ur, and a sequence of vectors xr 2 X411

satisfying412

rP (ur)
⇤
xr = vr ! v̄ = rP (ū)⇤x̄.413

Since the linear map rP (ū) is surjective, we can represent it with respect to some414

orthonormal bases by the matrix (A 0), where the matrix A is invertible. Denote the415

corresponding representation of rP (ur) by (Ar Cr), where Ar ! A and Cr ! 0.416

The property above ensures A
T
r xr ! A

T
x̄ and hence xr ! x̄, contradicting our417

assumption that xr 62 B�(x̄).418

Now define a map G : W ⇥X ! U by419

G(w, z) = rP
�
H(w)

�⇤
(x̄+ z) (for w 2 W, z 2 X).420
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Clearly G is smooth around the point (0, 0), with G(0, 0) = v̄. Furthermore, around421

the point (ū, v̄), the graph of � has the representation (5.2), as we have just seen. It422

remains to verify the regularity condition (5.1). By assumption, Null
�
rH(0)

�
= {0},423

so we just need to check that vectors z 2 X satisfy the property424

rG(0, 0)(0, z) = 0 ) z = 0.425

However, rG(0, 0)(0, z) = rP (ū)⇤z, and rP (ū) is surjective. Notice that the dimen-426

sion of NM is427

dimW + dimX = dimTM(ū) + dimNM(ū) = dimU,428

so the result now follows.429

We can generalize this result substantially. In the variational analysis that follows,430

we follow the terminology and notation of [35]. The original definition of a partly431

smooth set appeared in [26]. Here we use a slightly modified directional version [12].432

Definition 6.2. Consider a closed set Q ⇢ U, a point ū 2 Q, and a normal433

vector v̄ 2 NQ(ū). We call Q partly smooth at ū for v̄ with respect to a set M ⇢ Q434

when all of the following properties hold.435

• Q is prox-regular at ū for v̄.436

• M is a C
(2)-smooth manifold around ū.437

• The regular normal cone N̂Q(ū) spans the normal space NM(ū).438

• For some neighborhood W of v̄, the mapping u 7! NQ(u) \W is inner semi-439

continuous at ū relative to M.440

Since this definition is rather technical, a more concrete model is helpful. Consider441

the fully amenable case [35] when the set Q coincides around ū with an inverse image442

F
�1(D) where F is a C

(2)-smooth mapping and D is a closed convex set satisfying443

ND

�
F (ū)

�
\N

�
rF (ū)

�
= {0} (as holds in particular if Q is closed and convex). Then444

the prox-regularity condition holds, and the normal and regular normal cones, NQ(ū)445

and N̂Q(ū), coincide. The inner semicontinuity condition means that, for any normal446

vector v 2 NQ(ū) near v̄, and any sequence of points ur ! ū in M, there exists a447

corresponding sequence of normals vr 2 NQ(ur) approaching v̄.448

We then have the following result.449

Theorem 6.3 (Partly smooth sets). Consider a closed set Q ⇢ U, a point ū 2 Q,450

a regular normal vector v̄ 2 N̂Q(ū), and suppose that M ⇢ Q is a C
(2)-smooth451

manifold around ū. Then the following properties are equivalent for the normal cone452

mapping NQ.453

(i) NQ is partly smooth at ū for v̄, with active manifold M.454

(ii) M is identifiable for NQ at ū for v̄.455

(iii) Q is partly smooth at ū for v̄ with respect to M, and v̄ 2 ri N̂Q(ū).456

(iv) gphNQ = gphNM around (ū, v̄).457

When these properties hold, the dimension of NM at ū for v̄ is just dimU.458

Proof. The implication (i) ) (ii) follows from Proposition 3.4. The equivalence459

of the properties (ii), (iii), and (iv) follows from [12, Proposition 8.4]. The implication460

