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Abstract—We study investment equilibria in electricity and gas
markets wherein electricity producers and natural gas suppliers
behave strategically. We consider also hybrid producers that
own both generating units and gas sources. Each strategic
producer determines its investment decisions in gas-fired units,
and its offering and bidding strategies to maximize its own
profit, anticipating electricity and gas market-clearing outcomes.
Producers owning gas-fired units submit bids to the gas market to

procure fuel and offers to the electricity market to sell electricity.
The resulting model is recast as an equilibrium problem with
equilibrium constraints that we solve using a direct approach.
Numerical results from two test systems illustrate the proposed
methodology.

Index Terms—Electricity market, gas market, investment,
strategic offering and bidding, equilibria

NOMENCLATURE

Indices and Sets

Cm set of gas compressors connected to node m
d/D index/set of electricity demands

e/E index/set of gas demands

Ei set of electric buses connected directly to bus i
f/F index/set of candidate gas-fired units

Gm set of gas nodes connected directly to node m
i, j/I indices/set of electric power system buses

i(u/d) power system bus where power unit u/electricity

demand d is located

k/K index/set of gas compressors

l/L index/set of producers

m,n/M indices/set of gas system nodes

m(w/e) gas system node where gas source w/gas demand e
is located

REF reference bus of the power system

t/T index/set of operating conditions

v/V index/set of existing power units

w/W index/set of gas sources

ΩGE
l set of existing gas-fired units owned by producer l

ΩGC
l set of candidate gas-fired units for producer l

This work was supported by National Science Foundation grant 1808169,
National Natural Science Foundation of China grant 51877071, and Fun-
damental Research Funds for the Central Universities grant 2019B05714.
(Corresponding author: Sheng Chen.)

S. Chen and Z. Wei are with the College of Energy and Elec-
trical Engineering, Hohai University, Nanjing 210098, China (e-mail:
chenshenghhu@163.com; wzn nj@263.net).

A. J. Conejo is with the Department of Integrated Systems Engineering
and the Department of Electrical and Computer Engineering, The Ohio State
University, Columbus, OH 43210, USA (e-mail: conejo.1@osu.edu).

R. Sioshansi is with the Department of Integrated Systems Engineer-
ing, The Ohio State University, Columbus, OH 43210, USA (e-mail:
sioshansi.1@osu.edu).

ΩC
l set of non-gas-fired units owned by producer l

ΩS
l set of gas sources owned by producer l

ΘD
i set of electricity demands connected to bus i

ΘGC
i set of candidate gas-fired units at bus i

ΘGE
i set of existing power units connected to bus i

ΨL
m set of gas demands connected to node m

ΨGC
m set of candidate gas-fired units at node m

ΨGE
m set of existing gas-fired units connected to node m

ΨS
m set of gas sources connected to node m

Parameters and Constants

bi,j susceptance of transmission line i, j (p.u.)

CEL
d,t marginal utility of electricity demand d in operat-

ing condition t ($/p.u.)

CGL
e,t marginal utility of gas demand e in operating

condition t ($/Mm3)

CG
v marginal cost of non-gas-fired unit v ($/p.u.)

COC
f operation and maintenance (O&M) cost of candi-

date gas-fired unit f ($/p.u.)

COE
v O&M cost of existing gas-fired unit v ($/p.u.)

CS
w marginal production cost of gas source w ($/Mm3)

FC,max
k gas-transportation limit of compressor k (Mm3/h)

F L,max
e maximum demand of gas demand e (Mm3/h)

F S,max
w capacity of gas source w (Mm3/h)

FGC,max
f maximum fuel consumption by candidate gas-fired

unit f (Mm3/h)

FGE,max
v maximum fuel consumption by existing gas-fired

unit v (Mm3/h)

Kf annualized capital cost of candidate unit f ($/p.u.)

Kmax investment budget ($)

PG,max
v capacity of power unit v (p.u.)

Pmax
i,j capacity of power line i, j (p.u.)

P L,max
d maximum load of electricity demand d (p.u.)

Wm,n Weymouth constant of pipeline m,n
((Mm3/h)/bar)

Xmax
f maximum capacity of candidate gas-fired unit f

(p.u.)

χ planning-reserve margin (p.u.)

ηv heat rate of existing gas-fired unit v (Mm3/p.u.)

ηf heat rate of candidate gas-fired unit f (Mm3/p.u.)

σt weight on operating condition t (h)

ϑk conversion efficiency of gas compressor k (p.u.)

ρC,min
k minimum squared ratio of compressor k (p.u.)

ρC,max
k maximum squared ratio of compressor k (p.u.)

Πmax
m maximum squared gas pressure at node m (bar2)

Πmin
m minimum squared gas pressure at node m (bar2)
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Variables

FC
k,t fuel flow through compressor k in operating con-

dition t (Mm3/h)

FGE
v,t fuel consumed by existing gas-fired unit v in

operating condition t (Mm3/h)

FGC
f,t fuel consumed by candidate gas-fired unit f in

operating condition t (Mm3/h)

F L
e,t served non-generation-related gas demand e in

operating condition t (Mm3/h)

Fm,n,t gas flow through pipeline m,n in operating con-

dition t (Mm3/h)

F S
w,t gas supplied in operating condition t by source w

(Mm3/h)

PGC
f,t power output of candidate gas-fired unit f in

operating condition t (p.u.)

PGE
v,t power output of existing unit v in operating con-

dition t (p.u.)

P L
d,t amount of demand d served in operating condi-

tion t (p.u.)

Xf capacity of candidate gas-fired unit f (p.u.)

θi,t phase angle of bus i in operating condition t (rad)

Πin
k,t squared inlet gas pressure of compressor k in

operating condition t (bar2)

Πout
k,t squared outlet gas pressure of compressor k in

operating condition t (bar2)

Πm,t squared gas pressure at node m in operating con-

dition t (bar2)

αf,t strategic offer price of candidate gas-fired unit f
in operating condition t in the electricity market

($/p.u.)

αv,t strategic offer price of existing unit v in operating

condition t in the electricity market ($/p.u.)

βw,t strategic offer price of gas source w in operating

condition t in the gas market ($/Mm3)

γGC
f,t strategic bid price (to procure gas) of candidate

unit f in operating condition t in the gas market

($/Mm3)

γGE
v,t strategic bid price (to procure gas) of existing

unit v in operating condition t in the gas market

($/Mm3)

I. INTRODUCTION

REPLACING coal-fired and other power units with gas-

fired ones is increasingly attractive. On one hand, low gas

prices make investment in gas-fired power units economically

attractive. On the other hand, the net-load fluctuations caused

by renewable energy sources call for the flexibility provided

by gas-fired power units.

