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Machine Learning-Evolutionary Algorithm Enabled Design
for 4D-Printed Active Composite Structures

Xiaohao Sun, Liang Yue, Luxia Yu, Han Shao, Xirui Peng, Kun Zhou, Frédéric Demoly,

Ruike Zhao, and H. Jerry Qi*

Active composites consisting of materials that respond differently to envi-
ronmental stimuli can transform their shapes. Integrating active composites
and 4D printing allows the printed structure to have a pre-designed complex
material or property distribution on numerous small voxels, offering enor-
mous design flexibility. However, this tremendous design space also poses a
challenge in efficiently finding appropriate designs to achieve a target shape
change. Here, a novel machine learning (ML) and evolutionary algorithm (EA)
based approach is presented to guide the design process. Inspired by the
beam deformation characteristics, a recurrent neural network (RNN) based
ML model whose training dataset is acquired by finite element simulations

is developed for the forward shape-change prediction. EA empowered with
ML is then used to solve the inverse problem of finding the optimal design.
For multiple target shapes with different complexities, the ML-EA approach
demonstrates high efficiency. Combining the ML-EA with computer vision
algorithms, a new paradigm is presented that streamlines design and 4D
printing process where active straight beams can be designed based on hand-
drawn lines and be 4D printed that transform into the drawn profiles under
the stimulus. The approach thus provides a highly efficient tool for the design

in Figure 1a, in general, a bilayer structure
with a certain property mismatch can be
actuated to bend, which has been exploited
to achieve various shape changes.®l Inte-
grating active composites with 3D printing
technology, which is capable of high-res-
olution placement of different materials,
allows the 3D printed parts to transform
their shapes in the 4th dimension, time,
thus enabling a rapidly emerging tech-
nology of 4D printing.l% Utilizing complex
property distribution in a voxelized struc-
ture provides greater design flexibility
for attainable shape changes for 3D/4D
printing technology, thereby offering
enormous design potentials.®"l However,
rationally designing the property distri-
bution to achieve desired complex shape
change is a great challengel®” due to the
tremendous design space on numerous
voxels, which is unlikely to be explored by
experiments or be leveraged by intuitive

of 4D-printed active composites.

1. Introduction

Active composites are novel functional materials that consist
of active materials with different properties and thus generate
active responses to external stimuli. Upon the stimulus, such
as heat,[! light,Zl water,®l and magnetic field,™ the responding
property mismatch of constituent materials endow the active
composites with unique shape-changing behaviors that depend
on the spatial distributions of materials or properties. As shown

design strategies that rely heavily on per-

sonal experience or knowledge.
Non-intuitive design strategies based
on modeling or simulation approach, which can accommo-
date more trial-and-error cycles than experiments, have been
widely used for the voxel-based design of active compos-
ites.3”] Here, a complete design process requires solving both
the forward problem of predicting shape changes for given
material or property distributions and the inverse problem
of finding the optimal material or property distribution to
obtain the desired shape change. The former often relies on
accurate numerical models (or predictive models), such as
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Figure 1. Schematic illustration of the proposed solution for the design of a 4D-printed active composite beam. a) Property mismatch-induced actua-
tion of active composite with bilayer- or more complex property distribution. Two properties, “1” and “2”, are encoded as “1” and “0”, respectively.
b) Complete design process: the dataset generation by FE simulations, the shape-change prediction by ML, and the material-distribution design by ML-
integrated EA. The volumetric expansion mismatch is used to mimic a general eigenstrain mismatch induced by different mechanisms. Undeformed
cantilever composite beam with a voxel-based material/property distribution that is digitally encoded into a 2D number array and is used as the input

for the ML model. The actuated beam shape is parameterized as coordinate data of sampling points and is used as the output for the ML model.

finite element (FE) models, while the latter is often handled
by incorporating the forward predictive model into some
optimization algorithms. For example, topology optimization
(TO)®! based on different methods has been used to guide
the design for 4D printing, such as optimizing compliances
of soft actuators”) or designing shape-changing behaviors of
active composites.'% Such gradient-based TO, however, may
encounter difficulties when the active material involves higher
geometric or material nonlinearities (e.g., multiphysics driven
material nonlinearity). Alternatively, the method that inte-
grates FE and other gradient-free optimization algorithms
(such as evolutionary algorithms, EA), has achieved great suc-
cess in designing certain shape-changing responses of active
composites'! or other engineering structural problems.!'2l
Such an evolutionary method generally relies on numerous
iterations of FE simulations to explore a large design space,
thus suffering from high computational cost. For example,
Hamel et al.™ utilized the FE-based evolutionary algorithm
(FE-EA) in solving the voxel-based inverse design problem
of an active composite beam, but the optimization is time-
intensive and cannot deal with too complicated target shapes
(e.g., sinusoidal shape with >1 periods). Accurately and
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efficiently exploring a large design space and tackling inverse
problems remain to be challenging.