(iv) ) (i) follows from Theorem 6.1.461

The definition of a partly smooth function parallels that for sets. Again we use a462

directional version of the original idea in [26], following [13].463
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Definition 6.4. Consider a closed function f : U ! R, a point ū 2 U, and a464

subgradient v̄ 2 @f(ū). We call f partly smooth at ū for v̄ with respect to a set M ⇢ U465

when all of the following properties hold.466

• f is prox-regular at ū for v̄.467

• The restriction f |M is C(2)-smooth around ū.468

• The regular subdi↵erential @̂f(ū) is a translate of the normal space NM(ū).469

• For some neighborhood W of v̄, the mapping u 7! @f(u) \W is inner semi-470

continuous at ū relative to M.471

We then have the following result.472

Theorem 6.5 (Partly smooth functions). Consider a closed function f : U !473

R, a point ū 2 U, and a regular subgradient v̄ 2 @̂f(ū). Suppose that f is subdi↵er-474

entially continuous at ū for v̄. Suppose furthermore that M ⇢ Q is a C
(2)-smooth475

manifold around ū, and that the restriction f |M is C
(2)-smooth around ū. Then476

there exists a function f̄ : U ! R that is both C
(2)-smooth and satisfies f |M = f̄ |M477

around ū, and for any such function the following properties are equivalent for the478

subdi↵erential mapping @f .479

(i) The mapping @f is partly smooth at ū for v̄, with active manifold M.480

(ii) The manifold M is identifiable for @f at ū for v̄.481

(iii) The function f is partly smooth at ū for v̄ with respect to M, and v̄ 2 ri @̂f(ū).482

(iv) Around (ū, v̄) we have483

gph @f = {(u,rf̄(u) + v) : u 2 M, v 2 NM(u)}.484

When these properties hold, the dimension of @f at ū for v̄ is just dimU.485

Proof. The existence of the function f̄ is just the definition smoothness of f |M.486

The implication (i) ) (ii) follows from Proposition 3.4. The equivalence of the prop-487

erties (ii), (iii), and (iv) follows from [13, Proposition 10.12]. The implication (iv) )488

(i) follows from Theorem 6.1 and Corollary 5.3 (Sum rule).489

Again, the assumptions are rather technical, so we illustrate with a more concrete490

model, su�cient to cover many objective functions in practice. Consider the fully491

amenable case when the function f is finite at ū and agrees around ū with a composite492

function g � F , where the mapping F is C(2)-smooth around ū and the function g is493

lower semicontinuous and convex, satisfying494

Ncl(dom g)

�
F (ū)

�
\N

�
rF (ū)

�
= {0}.495

(When F is simply the identity mapping, we recover the case when f is lower semi-496

continuous and convex). Then both the subdi↵erential continuity and prox-regularity497

condition holds, and the normal and regular subdi↵erentials, @f(ū) and @̂f(ū), coin-498

cide.499

7. Identifiability for primal-dual splitting. As well as focusing attention500

on the fundamental feature underlying partly smooth geometry—the constant rank501

property—the formalism we have developed in this work extends beyond mere sub-502

di↵erential mappings. We illustrate with a recent popular primal-dual setting.503

We consider the saddlepoint problem504

inf
x2X

sup
y2Y

{(f + p)(x) + hAx, yi � (g + q)(y)}505
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for Euclidean spaces X and Y, lower semicontinuous convex functions f : X ! R and506

g : Y ! R, C(2)-smooth convex functions p : X ! R and q : Y ! R, and a linear507

map A : X ! Y. Saddlepoints (x, y) satisfy the inclusion508

(0, 0) 2 �(x, y)509

where the set-valued mapping � : X⇥Y !! X⇥Y is defined by510

�(x, y) =
�
@f(x) +rp(x) +A

⇤
y
�
⇥
�
�Ax+ @g(y) +rq(y)

�
.511

The following method (following [30]) covers a variety of primal-dual algorithms512

[5, 36, 6, 20]. As usual, we denote by proxf (x) the unique minimizer of the function513

f(·) + 1
2k ·�xk2.514

Algorithm 7.1 Primal-dual splitting

Choose �, µ > 0. For k = 0, x0 2 X, y0 2 Y,
while not done do
xk+1 = prox�f

�
xk � �rp(xk)� �A

⇤
yk

�
,

yk+1 = proxµg
�
yk � µrq(yk) + µA(2xk+1 � xk)

�
,

k = k + 1;
end while

Assuming suitable conditions [30, Theorem 3.3], there exists a saddlepoint (x̄, ȳ) sat-515

isfying516

(7.1) (xk, yk) ! (x̄, ȳ) and dist
�
(0, 0),�(xk, yk)