Because power-generation-investment decisions are made

often within a market framework, investment models pertain-

ing to gas-fired power units should represent the gas market

and fuel-procurement cost. The electricity market also should

be represented to capture revenues from electricity sales.

Thus, we propose an equilibrium model that captures strate-

gic investment in gas-fired units and strategic offering and

bidding in both electricity and gas markets.

We consider stand-alone power and gas producers and

hybrid producers that own both power units and gas sources.

The strategic investments in gas-fired units, and the strategic

offering and bidding decisions made by each producer are

represented by a bi-level problem. The upper-level subproblem

seeks to maximize producers’ profits, while the lower-level

subproblems represent the electricity market clearing (EMC)

and gas market clearing (GMC) in a set of operating condi-

tions.

The bi-level problem of each producer is transformed into

a mathematical program with equilibrium constraints (MPEC)

by replacing the lower-level subproblems with their optimality

conditions. Jointly considering the MPECs of all the producers

yields an equilibrium problem with equilibrium constraints

(EPEC). We use a direct solution approach [1]–[3] that re-

places the MPECs with their KKT conditions to compute

generalized Nash equilibria.

The technical literature provides a number of approaches to

model the co-ordinated long-term planning of power and gas

systems. Barati et al. [4] propose an integrated framework for

expansion planning of generation and power and gas transmis-

sion. Qiu et al. [5] develop a power- and gas-expansion model

that imposes carbon constraints. Chaudry et al. [6] propose a

combined electricity- and gas-expansion model that considers

investment in power units, power lines, pipelines, compressors,

and gas-storage facilities. Shao et al. [7] develop a robust

model for integrated electric- and gas-system planning that

considers power system resilience. Zhao et al. [8] propose a

two-stage stochastic optimization model for co-ordinated ex-

pansion planning of power and gas systems. Odetayo et al. [9]

develop a chance-constrained joint-expansion model, where

the role of gas storage is to manage short-term uncertainties

in power and gas demands. Ding et al. [10] develop a multi-

stage stochastic programming model for expansion planning

of electricity and gas networks, where sequential investment

decisions are made. Cheng et al. [11] develop a decentralized

approach for integrated-energy-system-expansion planning, in

which carbon-emission constraints are represented. Zhang et

al. [12] and He et al. [13] develop a joint-expansion-planning

model that satisfies the N−1 criterion. Bent et al. [14] develop

a combined electricity- and gas-network-expansion model with

endogenous gas-price feedback.

The models that are proposed in these works take the

perspective of a central planner under perfectly competitive

markets, which may be unrealistic. Moreover, these works do

not represent strategic behavior in electricity and gas markets

when modeling investment in gas-fired generation. Given

this context, our work makes the following two formative

contributions to the existing literature.

1) It develops an EPEC framework to represent the in-

teractions between strategic investors and producers in

electricity and gas markets.

2) It identifies a range of investment equilibria. This is done

by converting the EPEC into a computationally tractable

mixed-integer linear optimization problem.

The remainder of this paper is organized as follows. Sec-

tion II provides the mathematical formulation of each pro-

ducer’s bi-level model. Section III details the MPECs, the

EPEC, and the proposed solution methodology. Sections IV



CHEN ET AL.: INVESTMENT EQUILIBRIA INVOLVING GAS-FIRED POWER UNITS IN ELECTRICITY AND GAS MARKETS 3

and V summarize numerical results of two test systems.

Section VI concludes.

II. MODEL FORMULATION

Fig. 1 depicts the structure of the proposed problem. The

upper level includes a set of power, gas, and hybrid producers.

The lower level represents EMC and GMC under different op-

erating conditions. Poncelet et al. [15] provide an approach to

select representative operating conditions. Producers that own

gas-fired units behave strategically in both markets through

electricity-supply offers and fuel-procurement bids. The lower-

level EMC and GMC are interrelated indirectly by producers

that participate in both markets. We assume that the two

markets clear simultaneously. Sequential market clearing can

yield efficiency losses. The upper- and lower-level problems

are interrelated in the following two ways.

1) Electricity locational marginal prices (ELMPs) and gas

locational marginal prices (GLMPs), which are ob-

tained from the lower-level EMC and GMC problems,

respectively, affect producer profits in the upper-level

problems.

2) Strategic investment and offering and bidding decisions,

which are determined in the upper-level problem, affect

the lower-level EMC and GMC problems.

Lower level

EMC under different operating conditions

EMC 1 EMC 2 EMC |T|

Lower level

GMC under different operating conditions

GMC 1 GMC 2 GMC |T|

Upper level

Profit maximization of each producer

Producer 1

Strategic 

offers

ELMPs and 

dispatch

Strategic 

offers
GLMPs and 

dispatch

Producer 2 Producer |L|

Fig. 1. Problem structure.

Formulations of the upper- and lower-level problems are

provided below.

A. Upper-Level Problem

Upper-level objective function (1) represents the profit of

strategic producer l. Specifically, the terms, ηvum(v),t and

ηfum(f),t, in (1) represent the variable fuel cost of existing

gas-fired unit v and candidate gas-fired unit f in operating

condition t, respectively. i(v) and i(f) denote the electric

buses where existing and candidate units v and f , respectively,

are located. m(v) and m(f) denote the gas nodes where gas-

fired units v and f are located. m(w) denotes the gas node

where gas source w is located.

Objective function (1) is optimized subject to the con-

straints:

0 ≤ Xf ≤ Xmax
f , ∀f ∈ ΩGC

l (2a)
∑

f∈F

KfXf ≤ Kmax (2b)

∑

f∈F

Xf +
∑

v∈V

PG,max
v ≥ (1 + χ)

∑

d∈D

PD,max
d,1 (2c)

αv,t ≥ 0, ∀v ∈
{
ΩC

l ,Ω
GE
l

}
, t ∈ T (2d)

αf,t ≥ 0, ∀f ∈ ΩGC
l , t ∈ T (2e)

βw,t ≥ 0, ∀w ∈ ΩS
l , t ∈ T (2f)

γGE
v,t ≥ 0, ∀v ∈ ΩGE

l , t ∈ T (2g)

γGC
f,t ≥ 0, ∀f ∈ ΩGC

l , t ∈ T. (2h)

Constraints (2a) limit the capacity of candidate gas-fired units

that can be built by producer l. Regulatory constraint (2b) is a

generic investment budget limit affecting all of the investors.

Regulatory constraint (2c) imposes a planning-reserve mar-

gin, which is defined relative to the maximum demand [2],

which is assumed to occur in operating condition t = 1.

Constraints (2d) and (2e) require generating offers to be non-

negative. Similarly, constraints (2f) require gas-supply offers

to be non-negative. Finally, constraints (2g) and (2h) require

fuel-procurement bids for gas-fired units to be non-negative.