Recent advancements in machine learning (ML) offer
new possibilities for developing fast, computationally afford-
able, and high-fidelity predictive models that can be integrated
with the optimization algorithm to achieve an efficient inverse
design. Existing works mainly focused on utilizing ML-guided
design strategy for optimizing or predicting mechanical prop-
erties of materials, such as strength and toughness of com-
posites,™ stress and strain fields of composites,!’> Poisson’s
ratio of auxetic metamaterials,/'® responses of soft pneumatic
robots,”l among other material responses.¥! However, there is
limited work on using ML-guided design for actuation or shape
change response of active composites. Recently, Zhang et al.l1’]
utilized multiple ML models for predicting the shape change
of voxelized active composites, and found the convolutional
neural network (CNN) offered the best accuracy. However, their
ML models were not used for the inverse design problem of
material distributions for given target shape changes, prob-
ably because the CNN model cannot predict some complicated
designs very well whilst the inverse design problem requires
high prediction accuracy.

© 2021 Wiley-VCH GmbH
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Motivated by the challenges in design for 4D printing,!®" this
work presents an efficient approach for both forward shape-
change prediction and inverse material design for voxelized
active composite beams, as illustrated in Figure 1b, by com-
bining a recurrent neural network (RNN)-based ML and an EA.
The volumetric expansion mismatch is used to mimic a general
eigenstrain mismatch induced by different mechanisms. The
RNN ML model is trained by the dataset acquired from FE sim-
ulations and shows high accuracy in predicting shape change
with complex material distributions. The ML is then inte-
grated with EA (ML-EA) for the inverse problem of finding the
optimal design of property distribution based on a desired (or
target) shape change. The fast and accurate ML model allows
the EA to solve inverse problems in a very large design space
that is impossible to be explored by FE simulations. As a result,
optimal designs in terms of property distributions for multiple
target shapes with different complexities are rapidly achieved.
This highly efficient ML-EA design approach also permits a
new streamlined design-fabrication paradigm where the com-
puter vision (CV)-integrated ML-EA allows a quick fabrication
of 4D-printed beams with shape changes based on hand-drawn
lines.

2. Results

2.1. Machine Learning Model for Deformation Prediction

In this section, we present an RNN-based ML model that can
accurately predict the nonlinear actuated deformation of an
active composite beam. The composite beam consists of two
materials, an active material with a large expansion and a pas-
sive material with a low expansion, which are encoded as “1”
and “0”, respectively, as shown in Figure 1b. The two mate-
rials are randomly assigned to N, X N, voxels, with N, being
the voxel number in the x- (length) direction and N, in the y-
(thickness) direction. The material distribution can therefore
be digitally encoded into a 2D number array of “I's and” 0’s
(Figure 1b), which will be the input data for the ML model.
Under a certain stimulus, the active material expands more
while the passive material expands less, resulting in a shape
change of the beam (Figure 1b). Such shape change can be
parameterized as number arrays using coordinates (x;, y;) of
certain points of the deformed beam, which will be the output
data for the ML model. For the studied active beam, there exist
2N¥NY possible material distributions, implying a large and com-
plex design space.

The FE model for the active composite beam, as described
in Experimental Section, is developed to generate the dataset
for the ML model. Random material distributions (or designs)
are created, and the corresponding true shape changes are
obtained by performing FE simulations (Figure 1b). The input
and output data are then used to train the ML model to be con-
structed below.

An RNN-based ML model is used to predict the shape change
of an active beam. This is inspired by the spatially sequential
characteristics of the voxel-based material inputs and the sam-
pled coordinate outputs in the length direction of the beam.
RNN is a deep learning network well suited for dealing with
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sequential data, thus gaining wide popularity in tasks where
the sequence of the data is essential, such as natural language
processing. In recent years, RNN has been used in predicting
various path-dependent mechanical responses of materials,?’!
such as plastic flow,?%! and fracture process.2%! The capability
of RNN for handling sequential data is because it uses the past
information to predict the response of the current and future
inputs. In an RNN, as shown in Figure 2a, an input I, is acted
on by the hidden state H, ; to produce an output O, Certain
information is stored in the hidden state (H,) and passed to the
next step. Repeating the process allows information flows from
the past to the future. It is seen that the output, which relies on
the current input and hidden state, depends on previous inputs
as well. Different time steps (or blocks) of RNN share the same
weights (parameters to be learned) that determine the hidden
state and output of a specific step.

To use RNN, a similar data structure for the beam defor-
mation problem is utilized. As shown in Figure 2b, a column
(y-direction) of voxels is treated as a box whose state is repre-
sented by a single number-array input (size N,). Therefore, the
beam is comprised of N, boxes and a material distribution can
now be treated as a sequence of single-box inputs. In other
words, for a given material distribution with voxel numbers of
N, x N,, the entire input is restructured into sequential inputs
of length N, with a single input (or box) having N, features and
thus 2 possible states. Similarly, a sequence of single-box out-
puts can be obtained by sampling coordinates (x, y) from the
middle point of each box, thus a single output has two features
representing the coordinate values. Since the left end of the
beam is fixed, the output of a box is dependent on all the “past”
inputs (i.e., those from boxes on the left of the current box).
More specifically, a current box output (x;, y;) relies directly
on the current input s; (i.e., local material distribution of the
box), as well as the output (x;, y;1) of the previous box, which
essentially represents a hidden state (Figure 2b). Evidently, the
beam shape data indicate a sequential characteristic in length
(Figure 2b) identical to that of an RNN (Figure 2a), thus moti-
vating us to use an RNN for the shape-change prediction. Our
network architecture consists of a sequence input layer, a long
short-term memory (LSTM)!?! network layer, a fully connected
layer, and a regression layer. The LSTM is a special type of RNN
that addresses the issues of vanishing or exploding gradients
presented in long sequences.

