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Abstract

We study the problem of solving Packing Integer Programs (PIPs) in the online setting, where columns
in [0, 1]d of the constraint matrix are revealed sequentially, and the goal is to pick a subset of the columns
that sum to at most B in each coordinate while maximizing the objective. Excellent results are known in
the secretary setting, where the columns are adversarially chosen, but presented in a uniformly random order.
However, these existing algorithms are susceptible to adversarial attacks: they try to “learn” characteristics
of a good solution, but tend to over-fit to the model, and hence a small number of adversarial corruptions can
cause the algorithm to fail.

In this paper, we give the first robust algorithms for Packing Integer Programs, specifically in the recently
proposed Byzantine Secretary framework [BGSZ20]. Our techniques are based on a two-level use of online
learning, to robustly learn an approximation to the optimal value, and then to use this robust estimate to pick
a good solution. These techniques are general and we use them to design robust algorithms for PIPs in the
prophet model as well, specifically in the Prophet-with-Augmentations framework [ISW20]. We also improve
known results in the Byzantine Secretary framework: we make the non-constructive results algorithmic and
improve the existing bounds for single-item and matroid constraints.

1 Introduction

Resource allocation is a central problem in online decision making: here, a set of requests for resources arrive
one-by-one, each having an associated value. The goal is to accept a subset of the requests with a large total
value, subject to satisfying given resource constraints. In online algorithms, we have to make these decisions
sequentially and irrevocably, without the knowledge of future requests. It is common to model these problems as
packing integer programs (PIPs) of the form:

max{〈c, x〉 | Ax ≤ b, x ∈ {0, 1}n },(1.1)

where the columns of an unknown constraint matrix A ∈ [0, 1]d×n appear one-by-one, and the decisions of the
algorithm are encoded as variables xt ∈ {0, 1}.

Although online packing IPs are difficult to solve in the worst-case, one of the remarkable successes has been
for settings where the PIP instance is chosen adversarially, but the columns are then presented in a uniformly
random order. If the constraints are “not-too-tight”, we can get very good solutions: e.g., for a PIP where the
constraint matrix A ∈ [0, 1]d×n and the entries of b are Ω(ε−2 log d), we know algorithms that obtain a (1 − ε)-
approximation as long as the columns of A arrive in a uniformly random order [KRTV14, GM16, AD15]. In fact,
these results can be thought of as extensions of the multiple-secretary problem [Kle05] (which is the case where
d = 1 and the matrix A is the all-1s matrix), and ultimately as extensions of the classical secretary problem [Dyn63]
where the goal is to pick a single item to maximize the value.

However, previous algorithms rely heavily on the random-order assumption, and are susceptible to worst-
case corruptions: If an adversary is allowed to add in a small number of columns that arrive at specific times,
most existing algorithms for the random-order setting fail disastrously. E.g., the classical single-item secretary
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algorithm—which waits for n/e items and then picks the first item bigger than all preceding items—fails even if
a single high-value item is added at the beginning. Many algorithms for solving LPs essentially try to estimate
duals/thresholds, which can be skewed by a small number of adversarial items. In short, most current algorithms
are non-robust, and seem to over-fit to the model. Our central motivating questions are:

Can we get robust algorithms for online resource allocation, and for PIPs in particular? More broadly,
when we give algorithms that make assumptions on the data, how do we ensure that their performance
degrades gracefully as we allow adversarial corruptions?

The Byzantine secretary model [KM20, BGSZ20] is one attempt to model adversarial corruptions in the
random-order model. In this model, each request (i.e., column of A) is either red (i.e., adversarial) or green
(i.e., benign), where these colors are not known to the algorithm. The adversary chooses the arrival time of each
red column, whereas the green columns choose their arrival times independently and uniformly at random. The
benchmark is now the value of the optimal green set (sometimes with one green item removed).

In [BGSZ20], the authors give robust algorithms for the single- and multi-item secretary settings, but leave
open the question of getting robust algorithms for the setting of packing integer programs. In this paper, we
resolve this question positively, and also give simpler and better robust algorithms for the single-item case. Our
techniques are general and also extend to robust algorithms for PIPs in the prophet model, specifically to the
Prophet-with-Augmentations model of [ISW20].

1.1 Our Results PIPs in the Byzantine Secretary Model. Our first set of results give robust algorithms
for packing integer programs. To state the result, let G denote the green columns of matrix A, and let gmax denote
the green column with largest value. Let OPT(G) and OPT(G \ gmax) denote the optimal value of the offline
PIP (1.1) when restricted to the green columns, with and without gmax respectively.

Theorem 1.1. (Informal: Robust PIPs) There exists an algorithm for packing integer programs with value
Ω(OPT(G \ gmax)) in the Byzantine secretary model when the entries of b are Ω(poly(log n)).

(See §2 for formal statements.) One may ask whether we can compare to OPT(G) instead: sadly, [BGSZ20]
showed instances where it is impossible to compare to OPT(G) without further assumptions. However, if we make
(mild) regularity assumptions on the input, we can indeed get much more nuanced results. Indeed, suppose we
are given even a very rough estimate of OPT(G)—to within polynomial in n factors—then we can achieve the
following:

Theorem 1.2. (Informal: Robust PIPs with a Rough Estimate) There exists algorithms for packing in-
teger programs which take a rough estimate of the OPT(G) and achieve the following guarantees:

(i) value OPT(G) · Ω(1) for any instance.
(ii) value OPT(G) · (1− α − O(ε)) for instances where α is the fraction of red/adversarial columns and the
value of any ≈ log d/ε4 columns accounts for only an ε-fraction of the optimum (i.e., the optimal value is
not concentrated on a small set of columns).

Both these algorithms require that the entries of b are at least B := Ω(log d · loglog n/ε4).

(See §2 for a formal statement of the former; the latter appears in the full version of the paper.) Note that
the performance of this algorithm in part (ii) approaches 1 as the fraction α of adversarial corruptions gets small.
The algorithm of part (i) is the same as in Theorem 1.1, but we need new ideas for part (ii), the case of “smooth”
instances where the optimal value is spread out. Theorems 1.1 and 1.2 both use our technique of robust threshold
estimation, which is based on two conceptually clean ideas using tools from online learning: Firstly, we show

that given an estimate γ ≈ OPT(G)
B , we can pick a set of items that achieve value close to OPT(G). This uses a

low-regret online linear optimization algorithm to learn a good set of duals, which are then used to select items.
Secondly, we break the time horizon into K pieces, and then use another online learning algorithm to “learn”
the parameter γ. This is where we use our coarse estimate of the optimal value: it allows us to focus on a set of
O(ε−1 log n) possible values for γ. We discuss the technical ideas in §1.2.

PIPs in the Prophet-with-Augmentations Model. We think that our approach of using online learning
to get robust algorithms will be useful in other contexts as well. As an example, we consider PIPs in the prophet
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model where the columns are known up-front, but the value of each column is independently drawn from a known
distribution. In the prophet-with-augmentations model of [ISW20], the adversary is allowed to adaptively add
arbitrary positive perturbations/augmentations to the random column values, and the algorithm has to be robust
to these augmentations. The algorithm competes against the base instance, i.e., the expected value OPTbase of
the offline optimum when all perturbations are zero.

It may appear that adding positive perturbations should only improve the algorithm’s performance, but
[ISW20] show that the popular 1/2-approximation median threshold algorithm [SC84] for single-item prophets
can become arbitrarily bad due to augmentations. (The reason is similar to that for the Byzantine Secretary
model: the adversary can present a single high-valued item in the beginning that is just above the threshold.)
[ISW20] show how to avoid these problems, and design robust prophet algorithms for the single-item and uniform-
matroid problems. In §4 we show robust prophet algorithms for the general setting of PIPs, where our underlying
technique is again based on robust threshold estimation using tools from online learning.

Theorem 1.3. (Robust Prophet PIPs) There exists an algorithm for packing integer programs that gets value
Ω(OPTbase) in the Prophet-with-Augmentations model when the right-hand sides of the PIP are Ω(log d).

Improved Results for Single-Item and Matroid Cases. Our next results improves on those of [BGSZ20],
for the case of picking a single item or an independent set in a matroid. (Details in §3.)

Theorem 1.4. (Single-Item Probability Max) There is an algorithm for the single-item Byzantine secre-
tary problem that picks value at least OPT(G \ gmax) with probability Ω

(
1/logn

)
.

In the case of a single-item, observe that OPT(G \ gmax) is the same as the value val(g2) of the 2nd-highest
green item. The previous result of [BGSZ20] was non-constructive, and only showed existence of an algorithm
with success probability Ω

(
1/(logn)2

)
; hence our result improves on the previous results both qualitatively and

quantitatively. We also improve the value maximization results of [BGSZ20].

Theorem 1.5. (Value-Maximization for Secretary Problems) There exist algorithms for the following
Byzantine secretary problems that aim to maximize the expected value of selected items:

(i) for the single-item case, we can get expected value Ω
(
1/log∗ n

)
·OPT(G \ gmax), and

(ii) for the case of a matroid of rank r, we can get expected value Ω
(
1/
(
(log∗ n)2·log r

))
·OPT(G \ gmax)

(See §5 for proofs.) The former result improves on the the previous expected value of Ω
(
1/(log∗ n)2

)
·OPT(G\gmax),

and the latter result improves the previous expected value of Ω
(
1/logn

)
·OPT(G\gmax) when the rank r is sufficiently

smaller than the number of items n.

1.2 Our Techniques The general idea of all our algorithms is to find robust thresholds. For packing IPs in the
secretary and prophet settings, these robust thresholds are obtained by using a Multiplicative-Weight Updates
(MWU) algorithm, and for single-item probability/value maximization the idea is to perform a robust binary
search on a set of candidate thresholds as we gather more information over time. Let us now flesh these ideas out
in the context of two of our results: for Byzantine PIPs and for single-item probability maximization.

Byzantine Packing IPs. At a high level, our robust algorithm looks at a Lagrangified value ctxt−γ〈λt, Atxt〉
of the tth item to make its decision. Here the dual λt (computed using MWU) puts a relative “penalty” on each
constraint, with higher penalties for constraints that are more occupied. The scale parameter γ balances between
the value and the occupation penalty. Given this, our algorithm Alg(γ) picks item t if its Lagrangian value is
non-negative, namely if ct ≥ γ〈λt, At〉. Variants of this algorithm have been previously used to study packing IPs
in the stochastic setting [AD15, GM16]. Our first algorithmic contribution is that this algorithm can be made
robust in the Byzantine Secretary model, assuming that the right γ is known. Intuitively, the algorithm has a
“self-correcting” nature that balances the occupation of the different constraints, and the worst-case guarantees
of MWU can be used to show its robustness.

