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Active composites consisting of materials that respond differently to envi-
ronmental stimuli can transform their shapes. Integrating active composites 
and 4D printing allows the printed structure to have a pre-designed complex 
material or property distribution on numerous small voxels, offering enor-
mous design flexibility. However, this tremendous design space also poses a 
challenge in efficiently finding appropriate designs to achieve a target shape 
change. Here, a novel machine learning (ML) and evolutionary algorithm (EA) 
based approach is presented to guide the design process. Inspired by the 
beam deformation characteristics, a recurrent neural network (RNN) based 
ML model whose training dataset is acquired by finite element simulations 
is developed for the forward shape-change prediction. EA empowered with 
ML is then used to solve the inverse problem of finding the optimal design. 
For multiple target shapes with different complexities, the ML-EA approach 
demonstrates high efficiency. Combining the ML-EA with computer vision 
algorithms, a new paradigm is presented that streamlines design and 4D 
printing process where active straight beams can be designed based on hand-
drawn lines and be 4D printed that transform into the drawn profiles under 
the stimulus. The approach thus provides a highly efficient tool for the design 
of 4D-printed active composites.
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in Figure 1a, in general, a bilayer structure 
with a certain property mismatch can be 
actuated to bend, which has been exploited 
to achieve various shape changes.[5] Inte-
grating active composites with 3D printing 
technology, which is capable of high-res-
olution placement of different materials, 
allows the 3D printed parts to transform 
their shapes in the 4th dimension, time, 
thus enabling a rapidly emerging tech-
nology of 4D printing.[6] Utilizing complex 
property distribution in a voxelized struc-
ture provides greater design flexibility 
for attainable shape changes for 3D/4D 
printing technology, thereby offering 
enormous design potentials.[6h] However, 
rationally designing the property distri-
bution to achieve desired complex shape 
change is a great challenge[6h] due to the 
tremendous design space on numerous 
voxels, which is unlikely to be explored by 
experiments or be leveraged by intuitive 
design strategies that rely heavily on per-
sonal experience or knowledge.

Non-intuitive design strategies based 
on modeling or simulation approach, which can accommo-
date more trial-and-error cycles than experiments, have been 
widely used for the voxel-based design of active compos-
ites.[3,7] Here, a complete design process requires solving both 
the forward problem of predicting shape changes for given 
material or property distributions and the inverse problem 
of finding the optimal material or property distribution to 
obtain the desired shape change. The former often relies on 
accurate numerical models (or predictive models), such as 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202109805.

1. Introduction

Active composites are novel functional materials that consist 
of active materials with different properties and thus generate 
active responses to external stimuli. Upon the stimulus, such 
as heat,[1] light,[2] water,[3] and magnetic field,[4] the responding 
property mismatch of constituent materials endow the active 
composites with unique shape-changing behaviors that depend 
on the spatial distributions of materials or properties. As shown 
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finite element (FE) models, while the latter is often handled 
by incorporating the forward predictive model into some 
optimization algorithms. For example, topology optimization 
(TO)[8] based on different methods has been used to guide 
the design for 4D printing, such as optimizing compliances 
of soft actuators[9] or designing shape-changing behaviors of 
active composites.[10] Such gradient-based TO, however, may 
encounter difficulties when the active material involves higher 
geometric or material nonlinearities (e.g., multiphysics driven 
material nonlinearity). Alternatively, the method that inte-
grates FE and other gradient-free optimization algorithms 
(such as evolutionary algorithms, EA), has achieved great suc-
cess in designing certain shape-changing responses of active 
composites[11] or other engineering structural problems.[12] 
Such an evolutionary method generally relies on numerous 
iterations of FE simulations to explore a large design space, 
thus suffering from high computational cost. For example, 
Hamel et  al.[11a] utilized the FE-based evolutionary algorithm 
(FE-EA) in solving the voxel-based inverse design problem 
of an active composite beam, but the optimization is time- 
intensive and cannot deal with too complicated target shapes 
(e.g., sinusoidal shape with ≥1 periods). Accurately and  

efficiently exploring a large design space and tackling inverse 
problems remain to be challenging.

Recent advancements in machine learning (ML)[13] offer 
new possibilities for developing fast, computationally afford-
able, and high-fidelity predictive models that can be integrated 
with the optimization algorithm to achieve an efficient inverse 
design. Existing works mainly focused on utilizing ML-guided 
design strategy for optimizing or predicting mechanical prop-
erties of materials, such as strength and toughness of com-
posites,[14] stress and strain fields of composites,[15] Poisson’s 
ratio of auxetic metamaterials,[16] responses of soft pneumatic 
robots,[17] among other material responses.[18] However, there is 
limited work on using ML-guided design for actuation or shape 
change response of active composites. Recently, Zhang et al.[19] 
utilized multiple ML models for predicting the shape change 
of voxelized active composites, and found the convolutional 
neural network (CNN) offered the best accuracy. However, their 
ML models were not used for the inverse design problem of 
material distributions for given target shape changes, prob-
ably because the CNN model cannot predict some complicated 
designs very well whilst the inverse design problem requires 
high prediction accuracy.