The loss function is defined as the half-mean-squared-error
between the predicted response (i.e., coordinate x; or y;) and
true response (x;"¢ or ;") for an output sequence, that is,
Loss(x)= Li(x, - x,-““e)2 , Loss(y)= 1

2N, ‘S 2N, 4

i

(r=y™) @

M=

il
-

for coordinate x and y, respectively. More details on the con-
struction and training of the RNN model are described in the
Experiment Section.

Three cases with different voxel numbers (N, X N,) are con-
sidered: 40 x 4, 24 x 4, and 40 x 2, which has the design space
of 2190 (=146 x 10%), 2% (=792 x 10%), and 2% (=1.21 x 10%4),
respectively. The size of the entire dataset is chosen to be
18 000 for the 40 x 4 case, 8600 for the 24 x 4 case, and 8000
for the 40 x 2 case. For each of the cases, the dataset is split

© 2021 Wiley-VCH GmbH
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Figure 2. Motivation and design of the RNN-based ML model. a) Architecture of an RNN. b) Inputs and outputs of our problem with a similar struc-

ture to that of RNN.

into training, validation, and testing datasets with fractions of
0.7, 0.15, and 0.15. Statistics investigations show that the three
datasets (training, validation, and testing) follow similar distri-
butions (see Figure S1 and associated text in Section S1, Sup-
porting Information). In addition, different amounts of data are
randomly selected from the entire training dataset for model
training to study the sensitivity of network performance to
training set size. More details are provided in the Experiment
Section.

2.2. Performance of Machine Learning Model

We first consider the case with N, = 24, N, = 4. Figure 3a shows
the sensitivity of the network validation loss (defined in Equa-
tion (1) in Experimental Section) to the training set size. The
size of 2000 is sufficiently large to give the converged results,
and the converged validation loss is similar between coordi-
nate x and y. With the entire training set (6000 data points), the
training and validation losses versus epochs during the training
process are shown in Figure 3b. The validation loss con-
verges at epoch 55, before which no underfitting or overfitting
is observed. Figure 3c shows comparisons of ground-truth
shapes and ML-predicted shapes for 25 randomly picked data
points from the test set. An excellent agreement is achieved
between the ground-truth and predicted shapes. For the case with
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N,=40,N,=4,a larger training set size, 4000, is needed to achieve
convergence in the validation loss (Figure S2a, Section S2,
Supporting Information). The converged validation losses for
both x and y are slightly lower than those for the 24 x 4 case.
With the entire training set (12 800 data points), the training and
validation losses versus epochs of training are given, showing
no underfitting or overfitting before epoch 100 (Figure S2b,
Section S2, Supporting Information). An excellent agreement
can be seen between the ground-truth and ML-predicted shapes
for 25 randomly picked data points from the test set (Figure S2c,
Section S2, Supporting Information). In addition to the above
two cases, the case with N, =40, N, = 2 is also studied, in which
the input data is further restructured to speed up the training
process without losing accuracy (see Figure S3 and associated
discussions in Section S2, Supporting Information). The results
for all three cases demonstrate that RNN can achieve very high
accuracy in predicting the shape change.

Further, we compare the performance of the RNN and a
CNN for the 24 X 4 case. As shown in Figure S4a, Section S3,
Supporting Information, our CNN architecture is similar to
that of the regression CNN used in Zhang et al.'® With the
current dataset (total size 8600), RNN achieves better perfor-
mance than CNN as shown in shape change comparisons for
randomly picked data points and the regression of the ground-
truth versus predicted values (Figure S4b,c, Section S3, Sup-
porting Information). More specifically CNN achieves the

© 2021 Wiley-VCH GmbH
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Figure 3. ML prediction for the case of 24x4 voxels. a) Sensitivity of the validation loss to the training set size. b) Training and validation loss as a
function of epochs showing the training process. c) Comparison of true shapes and ML-predicted shapes for 25 random datapoints randomly picked

from the test dataset.

R? = 0.9 implying a reasonably good prediction accuracy, while
RNN achieves R? > 0.999 implying an excellent accuracy. This
is expected since there is a strong similarity in the sequen-
tial data structure between the RNN and beam deformation
problem, while CNN utilizes convolutional filters and pooling
layers to recognize spatial features from the input which have
no intuitive relation to the deformed beam coordinates. Also,
since each coordinate output depends on the global voxel infor-
mation in CNN, it may be easily disturbed by the voxel that is
irrelevant.