In stochastic settings, the right γ is easy to estimate from the initial items; however, a few adversarial items
can bias the estimation in the Byzantine setting. So our second algorithmic contribution is to use a second
layer of learning to estimate γ. We break the time horizon into K intervals, learn γ1, γ2, . . . , γK online and run
Alg(γi, Ii) in each interval Ii. The ith reward of expert γ is the value the algorithm would have obtained on
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interval Ii is on using γ. Since MWU algorithms choose the sequence (γi)i to do almost as well as the right γ∗,
we get

∑
i Alg(γi, Ii) &

∑
i Alg(γ∗, Ii), which is essentially the value of the algorithm that knew the right γ∗

in hindsight. One difficulty is that the additive regret typically scales with the range of the possible rewards of
the experts, and the red items can make this range too big. To handle this we introduce a truncation to these
rewards (note we don’t know OPT(G), so this step needs care), and also use a recent multiscale experts result of
[BDHN19] to make the regret scale with the range of the reward of the best expert, not with all the ranges.

This idea (with some changes) extends to the case of robust prophets. Again, we define robust thresholds
using MWU: we start off considering the Lagrangified value ctxt−γ〈λt, Atxt〉 of the tth item to make our decisions.
The challenge of estimating the right γ now becomes simpler since we are given the distributions. But a new
challenge arises: the expected occupation is different at each time step t (which was not the case with random-
order). To handle this issue and get the eventual solution, we further refine the Lagrangian penalty function (see
§4 for details).

Single-item: probability maximization. The classical secretary algorithm has two phases: sample items
to estimate a good threshold and select an item above the threshold. Recall that an adversary can thwart such
an algorithm by sending a red item of very large value in the sample phase (which makes the threshold too high,
so the algorithm does not pick any item). However, this failure gives us information: namely, that the max value
seen in the sample phase is an upper bound on the value of future items. By running O(log n) copies of the
secretary algorithm with distinct sample phases, we can force the adversary to plant a high-valued red item in
each sample phase, and these values must decrease over time. (Running these multiple algorithms picks up to
O(log n) items, but we can subsample down to 1; this is where we lose our approximation factor.)

Now, assuming this nice structure, we can give our Search procedure that takes an initial set of candidate
thresholds and narrows it down as it gets more information, using a robust binary-search procedure. The algorithm
uses the values of items in an initial prefix I0 = [0, 14 ] as a candidate set Θ for the “right” threshold val(g2). At
each time, it maintains upper and lower estimates that is used to filter these candidates:

1. The upper bound û is the maximum value seen in the previous interval, and the lower bound ̂̀ is the
maximum value we have picked so far.

2. The threshold for the current interval is the median of the “surviving” candidates of Θ, namely those of
value in (̂̀, û]. These have value strictly above what we have already picked.

3. The algo picks the first item in the interval that is above this threshold.
Suppose that, as discussed above, all intervals have a high-value item; namely, the maximum-value item ρi

of the ith interval has value ≥ val(g2). Then the upper bound û never excludes the “right” threshold val(g2).
Moreover, assume that these max values ρi are non-increasing. In this case, the set of surviving candidates halves
in each interval! Indeed, if we pick an item in the interval the lower bound increases to the median value, else all
items in the interval were below the median and the upper bound decreases to the current median value. Since
there are more than log n intervals, at some point the set of candidates becomes empty. Now if g2 comes in
interval I0 (which happens with probability 1

4 ), the right threshold val(g2) is an initial candidate but the lower
bound must have excluded it, so we have already picked an item with at least this much value.

The idea for our value-maximization algorithms is to iteratively refine the thresholds: we start with a
polynomially-approximate threshold, but each time we pick an item, we prove that we either get good expected
value, or else we get an exponentially-better threshold. Naturally, this has to be done robustly, so that the red
items have a limited impact.

1.3 Further Related Work See [GS20] for general works on random-order online problems. In particular,
generalizations to matroid and Packing LPs in stochastic models have been extensively studied, e.g., see [BIKK18,
Lac14, FSZ15] for matroids and [KRTV14, GM16, AD15] and references therein for packing. In the last
two decades, there is a long line of work extending the classical single-item 1/2-approximation prophet
inequality [KS77, SC84] to packing constraints. In particular, see [KW12] for matroids and [Rub16, RS17]
for arbitrary packing constraints. For applications of prophet inequalities to pricing mechanisms and online
algorithms, we suggest the tutorial [FKS21] and the survey [Luc17].

The above online algorithms for secretary and prophet models rely heavily on the stochastic assumption,
and are susceptible to even slight worst-case corruptions. We believe that the robust algorithms in this paper are
interesting in their own right. They bridge the gap between the (optimistic) stochastic and (pessimistic) adversarial
models, which has been a topic of significant interest in both online algorithms [Mey01, MGZ12, KMZ15, KKN15,
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EKM18, Mol17, KM20, GKRS20, Mol21] and online learning (see [LMPL18, GKT19] and references within).
The recent paper [Mol21] considers a Byzantine-type model with adversarial and stochastic items, and studies

Online Convex Optimization and Welfare Maximization problems. A major difference from our work is that both
of these problems are unconstrained. In [KM20], the authors consider the Knapsack Secretary problem (i.e., PIP’s
with a single constraint) in a similar Byzantine model but with the additional assumption that the adversarial
items come in bursts. They obtain a (1− ε)-approximation when B & 1

ε2 and there are at most ≈ n√
B

adversarial

items in bursts of size ≈
√
B. Finally, [GKRS20] consider streaming problems (i.e. the algorithm has limited

memory) in a similar Byzantine model, and design algorithms for max-matching and submodular maximization.

2 Byzantine Packing Integer Programs

In this section we discuss how to solve PIPs given in (1.1) and get a constant factor of the expected optimal value.
The approach will be to solve the its linear programming relaxation: since we assume that the right-hand sides
are large (i.e., Ω(log d)) compared to the entries of the constraint matrix, scaling down the solution slightly and
independently rounding each variable immediately give an integer solution with almost as much value with high
probability.

Each item i is a pair (ci, ai) of a column ai ∈ [0, 1]d of A, and its value ci ∈ R≥0. The n items consist of G
green items (denoted by G) and R = n−G red items (denoted by R). The arrival times of red items are chosen
by an adversary. Then each green item i ∈ G chooses its arrival time independently and uniformly in the time
horizon [0, 1].

Our algorithm breaks the time horizon [0, 1] into several intervals and considers the items that fall into each
interval seperately. To argue about this and other objects, it is useful to define the induced LP (denoted LP(S))
for any subset S of columns/items:

max
∑

i∈S cixi(LP(S))

s.t.
∑

i∈S aixi ≤ B · 1d

x ∈ [0, 1]n ,

where 1d is the d-dimensional all-ones vector. Let its optimal solution be x∗(S), having value 〈c,x∗〉 = OPT(S).
By rescaling rows, we can assume a common value B on the RHS. We focus on two benchmarks: OPT(G) and
OPT(G \ gmax) where gmax denoting the green item with the highest value.

2.1 Algorithm Outline The first step of our algorithm to reduce to solving the following “smooth” instances:

Assumption 2.1. (Smooth Instance) An instance with OPT := OPT(G) is smooth if:
1. the total value of the green items of value > OPT

B is at most OPT
2 .

2. we are given an estimate Ô for OPT, such that Ô ∈ [OPT /n,OPT ·n].

Lemma 2.1. (Reduction to Smooth Instances) Suppose B ≥ Ω(poly(log n)). Given an algorithm to solve
Packing LPs in the Byzantine Secretary setting that with constant probability is ρ-competitive w.r.t. OPT(G) for
all smooth instances, we can obtain an algorithm which is Ω(ρ)-competitive in expectation for all instances w.r.t.
OPT(G \ gmax).

Given this reduction (which is proved in §C), we prove our main result for smooth instances:

Theorem 2.1. (Algorithm for Smooth Instances) Suppose B ≥ Ω
(
K log(dK/δ′)

)
and K ≥ Ω(loglog n).

The solution returned by Algorithm 2 for a smooth Byzantine Secretary instance satisfies:
i. (Feasibility) The solution always packs into the modified budget of (B +K) · 1d.
ii. (Value) The solution has value at least Ω(OPT) with probability at least 1− δ′.

We can scale down each xt by
B

B+K = 1−o(1) to get a feasible solution with the same value guarantee up to a
constant. Then, applying Lemma 2.1 to Theorem 2.1 gives us the constant factor approximation of Theorem 1.1.
We now prove Theorem 2.1 in the rest of this section: here are the main conceptual steps:
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• We break the time horizon into K time intervals of equal size (we will choose K := Θ(loglog n)). For
interval I, use G(I) and G(I) to denote the green items and their number in I, respectively. Note that
E[G(I)] = |I| ·G, where |I| is the fraction of total time [0, 1] covered by interval I.

• In §2.2 we give our algorithm for a single interval I. Given a parameter γ, this algorithm runs a low-regret
OLO subroutine on a carefully chosen Lagrangification of the problem. Let Alg(I, γ) denote the expected
value that the algorithm gets when applied to interval I with parameter γ, where the expectation is over
the random arrival times of the green items. Algorithm 1 gives a lower bound on Alg(I, γ).

• Finally, in §2.3 we use a multi-scale low regret algorithm to learn the optimal choice of γ. This allows us to
combine the single-interval algorithms and prove Theorem 2.1.

2.2 Algorithm for a Single Interval So in this section we fix an interval I ⊆ [0, 1], and give an algorithm
that gets good value in this interval as long as it knows the “correct” scalar parameter γ. We use r.v.s (Ct, At)
to denote the value and size of the t-th item that appears in this interval: these depend on which of the items
from G actually fall into this interval, and on their locations. As mentioned before, the idea of the algorithm is to
look at the Lagrangified value Ctxt − γ〈λt, Atxt〉 to make the decision xt ∈ {0, 1} to pick or not the t-th item in
the interval. The duals λt’s are computed using an online learning algorithm and put a relative “price” on each
constraint, with higher prices for constraints that are more occupied.

To make this precise, let 4d−1 :=
{
p ∈ [0, 1]d | ‖p‖1 = 1

}
be the probability simplex. Given the algorithm’s

choice xt ∈ [0, 1] for time step t, define the linear penalty function ft : 4d−1 → [0, 1] as

ft(λ) := 〈λ,Atxt〉 .(2.2)

The algorithm for interval I (given a γ) is then described in Algorithm 1. Note that the algorithm does not
depend on the exact arrival times of the items, just on their relative arrival order and step t denotes the t-th
arrival in interval I.