Figure 1.  Schematic illustration of the proposed solution for the design of a 4D-printed active composite beam. a) Property mismatch-induced actua-
tion of active composite with bilayer- or more complex property distribution. Two properties, “1” and “2”, are encoded as “1” and “0”, respectively. 
b) Complete design process: the dataset generation by FE simulations, the shape-change prediction by ML, and the material-distribution design by ML-
integrated EA. The volumetric expansion mismatch is used to mimic a general eigenstrain mismatch induced by different mechanisms. Undeformed 
cantilever composite beam with a voxel-based material/property distribution that is digitally encoded into a 2D number array and is used as the input 
for the ML model. The actuated beam shape is parameterized as coordinate data of sampling points and is used as the output for the ML model.
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Motivated by the challenges in design for 4D printing,[6h] this 
work presents an efficient approach for both forward shape-
change prediction and inverse material design for voxelized 
active composite beams, as illustrated in Figure  1b, by com-
bining a recurrent neural network (RNN)-based ML and an EA. 
The volumetric expansion mismatch is used to mimic a general 
eigenstrain mismatch induced by different mechanisms. The 
RNN ML model is trained by the dataset acquired from FE sim-
ulations and shows high accuracy in predicting shape change 
with complex material distributions. The ML is then inte-
grated with EA (ML-EA) for the inverse problem of finding the 
optimal design of property distribution based on a desired (or 
target) shape change. The fast and accurate ML model allows 
the EA to solve inverse problems in a very large design space 
that is impossible to be explored by FE simulations. As a result, 
optimal designs in terms of property distributions for multiple 
target shapes with different complexities are rapidly achieved. 
This highly efficient ML-EA design approach also permits a 
new streamlined design-fabrication paradigm where the com-
puter vision (CV)-integrated ML-EA allows a quick fabrication 
of 4D-printed beams with shape changes based on hand-drawn 
lines.

2. Results

2.1. Machine Learning Model for Deformation Prediction

In this section, we present an RNN-based ML model that can 
accurately predict the nonlinear actuated deformation of an 
active composite beam. The composite beam consists of two 
materials, an active material with a large expansion and a pas-
sive material with a low expansion, which are encoded as “1” 
and “0”, respectively, as shown in Figure  1b. The two mate-
rials are randomly assigned to Nx  × Ny voxels, with Nx being 
the voxel number in the x- (length) direction and Ny in the y- 
(thickness) direction. The material distribution can therefore 
be digitally encoded into a 2D number array of “1’s and” 0’s 
(Figure  1b), which will be the input data for the ML model. 
Under a certain stimulus, the active material expands more 
while the passive material expands less, resulting in a shape 
change of the beam (Figure  1b). Such shape change can be 
parameterized as number arrays using coordinates (xi, yi) of 
certain points of the deformed beam, which will be the output 
data for the ML model. For the studied active beam, there exist 
2NxNy possible material distributions, implying a large and com-
plex design space.

The FE model for the active composite beam, as described 
in Experimental Section, is developed to generate the dataset 
for the ML model. Random material distributions (or designs) 
are created, and the corresponding true shape changes are 
obtained by performing FE simulations (Figure 1b). The input 
and output data are then used to train the ML model to be con-
structed below.

An RNN-based ML model is used to predict the shape change 
of an active beam. This is inspired by the spatially sequential 
characteristics of the voxel-based material inputs and the sam-
pled coordinate outputs in the length direction of the beam. 
RNN is a deep learning network well suited for dealing with 

sequential data, thus gaining wide popularity in tasks where 
the sequence of the data is essential, such as natural language 
processing. In recent years, RNN has been used in predicting 
various path-dependent mechanical responses of materials,[20] 
such as plastic flow,[20a] and fracture process.[20b] The capability 
of RNN for handling sequential data is because it uses the past 
information to predict the response of the current and future 
inputs. In an RNN, as shown in Figure 2a, an input It is acted 
on by the hidden state Ht–1 to produce an output Ot. Certain 
information is stored in the hidden state (Ht) and passed to the 
next step. Repeating the process allows information flows from 
the past to the future. It is seen that the output, which relies on 
the current input and hidden state, depends on previous inputs 
as well. Different time steps (or blocks) of RNN share the same 
weights (parameters to be learned) that determine the hidden 
state and output of a specific step.

To use RNN, a similar data structure for the beam defor-
mation problem is utilized. As shown in Figure 2b, a column 
(y-direction) of voxels is treated as a box whose state is repre-
sented by a single number-array input (size Ny). Therefore, the 
beam is comprised of Nx boxes and a material distribution can 
now be treated as a sequence of single-box inputs. In other 
words, for a given material distribution with voxel numbers of 
Nx × Ny, the entire input is restructured into sequential inputs 
of length Nx with a single input (or box) having Ny features and 
thus 2Ny possible states. Similarly, a sequence of single-box out-
puts can be obtained by sampling coordinates (x, y) from the 
middle point of each box, thus a single output has two features 
representing the coordinate values. Since the left end of the 
beam is fixed, the output of a box is dependent on all the “past” 
inputs (i.e., those from boxes on the left of the current box). 
More specifically, a current box output (xi, yi) relies directly 
on the current input si (i.e., local material distribution of the 
box), as well as the output (xi–1, yi–1) of the previous box, which 
essentially represents a hidden state (Figure 2b). Evidently, the 
beam shape data indicate a sequential characteristic in length 
(Figure 2b) identical to that of an RNN (Figure 2a), thus moti-
vating us to use an RNN for the shape-change prediction. Our 
network architecture consists of a sequence input layer, a long 
short-term memory (LSTM)[21] network layer, a fully connected 
layer, and a regression layer. The LSTM is a special type of RNN 
that addresses the issues of vanishing or exploding gradients 
presented in long sequences.