In addition to the accuracy, The prediction speed of ML
(RNN) against FE is also examined. For each N, x N, case, we
perform benchmark tests on the time cost of ML and FE for
1000 shape predictions of randomly generated designs using
one CPU core (Intel Core i9-10900) and one GPU (NVIDIA

Adv. Funct. Mater. 2022, 32, 2109805
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Quadro P620). As shown in Table 1, for all the cases, the ML
prediction (on the order of seconds) is much faster than FE (on
the order of hours). Results of FE time cost for 24 x 4 case will
be used to estimate time cost for the FE-EA (Section 2.4 of the
main text).

2.3. Evolutionary Algorithm Design based on Machine
Learning Model

Next, we use the EA approach to design the material distribu-
tion for target actuated shapes. EA is a population-based sto-
chastic search technique that utilizes the principles of natural
selection to seek optimal inputs producing desired outputs.l?!
As schematically illustrated in Figure 4a, the EA procedure

© 2021 Wiley-VCH GmbH
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Table 1. Time cost for 1000 shape predictions with ML (RNN) and FE for
different voxel numbers: “s” for seconds and “h” for hours. The estima-
tion for time cost is based on one CPU core (Intel Core i9-10900) and
one GPU (NVIDIA Quadro P620).

Time cost for 1000 predictions

Voxel number N, x N, ML (RNN) FE
24 x4 6.5s 14h
40 % 2 9.11s 14h
40 x 4 17.4s 15.5h

starts by creating a population of random candidate solutions
(i-e., material distribution design as digitally encoded into the
array of “I’s and ”0’s). The candidate solutions are called indi-
viduals of the population and the digital encoding can be seen
as the individual’s genes. The EA then iteratively evaluates and

MATERIALS

www.afm-journal.de

evolves the population over successive generations, in which
good individuals survive and reproduce whilst bad individuals
are eliminated, until the number of generations reaches Nge,
or an acceptable solution is found. In our approach, in each
generation, individuals are evaluated by using the well-trained
ML model to predict the actuated shapes and calculating fitness
values for the individuals. The general form of fitness function
can be defined as

(2)

which is the root-mean-squared (RMS) error between the ML-
predicted coordinates (x;, y;) and target coordinates (X,,y,) for
sampling points (mid-point of each column of voxels). Here,
the fitness value is a measure of how close the actuated shape is
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Figure 4. Demonstration of ML-based EA approach. a) Schematic of ML-EA optimization approach. b) One-period target shape, ML-EA optimal
shape, and corresponding FE shape. c) Two-period target shape, ML-EA optimal shape, and corresponding FE shape. The color map illustrates the

y-displacement in mm.
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to the target shape, and the individual with a lower fitness value
is more favored. Therefore, the goal of the optimization is to
minimize the fitness function essentially.

After evaluation, the EA creates an offspring population for
the next generation based on the current population. More
details are provided in Experimental Section. The evolutionary
process is then repeated, and the optimal solution in each gen-
eration is recorded. Next, we will evaluate the capability of the
ML-EA approach using multiple target shapes. The case with a
voxel number of 24 (N,) x 4 (N,) will be focused on.

As the first example, the one-period and two-period sinu-
soidal target shapes are considered. Due to the large deforma-
tion, it is not easy to properly specify coordinates (%;,p;) of
sampling points for the target shape. To circumvent this issue,
the following fitness function, which uses the ML-predicted
coordinates (x;, y;) only, is adopted to evaluate the candidate
solutions,

2
1 s Yi 1 Xi 1
=, = ————=cos| 2nT——— [+ = 3
fa \/ng'[)/im 2 ( |xi|max] 2] v

The number of periods, n, is taken as 1 and 2 for the two
target shapes, respectively. Note that f, vanishes when the beam
shape satisfies the sinusoidal profile. With the fitness function
Equation (3), the target coordinates (%;,y,) are not strictly pre-
scribed but can be reconstructed as described in Experimental
Section.

The following EA parameters are fixed for the optimization:
population size (number of individuals) = 500 and N, = 300.
Figure 4b,c shows the optimization results for cases with one
period (n =1) and two periods (n = 2), respectively, where good
agreement is achieved between the target shape (symbols) and
the ML-EA optimal shape (solid lines). FE simulations for the
optimal material designs are finally performed, and the FE-
predicted shapes (dashed lines) verify the accuracy of the ML-
predict ones (solid lines). To further quantify the accuracy of
the optimal design, we calculate the RMS errors using Equa-
tion (2) of both ML- (blue) and FE- (orange) predicted shapes
of the optimal design against the target shape. Note that the
EA iterations directly use the ML predictions whose error will
be inevitably forwarded to the EA process. Nonetheless, excel-
lent agreement is achieved between the optimal and the target
shapes, demonstrating the high performance of the ML-EA
approach. In addition, the ML-EA achieves the optimal design
in =11 min by using =150th generations, which require roughly
75 000 evaluations of different material designs. It can be
inferred that for the same target shapes, the FE-EAl' would
consume more than 1000 h for both two cases, as summarized
in Table 2, which are based on the benchmark time cost for
1000 FE predictions (see Table 1).

