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Abstract—Energy storage can contribute to the resource-
adequacy needs of power systems. However, the energy-limited
nature of energy storage complicates estimating its resource-
adequacy contribution. Energy storage that discharges to mitigate
a loss-of-load event may have less energy available to mitigate a
subsequent loss-of-load event. We present a stochastic-dynamic-
optimization approach to capture such impacts endogenously. We
demonstrate our approach using two case studies, which show
that the capacity value of energy storage is sensitive to the load
patterns of the system in which it is deployed.

Index Terms—Power system security and risk analysis, ca-
pacity value, reliability theory, dynamic programming, energy
storage

NOMENCLATURE

Indices, Sets, and Parameters

Ai(ly,w)  hour-t decisions that are feasible if the system
state is (I, wt)

e loss-of-load expectation (LOLE)

eM LOLE with M MW of load added during each
hour

Gy hour-¢ generating capacity available (MW)

h energy-carrying capacity of energy storage (h)

Ziv1(y) hour-¢ states from which an optimal policy results

in the hour-(¢+1) state of energy (SOE) of energy
storage being y
I hour-1 starting SOE of energy storage (MWh)
hourly load that is added in computation of effec-
tive load-carrying capability (MW)
¢ hour-t load (MW)
hour-t loss-of-load probability
power capacity of energy storage (MW)
time index
number of time periods in model horizon
penalty imposed on energy storage for a power-
output shortfall ($/MW)
set of decision policies
round-trip efficiency of energy storage (p.u.)

=
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&(y) probability that the hour-t SOE of energy storage
is y
e hour-t energy price ($/MWh)

State Variables

ly beginning hour-¢ SOE of energy storage (MWh)

Wi equals O if the system has a capacity shortfall
during hour ¢ and equals 1 otherwise

Decision Variables
ct hour-t charging into energy storage (MW)
dy hour-¢ discharging from energy storage (MW)

Decision Policies

) a decision policy

(ly,w;)  hour-t charging policy (MW)
d?(ly,w;)  hour-t discharging policy (MW)

I. INTRODUCTION

NERGY storage can be used for numerous services,
including energy shifting, ancillary services, resource
adequacy, investment deferral, and end-user applications [1].
Given its capital costs, the owner may use an energy-storage
asset for multiple applications [2], [3]. Its energy-limited
nature makes using energy storage for resource adequacy chal-
lenging, however. For instance, if energy storage discharges
during hour ¢ to earn energy revenue or to alleviate a loss-of-
load event, its state of energy (SOE) and ability to alleviate
a subsequent loss-of-load event may be reduced. Given these
complications, operators of restructured markets are seeking
methods to ascribe capacity value to energy-storage resources.
The literature takes a number of approaches to estimating
the resource-adequacy contribution of energy storage. One
approach uses approximations, e.g., based on capacity factors
[4], [5] or load-duration-curve analyses [6]. Such methods can
be computationally efficient but limited, insomuch as they rely
on having known load or energy-storage-operation profiles.
Another approach to estimating the resource-adequacy con-
tribution of energy storage employs Monte Carlo methods [7].
Bagen and Billinton [8] use such methodology in examining
the impact of energy storage on expected unserved energy.
Hu et al. [9] employ a similar approach and consider different
energy-storage-dispatch strategies. Koh et al. [10] develop a
hybrid method that combines sequential energy-storage simu-
lation with convolution of the load-duration curve and solar-
generation pattern. Zhou et al. [11] use a sequential model
to compute the effective load-carrying capability (ELCC) of
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energy storage that is used for load shaving. Konstantelos et
al. [12] and Konstantelos and Strbac [13] study the impact
of network topology and reliability on the ELCC of energy
storage. A chief disadvantage of Monte Carlo techniques is
their computational expense.

A third body of work applies analytic methods to estimating
the resource-adequacy contribution of energy storage [14].
A key challenge of such methods is the need to represent
energy-storage operations and chronology. As such, many
analytic techniques rely on strong assumptions to maintain
tractability. Klockl and Papaefthymiou [15] develop an ap-
proach for expressing the SOE of energy storage as a function
of its initial SOE and load. For simplicity, their approach
assumes that energy storage has unlimited energy-carrying ca-
pacity. Edwards et al. [16] employ non-sequential simulation,
assuming that energy storage always can be charged fully
overnight. Sioshansi et al. [17] develop an energy-storage-
operation model that assumes that energy storage is operated to
maximize arbitrage value without anticipating potential future
loss-of-load events in making operational decisions.

The aim of this paper is to expand upon these analytic
methods, and the work of Sioshansi et al. [17] in particular, by
relaxing the assumption of myopic energy-storage operations.
We propose a stochastic-dynamic-optimization model that
determines the operation of energy storage accounting for
energy prices and potential loss-of-load events. Loss-of-load
events are important to the energy storage, because we assume
that it participates in a capacity market with non-performance
penalties (e.g., ISO New England’s Forward Capacity Market).
We develop a technique that uses optimal decision policies to
estimate the resource-adequacy contribution of energy storage.
We demonstrate our proposed methodology using two case
studies, which are based on summer- and winter-peaking sys-
tems. Because the case-study data are proprietary, we include
also a simple example, the complete underlying data of which
we provide. Using our example and case studies, we show how
load patterns impact the resource-adequacy contribution of
energy storage. We show also that myopic decision making can
reduce the capacity value of energy storage, as its SOE may be
exhausted during periods with high loss-of-load probabilities
(LOLPs) that follow a high-price period.