The loss function is defined as the half-mean-squared-error 
between the predicted response (i.e., coordinate xi or yi) and 
true response (xi

true or yi
true) for an output sequence, that is,
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for coordinate x and y, respectively. More details on the con-
struction and training of the RNN model are described in the 
Experiment Section.

Three cases with different voxel numbers (Nx × Ny) are con-
sidered: 40 × 4, 24 × 4, and 40 × 2, which has the design space 
of 2160 (≈1.46 × 1048), 296 (≈7.92 × 1028), and 280 (≈1.21 × 1024),  
respectively. The size of the entire dataset is chosen to be 
18 000 for the 40 × 4 case, 8600 for the 24 × 4 case, and 8000 
for the 40 × 2 case. For each of the cases, the dataset is split 
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into training, validation, and testing datasets with fractions of 
0.7, 0.15, and 0.15. Statistics investigations show that the three 
datasets (training, validation, and testing) follow similar distri-
butions (see Figure S1 and associated text in Section S1, Sup-
porting Information). In addition, different amounts of data are 
randomly selected from the entire training dataset for model 
training to study the sensitivity of network performance to 
training set size. More details are provided in the Experiment 
Section.

2.2. Performance of Machine Learning Model

We first consider the case with Nx = 24, Ny = 4. Figure 3a shows 
the sensitivity of the network validation loss (defined in Equa-
tion (1) in Experimental Section) to the training set size. The 
size of 2000 is sufficiently large to give the converged results, 
and the converged validation loss is similar between coordi-
nate x and y. With the entire training set (6000 data points), the 
training and validation losses versus epochs during the training 
process are shown in Figure  3b. The validation loss con-
verges at epoch 55, before which no underfitting or overfitting  
is observed. Figure  3c shows comparisons of ground-truth 
shapes and ML-predicted shapes for 25 randomly picked data 
points from the test set. An excellent agreement is achieved 
between the ground-truth and predicted shapes. For the case with  

Nx = 40, Ny = 4, a larger training set size, 4000, is needed to achieve 
convergence in the validation loss (Figure S2a, Section S2,  
Supporting Information). The converged validation losses for 
both x and y are slightly lower than those for the 24 × 4 case. 
With the entire training set (12 800 data points), the training and 
validation losses versus epochs of training are given, showing 
no underfitting or overfitting before epoch 100 (Figure S2b,  
Section S2, Supporting Information). An excellent agreement 
can be seen between the ground-truth and ML-predicted shapes 
for 25 randomly picked data points from the test set (Figure S2c,  
Section S2, Supporting Information). In addition to the above 
two cases, the case with Nx = 40, Ny = 2 is also studied, in which 
the input data is further restructured to speed up the training 
process without losing accuracy (see Figure S3 and associated 
discussions in Section S2, Supporting Information). The results 
for all three cases demonstrate that RNN can achieve very high 
accuracy in predicting the shape change.

Further, we compare the performance of the RNN and a 
CNN for the 24 × 4 case. As shown in Figure S4a, Section S3, 
Supporting Information, our CNN architecture is similar to 
that of the regression CNN used in Zhang et  al.[19] With the 
current dataset (total size 8600), RNN achieves better perfor-
mance than CNN as shown in shape change comparisons for 
randomly picked data points and the regression of the ground-
truth versus predicted values (Figure S4b,c, Section S3, Sup-
porting Information). More specifically, CNN achieves the  

Figure 2.  Motivation and design of the RNN-based ML model. a) Architecture of an RNN. b) Inputs and outputs of our problem with a similar struc-
ture to that of RNN.
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R2 ≈ 0.9 implying a reasonably good prediction accuracy, while 
RNN achieves R2 > 0.999 implying an excellent accuracy. This 
is expected since there is a strong similarity in the sequen-
tial data structure between the RNN and beam deformation 
problem, while CNN utilizes convolutional filters and pooling 
layers to recognize spatial features from the input which have 
no intuitive relation to the deformed beam coordinates. Also, 
since each coordinate output depends on the global voxel infor-
mation in CNN, it may be easily disturbed by the voxel that is 
irrelevant.

In addition to the accuracy, The prediction speed of ML 
(RNN) against FE is also examined. For each Nx × Ny case, we 
perform benchmark tests on the time cost of ML and FE for 
1000 shape predictions of randomly generated designs using 
one CPU core (Intel Core i9-10900) and one GPU (NVIDIA 

Quadro P620). As shown in Table  1, for all the cases, the ML 
prediction (on the order of seconds) is much faster than FE (on 
the order of hours). Results of FE time cost for 24 × 4 case will 
be used to estimate time cost for the FE-EA (Section 2.4 of the 
main text).