Algorithm 1 IntervalByzLP(I, γ)

1: for steps t = 1, 2, . . . in interval I do
2: Use the low-regret OLO algorithm from Lemma A.1 with ε = 1

2 on f1, . . . , ft−1 to get λt ∈ 4d−1

3: Compute xt ∈ [0, 1] maximizing x 7→ Ctx− γ〈λt, Atx〉
4: break if the scaled budget is violated, i.e., if a coordinate of

∑
s≤tAsxs exceeds B |I|

In the rest of this section, we prove a lower bound on the value that this algorithm obtains over the
interval I. For that, let x∗ denote the optimal solution consisting only of green items whose value is at most
OPT
B . By Assumption 2.1, this solution has value at least OPT

2 . Also, define for any set S of timesteps the
Lagrangified value of the optimal solution using the algorithm’s choices of γλt’s as the Lagrangian multipliers:

L(S, γ) :=∑t∈S

(
Ctx

∗
t − γ〈λt, Atx

∗
t 〉
)
. Let GT(I) ⊆ N denote the steps t where the t-th item in the interval I is

green, which is a random set since each green item chooses its arrival times uniformly at random in [0, 1] whereas
the red items choose their arrival times adversarially.

The first step for analyzing our algorithm is showing that it obtains value in I comparable to the Lagrangified
value of the optimal solution x∗ in this interval.

Lemma 2.2. (Value Comparable to Lagrangified OPT) For any I ⊆ [0, 1] and γ > 0, we have

Alg(I, γ) ≥ min
{

1
2 |I|γB , L

(
GT(I), γ

)}
− 2γ log d .(2.3)

Proof. Consider the algorithm’s run. Let τ be the number of items seen when the algorithm stops; that is, the
smallest value τ such that

∑
t≤τ Atxt 6≤ |I| ·B · 1d. If the algorithm does not exhaust the budget, set τ to be the

number of items | items(I)| in interval I. The value of the algorithm is exactly
∑

t≤τ Ctxt and its occupation is∑
t≤τ Atxt.
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Case 1 (Budget exhausted): The multiplicative-plus-additive guarantees of the low-regret algorithm
from Lemma A.1 for ε = 1/2 gives

∑
t≤τ ft(λt) ≥ 1

2 maxλ∈∆d−1

∑
t≤τ ft(λ)− 2 log d .

Substituting the definition ft(λ) = 〈λ,Atxt〉, we get
∑

t≤τ 〈λt, Atxt〉 ≥ 1
2 maxλ∈∆d−1

∑
t≤τ 〈λ,Atxt〉 − 2 log d = 1

2‖A1x1 + . . .+Aτxτ‖∞ − 2 log d .

Hence, we can infer that
∑

t≤τ

Ctxt −
γ

2
· ‖A1x1 + . . .+Aτxτ‖∞ ≥

∑

t≤τ

Ctxt − γ
∑

t≤τ

〈λt, Atxt〉 − 2γ log d ≥ − 2γ log d,(2.4)

where the second inequality uses that xt is a best-response, and hence is no worse than playing x = 0. Moreover,
if we exhaust our budget, the occupation ‖∑t≤τ Atxt‖∞ ≥ |I| ·B, and thus

∑
t≤τ Ctxt ≥ 1(budget exhausted) · 12γ|I| ·B − 2γ log d .(2.5)

Case 2 (Budget left): To give a lower bound on the value in the case we do not exhaust our budget, we
use that for any t the value x∗t is not a better response than xt:

Ctxt ≥ Ctxt − γ〈λt, Atxt〉 ≥ Ctx
∗
t − γ〈λt, Atx

∗
t 〉 .

Summing over all times and using the non-negativity of Ctxt to drop the red items,

∑
t≤τ Ctxt ≥

∑
t∈GT(I), t≤τ Ctxt ≥

∑
t∈GT(I), t≤τ

(
Ctx

∗
t − γ〈λt, Atx

∗
t 〉
)
.

But when the algorithm does not exhaust its budget, the RHS is precisely L
(
GT(I), γ

)
, and so

∑

t≤τ

Ctxt ≥ 1(budget left) · L
(
GT(I), γ

)
.(2.6)

Combining (2.5) and (2.6) concludes the proof.

The final piece is to lower bound the Lagrangified value of the optimal solution x∗ on the interval I. The
proof of this lemma crucially uses the random arrival times of the green items.

Lemma 2.3. Let |I| ≤ 1
4 and B ≥ Ω

( log(4d/δ)
|I|

)
. Then for any γ > 0,

Pr
[
L
(
GT(I), γ

)
≥ |I| ·

(
OPT
4 − 4γB

)]
≥ 1− δ ,

where the probability is taken over the random arrival times of the green items.

We give the essential intuition of this lemma here (at least in expectation) and defer the details to
Appendix C.1. Consider any timestep t ∈ GT(I):

E

[
Ctx

∗
t − γ〈λt, Atx

∗
t 〉
]
≥ OPT

2G − γE
[
〈λt, Atx

∗
t 〉
]
,(2.7)

where the expectation is over the random ordering. For intuition only, suppose each column At is an i.i.d. sample
(this is not w.l.o.g.), so that Atx

∗
t is independent of λt. Then the expectation can be pushed into the inner

product; hence if there are G green items overall, the expected value E[Atx
∗
t ] ≤ B/G · 1d, and so

E

[
Ctx

∗
t − γ〈λt, Atx

∗
t 〉
]
≥ OPT

2G − γ〈Eλt, BG · 1d〉 ≥ OPT
2G − γB

G ,(2.8)

where the last inequality uses that λt ∈ ∆d−1. Finally, E[| GT(I)|] = |I| · G, so we get E[L] ≥ |I|(OPT
2 − γB) to

complete the proof of Lemma 2.3 in expectation. However, the reason why this is just intuition and not a proof is
that we sample without replacement, so λt (which depends on the t− 1 first items on the interval I) is correlated
with Atx

∗
t . To handle this, in Appendix C.1 we have to argue why these correlations are small.

Combining these lemmas gives the desired guarantee for our algorithm.
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Lemma 2.4. (Value of Algorithm 1) Let |I| ≤ 1
4 and B ≥ Ω

( log(4d/δ)
|I|

)
. Then for any γ > 0, with probability

at least 1− δ we have

Alg(I, γ) ≥ |I| ·min
{

γB
2 , OPT

4 − 4γB
}
− 2γ log d.

As mentioned earlier, we see that a good choice of γ is Θ(OPT
B ), but this requires us to know the value of

OPT; we now show how another layer of online learning can learn this value well enough.

2.3 A Robust LP Algorithm via Learning the Multiplier γ We partition the time interval [0, 1] into
K intervals I1, I2, . . . , IK of equal size, and run Algorithm 1 in each interval with the value of γ learned from
previous intervals via an online learning algorithm. Formally, define the gain functions:

Algi(γ) := value from Algorithm 1 with parameter γ over the ith interval Ii

Algi(γ) := min{Algi(γ) ,
B
K γ} the algorithm’s truncated value .

Using Assumption 2.1 that we know OPT up to poly(n) factors, let Γ be a list of O(log n) values that contains
OPT
16B within a factor of 2. The complete algorithm is the following:

Algorithm 2 ByzLP

1: for interval i = 1, . . . ,K do
2: pick γi ∈ Γ using the multiscale experts algorithm of Lemma A.2 on Alg1,Alg2, . . . ,Algi−1.
3: run Algorithm 1 over interval Ii with parameter γi, thereby getting value Algi(γi).

Proof. [Proof of Theorem 2.1] Since there are K intervals, the feasibility follows directly from the stopping rule
for the algorithm, and the fact that item sizes are at most 1. For the second claim, the value of the algorithm is∑

i Algi(γi), which is at least
∑

i Algi(γi), so it suffices to lower bound the latter. Let γ∗ be a value in Γ that is
in
[

1
32

OPT
B , 1

16
OPT
B

]
. Due to the truncation Algi(γ

∗) is O(OPT
K ), so the multiscale regret guarantee of Lemma A.2

with ε = Θ(
√

log |Γ|/K) gives that in every scenario,
∑

i

Algi(γi) ≥
∑

i

Algi(γ
∗)−O(1) ·

√
K log |Γ| · OPT

K =
∑

i

Algi(γ
∗)−OPT ·O(

√
log logn√

K
) .(2.9)

Using the guarantee of Lemma 2.4 with δ = δ′

K , we have that with probability at least 1 − δ′

K , (using Alg(I, γ∗)
for the value obtained by the algorithm of the previous section, and Ii for the i-th interval)

Algi(γ
∗) ≥ min

{
Alg(Ii, γ

∗) , γ∗B
K

}
≥ 1

K ·min
{

γ∗B
2 , OPT

4 − 4γ∗B
}
− 2γ∗ log d ,

where the last inequality uses Lemma 2.2 and Lemma 2.3. Since γ∗ ∈
[

1
32

OPT
B , 1

16
OPT
B

]
, we get

Algi(γ
∗) ≥

(
1
K ·min

{
1
64 ,

1
4 − 1

8

}
− log d

8B

)
OPT ≥ Ω(1) · OPT

K .

Taking sum over all K intervals we get with probability at least 1 − δ′ that ∑i Algi(γ
∗) ≥ Ω(OPT). Using this

on (2.9) and using K ≥ Ω(log log n) concludes the proof of Theorem 2.1.

In the full version we give an algorithm that gets an approximation approaching 1 when the number of red
items gets small, thereby proving Theorem 1.2.

3 Byzantine Secretary for Single-Item Probability Maximization

We now consider the (single-item) Byzantine Secretary Problem, where the online model is exactly the same as
in the previous section but now we can only pick one item: the goal is to maximize the probability of selecting
an item of value at least OPT(G \ gmax), i.e., the value of the second-most valuable green item. We show the
following:

Theorem 3.1. (Single-Item Probability Max) There is an algorithm for the single-item Byzantine secre-
tary problem that picks value at least OPT(G \ gmax) with probability Ω

(
1/logn

)
.

This improves on the algorithm of [BGSZ20], which (a) is nonconstructive, relying on the use of Yao’s minimax
principle, and (b) succeeds with a smaller probability of Θ(1/ log2 n).
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3.1 Algorithm Our algorithm is based on two procedures, Struct and Search. Both pick K = O(log n)
items. We will show that with constant probability at least one of Struct and Search succeeds in picking an
item with value at least OPT(G \ gmax). By picking all items chosen by either procedure, we get an algorithm
that picks 2K = O(log n) items and succeeds with probability Ω(1). Now picking uniformly at random one of
these 2K items, we get an algorithm that picks a single item of value at least OPT(G \ gmax) with probability
Ω(1/ log n). In §1.2 we outline the intuition behind these algorithms.