2.4. Distance-Weighted Fitness Function for More
Complicated Shapes

We now consider two more complicated target shapes. The first

target is a three-period shape composed of twelve quarter-cir-
cles. Using the same ML-EA approach with the fitness function

Adv. Funct. Mater. 2022, 32, 2109805
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Table 2. Computational cost for the ML-EA and FE-EA models: “m” for
minutes and “h” for hours. The estimation for time cost is based on one
CPU core (Intel Core i9-10900) and one GPU (NVIDIA Quadro P620).
The RMS errors are calculated using Equation (2).

EA time cost (24 x 4 voxels)

Design ML-EA FE-EA RMS errors

One-period: Mm 1053 h 0.82 and 1.11 mm
Two-period: Mm 1053 h 0.70 and 0.89 mm
Three-period: 54 m 5263 h 1.37 and 1.34 mm
Half-butterfly: 22m 2105 h 0.96 and 1.02 mm

given by Equation (2), optimal shapes with different popula-
tion sizes are obtained (see Figure S5, Section S4, Supporting
Information). A large discrepancy between the target and the
achieved shape is observed even after evolving for 200 genera-
tions with 5000 populations per generation (i.e., one million
shape evaluations performed). The reason for the large discrep-
ancy is illustrated below using the population size of 1000 as
an example (Figure S5, Section S4, Supporting Information). In
general, a large difference is observed on the left half part of the
beam. During the evolutionary process, a potential improve-
ment (i.e., shape change) in the left half beam can lead to a
large shape change and thus discrepancy on the right half. This
may increase the fitness function, resulting in that the solution
being discarded and there is no chance to evolve to the glob-
ally best solution. This is due to the boundary condition of our
problem where the left end is fixed and the right end is free.
Essentially, the found solution represents a local minimum
in the search space and it would be very hard for the solution
to jump out to the global minimum using the current fitness
function. To resolve this problem, a distance-weighted fitness
function is adopted, which is

2 2
. kx(xi—xi) +ky(y,»—)3i)
N5 i @

fi=

Here, the box number i represents a topological distance
of the box from the starting point (i.e., left end), k, and k, are
introduced to regulate the weights of errors in two coordinates.
With the modified fitness, the EA will favor the optimization
of the beam shape sequentially from left (smaller distance)
to right (larger distance), then an improvement in the distant
part will not affect the shape change in the nearer part, thereby
helping the population evolve towards the global minimum.

With this new fitness function of Equation (4), optimal
designs for the three-period shape (Figure 5a,b) and the half-
butterfly shapes (Figure 5c) are successfully achieved. For the
three-period target shape, Figure 5a shows the sensitivity of the
optimization process and optimal solution to the population
size. The RMS errors (based on Equation (2)) of the true (or FE)
shape of the optimal design against the target shape are pro-
vided. Starting from the population size of 2500, the optimal
solution is acceptable, which is achieved in around 150th gener-
ations. In this case, roughly 375 000 evaluations are performed
for the optimization, which is much higher than the size of
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Figure 5. ML-EA optimization for a,b) more complicated three-period shape and c) half-butterfly shape. (a) Evolutionary process and optimal shapes
for different population sizes. (b) Target-shape, ML-EA optimal shape, and corresponding FE shape (true shape). (c) Target-shape, ML-EA optimal
shape, and corresponding FE shape (true shape). The optimal shapes for different population sizes are shown on the right.

the training dataset (=1000-10 000). Figure 5b shows excel-
lent agreement among the target shape (symbol), the ML-EA
optimal shape (solid line), and the FE-achieved true shape
of the optimal design (dashed line). The RMS errors of both
the true shape (orange) and ML-predicted shape (blue) of the
optimal design against the target shapes are provided. As we
mentioned earlier, although the error of the ML predictions will
be forwarded to the EA process, excellent performance of the
ML-EA is demonstrated: the error of ground-truth shape of the
optimal design against the target can be even lower than that of
the ML-predicted one (Figure 5b). Figure 5c shows the results
for the final demonstration, the half-butterfly shape, where the
optimal shape (solid line) again achieves great agreement with
the target (symbols) and the true shape by FE (dashed line).
Optimal shapes with different population sizes are shown
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on the right. The RMS errors between the optimal and target
shapes are provided as well.

Using the number of shape evaluations of an entire EA pro-
cess, the computational cost for the cases with different target
shapes is estimated and listed in Table 2. The time cost estima-
tion for the FE-EAI' is based on the same number of shape
evaluations that are needed in ML-EA and on one CPU core.
The RMS errors of the ML-predicted (first) and ground-truth
(second) shapes of the optimal design against the target shape
for all the studied cases are provided for better quantification of
the accuracy. As a quick summary, our ML-EA approach dem-
onstrates very high efficiency in solving inverse material design
problems for a complicated target shape. This is attributed to
the use of the ML model in the shape evaluation of EA, which
allows for a much more rapid search in a complex design space
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compared to the FE-EA in the previous work.! In addition, the
design for other different target shapes can be easily performed
with no need for further FE simulations, which significantly
reduces the computational time.