B. Lower-Level EMC

The EMC for operating condition t is:

min
Ξ

EP
t

∑

v∈V

αv,tP
GE
v,t +

∑

f∈F

αf,tP
GC
f,t −

∑

d∈D

CEL
d,tP

L
d,t (3)

subject to:
∑

d∈ΘD
i

P L
d,t −

∑

v∈ΘGE
i

PGE
v,t −

∑

f∈ΘGC
i

PGC
f,t

+
∑

j∈Ei

bi,j · (θi,t − θj,t) = 0 : λi,t∀i ∈ I (4a)

bi,j · (θi,t − θj,t) ≤ Pmax
i,j : ρmax

1,i,j,t∀i ∈ I, j ∈ Ei (4b)

0 ≤ P L
d,t ≤ P L,max

d,t : ρmin
2,d,t, ρ

max
2,d,t∀d ∈ D (4c)

0 ≤ PGE
v,t ≤ PG,max

v : ρmin
3,v,t, ρ

max
3,v,t∀v ∈ V (4d)

0 ≤ PGC
f,t ≤ Xf : ρmin

4,f,t, ρ
max
4,f,t∀f ∈ F (4e)

θREF,t = 0 : ρ5,t∀t ∈ T. (4f)

The dual variable that is associated with each constraint

is indicated after the colon. The primal-variable set of

the EMC problem of operating condition t is ΞEP
t =

{PGE
v,t , P

GC
f,t , P

L
d,t, θt}, while the dual-variable set is ΞED

t =

{λi,t, ρ
max
1,i,j,t, ρ

max
2,d,t, ρ

min
2,d,t, ρ

max
3,v,t, ρ

min
3,v,t, ρ

max
4,f,t, ρ

min
4,f,t, ρ5,t}.

Objective function (3) is the negative social welfare (SW)

that is engendered by the electricity marketa. Its first two

terms represent the production cost of existing and candidate

power units, respectively. The last term represents the utility

of power demands. We use single-block offers and bids for

each production unit and demand, respectively. Offering and

bidding quantities are not variables of our model. However, our

model can be extended to include multiple quantity blocks to

represent a desired offer or bid curve.

Constraints (4) pertain to power system operations. Specif-

ically, (4a) represent active power-flow balance at each bus.

Its dual variable, λi,t, is the ELMP of bus i in operating

condition t. Constraints (4b) enforce the transmission capacity

of each power line. Constraints (4c) bound electricity demands.
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min
ΞUL

∑

f∈ΩGC
l

KfXf

︸ ︷︷ ︸

Investment cost

−
∑

t∈T

σt ·




∑

v∈ΩC
l

PGE
v,t ·

(
λi(v),t − CG

v

)
+

∑

v∈ΩGE
l

PGE
v,t ·

(
λi(v),t − COE

v − ηvum(v),t

)





︸ ︷︷ ︸

Profits from existing power units

−
∑

t∈T

σt

∑

f∈ΩGC
l

PGC
f,t ·

(
λi(f),t − COC

f − ηfum(f),t

)

︸ ︷︷ ︸

Profits from candidate gas-fired power units

−
∑

t∈T

σt

∑

w∈ΩS
l

F S
w,t ·

(
um(w),t − CS

w

)

︸ ︷︷ ︸

Profits from gas sources

(1)

Constraints (4d) and (4e) impose output bounds on existing

power units and candidate gas-fired units, respectively. Con-

straint (4f) sets the phase angle at the reference bus to zero.

C. Lower-Level GMC

The GMC for operating condition t is:

min
Ξ

GP
t

∑

w∈W

βw,tF
S
w,t −

∑

e∈E

CGL
e,tF

L
e,t (5)

−
∑

v∈ΩGE

γGE
v,tF

GE
v,t −

∑

f∈ΩGC

γGC
f,tF

GC
f,t

subject to:
∑

e∈ΨL
m

F L
e,t +

∑

v∈ΨGE
m

FGE
v,t +

∑

f∈ΨGC
m

FGC
f,t −

∑

w∈ΨS
m

F S
w,t (6a)

+
∑

n∈Gm

Fm,n,t +
∑

k∈Cm

(1 + ϑk)F
C
k,t = 0 : um,t∀m ∈ M

Fm,n,t |Fm,n,t| = W 2
m,n · (Πm,t −Πn,t) : (6b)

Φ2,m,n,t∀m ∈ M, n ∈ Gm

0 ≤ FC
k,t ≤ FC,max

k : Φmin
3,k,t,Φ

max
3,k,t∀k ∈ K (6c)

0 ≤ F S
w,t ≤ F S,max

w : Φmin
4,w,t,Φ

max
4,w,t∀w ∈ W (6d)

0 ≤ F L
e,t ≤ F L,max

e,t : Φmin
5,e,t,Φ

max
5,e,t∀e ∈ E (6e)

Πmin
m ≤ Πm,t ≤ Πmax

m : Φmin
6,m,t,Φ

max
6,m,t∀m ∈ M (6f)

Πin
k,tρ

C,min
k ≤ Πout

k,t ≤ Πin
k,tρ

C,max
k : (6g)

Φmin
7,k,t,Φ

max
7,k,t∀k ∈ K

0 ≤ FGE
v,t ≤ FGE,max

v : Φmin
8,v,t,Φ

max
8,v,t∀v ∈ ΩGE (6h)

0 ≤ FGC
f,t ≤ FGC,max

f : Φmin
9,f,t,Φ

max
9,f,t∀f ∈ ΩGC. (6i)

The primal-variable set of the GMC problem for operat-

ing condition t is ΞGP

t = {F S
w,t, F

L
e,t, F

GE
v,t , F

GC
f,t , Fm,n,t, F

C
t ,

Πm,t}, while its dual variable set is ΞGD
t = {um,t,Φ2,m,n,t,

Φmax
3,k,t, Φ

min
3,k,t, Φ

max
4,w,t, Φ

min
4,w,t, Φ

max
5,e,t, Φ

min
5,e,t, Φ

max
6,m,t, Φ

min
6,m,t,

Φmax
7,k,t,Φ

min
7,k,t,Φ

max
8,v,t,Φ

min
8,v,t,Φ

max
9,f,t,Φ

min
9,f,t}.

Objective function (5) is the negative SW derived from the

gas market. The first term represents gas-production costs.

The second term represents the utility of non-electricity-related

gas demands, while the last two terms represent the utility of

electricity-related gas demands.

Constraints (6) pertain to the operation of the gas system.