For both our procedures, we partition the time interval ( 14 ,
3
4 ] into K = Θ(log n) intervals I1, . . . , IK , each

of equal width 1
2K . Let I0 := [0, 14 ]. For all i, let ρi be the maximum value of a red item in interval Ii and let

µ̂i be the maximum value of any item in interval Ii (note that ρi is deterministic but unknown to the algorithm
and µ̂i depends on when the green items arrive). For an item e, let time(e) and val(e) denote the arrival time
and value of e respectively. Recall that g2 is the 2nd-most valuable green item. To simplify the notation, let
C∗ := OPT(G \ gmax) = val(g2).

The procedure Struct runs K independent subroutines similar to the classic single-item secretary algorithm:
the ith one sets a threshold µ̂i and picks the first item after Ii that reaches this threshold.

Algorithm 3 Procedure Struct

1: for value i = 1, 2, . . . ,K in parallel do
2: µ̂i := maximum value of any item seen in interval Ii
3: pick the first item (if any) arriving after interval Ii with value at least µ̂i.

The second procedure Search maintains a set of candidate thresholds containing a subset of all the values
Θ̂1 seen in interval I0 = [0, 14 ]. In each interval, the current candidate set is obtained by focusing on these values
lying between the maximum value of an item seen in the previous interval, and the largest value item picked by
this procedure so far. The threshold for the current interval is set to the median of these values. (We define
median(∅) = −∞.)

Algorithm 4 Procedure Search

1: for interval i = 1, 2, . . . ,K do
2: L̂i ← max value of an item already picked by this procedure, −∞ if no item has been picked
3: Ûi ← µ̂i−1 := maximum value of any item seen in interval Ii−1

4: Θ̂i ← {val(e) | time(e) ∈ [0, 14 ] and L̂i < val(e) ≤ Ûi}
5: pick the first item (if any) in the interval Ii having value at least median(Θ̂i)

3.2 Analysis It is clear that both procedures pick at most K = O(log n) items. We show that with probability
Ω(1), at least one of the two procedures picks an item with value at least C∗. The intuition is this: if the
maximum value items in each interval are monotone decreasing and greater than C∗, then in each interval
procedure Search halves the candidate set size. If this set contains the value C∗ (which happens, e.g., when g2
arrives in the interval I0), then we must eventually pick an item of large value. Of course, the maximum value
items may not be monotone, and they may have values below C∗, but then we show that Struct gets large
value.

We now give the proof details. Recall that ρi is the maximum value of any red item in interval Ii; define
ρi ← −∞ if no such items exist. We say an interval Ii (including I0) is high if ρi ≥ C∗, and low otherwise.
Recall that the property of being high just depends on the location of the red items, which we assume are
deterministically placed.

Lemma 3.1. For any value of K, Struct succeeds (i.e. picks an item of value at least C∗) with probability Ω(1)
if either of the following properties fail:

(i) If Ii and Ij are high intervals with i < j, then ρi > ρj.
(ii) There are fewer than K

4 low intervals.

Proof. Suppose property (i) fails, and let Ii and Ij be high intervals with i < j and ρi ≤ ρj . The highness of Ii
implies ρi ≥ C∗. Now if gmax does not fall in Ii (which happens with probability 1 − 1/2K), then the maximum
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value µ̂i in this interval is ρi, and therefore the run of Struct corresponding to interval i sets a threshold of
ρi ≥ C∗. This run would definitely select the item corresponding to ρj in Ij , if it has not picked an item earlier;
this selected item has value at least ρi ≥ C∗.

Else suppose property (ii) fails, and there are at least K/4 low intervals. If g2 arrives in a low interval Ii, then
we set the threshold to be val(g2) = C∗; now if gmax arrives in ( 34 , 1], the i

th run of Struct is guaranteed to

pick an item. Since there are at least K
4 low intervals, this event occurs with probability at least K

4 · 1
2K · 14 ≥ 1

32 .

The remainder of the proof shows that if the two properties of Lemma 3.1 are indeed satisfied, then Search
succeeds with constant probability. Define Ui := min{ρj | j < i and Ij is high}, and

Θi := {val(e) | time(e) ∈
[
0, 14

]
and L̂i < val(e) ≤ Ui}.

The only difference from Θ̂i is that the upper bound is Ui instead of Ûi. (The intuition is that if property (i) of

Lemma 3.1 holds, then loosely speaking Θ̂i and Θi should behave similarly, and we can argue about the latter
instead of the former.) Observe that L̂i can only increase and Ui can only decrease, so Θi ⊇ Θi+1.

To make this precise, define an interval Ii (for i ≥ 1) to be nice if the intervals Ii and Ii−1 are both high, and
moreover the item gmax does not arrive in interval Ii−1. This property of being nice does depend on the location
of the top green item gmax, but otherwise is independent of the random locations of other green items.

Lemma 3.2. If property (i) from Lemma 3.1 holds and the interval Ii is nice, then |Θi+1| ≤ 1
2 |Θi|.

Proof. Property (i) of Lemma 3.1 means the ρ-values of the high intervals are in decreasing order, and the
minimum in the definition of Ui is achieved at the last high interval before i. Since interval Ii−1 is high, we have
Ui = ρi−1. Moreover, gmax does not arrive in interval Ii−1, and therefore ρi−1 = µ̂i−1. This in turn means that

Ui = µ̂i−1 = Ûi, and Θ̂i = Θi.

If mi := median(Θi) = median(Θ̂i), then define Θ+
i := {v ∈ Θi | v > mi} and Θ−

i := {v ∈ Θi | v < mi}. Each
has size at most 1

2 |Θi|. If the Search procedure chose an item in Ii, then L̂i+1 ≥ mi and therefore Θi+1 ⊆ Θ+
i .

Otherwise Search did not chose an item in Ii, so all its items must have been smaller than mi; in particular,
ρi < mi. Since Ii is high, ui+1 ≤ ρi < mi and Θi+1 ⊆ Θ−

i .

Lemma 3.3. Let K = 2 log2 n + 4. Then with probability Ω(1), at least one of Struct and Search picks an
item of value at least C∗.

Proof. By Lemma 3.1, if either of its properties (i) or (ii) fails then Struct succeeds with constant probability.
So suppose both properties hold. Now condition on the location of item gmax; this decides on the niceness of the
intervals. Property (ii) being satisfied means there are at least K − K

4 − K
4 − 1 = K/2− 1 > log2 n nice intervals.

(Indeed, we may discard at most K/4 intervals because Ii−1 is bad, K/4 others because Ii is bad, and one more
because gmax falls in Ii−1.)

Now let us condition on the event that g2 arrives in the time interval [0, 14 ], which happens with probability
1/4. Since |Θ1| ≤ n, applying Lemma 3.2 (which relies on property (i)) to each of the nice intervals implies that
after log2 n nice intervals, we get to some index i for which Θi is empty, and interval Ii is nice. The upper bound
Ui for Θi is at least C

∗, by definition. Since item g2 arrived in [0, 14 ] but yet C
∗ = val(g2) /∈ Θi, the only reason

would be that L̂i ≥ C∗. This means that Search must have already chosen an item of value at least C∗.

Proof. [Proof of Theorem 1.4] Since Struct and Search pick at most K items each, the final algorithm is to
run a random one of these two algorithms, and to randomly output one of the K = O(log n) items picked by that
algorithm. This gives an item of value at least C∗ with probability Ω(1/logn).

4 Prophet-with-Augmentations for Packing Integer Programs

To show the power of our robust threshold selection idea from §2, we use it to give robust algorithms for PIPs
in the prophet model as well. Recall that in the classic prophets model, the inputs are drawn from independent
(but possibly non-identical) distributions. Here we consider the Prophets-with-Augmentations model [ISW20], in
which an adversary is allowed to perturb the values by adding non-negative values. We now show how to make
PIP algorithms robust to such perturbations.
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4.1 Model and Notation We are given a base prophet instance ((a1,D1), . . . , (an,Dn), B) with budget B ·1d

and n items whose values will be perturbed by an adversary. The tth item has a known deterministic size vector
at ∈ [0, 1]d and an initially unknown value Vt ≥ 0 that is drawn independently from a known distribution Dt.
Items values are revealed one-by-one, and before the t-th item’s value is revealed, an adversary adds an unknown
perturbation Rt ≥ 0 to Vt. This perturbation may depend on the history up to (and including) time t, as well as
the algorithm’s decisions up to time t − 1. The player then sees Ct := Vt + Rt and has to immediately pick or
reject the item. The goal is to pick a set of items that pack into the known budget B · 1d, in order to maximize
the sum of seen values Ct of the picked items.

The algorithm competes against the base instance, i.e., the expected offline optimum when all perturbations
Rt are zero. Let OPTbase be the value of this expected offline optimum. The main result of this section is as
follows.

Theorem 4.1. (Robust Prophet PIPs) There exists an algorithm for packing integer programs that gets value
Ω(OPTbase) in the Prophet-with-Augmentations model when the right-hand sides of the PIP are Ω(log d).

To make our proofs simpler, we assume w.l.o.g. that there are no “large values”. Here we sketch the proof;
the full proof is deferred to §D.1.

Assumption 4.1. Each distribution Dt is supported on values that are at most OPTbase

20 .

Proof. [Proof Sketch] Consider running simultaneously an algorithm that obtains a constant approximation under
Assumption 4.1 and also an algorithm that picks the first item that takes a value above OPTbase

20 . Intuitively, in the

scenarios where all items come up with value at most OPTbase

20 the approximation guarantee of the first algorithm

kicks in, and in the remaining scenarios the second algorithm already guarantees value at least OPTbase

20 ; overall, we
should get a constant approximation. Running both algorithm may lead to budget occupation up to (B+1) ·1d,
but rescaling the solution by B

B+1 > 1−o(1) restores feasible while maintaining the same approximation guarantee.

4.2 Algorithm The idea of the algorithm is similar to that used for Byzantine PIPs in §2: to make decisions
xt ∈ {0, 1} based on the Lagrangified value Ctxt − γ〈λt, atxt〉, for a scaling factor γ. As before, the “right”
value for γ is ≈ OPTbase

B . Previously we learned γ over multiple intervals using online learning (since OPT was
not known), we can now directly compute it using the known value distributions Dt’s. However, new challenges
arise. Firstly, we will again need to bound a Lagrangified value of the offline optimum with good probability (as in
Lemma 2.3), but since the optimal solution’s decisions to pick items depend on the outcomes of the values of all
other items, we are not guaranteed to have any concentration. (Previously OPT was such that picking the t-th
item only depended on the identity of that item.) To fix this, we compare not against the optimal solution, but
against a surrogate ψt(Vt) ∈ {0, 1} that makes decisions about item t based only on its base value Vt. Another
challenge is that the expected occupation of such a solution is different in each time step t (which was not the
case in random-order, see Equation (2.8)): this makes it harder to bound the quantity 〈λt, at ψ(Vt)〉. To fix this,
we define the Lagrangian in terms of the modified penalty function ft(λ) := 〈λ, atxt−at Eψt(Vt)〉. On a technical
note, since this penalty can be negative, we consider λ values in the “full-dimensional simplex” (including the 0
vector), namely Nd := {λ ∈ [0, 1]d :

∑
i λi ≤ 1}.