2.5. Rapid 4D Printing Design and Fabrication: 4D Printed
Beam with Shape Changes based on Hand-Drawn Lines

With the high efficiency of our proposed ML-EA approach, we
further integrate the ML-EA approach with CV algorithms to
enable a new paradigm that streamlines the design and fabri-
cation process for 4D printing, as schematically illustrated in
Figure 6a. We first identify the target shapes from hand-drawn
lines, that is, coordinates (%,,¥,), from the raw images with
drawn profiles, using CV algorithms (see Experimental Section,
and Figure S6 and associated text in Section S5, Supporting
Information). Then the ML-EA approach is utilized to obtain
the optimal designs, that is, spatial distributions of mate-
rial phase “1” and “0” with mismatched expansion properties,
that yield the target shapes. The 24x4 voxels, 1000 population
size, and 150 evolutionary generations are used for the ML-EA
design, and each shape design takes 22 min. To incorporate an
optimal design into a real 3D-printed structure, we employ a
photo-curable polymer that can expand through swelling and
use the grayscale digital light processing (g-DLP)?3 technique
to introduce two differentially polymerized material phases
that exhibit expansion mismatch (see Experimental Section,
and Figure S7 and associated text in Section S6, Supporting
Information). In g-DLP, the optimal design is transformed into
images with grayscale patterns for the DLP printing, which thus
spatially assigns two distinct expansion properties as desired.
Finally, the printed active beams are immersed in acetone to
swell for shape transformation.

Figure 6b presents the results for five different shapes to
demonstrate our new paradigm. Hand-drawn lines, identified
target shapes with ML-EA designs, as-printed strips, and final
actuated shapes are shown in four columns (left to right). In
the second column, the obtained optimal designs are shown in
grayscale patterns. The corresponding shapes predicted by ML
(solid lines) and FE (dashed lines) agree well with the target
shape (symbols), implying the great accuracy of the ML-EA
approach. Experiments are further conducted to validate the
ML-EA optimal designs. Note that the practical material prop-
erties (modulus and expansion) in experiments are different
from those used in ML-EA (i.e., identical modulus and strain
mismatch of 0.1 between the two phases). The issue can be
resolved by re-training the ML model based on the FE data
with practical material properties and re-running ML-EA. Here,
we present an alternative strategy with no need for re-training
to compensate effects of the property difference on the shape
change. An analytical model is developed to convert the ML-EA
designs based on practical material properties (see Experi-
mental Section, and Figure S8 and associated text in Section S7,
Supporting Information). The converted ML-EA designs are
used for 3D printing. As shown in the two rightmost columns
(Figure 6D), the printed strips transform their initially straight
shapes into target shapes upon swelling. As a proof-of-concept
design approach, the CV-integrated ML-EA demonstrates high
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efficiency in generating optimal designs to convert line draw-
ings into true shape changes of 4D-printed beams.

2.6. Discussions

The ML-EA approach demonstrates high efficiency in solving
inverse problems in a complex design space, that is, inversely
designing the material distribution of active composite beams
to obtain desired mechanical responses, which cannot be
achieved by conventional methods such as FE-EA but is ena-
bled by the rapid, accurate and computationally inexpensive ML
model. Although thousands of FE simulations are needed to
train the ML model, this number (1000-10 000) is much lower
than that of the mechanical response evaluations in an EA pro-
cess required to obtain an optimal design for complicated target
shapes. Moreover, once the ML is trained, ML-EA can deal with
different target shapes with no need for further FE simula-
tions. In addition, although thermal expansion is utilized as
the actuation mechanism in the FE model, the ML-EA is gener-
ally applicable to various material systems with different active
strain mechanisms, such as swelling, shape memory, and mag-
netism, as long as the mismatched eigenstrain can be induced.
As the material system changes, one may either re-train the
RNN based on the FE data with practical material parameters
or modify the optimal designs to approximately compensate
effects of property difference between existing ML-EA designs
and experiments using the approach described in Section S7,
Supporting Information. The ML-EA may be also extended to
the cases with multiple (>2) material phases in the beam which
provides greater design flexibility. Therefore, our approach
will be useful for motivating the design for various 4D-printed
active composite beams.

It is worth noting that in this work, our ML-EA approach
is focused on the design of 1D active composite beams. In
this case, RNN is leveraged to deal with sequential data (of
1D dependency) arising from the beam problem, providing a
highly efficient ML model. However, there is a great need for
efficient design of 2D and 3D active structures based on desired
complex shape change, which could be challenging due to the
further increased design space and higher-dimensional data
dependencies. For such a problem, the ML model capable of
handling data with more complex spatial dependencies can be
helpful and will be explored in our future work.

3. Conclusions

We present a novel approach for mechanical response predic-
tion and inverse design of a 4D-printed active composite beam
based on ML and EA. A RNN based ML model is utilized to
predict the shape change based on the material distribution
of the active beam. The ML model achieves excellent accuracy
on the test set for three cases with different voxel numbers,
24 x 4, 40 X 4, and 40 x 2. In addition, the ML prediction is
much more rapid and computationally inexpensive than the
FE model. Regarding different ML models, the RNN achieves
better performance than CNN in shape change predictions in
the 1D cantilever setting. We then incorporate the trained ML
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Figure 6. Integrating CV with ML-EA to streamline the design and fabrication. a) 4D printing design, which includes identifying drawn profiles as target
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structure by expansion. b) 4D printing to achieve different line drawings. From top to bottom: mountain, half-tree, four-pointed star, half-butterfly,
“GT”. From left to right: line drawing by hand, ML-EA optimal designs and predicted optimal shapes, as-printed shapes, and shapes after swelling.