Specifically, (6a) represent nodal gas-flow balance, which

includes non-electricity-related gas demands, gas consumption

from existing and candidate gas-fired units, gas-source produc-

tion, and the gas flow through pipelines and compressors. The

dual variable, um,t, that is associated with (6a) represents the

GLMP of node m in operating condition t. Constraints (6b)

relate the gas flow to the squared pressure drop at the two ends

of each pipeline. Constraints (6c) represent the transportation

capacity of compressors, which limit the power consumption

of these compressors. Constraints (6d) represent the production

capacity of gas sources. Constraints (6e) bound the non-

electricity-related gas demands served. Constraints (6f) limit

the nodal gas pressures. Constraints (6g) impose minimum and

maximum compression ratios on compressors. The inlet and

outlet pressures of gas compressors and gas nodal pressures

are related as:

Πin
k,t = Πm,t; ∀t ∈ T, k ∈ C(m)in

Πout
k,t = Πm,t; ∀t ∈ T, k ∈ C(m)out,

where C(m)in and C(m)out denote, respectively, the set of

compressors which have their inflow to and outflow from

node m.

Constraints (6h) and (6i) limit the fuel consumption of

existing and candidate gas-fired units, respectively.

Constraints (6b) are nonlinear, which complicates the so-

lution of problem (5)–(6). For simplicity and tractability, we

linearize (6b) using the first-order Taylor expansion [16] as:

sgn
(
F 0
m,n,t

) (

2F 0
m,n,tFm,n,t −

(
F 0
m,n,t

)2
)

= W 2
m,n (7)

× (Πm,t −Πn,t) : Φ2,m,n,t∀m ∈ M, n ∈ Gm, t ∈ T.

The nonlinear term, Fm,n,t |Fm,n,t|, on the left-hand side

of (6b) is linearized around a given operating condition,

F 0
m,n,t. First, we solve a bi-level model that neglects (6b),

and the solution obtained (i.e., the value of F 0
m,n,t for each

operating scenario, t) is used as the linearization point in (7).

Both EMC (3)–(4) and GMC (5), (6a), (6c)–(7) are linear

programming (LP) problems, for which the strong-duality

theorem holds.

The variable set of upper-level problem (1)–(2) is ΞUL =
{Xf,t, αv,t, αf,t, βw,t, γ

GE
v,t, γ

GC
f,t ,Ξ

EP

t ,ΞGP

t }, which includes the

decision variables of producers and the primal variables of the

EMC and GMC problems.

Our model allows one producer simultaneously to own gas

sources and gas-fired power units. Depending on where a

producer’s gas sources and gas-fired power units are located,

its participation in the markets differs.

1) If the gas source and gas-fired power unit are not located

at the same gas node, the producer uses the gas-pipeline

network to transfer the gas from gas production nodes
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to its gas-fired unit. In this case, the gas-fired power unit

buys fuel from the gas market.

2) If a producer’s gas source and gas-fired power unit are

located at the same gas node, the solution obtained from

our model should have the strategic bid (to procure fuel)

that is provided by the gas-fired power unit equal to the

strategic offer provided (to supply gas) by the gas source.

This is because our model maximizes the producer’s

profit.

III. SOLUTION METHODOLOGY

For each strategic producer, bi-level model (3)–(5), (6a),

(6c)–(7) can be transformed into an MPEC by replacing the

lower-level EMC and GMC problems with their optimality

conditions (primal constraints, dual constraints, and the strong-

duality equality). The resulting MPEC for producer l is:

objective:(3) (8)

subject to:

1) upper-level constraints:

0 ≤ Xf ≤ Xmax
f ∀f ∈ ΩGC

l (9a)
∑

f∈F

KfXf ≤ Kmax (9b)

∑

f∈F

Xf +
∑

v∈V

PG,max
v ≥ (1 + χ)

∑

d∈D

PD,max
d,1 (9c)

αv,t ≥ 0∀v ∈
{
ΩC

l ,Ω
GE
l

}
, t ∈ T (9d)

αf,t ≥ 0∀f ∈ ΩGC
l , t ∈ T (9e)

βw,t ≥ 0∀w ∈ ΩS
l , t ∈ T (9f)

γGE
v,t ≥ 0∀v ∈ ΩGE

l , t ∈ T (9g)

γGC
f,t ≥ 0∀f ∈ ΩGC

l , t ∈ T (9h)

2) primal constraints of the EMC problems (one set for

each operating condition, t):
∑

d∈ΘD
i

P L
d,t −

∑

v∈ΘGE
i

PGE
v,t −

∑

f∈ΘGC
i

PGC
f,t (10a)

+
∑

j∈Ei

bi,j · (θi,t − θj,t) = 0∀i ∈ I, t ∈ T

bi,j · (θi,t − θj,t) ≤ Pmax
i,j ∀i ∈ I, j ∈ Ei, t ∈ T (10b)

0 ≤ P L
d,t ≤ P L,max

d,t ∀d ∈ D, t ∈ T (10c)

0 ≤ PGE
v,t ≤ PG,max

v ∀v ∈ V , t ∈ T (10d)

0 ≤ PGC
f,t ≤ Xf∀f ∈ F , t ∈ T (10e)

θREF,t = 0 (10f)

3) dual constraints of the EMC problems (one set for each

operating condition, t):

αv,t − λi(v),t + ρmax
3,v,t − ρmin

3,v,t = 0 (11a)

∀v ∈ V , t ∈ T

αf,t − λi(f),t + ρmax
4,f,t − ρmin

4,f,t = 0 (11b)

∀f ∈ F , t ∈ T

λi(d),t − CEL
d,t + ρmax

2,d,t − ρmin
2,d,t = 0 (11c)

∀d ∈ D, t ∈ T

∑

j∈Ei

bi,j · (λi,t − λj,t) +
∑

j∈Ei

bi,j ·
(
ρmax
1,i,j,t − ρmax

1,j,i,t

)

= 0∀i ∈ I, i 6= REF, t ∈ T (11d)
∑

j∈EREF

bREF,j · (λREF,t − λj,t) (11e)

+
∑

j∈EREF

bREF,j ·
(
ρmax
1,REF,j,t − ρmax

1,j,REF,t

)

+ ρ5,t = 0∀t ∈ T

ρmax
1,i,j,t ≥ 0∀i ∈ I, j ∈ Ei, t ∈ T (11f)

ρmin
2,d,t, ρ

max
2,d,t ≥ 0∀d ∈ D, t ∈ T (11g)

ρmin
3,v,t, ρ

max
3,v,t ≥ 0∀v ∈ V , t ∈ T (11h)

ρmin
4,f,t, ρ

max
4,f,t ≥ 0∀f ∈ F , t ∈ T (11i)

4) strong duality for the EMC problems (one for each

operating condition, t):
∑

v∈V

αv,tP
GE
v,t +

∑

f∈F

αf,tP
GC
f,t −

∑

d∈D

CEL
d,tP

L
d,t = (12)