To make this precise, we start with the existence of the good solution ψ1(V1), . . . , ψn(Vn) for the base
prophet instance. Similar solutions algorithms have been previously designed for related problems (e.g.,
see [Ala14, AHL12]), and we defer the proof to Appendix D.2.

Lemma 4.1. Given a base prophet instance ((a1,D1), . . . , (an,Dn), B), there are functions ψ1, . . . , ψn, where each
ψt maps the value Vt to a decision in {0, 1} such that:

1. Total expected value E[
∑

t Vt ψt(Vt)] ≥ OPTbase

4 .

2. Total expected utilization E[
∑

t at ψt(Vt)] ≤ B
4 · 1d.

We now describe our robust algorithm for the prophet-with-augmentations model. To simplify notation,
define x∗t := E[ψt(Vt)], that is, the probability that this solution picks the t-th item. Our algorithm requires
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these x∗t ’s, but since they only depend on the distributions of the Vt’s thay can be computed a priori. It also
needs to know OPTbase to set the value of γ, which can also be computed a priori (and as the proof shows, a
constant-factor approximation to this value suffices).

Algorithm 5 Procedure Prophet-with-Augmentations

1: for steps t = 1, 2, · · · do
2: Compute λt ∈ Nd by using the low-regret algorithm of Lemma A.1 with ε = 1

2 on the functions f1, . . . , ft−1,
where ft(λ) := 〈λ, atxt − atx∗t 〉.

3: Compute xt ∈ [0, 1] maximizing xt 7→ Ctxt − γ〈λt, atxt − atx∗t 〉, where γ = OPTbase

B .
4: break if the budget is exhausted, i.e., if a coordinate of

∑
s≤t asxs exceeds B. Let τ denote this stopping

time step, where τ = n if the budget is never exhausted.

4.3 Analysis We now analyze the above algorithm, proving that it attains the guarantee stated in Theorem 1.3
under Assumption 4.1 (without loss of generality). First, the algorithm violates the budget by at most +1, but
this is easily fixed by rescaling or subsampling, so we ignore this issue henceforth. To prove that it gets high
value, fix a scenario of Vt and Rt. In this scenario, since our decision xt is a best response, it is at least as good
as ψt(Vt). In other words, the best-response ensures

∑

t≤τ

Ctxt

︸ ︷︷ ︸
=Alg

−γ
∑

t≤τ

〈λt, at(xt − x∗t )〉
︸ ︷︷ ︸

=:Mlhs

≥
∑

t≤τ

Ct ψt(Vt)− γ
∑

t≤τ

〈λt, at(ψt(Vt)− x∗t )〉
︸ ︷︷ ︸

=:Mrhs

.

Rewriting, we get

Alg ≥
∑

t≤τ

Ct ψt(Vt) + γMlhs − γMrhs.(4.10)

To lower bound the value of Alg, we first lower bound Mlhs. From the regret guarantee in Lemma A.1, we can
compare against the action λ = 0 to infer

Mlhs ≥ −O(log d).(4.11)

Similarly, comparing against the action λ = ei we get (using |〈ei, at(xt − x∗t )〉| ≤ 〈ei, atxt〉+ 〈ei, atx∗t 〉)

Mlhs ≥
1

2
〈ei,

∑
t≤τatxt〉 −

3

2
〈ei,

∑
t≤τatx

∗
t 〉 −O(log d),

which then implies

Mlhs ≥
1

2

∥∥∥∥
∑

t≤τ

atxt

∥∥∥∥
∞
− 3

2

∥∥∥∥
∑

t≤τ

atx
∗
t

∥∥∥∥
∞
−O(log d)

≥ 1

2

∥∥∥∥
∑

t≤τ

atxt

∥∥∥∥
∞
− 3B

8
−O(log d),(4.12)

where the last inequality uses that ‖∑t≤τ atx
∗
t ‖∞ ≤ B/4 due to Item 2 in Lemma 4.1 and the definition

x∗t = E[ψt(Vt)].
For the scenario when τ = n, (4.10) and (4.11) give that

Alg ≥
∑

t

Ct ψt(Vt)− γ ·O(log d)− γMrhs.

Note that the sum is now over all t, not only t ≤ τ . For the other scenario, when τ < n (i.e., we exhaust the
budget), we know that ‖∑t≤τ atxt‖∞ > B, and so using (4.10) and (4.12) we get

Alg ≥ γB

8
− γ ·O(log d)− γMrhs.
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Taking a minimum of both the scenarios τ = n and τ < n, we get the following bound that holds for every
scenario:

Alg ≥ min

{∑

t

Ct ψt(Vt) ,
γB

8

}
− γ ·O(log d) − γMrhs.

To calculate E[Mrhs], notice that both 1(τ ≥ t) and λt depend only on the history up to time t−1. (This is where
we crucially use that the augmentations Rt do not depend on the future.) So taking conditional expectation,

Et−1[1(τ ≥ t) · 〈λt, at(ψt(Vt)− x∗t )〉] = 1(τ ≥ t) · 〈λt, at Et−1[ψt(Vt)− x∗t ]〉
= 1(τ ≥ t) · 〈λt, at E[ψt(Vt)− x∗t ]〉 = 0,

where the second equality follows from the fact that ψt decides based only on Vt, and hence is independent of the
past. Taking expectations and summing over t gives E[Mrhs] = 0. Hence,

E[Alg] ≥ Emin

{∑

t

Ct ψt(Vt) ,
γB

8

}
− γ ·O(log d).(4.13)

To prove Theorem 1.3, it suffices to show that the first term in the minimization is Ω(OPTbase) with constant
probability. Notice that this term is always non-negative, and that the second term in the minimization is
Ω(OPTbase), since we set γ = Θ(OPTbase

B ).

Lemma 4.2. With probability at least 0.6 it holds that
∑

t Ct ψt(Vt) ≥ Ω(OPTbase).

Proof. First, we always have
∑

t Ct ψt(Vt) ≥
∑

t Vt ψt(Vt), since Rt ≥ 0. By the upper bound in Assumption
4.1 on Vt, and the fact that ψt(Vt) ∈ [0, 1] and that for any random variable X ∈ [0, α] its variance satisfies
Var(X) ≤ αE[X], we have

Var(Vt ψt(Vt)) ≤
OPTbase

20
E[Vt ψt(Vt)].

Using the fact that ψt(Vt) are independent and Item 1 in Lemma 4.1, we have

Var
(∑

t

Vtψt(Vt)
)
≤ OPTbase

20
E

[∑

t

Vt ψt(Vt)
]
≤ 1

10

(
E

[∑

t

Vt ψt(Vt)
])2

.

Applying Chebychev’s inequality, we have

Pr
(∑

t

Vt ψt(Vt) ≤ 1
2E

[∑

t

Vt ψt(Vt)
])
≤ 0.4.

Finally, using E[
∑

t Vt ψt(Vt)] ≥ OPTbase

2 by Item 1 in Lemma 4.1 concludes the proof.

Combining Lemma 4.2 with (4.13) shows the expected value of the algorithm is at least a constant fraction
of the OPTbase, and hence proves Theorem 1.3.

5 Byzantine Secretary for Value Maximization

In this section we consider two classical secretary problems in the Byzantine framework: that of (i) picking a
single item, and (ii) picking an independent set in a matroid, to maximize the expected value of picked items.
The main results of this section are:

Theorem 5.1. (Value-Maximization for Secretary Problems) There exist algorithms for the following
Byzantine secretary problems that aim to maximize the expected value of selected items:

(i) for the single-item case, we can get expected value Ω
(
1/log∗ n

)
·OPT(G \ gmax), and

(ii) for the case of a matroid of rank r, we can get expected value Ω
(
1/
(
(log∗ n)2·log r

))
·OPT(G \ gmax)

The first claim is proved in §5.1, and improves upon the previous factor of Ω
(
1/(log∗ n)2

)
of [BGSZ20]. The

second claim is then proved in §5.2 and improves upon the previous factor of Ω
(
1/logn

)
when the rank r is

sufficiently smaller than the total number of items n, also from [BGSZ20].
Note that these packing problems are related to the results we saw in §2 : both the current problems can also

be modeled as PIPs, but we cannot assume that the capacities (i.e., the right-hand sides of the PIP) are large, so
we cannot apply results we proved earlier. The single-item probability maximization result from §3 also gives an
Ω(1/ log n)-approximation for the value-maximization setting, which is much weaker than the result here.
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5.1 Single Item Value Maximization For the value-maximization problem, we give three procedures, each
of which picks at most K = O(log∗ n) items. By picking all items chosen by any of the three procedures, we get an
algorithm that picks O(log∗ n) items and gets expected value Ω(C∗). Then picking one of these items uniformly
at random, we get a single item with expected value Ω(C∗/ log∗ n).

The main idea of this algorithm is break the time horizon into K intervals, and to iteratively get a better
estimate of the optimum value each time we fail to get a large expected value. As in §3.1, we divide time into
K intervals, and let µ̂i be the largest value of any item in interval Ii. For the sake of intuition, assume that
nC∗ ≥ µ̂0 ≥ µ̂1 ≥ · · · ≥ µ̂K ≥ C∗. Suppose we know that µ̂i is an α-approximation to C∗. Pick k randomly
from [logα] and set the threshold 2−kµ̂i for interval Ii+1. Since we know that µ̂i+1 is contained in the interval
[2−kµ̂i, 2

−(k−1)µ̂i] for some k ∈ [log n], choosing this value of k yields value ≈ µ̂i+1 with probability at least 1
logα .

If µ̂i+1 ≥ C∗ logα, then we get expected value C∗. Otherwise, we know that µ̂i+1 is a logα-approximation to C∗.
Since µ̂0 is an n-approximation to C∗, we find inductively that each µ̂i is a log(i) n-approximation to C∗. This
implies that we need consider only K = O(log∗ n) many intervals. This gives the main idea: the actual procedure
needs to consider situations where the interval maxima are not monotonically decreasing, so we need more care.

Formally, the structural procedures are Struct—defined in Algorithm 3 of §3—and a second procedure which
simply picks one random item.

Algorithm 6 Procedure Sample

1: Choose one item uniformly at random

To explain the third and main search procedure, let us recall useful notation from §3: let ρi be the maximum
value of any red item in interval Ii; define ρi ← −∞ if no such items exist. An interval Ii (including I0) is high
if ρi ≥ C∗, and low otherwise. An interval Ii (for i ≥ 1) is nice if the intervals Ii and Ii−1 are both high, and
moreover the item gmax does not arrive in interval Ii−1.