Thus, this paper has two primary contributions to the
extant literature that build upon the work of Sioshansi et al.
[17]. First, our proposed methodology provides more robust
estimates of the resource-adequacy contribution of energy
storage than methods in the existing literature. This is because
our methodology accounts for uncertainty (e.g., loss-of-load
events) explicitly in making operational decisions. Sioshansi
et al. [17] use a deterministic modeling approach. Second,
our optimization model can be used to co-optimize the use
of energy storage for providing energy-shifting and resource-
adequacy services simultaneously. Our example and case
studies demonstrate the impact that non-performance penalties
have on the operation of energy storage, how the model trades-
off between the two services, and the resultant impact on the
resource-adequacy contribution of energy storage. Indeed, by
contrasting results with and without non-performance penal-
ties, we demonstrate our proposed model improving over the
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previous work of Sioshansi et al. [17].

The remainder of this paper is organized as follows. Sec-
tion II details our proposed methodology. Section III illustrates
our methodology with a simple example. Sections IV and V
summarize, respectively, the data that underlie and the results
of two comprehensive case studies, to which we apply our
proposed methodology. Section VI concludes.

II. MODELING APPROACH

Our approach to estimating the capacity value of energy
storage consists of four major steps, which are detailed in
the following subsections. For ease of exposition, we assume
throughout that everything is modeled at hourly time steps
over a year-long horizon. There is no loss of generality in
these assumptions.

Our first modeling step determines the reliability of the base
system (i.e., without the energy storage), which we measure
using hourly LOLPs. LOLPs are needed for our second step,
which determines the operation of the energy storage with
a stochastic-dynamic-optimization model. Another reliability
metric could be used alongside LOLPs for measuring system
reliability, however. The third step uses the optimized decision
policies to determine the probability distributions of the SOE
of energy storage during each hour. The final step uses these
probability distributions to determine the resource-adequacy
contribution of energy storage. We measure this contribution
using ELCC [18], [19], but other metrics could be used.

A. Reliability Modeling of Base System
The hour-¢t LOLP is defined as:

p¢ = Prob {Gy < M}, (1)

where Prob {-} represents any randomness that impacts the
ability of the system to serve load [14]. As is common of
modeling power-system reliability, generators are assumed to
be available to produce power at nameplate capacity, so long
as they are not suffering an outage or failure that prevents their
operation. LOLE is defined as:

T
e = Zpt
t=1

B. Energy-Storage-Operation Model

We formulate a stochastic-dynamic-optimization problem
to determine the operation of energy storage. The primary
source of uncertainty is loss-of-load events, the probabilities
of which are given by the LOLPs that are given by (1). Thus,
our model assumes that the energy-storage owner knows the
likelihood of future loss-of-load events. Other uncertainties
(e.g., energy prices) could be modeled as well. The model
maximizes expected revenues from energy shifting, less any
penalties that are assessed against energy storage for having a
power-output shortfall during a loss-of-load event. We provide
an explicit model formulation, by detailing the stages, state and
decision variables, state-transition and objective-contribution
functions, and constraints [20], [21].
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1) Stages: Bach hour, ¢t =1,...,T, is a stage.

2) State Variables: Yt = 1,...,T, w; is an exogenous
random state variable that indicates whether the system ex-
periences an hour-t capacity shortfall. V¢t = 1,...,T, [, are
endogenous state variables.

3) Decision Variables: Yt =
decision variables.

1,...,T, ¢; and d; are

4) State-Transition Functions: {w;}}_, are determined ex-
ogenously and randomly. We have that Vi = 1,...,7T, w,
equals 0 and 1 with probabilities p; and 1 — p;, respectively.
{l;}£_, evolve endogenously according to:

lt+1:lt—i—ct—dt;Vt:l,...,T; (2)

where:

Ih=1. 3)

Equation (2) does not account explicitly for energy that is
lost during the energy-storage cycle. Instead, efficiency losses
are captured in the objective. For instance, if 7 = 0.75, then
for each MW that is charged into the energy storage during
the full duration of hour ¢, [,y increases by 1 MWh. Each
MW of stored energy that is discharged during a full hour
reduces the SOE of energy storage by 1 MWh, but outputs only
0.75 MWh to be provided to the power system (e.g., to earn
energy revenue or to alleviate a loss-of-load event). We model
energy losses in this way so the model has a finite state space,
which allows for solving the model efficiently using backward
recursion [17], [20], [21]. The assumption of different charging
and discharging rates is realistic, as modern energy-storage
technologies can be designed easily with different charging
and discharging capacities [22], [23].

5) Constraints: Charging and discharging are limited by
the power capacity of the energy storage:

RN 4)
R:vt=1,...,T. 3)

Moreover, (4) does not allow the energy storage to charge
during a loss-of-load event, as doing so would exacerbate the
capacity shortfall and involuntary load curtailment.