−
∑

i∈I,j∈Ei

ρmax
1,i,j,tP

max
i,j −

∑

d∈D

ρmax
2,d,tP

L,max
d

−
∑

v∈V

ρmax
3,v,tP

G,max
v −

∑

f∈F

ρmax
4,f,tXf : Υl,t∀t ∈ T

5) primal constraints of the GMC problems (one set for

each operating condition, t):
∑

e∈Ψm

F L
e,t +

∑

v∈ΨGE
m

FGE
v,t +

∑

f∈ΨGC
m

FGC
f,t (13a)

−
∑

w∈Ψm

F S
w,t +

∑

n∈Gm

Fm,n,t +
∑

k∈Cm

(1 + ϑk)F
C
k,t

= 0∀m ∈ M, t ∈ T

sgn
(
F 0
m,n,t

) (

2F 0
m,n,tFm,n,t −

(
F 0
m,n,t

)2
)

(13b)

= W 2
m,n · (Πm,t −Πn,t) ∀m ∈ M, n ∈ Gm, t ∈ T

0 ≤ FC
k,t ≤ FC,max

k ∀k ∈ K, t ∈ T (13c)

0 ≤ F S
w,t ≤ F S,max

w ∀w ∈ W , t ∈ T (13d)

0 ≤ F L
e,t ≤ F L,max

e,t ∀e ∈ E , t ∈ T (13e)

Πmin
m ≤ Πm,t ≤ Πmax

m ∀m ∈ M, t ∈ T (13f)

Πin
k,tρ

C,min
k ≤ Πout

k,t ≤ Πin
k,tρ

C,max
k ∀k ∈ K, t ∈ T (13g)

0 ≤ FGE
v,t ≤ FGE,max

v ∀v ∈ ΩGE, t ∈ T (13h)

0 ≤ FGC
f,t ≤ FGC,max

f ∀f ∈ ΩGC, t ∈ T (13i)

6) dual constraints for the GMC problems (one set for each

operating condition, t):

βw,t − um(w),t +Φmax
4,w,t − Φmin

4,w,t = 0 (14a)

∀w ∈ W , t ∈ T

um(e),t − CGL
e,t +Φmax

5,e,t − Φmin
5,e,t = 0 (14b)

∀e ∈ E , t ∈ T

um,t − un,t + 2sgn
(
F 0
m,n,t

)
F 0
m,n,tΦ2,m,n,t = 0

∀m ∈ M, n ∈ Gm, t ∈ T (14c)

−
∑

n∈Gm

W 2
m,n · (Φ2,m,n,t − Φ2,n,m,t) + Φmax

6,m,t (14d)
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− Φmin
6,m,t +

∑

k∈C(m)in

(
Φmin

7,k,tρ
min
k − Φmax

7,k,tρ
max
k

)

+
∑

k∈C(m)out

(
Φmax

7,k,t − Φmin
7,k,t

)
= 0∀m ∈ M, t ∈ T

(1 + ϑk)umin
k
,t − umout

k
,t +Φmax

3,k,t − Φmin
3,k,t = 0 (14e)

∀k ∈ K, t ∈ T

− γGE
v,t + um(v),t +Φmax

8,v,t − Φmin
8,v,t = 0 (14f)

∀v ∈ ΩGE, t ∈ T

− γGE
f,t + um(f),t +Φmax

9,f,t − Φmin
9,f,t = 0 (14g)

∀f ∈ ΩGC, t ∈ T

Φmin
3,k,t,Φ

max
3,k,t ≥ 0∀k ∈ K, t ∈ T (14h)

Φmin
4,w,t,Φ

max
4,w,t ≥ 0∀w ∈ W , t ∈ T (14i)

Φmin
5,e,t,Φ

max
5,e,t ≥ 0∀e ∈ E , t ∈ T (14j)

Φmin
6,m,t,Φ

max
6,m,t ≥ 0∀m ∈ M, t ∈ T (14k)

Φmin
7,k,t,Φ

max
7,k,t ≥ 0∀k ∈ K, t ∈ T (14l)

Φmin
8,v,t,Φ

max
8,v,t ≥ 0∀v ∈ ΩGE, t ∈ T (14m)

Φmin
9,f,t,Φ

max
9,f,t ≥ 0∀f ∈ ΩGC, t ∈ T (14n)

7) and strong duality for the GMC problems (one for each

operating condition, t):
∑

w∈W

βw,tF
S
w,t −

∑

e∈E

CGL
e,tF

L
e,t −

∑

v∈ΩGE

γGE
v,tF

GE
v,t (15)

−
∑

f∈ΩGC

γGC
f,tF

GC
f,t =

−
∑

m∈M,n∈Gm

sgn
(
F 0
m,n,t

) (
F 0
m,n,t

)2
Φ2,m,n,t

−
∑

k∈K

FC,max
k Φmax

3,k,t −
∑

w∈W

F S,max
w Φmax

4,w,t

−
∑

e∈E

F L,max
e Φmax

5,e,t

−
∑

m∈M

(
Πmax

m Φmax
6,m,t −Πmin

m Φmin
6,m,t

)

−
∑

v∈ΩGE

FGE,max
v Φmax

8,v,t −
∑

f∈ΩGC

FGC,max
f Φmax

9,f,t :

κt,l∀t ∈ T,

where min
k and mout

k denote inflow and outflow nodes of

compressor k, respectively.

Constraints (10)–(12) represent the optimality conditions of

EMC problems for all of the operating conditions, while (13)–

(15) represent the optimality conditions of GMC problems

for all of the operating conditions. Thus, producer l’s MPEC

is (8)–(15).
Generalized Nash equilibria can be computed by solving

simultaneously all of the producers’ MPECs. This can be done

efficiently by combining the KKT conditions for each MPEC,

which gives an EPEC [3]. The KKT conditions of producer l’s
MPEC, which we denote KKTl, consist of the following three

sets of conditions.

1) Primal equality constraints of producer l’s MPEC, which

consist of (10a), (10f), (11a)–(11d), (12), (13a), (13b),

(14a)–(14g), and (15).

2) Stationarity conditions, which are obtained by setting the

gradient of the Lagrangian of producer l’s MPEC equal

to zero.

3) Complementarity conditions that are associated with the

inequality constraints that are in producer l’s MPEC.

For sake of simplicity, we do not list the KKT conditions

here. Deriving KKT conditions is a relatively simple exercise.

For example, the solver EMP,1 which is available in GAMS,

derives KKT conditions automatically.

In addition to these KKT conditions, a generalized Nash

equilibrium should satisfy the following sets of equations:

FGE
v,t = ηvP

GE
v,t ∀v ∈ ΩGE, t ∈ T (16a)

FGC
f,t = ηfP

GC
f,t ∀f ∈ ΩGC, t ∈ T, (16b)

which ensure that fuel that is consumed by each gas-fired unit

in the EMC solution equals fuel that is supplied in the GMC

solution. Constraints (16) assume that the gas consumption of

each gas-fired unit is linear in its active-power output. Thus,

the resulting EPEC is:

KKTl∀l ∈ L and (16). (17)

Because system of equalities and inequalities (17) is nonlinear,

we linearize it using the following three steps [3].