Now in interval Ii, the new search procedure determines the location of the previous high intervals, assuming
that Ii−1 is high. The threshold for interval Ii is chosen from among log(`+1) n exponentially-spaced values
centered around the µ̂ value of the previous nice interval, where ` is roughly the number of previous nice intervals.

Algorithm 7 Procedure SearchII

1: for interval i = 1, 2, . . . ,K do
2: N̂i ← {j ∈ [i− 1] : µ̂j ≥ µ̂i−1 and µ̂j−1 ≥ µ̂i−1}
3: ̂̀

i ← |N̂i|+ 1

4: if ̂̀i > 1 then
5: ̂i ← max(N̂i)
6: else
7: ̂i ← i− 1

8: k̂i ← uniformly random integer in [− log(
̂̀
i) n, log(

̂̀
i) n]

9: In interval Ii, pick the first item (if any) with value at least τi := 2k̂i · µ̂̂i .

Intuitively, N̂i is the index set of nice intervals among I1, . . . , Ii−1, the number ̂̀i is one more than the number
of previous nice intervals, and ̂i is the index of the most recent nice interval. Indeed, these statements are all
true when Ii−1 is high (Lemma 5.2).

The Analysis. It is clear that each procedure picks at most K = O(log∗ n) items.

Lemma 5.1. Struct has expected value Ω(C∗) unless the following properties both hold:
(i) If Ii and Ij are high intervals with i < j, then ρi > ρj.
(ii) There are at most K

4 low intervals.
Sample has expected value C∗ unless the following property holds:

(iii) The maximum value of any item is less than nC∗.

Proof. By Lemma 3.1, if either of (i) or (ii) fails then Struct picks an item of value at least C∗ with probability
Ω(1), and hence has expected value Ω(C∗). The second claim is immediate.
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Let j1, . . . , jm denote the indices of the nice intervals. Let N` := Ij` denote the `-th nice interval and let

µ̂(N̂`) := µ̂j` denote its most valuable item. Let Ni = {j` | j` < i} denote the set of indices of nice intervals
before interval Ii.

Lemma 5.2. Suppose that item gmax arrives in ( 34 , 1] and property (i) of Lemma 5.1 holds. If interval Ii−1 is

high, then N̂i = Ni. In particular, if Ii is nice, then Ii = N̂̀
i
, and I̂i = N̂̀

i−1.

Proof. Since gmax arrives in ( 34 , 1], for each j it holds that ρj = µ̂j . Since Ii−1 is high, property (i) implies that
µ̂i−1 is minimal among the µ̂ values of high intervals seen so far. Thus, for j ≤ i − 1, interval Ij is nice if and

only if µ̂j ≥ µ̂i−1. It follows from definition that N̂i = Ni.

It is convenient to let N0 denote the (high) interval immediately preceding N1, so that for all ` = 1, . . . , |Ni|,
in interval Ij` = N`, SearchII’s choice of ̂j` satisfies I̂j` = N`−1.

Lemma 5.3. Let K = 2 log∗ n + 2. Suppose that (i)-(iii) of Lemma 5.1 all hold. Then SearchII has expected
value Ω(C∗).

Proof. By property (ii), the number of nice intervals is at least

K − K
4 − K

4 − 1 = K
2 − 1 ≥ log∗ n.

Let ` be the minimal number l ≥ 1 satisfying µ̂(Nl) ≥ C∗ log(l) n. (This is well defined—the inequality is always
satisfied by l = log∗ n.) We claim that

C∗ ≤ µ̂(N`−1) < C∗ log(`−1) n.

The first inequality follows from the fact that N` is nice (in particular, it is high). When ` = 1, the second
inequality holds by property (iii); when ` > 1, it holds by the minimality of `. Therefore, there is some

k ∈ [− log(`) n, log(`) n] such that

2kµ̂(N`) ≤ C∗ log(`) n < 2k+1µ̂(N`).

For ease of notation, let t = j` so that It = N`. Condition on gmax arriving in ( 34 , 1]—which happens with
probability 1

4—and consider the choice of SearchII in interval N`. Since property (i) also holds, Lemma 5.2

applies. In particular, ̂̀t = ` and µ̂̂t = µ̂j`−1
= µ̂(N`−1). Therefore k̂t is drawn from [− log(`) n, log(`) n], and

the threshold τt = 2k̂t · µ̂(N`−1). With probability Ω
(

1
log(`) n

)
, the algorithm chooses k̂t = k. In this case, since

µ̂t = µ̂(N`) ≥ C∗ log(`) n ≥ τt, SearchII will pick an item in It. Thus SearchII gets expected value at least

1
4 · Ω(1) · 1

log(`) n
· C∗ log(`) n = Ω(C∗).

Hence the proof.

Proof. [Proof of Theorem 1.5(i)] We now run one of the three algorithms Struct, Sample, and SearchII
uniformly at random. By Lemmas 5.1 and 5.3 the picked algorithm gives expected value at least C∗ with
probability 1/3, while picking at most K = O(log∗ n) items. Actually selecting a random one of these K items
proves the claim.

5.2 Byzantine Secretary for Matroids We consider the setting where the items are the ground set of an
arbitrary matroid and the algorithm can choose any independent set of items. The algorithm is given the rank r
of the matroid and the number n of items, but only learns the matroid structure as the items arrive. The main
result of this section is Theorem 1.5(ii). The factor of O((log∗ n)2 · log r) improves upon the previous factor of
O(log n) if the rank of the matroid r is much smaller than the number of items n. For the rest of the section, we
assume the benchmark C∗ := OPT(G \ gmax) satisfies C

∗ ≥ 2val(g2). This is without loss of generality: indeed,
we can run the algorithm from §5.1 with probability 1

2 (which suffices when C∗ ≤ 2val(g2)) and run the algorithm
below with the remaining probability.
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The Algorithm. The idea of our algorithm is to use the approach from §5.1 that, at each step, it either gets
items of high value, or gets a better estimate of the highest-value items. Define intervals I0 and Ii, and values
ρi and µ̂i for each interval as in §3. Again the algorithm will pick one of the following 3 procedures uniformly at
random and use it for the whole instance.

Procedure 1. Run the single-item value-maximization algorithm from §5.1.
Procedure 2. The second procedure is adapted from the O(log n)-competitive algorithm of [BGSZ20]. The

intuition is as follows: most of the value in OPT comes from items with value in [val(g2)/2r, val(g2)]. If this value
interval is partitioned into exponentially-separated value-levels, an average level contains a 1

log r fraction of the

value of OPT. The procedure estimates val(g2) by the max-value item in a random interval, uses this estimate
to choose a random-value interval, and sets a threshold to get the value of this interval. More precisely, the
procedure is the following:

Algorithm 8 Procedure I-bgsz

1: i← uniformly random integer in [K]
2: k ← uniformly random integer in [log(2r2)]
3: µ̂i = max value of an item arriving in Ii
4: After Ii, greedily chose items with value at least 2−kµ̂i.

Procedure 3. The third procedure attempts to capture the value of large red items. It is simpler than
SearchII from §5.1, but similar in spirit:

Algorithm 9 Procedure SearchIII

1: i← uniformly random integer in [K]

2: k ← uniformly random integer in [− log(i)(n), log(i)(n)]
3: µ̂i−1 = max value of an item arriving in Ii−1

4: Pick the first item arriving in (or after) Ii with value at least 2kµ̂i−1. If no such item arrives, pick nothing.

The Analysis. Similarly to §3, we analyze the algorithm by breaking into different cases based on the
following structural properties of the instance.

(i) No item has value more than n · r · val(g2).
(ii) C∗ ≥ 4val(g2).
(iii) For every i, it holds that ρi ≥ r · val(g2).
Recall that ρi denotes the maximum value of a red item arriving in interval Ii.

Lemma 5.4. If either of properties (i) or (ii) fail, then the algorithm of §5.1 gets expected value Ω( C∗

log∗ n ).

Proof. Suppose property (i) fails. With probability Ω( 1
log∗ n ), the algorithm of §5.1 picks a uniformly random

item. This item has expected value at least r · val(g2) ≥ C∗, so the algorithm of §5.1 has expected value Ω( C∗

log∗ n ).

Now suppose property (ii) fails. Then as proved in §5.1, the algorithm of §5.1 has expected value

Ω( val(g2)log∗ n ) ≥ Ω( C∗

log∗ n ).

Lemma 5.5. If properties (i) and (ii) hold and property (iii) fails, then I-bgsz has expected value at least
Ω( C∗

K2 log r ).

Proof. Fix i such that ρi ≤ r · val(g2). Condition on the event that (a) I-bgsz chooses this i in line 1 and (b) g2
arrives in Ii but gmax does not, which happens with probability 1

K · 1
2K (1− 1

2K ) ≥ 1
3K2 . Now µ̂i = max{ρi, val(g22)},

which implies that

(5.14) val(g2) ≤ µ̂i ≤ r · val(g2).

Let OPT denote the items in the optimal solution of green items excluding gmax.

Let L∗ =
{
x ∈ OPT | val(x) > val(g2)

2r

}
. Since |OPT | ≤ r, the items in OPT \ L∗ have total value at most

val(g2)
2 ≤ C∗

2 . Thus val(L∗) ≥ C∗

2 . Given the conditioning, all items in L∗ \ {g2} arrive at independent uniformly
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random times. In particular, since Ii ⊆ [ 14 ,
3
4 ], the expected value of items in L∗ that arrive after Ii is at least

1
4 (

C∗

2 − val(g2)) ≥ C∗

16 (using property (ii)). The value of each of these items is in [ val(g2)2r , val(g2)]. By (5.14),
each of these items has value in some value-level [2−kµ̂i, 2

−k+1µ̂i) with k ∈ [log(2r2)]. An average level therefore
contains at least Ω( C∗

log r ) value from OPT . The greedy algorithm on one such value-level gets at least half of

OPT ’s value in that level, so I-bgsz gets expected value Ω( C∗

log r ) as well. Since this holds when we condition on

an event of probability Ω( 1
K2 ), the result follows.

Lemma 5.6. Let K = log∗(n). If properties (ii) and (iii) hold, then procedure SearchIII gets expected value
Ω( C∗

log∗ n )

Proof. Fix the minimal index i ≥ 0 for which µi ≥ r · log(i) n · val(g2). Since property (iii) holds, the index
i = log∗(n) satisfies the desired constraint, hence i is well-defined. Furthermore, since property (i) holds, i ≥ 1.
Then we have the following inequalities:

r · val(g2) ≤ µi−1 ≤ log(i−1)(n) · r · val(g2),

the first by property (ii) and the second by minimality of i. It follows that there is a k ∈ [± log(i)(n)] such that the

value level defined by 2kµi−1 contains an item of value at least r · log(i) n · val(g2). With probability 1
K·2 log(i)(n)

,

Procedure 3 picks interval i and level k. In this case, it gets value at least

r · log(i) n · val(g2) ≥ log(i) n · C∗.