The energy storage has SOE limits:

0<ly1 <h-RVt=1,...,T; (6)

as well. Strictly speaking, these are not valid constraints, be-
cause they restrict the state variable, [, 1, whereas constraints
should restrict decision variables [20], [21]. We can convert
these to the valid constraints:

—ltSCt—dtSB'R—Zt;Vt:L...,T; (7)

by substituting (2) into (6).

We define A;(ly,wr) = {c,di](4), (5), and (7)}, Vt =
1,...,T, as stage-t decisions that are feasible if the stage-
t state is (l¢, we).

© 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6) Objective-Contribution Functions: The hour-t objective-
contribution function is:

Ki(er,dy;ly,wp) = mp-(ndy — ) — (L—wy) V- (R—dy); (8)

Vt =1,...,T. This function consists of two terms. The first
gives the net operating revenue that is earned from energy
shifting. As noted in Section II-B4, we account for the energy
that is lost in the energy-storage cycle by applying 1 to
discharged energy in (8). Alternatively, one could apply the
energy losses in (2). We apply energy losses in (8) because
doing so gives us a finite state space, which eases solution
of the dynamic optimization model and computation of the
distributions of the SOE of energy storage during each hour
[17], [20], [21].

The second term in (8) represents the penalty that is
levied on the energy storage for not discharging up to its
power capacity if a loss-of-load event occurs. This term is
meant to mimic the function of non-performance penalties
that some markets impose on capacity resources. For instance,
PJM Interconnection’s Reliability Pricing Model imposes non-
performance penalties on resources that clear the capacity
auction [24]. ISO New England’s Forward Capacity Market
does the same.!

If there is not an hour-¢ loss-of-load event, the penalty term
in (8) vanishes and does not impact energy-storage operations.
On the other hand, if there is a loss-of-load event, the second
term in (8) remains and penalizes the energy storage for not
discharging at full power. Thus, if in the absence of an hour-
t loss-of-load event, energy storage would discharge during
hour ¢, it is optimal for it to do so during hour ¢ in its presence.

7) Complete Optimization Model and Optimal Decision
Policies: To give the complete model, we define A as the
set of feasible policies. V¢ = 1,...,T, a policy, Af(lt,wt), is
a mapping between stage-t state, (I;,w;), and a feasible set of
stage-t decisions, (¢, d;) € Ai(ly,w;). Vo € A we define:

wt‘| )

Ve=1,....T; (9)

T
Gl (leyw) =E | Y Kr (A3 (Lrywr )i Ly wr)

T=t

as the total net operating profit from stage ¢ onward. Equa-
tion (9) includes an expected-value operator, because of uncer-
tainty. We focus our analysis on loss-of-load events as being
the primary source of uncertainty. However, other factors (e.g.,
energy prices) could be modeled as uncertain as well. The
objective is to find an optimal policy, 6*, that satisfies:

G2 (I, wi) = sup GO Iy, wy); Yt =1,...,T.
dEA

Our model is solved using backward recursion [20], [21],
which can be applied efficiently because the model has finite
optimal action and state spaces [17]. These finite optimal
action and state spaces arise from the way in which we model
energy losses that are associated with cycling energy through
the energy storage. Employing dynamic optimization and

l¢f. Federal Energy Regulator Commission docket number ER21-1010-
000.
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backward recursion simplifies our overall proposed method-
ology, because backward recursion yields decision policies.
These decision policies specify an optimal stage-t action for
any possible stage-t state, not only the state that results from
an optimal sequence of decisions. Decision policies allow us
to determine efficiently how the SOE and operation of energy
storage evolve after random loss-of-load events occur, which
change the system state. Energy-storage operations could be
optimized using other techniques (e.g., linear or mixed-integer
optimization). However, such models would need to be solved
repeatedly in an online manner to ‘construct’ decision-policy
information.

Hereafter we let {c! (I;,w¢)}; and {d? (Iy,w;)}’_, rep-
resent optimal charging and discharging decision policies,
where by definition we have:

A (I, wy) = (cf* (Lo, we), dY (ltth)) ve=1,...,T.

C. Probability Distribution of l;

{l;}1_, are random because 6* depends on {w,}!_,. We
can compute the probability distribution of {l;}7_; using §*
and {p;}7_,. To do so, we define, V¢t =1,...,T — 1:

It+1(y) = {ltuwt ’lt + Cf* (ltuwt) - d?* (ltuwt) = y} ;

as the set of stage-t system states, (l;,w;), from which §*
results in the stage-(¢ + 1) SOE of energy storage being y.
As discussed in Section II-B7, Vt = 1,...,T — 1, Z; 11 (y) is
easy to compute using the decision policies that the backward-
recursion algorithm yields.

Then, we can define the probability distribution, &;(y), of
the hour-t SOE of energy storage recursively as:

)L ity = Ii;
G = 0; otherwise;
and:
Sily)= D Prob{w =w}&(N);

(N w)€Te41(y)
vVi=1,...,T—1.

The Prob {-} in (10) is given by the LOLPs, {p;}7_;.

The intuition behind (10) is that for the hour-(¢ + 1) SOE
of energy storage to equal a particular value, y, the hour-t
system state must belong to an element of Z;;1(y). A and
w are placeholders for different elements of Z;11(y). &:(N)
gives the probability that the hour-t SOE of energy storage is
A and p; gives the probability of w; being equal to w. Thus,
the sum, over all elements of Z; 1 (y), of the product of these
two probabilities gives the probability with which [, = y.