2.3. Evolutionary Algorithm Design based on Machine  
Learning Model

Next, we use the EA approach to design the material distribu-
tion for target actuated shapes. EA is a population-based sto-
chastic search technique that utilizes the principles of natural 
selection to seek optimal inputs producing desired outputs.[22] 
As schematically illustrated in Figure  4a, the EA procedure 

Figure 3.  ML prediction for the case of 24×4 voxels. a) Sensitivity of the validation loss to the training set size. b) Training and validation loss as a 
function of epochs showing the training process. c) Comparison of true shapes and ML-predicted shapes for 25 random datapoints randomly picked 
from the test dataset.
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starts by creating a population of random candidate solutions 
(i.e., material distribution design as digitally encoded into the 
array of “1’s and ”0’s). The candidate solutions are called indi-
viduals of the population and the digital encoding can be seen 
as the individual’s genes. The EA then iteratively evaluates and 

evolves the population over successive generations, in which 
good individuals survive and reproduce whilst bad individuals 
are eliminated, until the number of generations reaches Ngen 
or an acceptable solution is found. In our approach, in each 
generation, individuals are evaluated by using the well-trained 
ML model to predict the actuated shapes and calculating fitness 
values for the individuals. The general form of fitness function 
can be defined as

1 ˆ ˆ1

1

2 2∑ ( )( )= − + −





=

f
N

x x y y
x i

N

i i i i

x

	

(2)

which is the root-mean-squared (RMS) error between the ML-
predicted coordinates (xi, yi) and target coordinates x y( ˆ , ˆ )i i  for 
sampling points (mid-point of each column of voxels). Here, 
the fitness value is a measure of how close the actuated shape is 

Table 1.  Time cost for 1000 shape predictions with ML (RNN) and FE for 
different voxel numbers: “s” for seconds and “h” for hours. The estima-
tion for time cost is based on one CPU core (Intel Core i9-10900) and 
one GPU (NVIDIA Quadro P620).

Time cost for 1000 predictions

Voxel number Nx × Ny ML (RNN) FE

24 × 4 6.5s 14h

40 × 2 9.11s 14h

40 × 4 17.4s 15.5h

Figure 4.  Demonstration of ML-based EA approach. a) Schematic of ML-EA optimization approach. b) One-period target shape, ML-EA optimal 
shape, and corresponding FE shape. c) Two-period target shape, ML-EA optimal shape, and corresponding FE shape. The color map illustrates the 
y-displacement in mm.
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to the target shape, and the individual with a lower fitness value 
is more favored. Therefore, the goal of the optimization is to 
minimize the fitness function essentially.

After evaluation, the EA creates an offspring population for 
the next generation based on the current population. More 
details are provided in Experimental Section. The evolutionary 
process is then repeated, and the optimal solution in each gen-
eration is recorded. Next, we will evaluate the capability of the 
ML-EA approach using multiple target shapes. The case with a 
voxel number of 24 (Nx) × 4 (Ny) will be focused on.

As the first example, the one-period and two-period sinu-
soidal target shapes are considered. Due to the large deforma-
tion, it is not easy to properly specify coordinates ( ˆ , ˆ )x yi i  of 
sampling points for the target shape. To circumvent this issue, 
the following fitness function, which uses the ML-predicted 
coordinates (xi, yi) only, is adopted to evaluate the candidate 
solutions,

f
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The number of periods, n, is taken as 1 and 2 for the two 
target shapes, respectively. Note that f2 vanishes when the beam 
shape satisfies the sinusoidal profile. With the fitness function 
Equation (3), the target coordinates x y( ˆ , ˆ )i i  are not strictly pre-
scribed but can be reconstructed as described in Experimental 
Section.

The following EA parameters are fixed for the optimization: 
population size (number of individuals) = 500 and Ngen = 300. 
Figure  4b,c shows the optimization results for cases with one 
period (n = 1) and two periods (n = 2), respectively, where good 
agreement is achieved between the target shape (symbols) and 
the ML-EA optimal shape (solid lines). FE simulations for the 
optimal material designs are finally performed, and the FE-
predicted shapes (dashed lines) verify the accuracy of the ML-
predict ones (solid lines). To further quantify the accuracy of 
the optimal design, we calculate the RMS errors using Equa-
tion (2) of both ML- (blue) and FE- (orange) predicted shapes 
of the optimal design against the target shape. Note that the 
EA iterations directly use the ML predictions whose error will 
be inevitably forwarded to the EA process. Nonetheless, excel-
lent agreement is achieved between the optimal and the target 
shapes, demonstrating the high performance of the ML-EA 
approach. In addition, the ML-EA achieves the optimal design 
in ≈11 min by using ≈150th generations, which require roughly 
75  000 evaluations of different material designs. It can be 
inferred that for the same target shapes, the FE-EA[11a] would 
consume more than 1000 h for both two cases, as summarized 
in Table  2, which are based on the benchmark time cost for 
1000 FE predictions (see Table 1).