Thus, SearchIII gets expected value Ω(C
∗

K ) = Ω( C∗

log∗ n ).

We now complete the proof of Theorem 1.5(ii).

Proof. [Proof of Theorem 1.5(ii)] Consider the algorithm that uses K = log∗ n and runs one of the above three
procedures, each with probability 1

3 . By Lemmas 5.4 to 5.6, at least one of these procedures has expected value

Ω
(

C∗

(log∗ n)2·log r

)
. With probability 1

3 , the algorithm picks the right procedure. Hence, the same value guarantee

applies up to a constant.

Appendix

A Useful Prior Results

Let 4d−1 :=
{
p ∈ [0, 1]d | ‖p‖1 = 1

}
be the probability simplex in R

d, and Nd :=
{
p ∈ [0, 1]d | ‖p‖1 ≤ 1

}
be the

full-dimensional probability simplex. We recall the full-information online linear optimization (OLO) low regret
bound; see, e.g., [AHK12].

Lemma A.1. (OLO) Fix ε ∈ (0, 1/2]. The experts algorithm considers a setting with d experts. At each time the
algorithm plays a probability distribution pt ∈ 4d−1 and receives a linear reward function ft : 4d−1 → [−1, 1].
For any time τ , let p∗ = argmaxp∈4d−1

∑
t≤τ ft(p) be fixed action that gives the best reward over the entire input

sequence. Until any time τ , the following holds:

∑

t≤τ

ft(p
∗)−

∑

t≤τ

ft(p
t) ≤ ε

∑

t≤τ

|ft(p∗)|+
log d

ε
.(A.1)

We will also need the following generalization from Bubeck et al. [BDHN19, Theorem 1] for the full-information
multiscale online learning problem.

Lemma A.2. (Multi-scale regret of Bubeck et al. [BDHN19]) Fix ε ∈ (0, 1]. The multi-scale experts
algorithm considers a setting with M experts. At each time the algorithm plays a probability distribution pt ∈ 4M

and receives a reward vector rt with each rti ∈ [0, ci]; moreover, ci is known in advance. Let Ri := maxi
∑

t r
t
i be

the reward of action i over the entire input sequence. The following holds for each i ∈ [M ]:

Ri −
∑

t

〈rt, pt〉 ≤ εRi +O
(ci logM

ε

)
.(A.2)
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If we pick a random action in [M ] at each timestep t independently from the distribution pt, then the above
theorem gives a guarantee for the expected regret against oblivious adversaries as well.

The following concentration inequality is classical: see, e.g., [Ver18, Theorem 2.8.4]:

Lemma A.3. (Bernstein’s Inequality) For X1, X2, . . . , Xn independent mean-zero random variables such
that |Xi| ≤M for all i, and any t ≥ 0,

Pr
[∣∣∣
∑

i

Xi

∣∣∣ > t
]
≤ 2 exp

( t2/2

σ2 +Mt/3

)
,

where σ2 =
∑

i E[X
2
i ] is the variance of the sum.

Our algorithm for Packing Integer Programs will use the following result about Byzantine Knapsacks (and
hence about the multiple-item Byzantine secretary) from [BGSZ20, Theorem 2 and Lemma 7] in case most of the
value is concentrated on a small number of items.

Lemma A.4. There is an algorithm for Byzantine secretary on knapsacks with size at least B ≥ poly(ε−1 log n)
(and items of at most unit size) that is (1− ε)-competitive with the benchmark OPT(G \ gmax). Moreover, there
is an algorithm that given an estimate that is at least OPT(G) and at most poly(n) times as much, and knapsack
size B ≥ poly(ε−1 log n), prodices a solution that is (1− ε)-competitive with the benchmark OPT(G).

B Handling Correlations due to Sampling Without Replacement

In contrast to i.i.d. arrivals, to handle correlations due to sampling without replacement for secretary problems,
we will use the following general lemma.

Lemma B.1. Consider a set of vectors {y1, . . . , ym} ∈ [0, 1]d and let Y 1, . . . , Y k be sampled without replacement
from this set. Let Z1, . . . , Zk be random vectors in Nd such that Zj is a (possibly random) function of Y 1, . . . , Y j−1

for all j. Let τ be a stopping time for the sequence ((Y t, Zt))t such that τ ≤ m
2 . Then for any ε ∈ (0, 1

10 ] and
δ ∈ (0, 1], with probability at least 1− δ we have

∑

j≤τ

〈Zj , Y j〉 ≤ (1 + 4ε)
∑

j≤τ

〈Ej−1Z
j ,EY j〉 + O(log d/δ)

ε
,

where Ej−1Z
j = E[Zj | (Y1, Z1), . . . , (Yj−1, Zj−1)].

Special cases of the above lemma have appeared before in the literature, e.g. of [GM16, Lemma 5]. We will need
the following convenient concentration inequality for “martingales with drift”.

Lemma B.2. (Lemma 2.2 of [Ban19]) Let X1, X2, . . . , Xk be a sequence of (possibly dependent) random vari-
ables with values in (−∞, 1] and such that there is α ∈ (0, 1) such that

E[Xj | X1, . . . , Xj−1] ≤ −αE[X2
j | X1, . . . , Xj−1]

for all j. Then for all λ ≥ 0

Pr(X1 + . . .+Xk > t) ≤ e−αλ.

We also need a maximal Bernstein’s inequality for sampling without replacement.It follows by applying Lemma
1 of [GM16] to the scaled random variables Xi

M ∈ [0, 1] and using the fact that Var(X) ≤ EX for every random
variable in [0, 1] (the last inequality follows from the inequality a

b+c ≥ min{ a
2b ,

a
2c}, valid for all non-negative reals

a, b, c).

Lemma B.3. (Lemma 1 of [GM16]) Consider a set of real values x1, . . . , xm in [0,M ], and let X1, . . . , Xk be
sampled without replacement from this collection. Assume k ≤ m/2. Let Si = X1 + . . . Xi. Also let µ = 1

m

∑
i xi

and σ2 = 1
m

∑
i(xi − µ)2. Then for every α > 0

Pr

(
max
i≤k
|Si − iµ| ≥ α

)
≤ 30 exp

(
− (α/24)2

M(2kµ+ (α/24))

)
≤ 30 exp

(
−min

{
(α/24)2

4kµM
,

α

48M

})
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Let Fj be the σ-algebra generated by Y 1, . . . , Y j and Z1, . . . , Zj , i.e., the history up to time j. We use
Ej−1[·] := E[ · | Fj−1] to denote expectation conditioned on the history up to time j − 1.

Lemma B.4. Consider i ∈ [d]. Then with probability at least 1 − δ
d we have Ej−1Y

j
i ≤ (1 + 2ε)EY j

i + O(log d/δ)
mε

for all j ≤ m
2 simultaneously.

Proof. Let µ = 1
m

∑
j≤m yji , which is the expected value of Y j

i . Moreover, the conditional expectation Ej−1Y
j
i is

the average of the yti ’s that have not appeared up until time j − 1, namely

Ej−1Y
j
i =

∑
t y

t
i −

∑
t≤j−1 Y

t
i

m− (j − 1)
=
mµ−∑t≤j−1 Y

t
i

m− (j − 1)
.(B.3)

We then bound the last term uniformly for all j ≤ m
2 using the maximal Bernstein’s inequality Lemma B.3.

For that let σ2 := 1
m

∑
t(y

t
i − µ)2 and notice that

σ2 =
1

m

∑

t

(yti)
2 − µ2 ≤ 1

m

∑

t

yti = µ,

where the inequality uses yti ∈ [0, 1]. Applying Lemma B.3 with

α := εmµ+
2 · (24)2

ε
(log d/δ + log 30)

we get, since α2 ≥ 4mµ (24)2 (log d/δ + log 30),

Pr

(
max
j≤m/2

|∑t≤jY
j
i − jµ| ≥ α

)
≤ 30 exp

(
−min

{
4mµ(log d/δ + log 30)

2mµ
,
2(24)2(log d/δ + log 30)/ε

48

})

≤ 30e−(log d/δ+log 30) ≤ δ

d
.

Finally, whenever this event holds, equation (B.3) gives that for all j ≤ m/2

Ej−1Y
j
i ≤

(m− (j − 1))µ+ α

m− (j − 1)
≤ µ+

εmµ+O( log
d/δ
ε )

m− (j − 1)
≤ (1 + 2ε)µ+

O(log d/δ)

mε
,

the last inequality using j ≤ m
2 . This concludes the proof.

Proof. [Proof of Lemma B.1] Since Zt and Y j are independent conditioned on Fj−1, we have

Ej−1〈Zj , Y j〉 = 〈Ej−1Z
j ,Ej−1Y

j〉

Moreover, applying a union bound on Lemma B.4 over all coordinates i, with probability at least 1 − δ
2 for all

j ≤ m
2 (in particular for all j ≤ τ) we have 〈Ej−1Z

j ,Ej−1Y
j〉 ≤ (1 + 2ε)〈Ej−1Z

j ,EY j〉+ O(log d/δ)
mε . Adding over

all j ≤ τ we get that

∑

j≤τ

Ej〈Zj , Y j〉 ≤ (1 + 2ε)
∑

j≤τ

〈Ej−1Z
j ,EY j〉+ O(log d/δ)

ε
with probability ≥ 1− δ

2
.(B.4)

We now show using Lemma B.2 that with good probability the desired quantity
∑

j≤τ 〈Zj , Y j〉 is close to∑
j≤τ Ej〈Zj , Y j〉. Define the stopped random variable

Xj := 1(τ ≥ j) ·
[
(1− ε)〈Zj , Y j〉 − Ej〈Zj , Y j〉

]
.
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Recall that by definition of stopping time, the event 1(τ ≥ j) is Fj−1-measurable, and hence EjXj = 1(τ ≥
j) · (−εEj〈Zj , Y j〉). Moreover,

EjX
2
j = 1(τ ≥ j) ·

[
(1− ε)2 Ej 〈Zj , Y j〉2︸ ︷︷ ︸

≤〈Zj ,Y j〉

− (2(1− ε)− 1)︸ ︷︷ ︸
≥0

(Ej〈Zj , Y j〉)2
]

≤ 1(τ ≥ j) · Ej〈Zj , Y j〉,

where the first underbrace is because 〈Zj , Y j〉 ≤ 1 and the second because ε ∈ (0, 12 ]. Together, these observations
give

EjXj ≤ −εEjX
2
j .

Then applying Lemma B.2 to the sequence (Xj)j with λ = log 1/2δ
ε we obtain

Pr

(
(1− ε)

∑

j≤τ

〈Zj , Y j〉 >
∑

j≤τ

Ej〈Zj , Y j〉+ log 1/2δ

ε

)
≤ δ

2
.