(10)

D. Computing ELCC of Energy Storage

Combining §* with {&(y)}{_,, we compute the LOLE of
the system with the energy storage and M MW of load added
as:

M= ZZ&@)X
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Prob {Gt +d® (y,0) < M, + M} .1
where the Prob {-} represents the same sources of uncertainty
as in (1). The nd? (y,0) term in computing e represents the
amount that energy storage contributes toward meeting load
during hour ¢ if the system experiences a loss-of-load event,
which is why we substitute w; = 0 in dJ (y,0), and its hour-t
SOE is y, which occurs with probability, & (y).

By definition, the ELCC of energy storage is the value of
M for which e = e,

III. EXAMPLE

We demonstrate our proposed methodology using a day-
long example with random loads, a renewable generator with
random production, and five conventional generators. The
conventional generators are modeled using random binary
states, meaning that each unit is either online, in which
case it can produce up to its nameplate capacity, or it is
offline, in which case it supplies nothing. All of the random
variables (e.g., loads, renewable output, and conventional-
generator states) are serially and cross-sectionally independent.
Table I summarizes the nameplate capacities and EFORs of the
five conventional generators. Figure 1 shows load, renewable-
availability, and energy-price data. During each hour there
are two equiprobable scenarios with different loads and two
equiprobable scenarios with different renewable-availability
levels. These scenarios give four possible net-load levels (e.g.,
load less renewable availability), each with probability 1/4.

TABLE I
NAMEPLATE CAPACITIES AND EFORS OF CONVENTIONAL GENERATORS
IN EXAMPLE FROM SECTION ITI

Generator
1 2 3 4 5
Nameplate Capacity (MW) 75 100 150 150 175
EFOR 095 095 090 0.90 0.93
800 90
O  Scenario-1 Load
[ Scenario-2 Load
g 700 Scenario-A Renewable Availabilty '. ., 80
= O Scenario-B Renewable Availabilty Q _:(D) :
& 600F 8 i d 170
2 8 og i 3o =
2 o 86508 ) ] "6 =
= 500 | 460 &
C ° 8 65102
£ 0 S
ERUIS 150 8
Q 0 4 B
g o . : &
2 300 . p 10 5
=) g
g o, =
= 200 T 430
=]
< S
3 ST T
= 100 | “_..--“ 120
[]"ngfg 5adéaae 4
oL v ? P Hagogaggdl ? 10
123 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24
Hour

Fig. 1. Loads, renewable availabilites, and energy prices in Example from
Section III.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3110497

KIM ET AL.: A STOCHASTIC-DYNAMIC-OPTIMIZATION APPROACH TO ESTIMATING THE CAPACITY VALUE OF ENERGY STORAGE 5

Figure 2 summarizes the operation of energy storage in the
example, assuming that h =4, R =100, n = 0.75, I3 = 100,
V' = 1000, and that no loss-of-load events occur during the
day. Despite loss-of-load events not occurring, we observe
the non-trivial probabilities of loss-of-load events (which are
given by the LOLPs in the lower pane of Fig. 2) and the non-
performance penalty (i.e., the nonzero value of V) impacting
energy-storage operations. As expected, energy-storage charg-
ing and discharging follow energy-price patterns—energy is
charged during the morning when prices are relatively low
and discharged later in the day when prices are higher [25].

400

s00 L 80 _
§ 60 =
S 2001 <3
<= 0 =
= L &
100 20
0 0
1
800
0.8+ =
Z =
= 06 600 =
< k=]
<
S 04t S
8
[y 400 &
0.2 1 z
p -
09 = Nl 500
123456 7 8 9101112131415 1617 18 19 20 21 22 23 24
Hour
Fig. 2.  SOE of energy storage (assuming no loss-of-load events), energy

prices, LOLPs, net-load ranges, and & (0) in Example from Section III with
h =4 and V = 1000.

However, the energy storage foregoes some energy-related
revenue to maintain a higher SOE to hedge against non-
performance penalties should a loss-of-load event occur.
Specifically, energy storage is discharged during hours 18-20,
when energy prices range between $52/MWh and $81/MWh,
and during hour 24, when the energy price is $26/MWh.
Importantly, energy storage does not discharge during hour 17,
when the energy price is $61/MWh. Discharging during
hour 17, as opposed to during hour 24, would (accounting
for n = 0.75) yield added revenue of $26.25. This energy
revenue is foregone because the power system has relatively
high LOLPs throughout hours 17-23. To illustrate the impact
of discharging during hour 17, we compute:

24
> &0)ps;

t=18

which gives the LOLP-weighted probability that energy stor-
age has is unable to help mitigate a loss-of-load event during
hours 18-24. If energy storage is not discharged during
hour 17, this probability is 0.0206 as opposed to 0.0225 if
its discharged during hour 17.

Figure 2 shows that &,(0) is not necessarily monotone in
time—E32(0) = 0.173 and &21(0) = 0.017. We have £22(0) >
&21(0) in this case because the hour-21 LOLP is relatively
high and l2; = 100. If the system experiences an hour-21 loss-
of-load event, energy storage would discharge to reduce load
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curtailment, which would yield /32 = 0. The hour-22 LOLP
is relatively low (compared to the hour-21 LOLP), which is
why £23(0) < £22(0).