1) Strong-duality equalities (12) and (15) are replaced

by the equivalent complementarity conditions, (4b)–

(4e) and (6c)–(6i), of the EMC and GMC problems,

respectively.

2) The complementary-slackness conditions in KKTl are

linearized using the technique that is proposed by

Fortuny-Amat and McCarl [17], which requires binary

variables.

3) Bilinear terms involving Υl,t and κl,t, i.e., the dual

variables that are associated with (12) and (15), are

linearized using binary expansion (which is an approx-

imation) or by fixing them to values that are obtained

using trial-and-error.

The big-M values that are used in linearization step 2 are

obtained using trial-and-error. We denote the linearized version

of (17) as LKKTall.

Because EPEC (17) may have multiple solutions [2], we

use the following auxiliary optimization problem:

min
∑

f∈F

KfXf −
∑

t∈T,v∈ΩC

σtP
GE
v,t ·

(
λi(v),t − CG

v

)
(18)

−
∑

t∈T,v∈ΩGE

σtP
GE
v,t ·

(
λi(v),t − COE

v − ηvum(v),t

)

−
∑

t∈T,f∈F

σtP
GC
f,t ·

(
λi(f),t − COC

f − ηfum(f),t

)

−
∑

t∈T,w∈W

σtF
S
w,t ·

(
um(w),t − CS

w

)

s.t. LKKTall,

which maximizes the total profit (TP) of all producers, to

search for equilibria in which producers maximize the joint

exercise of market power. Objective function (18) can be

1https://www.gams.com/latest/docs/UG EMP.html
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linearized [1], [2]. Alternative objectives, such as maximizing

social welfare or the profit of an individual producer, can be

used to search for other equilibria.

The resulting EPEC model is a mixed-integer LP (MILP)

problem, which can be solved using branch-and-cut solvers,

such as CPLEX or GUROBI.

We use a diagonalization algorithm [18] to check whether

or not an EPEC solution is a generalized Nash equilibrium.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the proposed model, this section presents

results from a simple example. The assumed topologies of

the networks are shown in Fig. 2. The coupling between

the gas and power systems includes an existing gas-fired

unit at bus 3 (node 3) and two candidate gas-fired units at

bus 1 (node 1) and bus 3 (node 3). Producer 1 owns existing

power unit 1 and candidate gas-fired unit 1, while producer 3
owns gas source 1. Producer 2 owns existing gas-fired unit 2,

candidate gas-fired unit 2, and gas source 2. The two candidate

gas-fired units have maximum capacities of 200 MW each.

Their annualized capital costs are $7600/MW and $9000/MW,

respectively, while their heat rates are 0.005 Mm3/MWh and

0.0045 Mm3/MWh, respectively. We consider three operating

conditions with weights of 1095 h, 4380 h, and 3285 h, during

which the total electricity demands are 300 MW, 225 MW,

and 150 MW, respectively, and the total gas demands are

2.0 Mm3/h, 1.5 Mm3/h, and 1.0 Mm3/h, respectively. Table I

summarizes the marginal utilities of electricity and natural gas

demands in the three operating conditions.

i = 1

m = 1

Four-node gas system

Three-bus power system

Firm 1

Firm 3 Firm 2

Firm 2

i = 2
i = 3

Candidate gas-fired units

f = 2f = 1

w = 1 w = 2
m = 2

m = 3

m = 4

v = 1 v = 2

d = 1 d = 2 d = 3

e = 1 e = 2 e = 3

Fig. 2. Example: Coupled three-bus power system and four-node gas system.

EPEC model (18) is solved using CPLEX and GAMS on

the NEOS Server [19].

To investigate the impact of power system congestion on

investment equilibria, we consider cases in which the transmis-

sion capacity of the line connecting buses 2 and 3 is 200 MW,

160 MW, 140 MW, and 100 MW. Tables II–IV summarize

results for the example. These tables demonstrate the following

three findings.

1) Reducing the capacity of the line connecting buses 2
and 3 results in less capacity of the candidate gas-fired

TABLE I
EXAMPLE: MARGINAL UTILITIES OF ELECTRICITY AND NATURAL GAS

DEMANDS IN THE THREE OPERATING CONDITIONS

Electricity Demand Gas Demand
Utility ($/MWh) Utility ($/Mm3)

t i = 1 i = 2 i = 3 m = 1 m = 2 m = 3

1 25 26 24 2800 3000 2900

2 23 24 22 2600 2800 2700

3 21 22 20 2400 2600 2500

unit at bus 3 being built. This increases the profits of

producers 1 and 3 while reducing that of producer 2.

2) There is no congestion in the case with 200 MW of

transmission capacity between buses 2 and 3. Conges-

tion surpluses with 160 MW, 140 MW and 100 MW

of transmission capacity between buses 2 and 3 are

$0.88 million, $0.77 million, and $0.55 million, respec-

tively. The reduced transmission surplus is due to re-

duced ELMP differences and less flow between buses 2
and 3, as shown in Table III (the ELMP during t = 3 is

always $20/MWh, which is why it is not shown in the

table).

3) Table IV summarizes GLMPs in the peak-demand op-

erating condition. It shows that as transmission capacity

between buses 2 and 3 is reduced, nodes 3 and 4 (which

fuel primarily the gas-fired units at bus 3) becomes less

stressed, with a commensurate drop in their GLMPs.

Conversely, the GLMP at node 1 increases, due to

greater fuel demand from gas-fired unit 1.

TABLE IV
EXAMPLE: GLMPS IN OPERATING CONDITION 1 (PEAK DEMAND)

($/MM3)

Pmax

2,3 m = 1 m = 2 m = 3 m = 4

200 2678 2800 2900 2900

160 2795 2800 2803 2803

140 2800 2800 2800 2800

100 2800 2800 2800 2800

These types of findings can be used by a market regulator

or policymaker to promote investments that increase SW.

V. CASE STUDY

This section summarizes the results from a case study that is

based on a Belgian 24-node power system2 and 20-node gas

system [20], which are shown in Fig. 3. The power system

includes 7 candidate gas-fired units at buses 2, 6, 8, 14, 15,

21, and 22. We consider three producers including producer 1,

which owns the power units in area 1, producer 3, which

owns the gas sources in area A, and producer 2, which owns

the power units in area 2 and the gas sources in area B. To

illustrate the proposed model, eight cases are considered.