2.4. Distance-Weighted Fitness Function for More  
Complicated Shapes

We now consider two more complicated target shapes. The first 
target is a three-period shape composed of twelve quarter-cir-
cles. Using the same ML-EA approach with the fitness function 

given by Equation (2), optimal shapes with different popula-
tion sizes are obtained (see Figure S5, Section S4, Supporting 
Information). A large discrepancy between the target and the 
achieved shape is observed even after evolving for 200 genera-
tions with 5000 populations per generation (i.e., one million 
shape evaluations performed). The reason for the large discrep-
ancy is illustrated below using the population size of 1000 as 
an example (Figure S5, Section S4, Supporting Information). In 
general, a large difference is observed on the left half part of the 
beam. During the evolutionary process, a potential improve-
ment (i.e., shape change) in the left half beam can lead to a 
large shape change and thus discrepancy on the right half. This 
may increase the fitness function, resulting in that the solution 
being discarded and there is no chance to evolve to the glob-
ally best solution. This is due to the boundary condition of our 
problem where the left end is fixed and the right end is free. 
Essentially, the found solution represents a local minimum 
in the search space and it would be very hard for the solution 
to jump out to the global minimum using the current fitness 
function. To resolve this problem, a distance-weighted fitness 
function is adopted, which is

f
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Here, the box number i represents a topological distance 
of the box from the starting point (i.e., left end), kx and ky are 
introduced to regulate the weights of errors in two coordinates. 
With the modified fitness, the EA will favor the optimization 
of the beam shape sequentially from left (smaller distance) 
to right (larger distance), then an improvement in the distant 
part will not affect the shape change in the nearer part, thereby 
helping the population evolve towards the global minimum.

With this new fitness function of Equation (4), optimal 
designs for the three-period shape (Figure  5a,b) and the half-
butterfly shapes (Figure  5c) are successfully achieved. For the 
three-period target shape, Figure 5a shows the sensitivity of the 
optimization process and optimal solution to the population 
size. The RMS errors (based on Equation (2)) of the true (or FE)  
shape of the optimal design against the target shape are pro-
vided. Starting from the population size of 2500, the optimal 
solution is acceptable, which is achieved in around 150th gener-
ations. In this case, roughly 375 000 evaluations are performed 
for the optimization, which is much higher than the size of 

Table 2.  Computational cost for the ML-EA and FE-EA models: “m” for 
minutes and “h” for hours. The estimation for time cost is based on one 
CPU core (Intel Core i9-10900) and one GPU (NVIDIA Quadro P620). 
The RMS errors are calculated using Equation (2).

EA time cost (24 × 4 voxels)

Design ML-EA FE-EA RMS errors

One-period: 11 m 1053 h 0.82 and 1.11 mm

Two-period: 11 m 1053 h 0.70 and 0.89 mm

Three-period: 54 m 5263 h 1.37 and 1.34 mm

Half-butterfly: 22 m 2105 h 0.96 and 1.02 mm
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the training dataset (≈1000–10  000). Figure  5b shows excel-
lent agreement among the target shape (symbol), the ML-EA 
optimal shape (solid line), and the FE-achieved true shape 
of the optimal design (dashed line). The RMS errors of both 
the true shape (orange) and ML-predicted shape (blue) of the 
optimal design against the target shapes are provided. As we 
mentioned earlier, although the error of the ML predictions will 
be forwarded to the EA process, excellent performance of the 
ML-EA is demonstrated: the error of ground-truth shape of the 
optimal design against the target can be even lower than that of 
the ML-predicted one (Figure 5b). Figure 5c shows the results 
for the final demonstration, the half-butterfly shape, where the 
optimal shape (solid line) again achieves great agreement with 
the target (symbols) and the true shape by FE (dashed line). 
Optimal shapes with different population sizes are shown 

on the right. The RMS errors between the optimal and target 
shapes are provided as well.

Using the number of shape evaluations of an entire EA pro-
cess, the computational cost for the cases with different target 
shapes is estimated and listed in Table 2. The time cost estima-
tion for the FE-EA[11a] is based on the same number of shape 
evaluations that are needed in ML-EA and on one CPU core. 
The RMS errors of the ML-predicted (first) and ground-truth 
(second) shapes of the optimal design against the target shape 
for all the studied cases are provided for better quantification of 
the accuracy. As a quick summary, our ML-EA approach dem-
onstrates very high efficiency in solving inverse material design 
problems for a complicated target shape. This is attributed to 
the use of the ML model in the shape evaluation of EA, which 
allows for a much more rapid search in a complex design space 

Figure 5.  ML-EA optimization for a,b) more complicated three-period shape and c) half-butterfly shape. (a) Evolutionary process and optimal shapes 
for different population sizes. (b) Target-shape, ML-EA optimal shape, and corresponding FE shape (true shape). (c) Target-shape, ML-EA optimal 
shape, and corresponding FE shape (true shape). The optimal shapes for different population sizes are shown on the right.
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compared to the FE-EA in the previous work.[11] In addition, the 
design for other different target shapes can be easily performed 
with no need for further FE simulations, which significantly 
reduces the computational time.