Table II summarizes the estimated ELCCs of energy storage
in the example with different values of h and V. The ELCCs
are normalized by the nameplate net discharging capacity of
the energy storage [5], [26], which is 75 MW, because we
assume R = 100 and 7 = 0.75 (cf. Sections II-B4 and II-B6
regarding the treatment of energy losses). The table shows that
increasing either of A or V' can increase the ELCC, although
through different effects, which are explored in greater detail
in Section V. Increasing h gives energy storage greater energy-
carrying capacity, meaning that, ceteris paribus, energy storage
tends to have more energy available to mitigate loss-of-load
events. Increasing V' tends to make energy-storage operations
more conservative, in the sense that the SOE is kept higher.
This is because a higher value of V imposes a larger potential
non-performance penalty on energy storage that is unable to
help mitigate a loss-of-load event.

TABLE II
ELCC OF ENERGY STORAGE (% OF NAMEPLATE NET DISCHARGING
CAPACITY) IN EXAMPLE FROM SECTION III

V
h 0 1000 5000 9000
1 6 71 71 71
2 8 91 92 92
4 20 99 100 100
6 30 100 100 100
8 36 100 100 100

IV. CASE-STUDY DATA

Section V summarizes the results of applying our proposed
methodology to two case studies, which are based on data
that are obtained from operators of two different systems with
different generation mixes—one summer- and the other winter-
peaking. Due to the data confidentiality, we do not reveal the
systems or provide detailed case-study data. Rather, we give a
high-level description of the system data that we obtain from
the operators and how the data are used to construct our case
studies. Each system operator provides us with three historical
data sets: generator data, loads, and wholesale energy prices.

Data for each generating unit include generation technology,
nameplate capacity, historical hourly production level for
the case-study year, and historical hourly outage informa-
tion. We use these data in different ways, depending upon
the generating technology of a particular unit. Dispatchable
generators (e.g., nuclear or fossil-fueled units) are modeled
using their nameplate capacities and effective forced outage
rates (EFORs) in the Prob{-} functions that appear in (1)
and (11). Specifically, each of these units is represented using
Bernoulli trials—each unit is unavailable and produces nothing
during a given hour with probability equal to its EFOR and
is available to operate at its nameplate capacity during the
hour with the complementary probability. This is a standard
approach to representing dispatchable generators in power-
system-reliability modeling. Each unit’s availability during
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each hour is serially and cross-sectionally independent. EFORs
are approximated using historical outage data. The remaining
generators (e.g., wind, solar, and small hydroelectric plants)
are assumed to produce during each hour according to their
historical production levels. This is a standard approach to
representing weather variability, which drives the output of
such units, in capacity-valuation exercises [27], [28]. Energy
storage is represented as outlined in Section II, as its resource-
adequacy contribution depends on its operation and resultant
SOE.

Load data specify the historical hourly load during the
case-study year for each system. The load data indicate also
hourly net exports of energy to neighboring regions and
deployment of demand-response resources and private-use
networks (which, in most cases, reflect load net of distributed
on-site generation by customers). We use these historical
data, assuming that the demand-response and private-use-
network resources are used in our case study as reported in
the historical data. System net load is given by subtracting
wind and solar production and demand-response deployment
from the sum of load, net exports, and private-use-network
deployment. We make an additive adjustment to the loads in
computing (1) for each system so that the LOLE of the base
system is 2.4 hours. This corresponds to the reliability standard
that is set by North American Electric Reliability Corporation
of one outage day every ten years [29]. These additive load
adjustments allow us to compare the capacity value of energy
storage between the two systems, without the LOLEs of the
base systems confounding the results [30].

Hourly historical wholesale electricity prices are used in (8).
We assume in our case studies that R = 100 and 1 = 0.75
and consider cases with 4 € {1,2,4,6,8} and V € [0, 9000].
Thus, we our real-world case studies to explore the drivers of
the ELCCs that are reported in Table II in greater detail.

The case studies, each of which include several hundred
generators, are implemented using MATLAB version R2018b
on a computer with a 1.80-GHz Intel Core i7 processor and
16 GB of memory. Solving the dynamic optimization model
takes less than one second of wall-clock time. However,
computing the ELCC of the energy storage takes over two
hours, due to the iterative nature of the calculation that is
required to equate e and e,

V. CASE-STUDY RESULTS
A. Energy-Storage Operations

Figure 3 summarizes the operation of energy storage in
the summer-peaking system during 10 August, 2016 assuming
h =1 and V = 0. 10 August, 2016 has relatively high loads
and non-trivial LOLPs (the LOLPs for the day sum to 0.2,
which is nearly a tenth of the year’s LOLE). We focus our
analysis on this day (as opposed to a day with extremely high
energy-price differences), because LOLPs have a more impor-
tant impact on the operation of energy storage than energy
prices do. The upper pane of Fig. 3 shows that energy prices
during the day peak at hour 15. As such, without a financial
incentive to keep energy stored to mitigate potential loss of
load between hours 16 and 18, energy storage is discharged
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fully during hour 15 to exploit the high energy prices (the
SOEs that are shown in all of Figs. 3-9 assume w; = 1 during
all hours). As such, the energy storage contributes to system
reliability during hours 14 and 15 only and, importantly, not
during hour 16, which has the day’s highest LOLP.
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Fig. 3.  SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and &¢(0) in summer-peaking case study from
Section V during 10 August, 2016 with h =1 and V' = 0.