2https://doi.org/10.5281/zenodo.999150
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TABLE II
EXAMPLE: INVESTMENT RESULTS

Investment Cost Added Capacity (MW) Profit ($ million) Total Profit Social Welfare

Pmax

2,3 ($ million) Unit 1 Unit 2 Firm 1 Firm 2 Firm 3 ($ million) ($ million)

200 2.12 42 200 0.71 16.37 3.74 20.82 26.95

160 1.97 37 188 1.42 15.67 3.78 20.87 26.90

140 2.10 40 200 1.78 14.96 4.34 21.08 26.85

100 2.05 80 160 3.49 13.25 4.41 21.15 26.58

TABLE III
EXAMPLE: ELMPS AND POWER FLOWS

ELMPs ($/MWh)

t = 1 t = 2 P1,2 (MW) P3,2 (MW)

Pmax

2,3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

200 24 24 24 22 22 22 15 −45 −30 165 180 120

160 25 25 24 23 23 22 20 −25 −30 160 160 120

140 25 25 24 23 23 22 40 −5 −20 140 140 100

100 25 25 24 23 23 22 80 35 21 100 100 69

i = 8

v = 7

i = 2

v = 1 i = 10 i = 13

v = 2 i = 4
i = 6

i = 1
v = 4 v = 6

i = 3

v = 3

i = 5

i = 23

i = 24

i = 12

v = 8

i = 9 i = 14
i = 19

i = 18
i = 22

i = 16

i = 17

v = 5

v = 9

v = 10

i = 20

v = 11

i = 21

i = 15

v = 13

v = 12

i = 11

v = 14

i = 7

To Luxemburg

Arlon

Sinsin

Wanze

Liège

s Gravenvoeren

Norvegian gas
(w = 2)

Berneau

Warnand-Dreye 
(m = 11)

NamurFrom storage
(w = 5, 6)

Blaregnies

To France

Mons

Péronnes

Anderlues

Brussel

Hasselt

Loenhout

Poppel

Dutch gas
(w = 4)From storage

(w = 4)

w = 1

Zeebrugge

Dudzele

Brugge Zomergem
Gent

(m = 1)

(m= 2)

(m= 3) (m = 4)

Antwerpen
(m = 6)

(m = 7)

(m = 5)

(m = 8)
(m = 9)

(m = 10)

(m =13)

(m = 12)

(m = 14)

(m =15)

(m = 16)

(m = 17)

(m = 18)

(m = 19)

(m = 20)

w = 3

Area 1
(Producer 1)

Area 2
(Producer 2)

Low gas

High gas

Area A

(P
roducer 3)

Area B

(P
roducer 2)

f = 1

Candidate gas-fired units

f = 2

f = 3

f = 4

f = 5

f = 7

f = 6

Fig. 3. Case Study: Belgian 24-node power system and 20-node gas system.

A. Tie-Line Transmission Capacity

We investigate the impact of the capacity of the line

connecting bus 24, which is in area 1, to bus 14, which is

in area 2. We consider cases in which the capacity of this

line is 1720 MW and 3000 MW. Tables V and VI provide

results for these cases. Table V shows that greater transmission

capacity results in higher generation investment in area 2
and higher profit for producer 2 from the electricity market.

Additionally, the power flow from area 2 to area 1 increases,

and, consequently, for each operating condition, the ELMPs

in area 2 increase, while the ELMPs in area 1 decrease (cf.

Table VI).

TABLE VI
CASE STUDY: LOAD-WEIGHTED ELMPS ($/MWH) OF AREAS 1 AND 2

FOR TWO TIE-LINE CAPACITIES

Area 1 Area 2

Pmax

14,24 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

1720 60.0 50.0 45.0 49.9 40.0 36.0

3000 60.0 47.2 42.4 54.4 41.6 36.9

B. Gas-Pressure Limits

We consider two cases, in which the operation ranges of

nodal gas pressures are between 30 bar and 70 bar and

between 35 bar and 65 bar, respectively. Table VII and Fig. 4

summarize the results for these cases. These results indicate

that stricter gas-pressure limits result in a) lower TP and SW

(cf. Table VII), b) higher GLMPs (cf. Fig. 4), and c) lower

profits for producers 1 and 2 from the electricity market due

to higher fuel costs for gas-fired units (cf. Table VII).

TABLE VII
CASE STUDY: PRODUCERS’ PROFITS, TP, AND SW FOR TWO

GAS-PRESSURE RANGES

Profit ($ million) Social

l = 2 Welfare

Range l = 1 (Electricity) (Gas) l = 3 Total ($ million)

30–70 1083 1044 151 984 3262 3723

35–65 1066 1019 195 941 3221 3654

These results could translate into policy action to reinforce

the gas network, which may stimulate investments in gas-fired

units and increase SW.

C. Error of the Gas-Flow Model

To measure the accuracy of linearized natural gas flow

model (7), we solve an exact gas-flow model, consisting of

nonlinear constraints (6a) and (6b), using Newton’s method

to obtain a gas-flow solution that satisfies all the equality

constraints pertaining to the gas system. We set a slack

gas node, the gas pressure of which is fixed while its gas

supply is unknown prior to solving the exact gas-flow model.

Specifically, we fix the variables that pertain to natural gas

injections and demands for all nodes except the slack one,

and the gas pressures for the slack node to the corresponding

values that are obtained from the linearized EPEC model.
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TABLE V
CASE STUDY: INVESTMENT RESULTS FOR TWO TIE-LINE CAPACITIES

Investment Cost Added Capacity (GW) Profit ($ million) Social Welfare

Pmax

14,24 ($ million) Area 1 Area 2 l = 1 l = 2 (Electricity) l = 2 (Gas) l = 3 Total ($ million)

1720 35.9 2.40 2.39 1083 1044 151 984 3262 3723

3000 36.6 1.74 3.05 959 1074 130 961 3123 3716

Fig. 4. Example: GLMPs for two sets of gas-pressure limits.

Then, we define the following index:

Em,t =

√

ΠL
m,t −

√

ΠE
m,t

√

ΠE
m,t

· 100%∀m ∈ M, t ∈ T, (19)

where ΠL
m,t and ΠE

m,t denote the squared pressure of node m
during operating condition t that is obtained from the lin-

earized and exact natural gas flow models, respectively.

Fig. 5 shows Em,t for all nodes under three operating

conditions. We observe from this figure that the linearization

errors under operating condition t = 1 are larger than under the

other two operating conditions. However, these linearization

errors (Em,t ≤ 1.6%∀m ∈ M, t ∈ T ) are acceptable for

practical applications. These results indicate that the linearized

gas-flow model is sufficiently accurate.

D. Investment Equilibria under Perfect Competition

We compare investment equilibria under perfect and imper-

fect competition. Specifically, we consider the case in which

all producers are non-strategic and offer at their marginal

production costs, but remain strategic in their investment

decisions. Tables VIII and IXsummarize the results with a

tie-line capacity of 3000 MW (i.e., Pmax
14,24 = 3000 MW).