2.5. Rapid 4D Printing Design and Fabrication: 4D Printed  
Beam with Shape Changes based on Hand-Drawn Lines

With the high efficiency of our proposed ML-EA approach, we 
further integrate the ML-EA approach with CV algorithms to 
enable a new paradigm that streamlines the design and fabri-
cation process for 4D printing, as schematically illustrated in 
Figure 6a. We first identify the target shapes from hand-drawn 
lines, that is, coordinates x y( ˆ , ˆ )i i , from the raw images with 
drawn profiles, using CV algorithms (see Experimental Section, 
and Figure S6 and associated text in Section S5, Supporting 
Information). Then the ML-EA approach is utilized to obtain 
the optimal designs, that is, spatial distributions of mate-
rial phase “1” and “0” with mismatched expansion properties, 
that yield the target shapes. The 24×4 voxels, 1000 population 
size, and 150 evolutionary generations are used for the ML-EA 
design, and each shape design takes 22 min. To incorporate an 
optimal design into a real 3D-printed structure, we employ a 
photo-curable polymer that can expand through swelling and 
use the grayscale digital light processing (g-DLP)[23] technique 
to introduce two differentially polymerized material phases 
that exhibit expansion mismatch (see Experimental Section, 
and Figure S7 and associated text in Section S6, Supporting 
Information). In g-DLP, the optimal design is transformed into 
images with grayscale patterns for the DLP printing, which thus 
spatially assigns two distinct expansion properties as desired. 
Finally, the printed active beams are immersed in acetone to 
swell for shape transformation.

Figure  6b presents the results for five different shapes to 
demonstrate our new paradigm. Hand-drawn lines, identified 
target shapes with ML-EA designs, as-printed strips, and final 
actuated shapes are shown in four columns (left to right). In 
the second column, the obtained optimal designs are shown in 
grayscale patterns. The corresponding shapes predicted by ML 
(solid lines) and FE (dashed lines) agree well with the target 
shape (symbols), implying the great accuracy of the ML-EA 
approach. Experiments are further conducted to validate the 
ML-EA optimal designs. Note that the practical material prop-
erties (modulus and expansion) in experiments are different 
from those used in ML-EA (i.e., identical modulus and strain 
mismatch of 0.1 between the two phases). The issue can be 
resolved by re-training the ML model based on the FE data 
with practical material properties and re-running ML-EA. Here, 
we present an alternative strategy with no need for re-training 
to compensate effects of the property difference on the shape 
change. An analytical model is developed to convert the ML-EA 
designs based on practical material properties (see Experi-
mental Section, and Figure S8 and associated text in Section S7,  
Supporting Information). The converted ML-EA designs are 
used for 3D printing. As shown in the two rightmost columns 
(Figure 6b), the printed strips transform their initially straight 
shapes into target shapes upon swelling. As a proof-of-concept 
design approach, the CV-integrated ML-EA demonstrates high 

efficiency in generating optimal designs to convert line draw-
ings into true shape changes of 4D-printed beams.

2.6. Discussions

The ML-EA approach demonstrates high efficiency in solving 
inverse problems in a complex design space, that is, inversely 
designing the material distribution of active composite beams 
to obtain desired mechanical responses, which cannot be 
achieved by conventional methods such as FE-EA but is ena-
bled by the rapid, accurate and computationally inexpensive ML 
model. Although thousands of FE simulations are needed to 
train the ML model, this number (1000–10 000) is much lower 
than that of the mechanical response evaluations in an EA pro-
cess required to obtain an optimal design for complicated target 
shapes. Moreover, once the ML is trained, ML-EA can deal with 
different target shapes with no need for further FE simula-
tions. In addition, although thermal expansion is utilized as 
the actuation mechanism in the FE model, the ML-EA is gener-
ally applicable to various material systems with different active 
strain mechanisms, such as swelling, shape memory, and mag-
netism, as long as the mismatched eigenstrain can be induced. 
As the material system changes, one may either re-train the 
RNN based on the FE data with practical material parameters 
or modify the optimal designs to approximately compensate 
effects of property difference between existing ML-EA designs 
and experiments using the approach described in Section S7, 
Supporting Information. The ML-EA may be also extended to 
the cases with multiple (>2) material phases in the beam which 
provides greater design flexibility. Therefore, our approach 
will be useful for motivating the design for various 4D-printed 
active composite beams.

It is worth noting that in this work, our ML-EA approach 
is focused on the design of 1D active composite beams. In 
this case, RNN is leveraged to deal with sequential data (of 
1D dependency) arising from the beam problem, providing a 
highly efficient ML model. However, there is a great need for 
efficient design of 2D and 3D active structures based on desired 
complex shape change, which could be challenging due to the 
further increased design space and higher-dimensional data 
dependencies. For such a problem, the ML model capable of 
handling data with more complex spatial dependencies can be 
helpful and will be explored in our future work.