Figure 4 summarizes the operation of the energy storage
in the same setting as in Fig. 3, except that V' = 9000
in the case that is summarized in Fig. 4. Figure 4 shows
that the penalty on not having energy available to discharge
during a potential loss-of-load event provides a strong financial
incentive to maintain a higher SOE during hours 16-19. The
SOE profile that is shown in Fig. 4 assumes w; = 1 during
all of the hours of the day. Nevertheless, the high LOLPs
during hours 16-19 and the nonzero value of V impose a
high expected cost if the energy storage has a zero SOE
during this window of time, which drives the change in the
operating pattern between Figs. 3 and 4. Although the LOLPs
between hours 20 and 24 are nonzero, they are sufficiently
close to zero that the revenue that is earned from discharging
stored energy during hour 19 outweighs the expected cost
of any non-performance penalties between hours 20 and 24.
AlthOllgh 115 = 116 = = 119 = 100 if W = 1,Vt,
&15(0),&16(0), . .., &19(0) are trivially nonzero in Fig. 4. These
values of &:(0) are nonzero because during each of hours 15—
19, there is a non-trivial probability that a loss-of-load event
during an earlier hour results in the energy storage discharging,
which would give a zero SOE in a subsequent hour. The
recursive calculation of & (-) in (10) takes account of such
intertemporal dynamics.

Contrasting the operational profiles that are shown in Figs. 3
and 4 provides insights into the difference between our current
work and that on which we build [17]. The earlier work models
the operation of energy storage by optimizing energy revenues
only and is akin to cases that we model with V = 0. Cases
with V' > 0 allow us to examine how energy storage is
operated if it co-optimizes its energy and reliability values.

Figure 5 summarizes the operation of the energy storage
in the same setting as in Fig. 3, with h = 8 and V = 0 in
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Fig. 4. SOE of energy storage (assuming no loss-of-load events), energy

prices, LOLPs, net loads, and &;(0) in_summer-peaking case study from
Section V during 10 August, 2016 with h = 1 and V' = 9000.

the case that is summarized in Fig. 5. Figure 5 shows that
with i = 8 the financial incentive of V is not needed for
the energy storage to contribute to system reliability during
the full window of time between hours 14 and 19 when the
system has non-trivial LOLPs. This is due to the relatively high
energy-carrying capability of the energy storage with h = 8.
Indeed, the operational profile of energy storage with h = 8
and V' = 9000, which we exclude for sake of brevity, is exactly

the same as that which is shown in Fig. 5.
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Fig. 5. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and &:(0) in_summer-peaking case study from
Section V during 10 August, 2016 with h =8 and V' = 0.

Figure 6 summarizes the operation of energy storage in
the winter-peaking system during 19 January, 2016 assuming
h =1 and V = 0. As is common of winter-peaking systems,
there are morning and evening load peaks on this day. Prices
peak during hour 19, which is coincident with the peak in
the LOLPs on this day. However, LOLPs remain non-trivial
until hour 21. Because of the relatively high price during
hour 19, absent the financial incentive that a non-zero value
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of V provides, the energy storage is discharged and does
not contribute to system reliability during hours 20 and 21.
Thus, the operational profile that is shown in Fig. 6 exhibits
the same myopic behavior with respect to the reliability
contribution of energy storage that Fig. 3 shows. Figure 7
shows that increasing V' to 9000 has the same qualitative
impact on energy-storage operations as that shown in Fig. 4.
Namely, the high potential cost of a penalty for not having
energy available during a loss-of-load event results in energy
storage retaining energy through hour 22, which increases its
reliability contribution.
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Fig. 6. SOE of energy storage (assuming no loss-of-load events), energy

prices, LOLPs, net loads, and &:(0) in winter-peaking case study from
Section V during 19 January, 2016 with A =1 and V = 0.
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Fig. 7.  SOE of energy storage (assuming no loss-of-load events), energy

prices, LOLPs, net loads, and &:(0) in winter-peaking case study from
Section V during 19 January, 2016 with A = 1 and V' = 9000.

Figure 7 shows that energy is retained until hour 22, despite
the LOLP being near-zero during that hour. This behavior
stems from the hour-22 LOLP being on the order of 1073,
which appears to be near-zero, given the scale of the vertical
axis in Fig. 7. Multiplying the scale of the hour-22 LOLP with
the value of V' = 9000, means that the expected cost of having
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no stored energy available during hour 22 is on the order
of $10!. The differences in energy prices between hours 22
and 21 is on the order of $3.50. These values demonstrate
that our model provides operational decisions that tradeoff the
monetized energy and reliability values of energy storage.