�
! 0.517

Assume furthermore, again following [30], that the function f is partly smooth518

at x̄ for �rp(x̄) � A
⇤
ȳ with respect to some set M ⇢ X, that the function g is519

partly smooth at ȳ for �rq(ȳ) + Ax̄ with respect to some set N ⇢ Y, and that the520

nondegeneracy conditions521

�rp(x̄)�A
⇤
ȳ 2 ri @f(x̄) and �rq(ȳ) +Ax̄ 2 ri @g(ȳ)522

hold. Theorem 6.5 implies that the mapping @f is partly smooth at x̄ for�rp(x̄)�A
⇤
ȳ523

with respect to M, and the mapping @g is partly smooth at ȳ for �rq(ȳ) + Ax̄524

with respect to N . It follows immediately that the set-valued mapping (x, y) 7!525

@f(x) ⇥ @g(y) is partly smooth at (x̄, ȳ) for (�rp(x̄) � A
⇤
ȳ,�rq(ȳ) + Ax̄) with526

respect to M⇥N and hence by the sum rule that the set-valued mapping � is partly527

smooth at (x̄, ȳ) for (0, 0) with respect to M ⇥ N . By Proposition 3.4, M ⇥ N is528

identifiable for � at (x̄, ȳ) for (0, 0), so the convergence property (7.1) implies xk 2 M529

and yk 2 N eventually: exactly the conclusion of [30, Theorem 3.3].530

8. Example: smooth optimization on a manifold. We end with a brief but531

representative example to illustrate the interplay between partial smoothness and the532

second-order su�cient conditions. This interplay sheds new light on local algorithms533

of active-set type, as discussed further in [28].534

Suppose M ⇢ U is a C
(2)-smooth manifold around a point ū 2 M, and f : M !535

R is a C
(2)-smooth function. We can consider a corresponding extended-valued func-536

tion f̃ : U ! R defined by537

f̃(u) =

⇢
f(u) (u 2 M)
+1 (u 62 M).

538
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Its subdi↵erential map is given by539

@f̃(u) =

⇢
rMf(u) +NM(u) (u 2 M)
; (u 62 M),

540

where rMf(u) 2 TM(u) denotes the covariant derivative (as discussed in [29]). By541

Corollary 5.3 (Sum rule), this set-valued mapping @f̃ is partly smooth at ū for any542

value in the set rMf(ū) +NM(ū). In particular, assuming the first-order necessary543

condition544

rMf(ū) = 0,545

then @f̃ is partly smooth at ū for 0, with dimension dimU and active manifold M.546

Now suppose further that ū is a local minimizer around which f grows quadrati-547

cally: for some � > 0,548

f(u) � f(ū) + �|u� ū|2 for all u 2 M near ū.549

Equivalently, in addition to the first-order condition, f satisfies the second-order suf-550

ficient condition: the covariant Hessian r2
Mf(u) : TM(u) ! TM(u) (a self-adjoint551

linear map) is positive definite when u = ū. We also have (from [29]):552

Ngph @f̃ (ū, 0) =
�
(z, w) : w 2 TM(ū) and z +r2

Mf(ū)w 2 NM(ū)
 
.553

Hence gph @f̃ intersects the subspace U⇥{0} transversally at (ū, 0). To see this, note554

(z, w) 2 Ngph @f̃ (ū, 0) \NU⇥{0}(ū, 0)555

if and only if556

w 2 TM(ū), z +r2
Mf(ū)w 2 NM(ū), z = 0.557

Since r2
Mf(ū) is positive definite, the latter property holds if and only if z = 0 and558

w = 0, as required. Consequently, (ū, 0) is an isolated transversal point of intersection559

of the two manifolds gph @f̃ and U⇥ {0}.560

To summarize, satisfying the first-order optimality conditions for minimizing the561

smooth function f on the manifold M ⇢ U amounts to finding a point in the inter-562

section of the space U⇥{0} and the graph of the subdi↵erential of the corresponding563

extended-valued function f̃ . Assuming the second-order su�cient conditions, the sub-564

di↵erential is a partly smooth mapping of dimension dimU, and its graph (which is565

locally a manifold) intersects the subspace U⇥ {0} transversally at an isolated point.566

This simple geometry underlies many standard local algorithms of active-set type [28].567
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