3. Conclusions

We present a novel approach for mechanical response predic-
tion and inverse design of a 4D-printed active composite beam 
based on ML and EA. A RNN based ML model is utilized to 
predict the shape change based on the material distribution 
of the active beam. The ML model achieves excellent accuracy 
on the test set for three cases with different voxel numbers, 
24 × 4, 40 × 4, and 40 × 2. In addition, the ML prediction is 
much more rapid and computationally inexpensive than the 
FE model. Regarding different ML models, the RNN achieves 
better performance than CNN in shape change predictions in 
the 1D cantilever setting. We then incorporate the trained ML 
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(RNN) model into an EA for the inverse design of the mate-
rial distribution based on the desired shape change. The ML-EA 
optimization is performed based on multiple target shapes with 

different complexities. The proposed distance-weighted fitness 
function greatly improves the capability to handle complex 
shape change. As a result, for all the target shapes, the ML-EA 

Figure 6.  Integrating CV with ML-EA to streamline the design and fabrication. a) 4D printing design, which includes identifying drawn profiles as target 
shapes, performing the ML-EA design, converting the obtained optimal design to the grayscale slices, performing DLP 3D printing, actuating the printed 
structure by expansion. b) 4D printing to achieve different line drawings. From top to bottom: mountain, half-tree, four-pointed star, half-butterfly, 
“GT”. From left to right: line drawing by hand, ML-EA optimal designs and predicted optimal shapes, as-printed shapes, and shapes after swelling.
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rapidly achieves an optimal design of the material distribu-
tion, which is computationally verified by the excellent agree-
ment among the desired shape, the ML-predicted shape of 
the optimal design, and the true shape of the optimal design 
achieved by FE. Finally, by integrating ML-EA with CV, we pre-
sent a new paradigm that streamlines the design and fabrica-
tion process for 4D printing based on hand-drawn lines. The 
proposed CV algorithm enables the automatic identification of 
target shapes from raw images with line drawings. For multiple 
hand-drawn lines, the CV-ML-EA rapidly generates optimal 
designs and the 4D-printed active beams deform into drawn 
profiles under the stimulus.

4. Experimental Section
Finite Element Model for Data Generation: The FE simulations were 

conducted, using the commercial software ABAQUS (version 2018, 
Simulia, Providence, RI), to generate the dataset to be fed into the ML 
model. In the FE model, a cantilever composite beam under the 2D 
plane strain assumption and with the left end fixed was considered. Both 
active and passive materials were modeled using the incompressible 
neo-Hookean model with the same mechanical parameters. Expansion 
was achieved through the thermal expansion in the simulation, although 
it was not limited to thermal expansion. To achieve the expansion 
mismatch, the coefficient of thermal expansion was set to be 0.001 for 
active material and 0 for passive material. An environmental stimulus of 
100 °C temperature increase was applied to the entire beam, upon which 
the active material phase was subjected to a linear strain of 0.1. The 
beam has a dimension of 80 mm long × 1 mm thick, which was meshed 
into 960 × 12 = 11 520 hybrid plane strain (CPE4H) elements. Regarding 
the voxelization, the beam was partitioned into Nx × Ny voxels followed 
by the assignment of materials. Each voxel has (960/Nx) × (12/Ny) 
elements and the adjacent voxels shared the same boundary nodes. 
The entire FE model was automatically generated and run through a 
Python script. With the FE model, the dataset was generated by first 
creating random material distribution designs and then performing FE 
simulations to obtain the ground-truth shape change for each design 
configuration. The material distributions and the corresponding shape 
changes were inputs and outputs, respectively. The structures of the 
input and output are detailed in Section  2.1. The generated dataset 
was split into training, validation, and testing datasets with fractions of 
0.7, 0.15, and 0.15. Statistics investigations on the inputs and outputs 
showed that three datasets (training, validation, and testing) follow 
similar distributions (see Figure S1 and associated text in Section S1, 
Supporting Information).

Construction and Training of the RNN Model: The network architecture 
consists of a sequence input layer, an LSTM[21] layer, a fully connected 
layer, and a regression layer. The implementation, training, and testing 
were conducted using Matlab (2020a, MathWorks, Natick, MA). Before 
the training, all the input and output data were normalized using the 
z-score method, that is, x′  = (x−mean(x))/std (x), where x and x′ are 
the raw and normalized feature values, respectively, and mean is the 
mean value and std is the standard deviation. The randomly generated 
raw inputs (numerous “1” and “0”) showed a mean value of 0.5 and 
a standard deviation of 0.5. As a result, the input state “0” and “1” 
become “−1” and “1” after normalization. Such normalization was 
found to improve the network performance, which could be explained 
by the contribution of the symmetric (y-direction) characteristic of the 
normalized inputs. Two networks were trained to predict coordinate 
x and y separately to better identify their respective errors. The LSTM 
utilizes a special structure consisting of multiple gates and four neural 
network layers to control the update of the hidden state. The hidden 
size (number of neurons of each neural layer) of LSTM was set as 50. 
In the case, a single input has the size Ny and output has the size 1. 
Therefore the LSTM layer has 200 × (50 + Ny + 1) learnable parameters. 

Regarding the hyperparameters, the initial learning rate was set to 0.005, 
which decreases by multiplying a factor of 1/ 2  every 50 epochs. The 
training stops after the validation loss converges. The mini-batch size 
during training was set to 64 or 10% of the training set size, whichever 
was smaller. The adaptive moment estimation (Adam)[24] optimizer was 
used to train the network.