Figures 8 and 9 summarize the operation of energy storage
with 4 = 8 on the same day that is summarized in Figs. 6
and 7, assuming values of V' = 0 and V' = 9000, respectively.
As with Fig. 4, we see that the financial incentive that \%
provides to retain stored energy is less crucial if energy storage
has sufficient energy-carrying capacity. Nevertheless, having
V' = 9000 does result in a small change in the operating
profile of the energy storage, which is that energy is retained
to contribute to system reliability during hour 22. Figure 8
shows that absent the financial incentive that V provides, the
energy storage would discharge its remaining stored energy
during hour 21, meaning that it provides no reliability benefit
during hour 22.
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Fig. 8. SOE of energy storage (assuming no loss-of-load events), energy

prices, LOLPs, net loads, and &:(0) in winter-peaking case study from
Section V during 19 January, 2016 with A = 8 and V' = 0.

B. Energy-Storage ELCCs
Tables IIT and IV summarize the estimated ELCCs of energy

storage in the two systems with different values of h and
V. The ELCCs are normalized by the 75-MW nameplate
net discharging capacity of the energy storage. As shown in
Table II and expected from Figs. 3-9, the ELCC is increasing
in h and V.

The tables show that if there is a strong financial incentive,
energy-limited energy storage (e.g., with o~ = 1) can have
relatively high ELCCs. This result is due to the load patterns.
Most systems experience a limited number of consecutive
hours of relatively high loads and LOLPs (cf. the load and
LOLP patterns that are summarized in Figs. 3-9). As such,
there is a low likelihood that energy storage (even with h = 1)
is unable to provide energy during a loss-of-load event.

To illustrate this concept concretely, consider the LOLPs on
the day that is shown in Figs. 6-9. This day has four hours (18—

21) with non-trivial LOLPs, which are summarized in Table V.
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Section V during 19 January, 2016 with A = 8 and V' = 9000.

TABLE III
ELCC OF ENERGY STORAGE IN SUMMER-PEAKING CASE STUDY FROM
SECTION V (% OF NAMEPLATE NET DISCHARGING CAPACITY)

v
h 0 1000 5000 9000
1 32 81 91 93
2 60 89 96 99
4 81 97 100 100
6 97 100 100 100
8 100 100 100 100

With a sufficiently high value of V, energy storage with h = 1
is operated so it is charged fully as of the beginning of
hour 18. As such, £15(0) & 0.2 Moreover, energy storage has a
0.89 probability of being fully charged as of the beginning of
hour 19 (i.e., it would be discharged if there is a loss-of-load
event during hour 18, which occurs with probability 0.11).
If there is no stored energy available as of the beginning of
hour 19, so long as the system does not experience loss of load
during hour 19, the energy storage recharges during hour 19,
and has energy available during hour 20. Thus, in such a case,
energy storage does contribute to system reliability during
hour 20, even if it has no reliability contribution during

2There is a minuscule probability that I;8 = 0, which occurs if there is a
loss-of-load event during hour 17, which is highly unlikely because p17 ~ 0.

TABLE IV
ELCC OF ENERGY STORAGE IN WINTER-PEAKING CASE STUDY FROM
SECTION V (% OF NAMEPLATE NET DISCHARGING CAPACITY)

V
h 0 1000 5000 9000
1 41 83 89 92
2 67 95 97 99
4 92 100 100 100
6 95 100 100 100
8 95 100 100 100
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hour 19. The recursive calculation of & (-) in (10), which
underlies calculations of the ELCC of energy storage, takes
account of these types of intertemporal dynamics.

TABLE V
NON-TRIVIAL LOLPS FOR WINTER-PEAKING CASE STUDY FROM
SECTION V DURING 19 JANUARY, 2016

t 18 19 20 21

pt 011 0.19 0.13 0.05

We use three measures of energy-limited energy storage
with a relatively low value of h benefiting from the low
likelihood of numerous consecutive hours with relatively high
LOLPs. The first metric is the average (over the year that
is modeled) number of consecutive hours during which the
LOLP is at least, p, conditional upon at least one hour having
an LOLP greater than or equal to p. Put another way, if p, > p
for some ¢t = 1,...,T, this first metric determines how many
subsequent consecutive hours have LOLPs of at least p. The
second metric is the number of days of the year with two or
more hours with LOLPs of at least p. The third metric is:

Y& 0)pel g

teT

12)

where 1y, 551 is the indicator that p, > p. Equation (12)
computes an LOLP-weighted average probability that the
energy storage is depleted (and unable to supply energy)
during periods with LOLPs of at least p.

Table VI summarizes the values of these three metrics for
the two systems for energy storage with » = 1 and assuming
p = 0.01. The table shows that, on average, there are relatively
short blocks of time with high LOLPs. The summer-peaking
system has, on average, four-hour blocks of consecutive hours
with LOLPs above 0.01 as opposed to an average of two-hour
blocks for the winter-peaking system. This difference in the
average duration of the blocks explains the lower ELCCs for
energy storage in the summer-peaking system for all values of
h and V relative to the ELCCs for the winter-peaking system
(cf. Tables III and 1V).

TABLE VI
ELCC-RELATED METRICS FOR ENERGY STORAGE FOR CASE STUDY
FROM SECTION V WITH h = 1 (p = 0.01)

System
Metric Summer-Peaking ~ Winter-Peaking
Average Consecutive 3.91 1.96
Hours With p; > p
Number of Days With 11 14
pt 2D
>oerét0)pelyy,>5  0.015 0.004

C. Energy-Storage Profits

Tables VII and VIII summarize the expected energy profits
that energy storage earns in the two systems for different
values of h and V. The profits that are reported do not account
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for expected non-performance penalties. Profit is increasing
in h, which reflects the incremental value of increasing the
energy-carrying capability of energy storage [25]. Increasing
the capacity of energy storage allows it to arbitrage prices
differences between more pairs of hours. However, marginal
profits are diminishing, because the price differences between
the hours that are arbitraged with additional energy-carrying

capacity are smaller.