(RNN) model into an EA for the inverse design of the mate-  different complexities. The proposed distance-weighted fitness
rial distribution based on the desired shape change. The ML-EA  function greatly improves the capability to handle complex
optimization is performed based on multiple target shapes with ~ shape change. As a result, for all the target shapes, the ML-EA
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rapidly achieves an optimal design of the material distribu-
tion, which is computationally verified by the excellent agree-
ment among the desired shape, the ML-predicted shape of
the optimal design, and the true shape of the optimal design
achieved by FE. Finally, by integrating ML-EA with CV, we pre-
sent a new paradigm that streamlines the design and fabrica-
tion process for 4D printing based on hand-drawn lines. The
proposed CV algorithm enables the automatic identification of
target shapes from raw images with line drawings. For multiple
hand-drawn lines, the CV-ML-EA rapidly generates optimal
designs and the 4D-printed active beams deform into drawn
profiles under the stimulus.

4. Experimental Section

Finite Element Model for Data Generation: The FE simulations were
conducted, using the commercial software ABAQUS (version 2018,
Simulia, Providence, Rl), to generate the dataset to be fed into the ML
model. In the FE model, a cantilever composite beam under the 2D
plane strain assumption and with the left end fixed was considered. Both
active and passive materials were modeled using the incompressible
neo-Hookean model with the same mechanical parameters. Expansion
was achieved through the thermal expansion in the simulation, although
it was not limited to thermal expansion. To achieve the expansion
mismatch, the coefficient of thermal expansion was set to be 0.001 for
active material and 0 for passive material. An environmental stimulus of
100 °C temperature increase was applied to the entire beam, upon which
the active material phase was subjected to a linear strain of 0.1. The
beam has a dimension of 80 mm long x 1 mm thick, which was meshed
into 960 x 12 = 11 520 hybrid plane strain (CPE4H) elements. Regarding
the voxelization, the beam was partitioned into N, x N, voxels followed
by the assignment of materials. Each voxel has (960/N,) x (12/N,)
elements and the adjacent voxels shared the same boundary nodes.
The entire FE model was automatically generated and run through a
Python script. With the FE model, the dataset was generated by first
creating random material distribution designs and then performing FE
simulations to obtain the ground-truth shape change for each design
configuration. The material distributions and the corresponding shape
changes were inputs and outputs, respectively. The structures of the
input and output are detailed in Section 2.1. The generated dataset
was split into training, validation, and testing datasets with fractions of
0.7, 0.15, and 0.15. Statistics investigations on the inputs and outputs
showed that three datasets (training, validation, and testing) follow
similar distributions (see Figure S1 and associated text in Section ST,
Supporting Information).

Construction and Training of the RNN Model: The network architecture
consists of a sequence input layer, an LSTMI?! layer, a fully connected
layer, and a regression layer. The implementation, training, and testing
were conducted using Matlab (2020a, MathWorks, Natick, MA). Before
the training, all the input and output data were normalized using the
z-score method, that is, X' = (x-mean(x))/std (x), where x and x" are
the raw and normalized feature values, respectively, and mean is the
mean value and std is the standard deviation. The randomly generated
raw inputs (numerous “1” and “0”) showed a mean value of 0.5 and
a standard deviation of 0.5. As a result, the input state “0” and “1”
become “-1” and “1” after normalization. Such normalization was
found to improve the network performance, which could be explained
by the contribution of the symmetric (y-direction) characteristic of the
normalized inputs. Two networks were trained to predict coordinate
x and y separately to better identify their respective errors. The LSTM
utilizes a special structure consisting of multiple gates and four neural
network layers to control the update of the hidden state. The hidden
size (number of neurons of each neural layer) of LSTM was set as 50.
In the case, a single input has the size N, and output has the size 1.
Therefore the LSTM layer has 200 x (50 + N, + 1) learnable parameters.

Adv. Funct. Mater. 2022, 32, 2109805

2109805 (11 0f13)

Regarding the hyperparameters, the initial learning rate was set to 0.005,
which decreases by multiplying a factor of 1/+/2 every 50 epochs. The
training stops after the validation loss converges. The mini-batch size
during training was set to 64 or 10% of the training set size, whichever
was smaller. The adaptive moment estimation (Adam)[?¥l optimizer was
used to train the network.

To study the sensitivity of network performance to training set
size, different amounts of data were selected from the entire training
dataset (i.e., 70% of the entire dataset) for model training. The size of
the entire training set was denoted by Nyining entires While the size of the
selected training set was denoted by y,ining @and was varied. For each
Atraining < Miraining_entirer different batches of training data were randomly
picked from the entire training set and used to train multiple ML
models (the smaller of 5 and ceil (Miraining entire/Niraining)), Whose averaged
validation loss was used to evaluate the performance for the particular
Niraining: 1he model trained using the entire training set was adopted for
the optimization problem.