To study the sensitivity of network performance to training set 
size, different amounts of data were selected from the entire training 
dataset (i.e., 70% of the entire dataset) for model training. The size of 
the entire training set was denoted by ntraining_entire, while the size of the 
selected training set was denoted by ntraining and was varied. For each  
ntraining  ≤ ntraining_entire, different batches of training data were randomly 
picked from the entire training set and used to train multiple ML 
models (the smaller of 5 and ceil(ntraining_entire/ntraining)), whose averaged 
validation loss was used to evaluate the performance for the particular 
ntraining. The model trained using the entire training set was adopted for 
the optimization problem.

Methods for the ML-EA Design: The procedure of evolving a 
population is schematically illustrated in Figure  4a. After evaluation of 
an entire population, the EA created an offspring population for the 
next generation based on individuals of the current population. Three 
types of “children” were created: elite (5%), crossover (76%), and 
mutation (19%) children. The top 5% fittest individuals of the current 
population were elite, which directly survive to the next generation. To 
create the other two types of children, the “parents”, a group of better 
performing individuals determined via the binary tournament technique 
were selected, which contribute their genes to the offspring: crossover 
children were created by combining genes of pairs of parents, while 
mutation children were created by randomly changing the genes of 
single parents. The choices of crossover and mutation operators were 
following the approach by Deep et  al.,[25] to enforce the genes to be 
integer-valued (0 or 1). The EA optimizations were performed using 
Matlab.

For the cases with sinusoidal target shapes as shown in Figure 4b,c, 
the fitness function Equation (3) was adopted. In this case, the target 
coordinates ( ˆ , ˆ )x yi i  were not strictly prescribed but can be reconstructed 
through
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The reconstructed target shape depended on the |xi|max and |yi|max of 
a specific individual and was therefore not unique. However, since the 
reconstructed shape satisfied the sinusoidal profile of certain periods, 
it was used as a benchmark against which the RMS errors based on 
Equation (2) were computed to quantify the quality of actuated shapes 
of certain optimal designs.

Computer Vision Algorithms for Target Shape Identification: The raw 
image with hand-drawn lines was first processed using the Canny edge 
detection algorithm[26] in Matlab and converted to a black-and-white 
binary image where the white pixels form the edge of the drawing 
(Figure S6a, Section S5, Supporting Information). These white pixels 
contain no sequential information to define a path, so they cannot 
be directly used as a target shape, that is, coordinates ( ˆ ,ˆ )x yi i , for the 
ML-EA. Therefore, an arc-intersection tracing algorithm was developed 
that can extract the target shape from the binary image. The algorithm 
is described in Figure S6b and associated text in Section S5, Supporting 
Information. The algorithm enables the automatic identification of target 
shapes from raw images. More details can be found in Section S5, 
Supporting Information.

Materials and 4D Printing: The photo-curable resin for printing 
was a mixture of 2-Hydroxyethyl Acrylate (Sigma Aldrich, USA) and 
N-Isopropylacrylamide (Sigma Aldrich) with the weight ratio of 1:1. 
Photoinitiator (Irgacure 819, Sigma Aldrich) and photo absorber 
(Sudan I, Sigma Aldrich) were added additionally. The resin was well 
mixed and degassed before printing. A homemade bottom-up DLP-
based 3D printer[23] was used to print the designed structure. The 
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continuous liquid interface production (CLIP)[27] technique was utilized 
to enable fast printing speed. The grayscale-DLP technique was utilized 
to introduce two differentially polymerized material phases into the 
structure (Figure S7, Section S6, Supporting Information). The 3D 
printing parameters are listed in Table  3. The two phases exhibit a 
volumetric expansion mismatch upon swelling in acetone or water, 
similar to that considered in ML-EA (see discussions in Section S6, 
Supporting Information). The ML-EA designs were transformed into 
printing slices with grayscale patterns, where the active phase (“1”) and 
passive phase (“0”) were assigned with grayscale percentages 0% and 
60%, respectively (Figure 6a). Upon layer-by-layer ultraviolet projecting 
of obtained slices, the grayscale pattern can spatially tune the light 
intensity and degree of conversion (DoC), thereby assigning two distinct 
volumetric straining properties in the printed polymer as designed. 
More details can be found in Section S6, Supporting Information.

Note that the practical material properties in experiments were 
different from those used in ML-EA. As shown in Section S7, Supporting 
Information, the printed two material phases with different DoC 
show a modulus ratio of 0.15, while the ML-EA design assumed the 
identical modulus for two constituent phases. The practical expansion 
mismatch was identified to be 0.072, which was also different from that 
used in ML-EA (i.e., 0.1). Such issues can be resolved by re-training 
the ML model based on the FE data with practical material properties 
(expansion mismatch and modulus difference) and re-running the 
ML-EA. Here, with no need for re-training, an alternative strategy was 
adopted to approximately compensate effects of difference in modulus 
and expansion mismatch of the two phases on the shape change, that 
is, converting the optimal designs based on analytical curvatures of 
multi-layer composite beams (see Figure S8 and associated text in 
Section S7, Supporting Information). FE simulations were further 
performed, and the obtained shape changes based on original and 
converted optimal designs were consistent with the experimental 
observations (Figure S8, Supporting Information), validating the 
design conversion strategy. Experimental shapes in Figure  6b were 
based on the converted optimal designs, which were also consistent 
with the FE results (Figure S9, Supporting Information). More details 
can be found in Section S7, Supporting Information.
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from the author.
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