TABLE VII
ANNUAL EXPECTED ENERGY PROFIT FOR ENERGY STORAGE IN
SUMMER-PEAKING CASE STUDY FROM SECTION V ($ MILLION)

Vv
h O 1000 5000 9000
1 0.809 0.755 0.658 0.590
2 1.426 1.393 1.346 1.324
4 2132 2124 2111 2.104
6 2489 2487 2486 2.485
8 2,652 2.652 2.652 2.651
TABLE VIII

ANNUAL EXPECTED ENERGY PROFIT FOR ENERGY STORAGE IN
WINTER-PEAKING CASE STUDY FROM SECTION V ($ MILLION)

\4
L 0 1000 5000 9000
1 2571 2494 2353 2249
2 3910 3.886 3.848 3.825
4 4967 4.966 4.962 4.959
6 5275 5275 5273 5.272
8 5401 5401 5.400 5.400

Profit is decreasing in V, which reflects two effects of V/
on energy-storage operations. The first is that energy storage
may not discharge stored energy during the highest-priced
hours, as illustrated in Figs. 3 and 4. Figure 3 shows that
with V' = 0, stored energy is discharged during hour 15,
when the price peaks for the day at $96.56/MWh. Taking
into account 7 = 0.75 and the $17.11/MWh price of charging
energy, means that the energy storage earns $55.31 during the
day. With V' = 9000, Fig. 4 shows that the stored energy is
discharged during hour 19 after the high-LOLP period when
the energy price is $31.21. This operating profile yields a net
profit to the energy storage of $6.30/MW for the day.

Another profit impact that V' has, which is illustrated
in Figs. 8 and 9, is that with V' sufficiently high, some
stored energy may not be discharged. Figure 8 shows that
with V' = 0, the last incremental hour of energy-carrying
capacity is discharged during hour 21, when the energy price
is $85.38/MWh. Taking account of the $41.23/MWh cost of
the last increment of charging energy, this yields the energy
storage a net profit of $22.81/MW from this last increment of
energy-carrying capacity. With V' = 9000, the last increment
of stored energy is retained until the end of the high-LOLP
period in hour 22, when the energy price is $56.23/MWh.
Thus, discharging this last increment of energy during hour 22
would yield a net profit of $0.94/MW. Given that energy must
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be stored for high LOLPs during the subsequent day, it is more
economic to retain this last increment of stored energy.

Taken together, these profit impacts of V' imply that energy
storage must be remunerated for operating in a manner to
co-optimize its energy and reliability benefits. The design
of such a remuneration mechanism is beyond the scope of
our work. Rather, our inclusion of V in (8) could reflect, as
an example, non-performance penalties that are imposed on
resources that participate in organized capacity mechanisms
(e.g., PIM Interconnection’s Reliability Pricing Model or ISO
New England’s Forward Capacity Market).

VI. CONCLUSIONS

This paper expands upon previous work [17] to develop
a stochastic operational model that co-optimizes energy and
reliability benefits of energy storage. Our model abstracts the
details of how reliability benefits are monetized. We assume
that energy storage is remunerated for its reliability benefits but
that financial penalties (e.g., V) are imposed for real-time non-
performance. Setting V' = 0 provides operational strategies
that maximize energy value to the exclusion of reliability
benefit. An example and two comprehensive case studies are
used to demonstrate the operation, ELCC, and operating profit
of energy storage, including the impacts of i and V thereon.

Our example includes generator failure and random load
and renewable-energy production as sources of uncertainty.
Our case study focuses on generator failures as sources of
uncertainty. Our model could be applied easily to a case
with serial correlation (e.g., modeling Markovian generator
failures). Serial correlations would impact the state-transition
probabilities that determine the values of w; during each stage.

In addition to providing decision support for an energy-
storage operator, our model can help guide current market-
design and policy decisions. Market operators are updating
their tariffs to allow energy storage to participate in their
systems as capacity resources. Much of this market develop-
ment is in reaction to Federal Energy Regulatory Commission
order 841.> Some markets are proposing ad hoc rules with
respect to treating energy storage as capacity resources. For
instance, California’s Resource Adequacy construct requires
four hours of energy-carrying capability for energy storage to
be treated as having a 100% capacity rating. Other market
operators are proposing requiring energy-carrying capabilities
of eight or more hours. Our results show that depending upon
the load patterns, without a financial penalty, eight hours of
energy-carrying capability may yield an ELCC below 100%
(¢f. Table TV). On the other hand, if there are sufficient
financial incentives, energy storage with two hours of energy-
carrying capability may have a near-100% capacity rating.
Intuitively, a nonzero value of V' is needed because energy
prices may peak before LOLPs (cf. Fig. 3) or because, even
if price and LOLP peaks are co-incident, energy storage that
is focused on energy revenue only may discharge before it
should from the perspective of reliability benefit (cf. Fig. 6).

3¢f. docket number RM16-23-000 for filings and decisions.
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