Methods for the ML-EA Design: The procedure of evolving a
population is schematically illustrated in Figure 4a. After evaluation of
an entire population, the EA created an offspring population for the
next generation based on individuals of the current population. Three
types of “children” were created: elite (5%), crossover (76%), and
mutation (19%) children. The top 5% fittest individuals of the current
population were elite, which directly survive to the next generation. To
create the other two types of children, the “parents”, a group of better
performing individuals determined via the binary tournament technique
were selected, which contribute their genes to the offspring: crossover
children were created by combining genes of pairs of parents, while
mutation children were created by randomly changing the genes of
single parents. The choices of crossover and mutation operators were
following the approach by Deep et al.[?’ to enforce the genes to be
integer-valued (0 or 1). The EA optimizations were performed using
Matlab.

For the cases with sinusoidal target shapes as shown in Figure 4b,c,
the fitness function Equation (3) was adopted. In this case, the target
coordinates (x;,y;) were not strictly prescribed but can be reconstructed
through

o - 1 X; 1
Xi=Xpy; =|Y;max|:§cos{2mz:|Xi| ]— §:| (5)
max

The reconstructed target shape depended on the |x|ma and |yjmax of
a specific individual and was therefore not unique. However, since the
reconstructed shape satisfied the sinusoidal profile of certain periods,
it was used as a benchmark against which the RMS errors based on
Equation (2) were computed to quantify the quality of actuated shapes
of certain optimal designs.

Computer Vision Algorithms for Target Shape Identification: The raw
image with hand-drawn lines was first processed using the Canny edge
detection algorithml?®l in Matlab and converted to a black-and-white
binary image where the white pixels form the edge of the drawing
(Figure S6a, Section S5, Supporting Information). These white pixels
contain no sequential information to define a path, so they cannot
be directly used as a target shape, that is, coordinates (x;,y;), for the
ML-EA. Therefore, an arc-intersection tracing algorithm was developed
that can extract the target shape from the binary image. The algorithm
is described in Figure S6b and associated text in Section S5, Supporting
Information. The algorithm enables the automatic identification of target
shapes from raw images. More details can be found in Section S5,
Supporting Information.

Materials and 4D Printing: The photo-curable resin for printing
was a mixture of 2-Hydroxyethyl Acrylate (Sigma Aldrich, USA) and
N-Isopropylacrylamide (Sigma Aldrich) with the weight ratio of 1:1.
Photoinitiator (Irgacure 819, Sigma Aldrich) and photo absorber
(Sudan |1, Sigma Aldrich) were added additionally. The resin was well
mixed and degassed before printing. A homemade bottom-up DLP-
based 3D printer®® was used to print the designed structure. The
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Table 3. Parameters for 3D printing with CLIP and g-DLP techniques.

Grayscale percentage Irradiation time  Thickness Pixel size
and light intensity per layer per layer
0%: 17.1 mW-cm™2 3s 50um 50 um x 50 um

60%: 4.2 mW-cm~2

continuous liquid interface production (CLIP)1 technique was utilized
to enable fast printing speed. The grayscale-DLP technique was utilized
to introduce two differentially polymerized material phases into the
structure (Figure S7, Section S6, Supporting Information). The 3D
printing parameters are listed in Table 3. The two phases exhibit a
volumetric expansion mismatch upon swelling in acetone or water,
similar to that considered in ML-EA (see discussions in Section S6,
Supporting Information). The ML-EA designs were transformed into
printing slices with grayscale patterns, where the active phase (“1”) and
passive phase (“0") were assigned with grayscale percentages 0% and
60%, respectively (Figure 6a). Upon layer-by-layer ultraviolet projecting
of obtained slices, the grayscale pattern can spatially tune the light
intensity and degree of conversion (DoC), thereby assigning two distinct
volumetric straining properties in the printed polymer as designed.
More details can be found in Section S6, Supporting Information.

Note that the practical material properties in experiments were
different from those used in ML-EA. As shown in Section S7, Supporting
Information, the printed two material phases with different DoC
show a modulus ratio of 0.15, while the ML-EA design assumed the
identical modulus for two constituent phases. The practical expansion
mismatch was identified to be 0.072, which was also different from that
used in ML-EA (i.e., 0.1). Such issues can be resolved by re-training
the ML model based on the FE data with practical material properties
(expansion mismatch and modulus difference) and re-running the
ML-EA. Here, with no need for re-training, an alternative strategy was
adopted to approximately compensate effects of difference in modulus
and expansion mismatch of the two phases on the shape change, that
is, converting the optimal designs based on analytical curvatures of
multi-layer composite beams (see Figure S8 and associated text in
Section S7, Supporting Information). FE simulations were further
performed, and the obtained shape changes based on original and
converted optimal designs were consistent with the experimental
observations (Figure S8, Supporting Information), validating the
design conversion strategy. Experimental shapes in Figure 6b were
based on the converted optimal designs, which were also consistent
with the FE results (Figure S9, Supporting Information). More details
can be found in Section S7, Supporting Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or
from the author.
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