The outcomes indicate that perfect competition results in 1)

lower ELMPs and GLMPs and 2) equal total newly built

capacity, but higher capacity built in Area 2. In addition,

the SW under imperfect and perfect competition are similar.

However, the producers’ profits under imperfect and perfect

Fig. 5. Case Study: Linearization error of gas nodal pressures under three
operating conditions.

competition differ significantly. This is because the perfect-

competition case allows firms to exercise market through their

investment decisions only. Conversely, the firms have greater

purview to exercise market power through their investment,

offering, and bidding strategies under imperfect competition.

Fig. 6 summarizes the producers’ profit in each operating

condition under perfect and imperfect competition. The results

in Table IXand Fig. 6 indicate that the market outcomes under

perfect and imperfect competition are relatively close during

operating condition t = 1, but are largely different under the

other two operating conditions.

TABLE IX
CASE STUDY: LOAD-WEIGHTED ELMPS ($/MWH) AND GLMPS

($/MM3) UNDER PERFECT AND IMPERFECT COMPETITION

Type of ELMP GLMP

Competition t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Imperfect 56.9 45.5 40.5 9002 7000 5600

Perfect 56.6 34.1 30.0 8416 5200 4500

E. Computation of Multiple Equilibria

We search for multiple equilibria by selecting different

values of Υl,t and κl,t. Three equilibria, which are summarized

in Table X, are found. The third equilibrium, in which the fixed

values of Υl,t and κl,t are larger than those in the other two

equilibria, results in the highest TP and SW. The EPEC does
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TABLE VIII
CASE STUDY: INVESTMENT RESULTS UNDER PERFECT AND IMPERFECT COMPETITION WITH Pmax

14,24 = 3000 MW

Type of Investment Cost Added Capacity (GW) Profit ($ million) Social Welfare

Competition ($ million) Area 1 Area 2 l = 1 l = 2 (Electricity) l = 2 (Gas) l = 3 Total ($ million)

Imperfect 36.6 1.74 3.05 959 1074 130 961 3123 3716

Perfect 37.4 1.05 3.74 683 812 69 411 1975 3741

Fig. 6. Case Study: Producers’ profit in each operating condition under
perfect and imperfect competition.

not identify any equilibria if Υl,t and κl,t are smaller than

3000 or larger than 150000.

TABLE X
CASE STUDY: PRODUCERS’ PROFITS, TP, AND SW ($ MILLION) UNDER

DIFFERENT EQUILIBRIA

Υl,t = κl,t Profit Social

∀l ∈ L, t ∈ T l = 1 l = 2 l = 3 Total Welfare

6000 1082 1027 981 3090 3524

9000 1082 1050 972 3104 3559

10000 1083 1195 984 3262 3723

F. Electricity and Gas Demands

We consider three cases. The first two cases have 5% higher

electricity demands and 5% higher gas demands, respectively,

relative to the base case. The third case has 5% higher

marginal utility for gas demands relative to the base case.

Table XI summarizes the equilibria that are obtained from

the base case and cases with different demands. These results

show the interaction between the electricity and gas markets.

Increasing the electricity demands results in higher profits for

both electricity and gas producers. However, increasing the gas

demands or the utilities of the gas demands results in higher

gas-producer profits but lower electricity-producer profits. This

is because these two cases yield higher gas prices, which

increases the fuel cost of gas-fired units. Higher electricity

demand leads to increased investment in area 2, which is

required to supply the added electricity demand.

G. Number of Producers

Table XII reports the impact of the number of producers on

the computational complexity of the EPEC. Clearly, a larger

number of producers results in higher computational burden.

However, the EPEC model is solved in a reasonable amount

of time.

TABLE XII
CASE STUDY: COMPUTATIONAL COMPLEXITY OF EPEC WITH

DIFFERENT NUMBERS OF FIRMS

Binary Solution
|L| Variables Columns Rows Time (minutes)

3 2912 6054 7074 19

6 5160 10195 12128 24

8 7236 14225 17157 40

10 9373 17989 22026 52

H. Number of Operating Conditions

The number of operating conditions is increased to six, nine,

and 12 in the case of 3000 MW of transmission capacity

between buses 14 and 24. Equilibria that are obtained with

different numbers of operating conditions are provided in

Table XIII. This table shows that TP decreases gradually with

the number of operating conditions. On the other hand, the

EPEC remains computationally tractable, even with 12 oper-

ating conditions.

VI. CONCLUSION

This paper develops an EPEC to characterize investment

equilibria that are reached by power, gas, and hybrid strategic

producers. Our results show that transmission-capacity con-

straints in the power system and gas-pressure limits in the

gas system impact the equilibria that are obtained, the profits

of the competing producers, and both ELMPs and GLMPs.

On the computational side, the MILP problem representing

the EPEC is tractable for realistic power and gas systems.

Our work highlights the importance of representing the gas-

market and its associated network constraints in generation-

investment problems that include gas-fired units. Our work

can help a regulator (and other policymakers) to gain insight

into 1) the coupling between electricity and gas markets, 2)

the investment behaviors of strategic producers, and 3) how

supply-side market power impacts the investment decisions

and profits of each producer. Our model also may help a



CHEN ET AL.: INVESTMENT EQUILIBRIA INVOLVING GAS-FIRED POWER UNITS IN ELECTRICITY AND GAS MARKETS 11

TABLE XI
CASE STUDY: INVESTMENT RESULTS WITH DIFFERENT ELECTRICITY AND GAS DEMANDS

Added Capacity (GW) Profit ($ million) Social Welfare

Case Area 1 Area 2 l = 1 l = 2 (Electricity) l = 2 (Gas) l = 3 Total ($ million)

Base 2.40 2.39 1083 1044 151 984 3263 3723

High Electricity Demand 2.40 3.32 1096 1046 176 984 3302 3776

High Gas Demand 2.40 2.39 1071 1042 183 984 3280 3728

High Gas Utility 2.40 2.39 1053 1035 171 1110 3369 3848

TABLE XIII
CASE STUDY: EQUILIBRIUM RESULTS WITH DIFFERENT NUMBERS OF OPERATING CONDITIONS

Profit ($ million) Social Welfare Binary Solution

|T | l = 1 l = 2 l = 3 Total ($ million) Variables Columns Rows Time (minutes)

3 1083 1195 984 3262 3723 2912 6054 7074 19

6 1068 1181 973 3222 3650 6275 12825 15292 41

9 1076 1166 970 3212 3683 8892 18492 21647 181

12 1078 1125 991 3194 3672 11573 24206 28206 347

regulator to design better rules for both electricity and gas

markets.

Our modeling framework can be extended to consider uncer-

tainty in renewable generation by introducing a larger number

of operating conditions. This might result in intractability,

which can be addressed by decomposition [21].
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