Then by union bound with (B.4), with probability at least 1− δ we have

∑

j≤τ

〈Zj , Y j〉 ≤ (1 + 2ε)

(1− ε)
∑

j≤τ

〈Ej−1Z
j ,EY j〉+ O(log d/δ)

ε
.

Verifying that (1+2ε)
(1−ε) ≤ 1 + 4ε for all ε ∈ (0, 1

10 ] then proves Lemma B.1.

C Missing Proofs from Section 2

Lemma 2.1. (Reduction to Smooth Instances) Suppose B ≥ Ω(poly(log n)). Given an algorithm to solve
Packing LPs in the Byzantine Secretary setting that with constant probability is ρ-competitive w.r.t. OPT(G) for
all smooth instances, we can obtain an algorithm which is Ω(ρ)-competitive in expectation for all instances w.r.t.
OPT(G \ gmax).

Proof. The desired O(ρ)-approximation for general instances is given by choosing uniformly at random and
running one of the following 3 algorithms:

1. Pick one of the n items uniformly at random

2. Run the algorithm given by Lemma A.4 aiming at picking the best B items

3. See the largest value c
1/2
max of an item with arrival time in [0, 12 ) (do not pick any) and on the remaining times

[ 12 , 1] run an algorithm that is ρ-competitive in a smooth instance with constant probability using c1/2 as
estimate for OPT(G) (still using budget B).

By construction this procedure always produces a feasible solution, and we show it has good value in
expectation.

Let cmax be the maximum value of over all (green and red) items. First, if cmax ≥ n
2 OPT(G \ gmax) then

the procedure has expected value at least 1
3 OPT(G) just from the first algorithm that it may run, and the result

follows. Also, if the B top valued green items (excluding gmax) have combined value at least OPT(G\gmax)
4 , then

the procedure gets expected value at least Ω(OPT(G \gmax)) just from the second algorithm that it may run, and
the result also follows.

So consider the “remaining situation” where neither of these cases happen. Further, condition on the event
where gmax shows up at a time [0, 12 ) and OPT(G ∩ [ 12 , 1]) (the optimal value considering only green items on
times [ 12 , 1]) it at least

1
2 OPT(G \ gmax), which happens with probability at least 1

4 . In this case the instance over

times [ 12 , 1] satisfies both items of the smoothness Assumption 2.1 with Ô := c
1/2
max because:
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1. Item 1: The B top valued green items in [ 12 , 1] have combined value at most OPT(G\gmax)
4 ≤ OPT(G∩[ 12 ,1])

2 .

Since this set of items contains all items in [ 12 , 1] of value at least
OPT(G∩[ 12 ,1])

B , it satisfies Item 1 of the
assumption.

2. Item 2: Using c(gmax) to denote the value of gmax,

c1/2max ≥ c(gmax) ≥
1

n
OPT(G) ≥ 1

n
OPT(G ∩ [ 12 , 1])

c1/2max ≤
n

2
OPT(G \ gmax) ≤ nOPT(G ∩ [ 12 , 1]).

Thus, under this event, with probability 1
3 the third algorithm within the procedure is run and with further

constant probability it is guaranteed to obtain expected value at least Ω(ρOPT(G∩ [ 12 , 1])) ≥ Ω(ρOPT(G\gmax)).
Overall, in this “remaining situation” the procedure obtains expected value at least Ω(ρOPT(G \ gmax)), thus
concluding the proof.

C.1 Proof of Lemma 2.3 Recall that GT(I) ⊆ N denotes the steps t where the t-th item in the interval I is
green. We first argue that the value of the green items in any interval I is large, with high probability. Recall
that x∗ is the optimal solution consisting only of green items each of whose value is at most OPT

B , and has total

value at least OPT
2 .

Claim C.1. If |I| = 1/K and B ≥ K log 1/δ, then with probability at least 1− δ
2 we have

∑

t∈GT(I)

Ctx
∗
t ≥

1

4

OPT

K
.

Proof. The LHS is
∑

i∈G cix
∗
i · 1(i ∈ I) and has expectation at least 1

2
OPT
K and variance

Var

(
∑

i∈G
cix

∗
i · 1(i ∈ I)

)
≤ 1

K

∑

i∈G

(
cix

∗
i

)2 ≤ OPT

BK

∑

i∈G
cix

∗
i ≤

OPT2

BK
,

where the second inequality uses that x∗i ∈ [0, 1] and that, by definition, x∗i > 0 only when item i has value
ci ≤ OPT

B . Then applying Bernstein’s Inequality (Lemma A.3) to Xi := cix
∗
i (1(i ∈ I)− |I|),

Pr

(∑

i∈G
cix

∗
i · 1(i ∈ I) ≤

1

2

OPT

K
− 1

4

OPT

K

)
≤ 2e−

3B
64K ,

and the result follows from the assumption B ≥ Ω(K log 1/δ).

Next we argue that the total cost in the Lagrangified value is not large. The proof of this claim goes by
first conditioning on the stochastic times of the green items inside interval I. This fixes the order in which we
see all the items, and also fixes the number of greens in I. Now at each stochastic time in I, we draw an item
from the remaining greens (without replacement), and use Lemma B.1 to bound the effect of sampling without
replacement.

Claim C.2. If |I| = 1
K ≤ 1

4 , and B ≥ Ω(K log(4d/δ)), then with probability at least 1− δ
2 ,

∑

t∈GT(I)

〈λt, Atx
∗
t 〉 ≤

4B

K
.

Proof. Recall that G(I) and G(I) denote the set and the number of green items, respectively, that fall in
interval I. Let tj be the position of the jth green item to appear in interval I. Then

∑
t∈GT(I)〈λt, Atx

∗
t 〉 =∑

j≤G(I)〈λtj , Atjx
∗
tj 〉. Notice that the tj ’s are random.
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We condition on G(I) = k, say, and on their positions (t1, . . . , tk) =: t≤k. Notice that under this
conditioning the stochastic items (Ctj , Atj ) are still sampled without replacement from the green items. Moreover,
notice that λtj is a function of the green items before the jth green item in the interval, and therefore on
(Ct1 , At1), . . . , (Ctj−1 , Atj−1). (It also depends on the red items in I, but these are deterministic.)

In order to upper bound
∑

j≤G(I)〈λtj , Atjx
∗
tj 〉 with high-probability (conditioned on G(I) = k and t≤k) we

use Lemma B.1. For that, we first notice that due to the feasibility of x∗ we have E[Atjx
∗
tj | G(I) = k, t≤k] ≤ B·1d

G
for all j, and hence

∑

j≤k

〈
λtj ,E

[
Atjx

∗
tj

∣∣ G(I) = k, t≤k

]〉
≤
∑

j≤k

〈λtj , B·1d

G 〉 =
B

G
k.

Then applying Lemma B.1 conditionally (setting Zj := λtj |G(I)=k,t≤k
, Y j := Atjx

∗
tj |G(I)=k,t≤k

, and ε = 1
10 ) gives

that if k ≤ G
2 then

Pr

(∑

j

〈λtj , Atjx
∗
tj 〉 ≥

3B

2G
k + Ω(log 4d/δ)

∣∣∣∣ G(I) = k, t≤k

)
≤ δ/4 .

Taking expectation over the t≤k’s and then over the values of k that are at most 2G
K (which is at most G/2 by our

assumption on K ≥ 4), we get

Pr

(∑

j

〈λtj , Atjx
∗
tj 〉 ≥

3B

K
+ Ω(log 4d/δ)

∣∣∣∣ G(I) ≤ 2G/K

)
≤ δ/4 .(C.5)

Observe that 3B/K + Ω(log 4d/δ}) ≤ 4B/K by our assumption B ≥ Ω(K log(4d/δ)). Next we show that the
conditioning holds with high probability. Indeed, E[G(I)] = G/K, so by Bernstein’s inequality

Pr(G(I) > 2G/K) ≤ e−
G
2K ≤ e−

B
4K ≤ δ/4d ≤ δ/4 ,(C.6)

where the second inequality uses Assumption 2.1 that the green items with value at most OPT
B contain a solution

of value at least OPT
2 (hence there are at least B

2 green items to obtain the remaining value OPT
2 ) and the third

inequality uses the assumption that B ≥ Ω(K log(4d/δ)). Combining (C.5) and (C.6),

Pr

(∑

j

〈λtj , Atjx
∗
tj 〉 ≥

4B

K

)
≤ δ/2 ,

which completes the proof of Claim C.2.

Finally, using Claims C.1 and C.2 and taking a union bound concludes the proof of Lemma 2.3.

D Missing Proofs from Section 4

D.1 Proof that Assumption 4.1 is WLOG The following lemma formalizes the idea that Assumption 4.1
can be made without loss of generality.

Lemma D.1. Let Ãlg be an algorithm for packing linear programs in the Prophets with Augmentations model.

Suppose that Ãlg achieves expected value at least Ω(OPTbase) on instances where each distribution is supported on
values that are at most OPTbase

20 . Then there is an algorithm that achieves expected value Ω(OPTbase) on arbitrary
instances.

Proof. Throughout this section, we use V1, . . . , Vn to denote the outcome of the value of the items of the original
instance ((at,Dt)t, B), R1, . . . , Rn as the augmentations performed by the adversary, and Ct = Vt + Rt the final
value revealed to the algorithm.

For notational convenience let M := OPTbase

40 . The idea is to run two algorithms, one over the items
that have value at most M and one over items of value above M . To make this precise, define the operation
trunc(v) := min{v,M} that truncates a value at M . Let D̃t be the distribution of the truncated random variable
trunc(Vt). Then we consider the algorithm that flips an unbiased coin runs one of the following procedures on the
(augmented version of) the original instance ((at,Dt)t, B):
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1. Alglow: It sends the chopped instance ((at, D̃)t, B) to the algorithm Ãlg to obtain a selection policy, and
apply this policy to the sequence of truncated values trunc(C1), . . . , trunc(Cn) to decide which items to take.
Let Xt ∈ {0, 1} denote the indicator whether this policy picked the tth item.

2. Alghigh: It picks the first items with value Ct above M , if any. Let τ ∈ [n] be the index of the item picked
(τ =∞ if did not pick any).

We claim that either Alglow or Alghigh has value at least Ω(OPTbase), which then proves the lemma. For

that, let p := Pr(τ < ∞) be the probability that some item has value above M . If p ≥ 1
2 , then Alghigh already

has expected value least pM ≥ Ω(OPTbase). We henceforth assume that p < 1
2 .

Let OPTtrunc be the optimal value of the truncated instance ((at, D̃)t, B), namely

OPTtrunc = Emax
x

{∑

t

trunc(Vt) · xt :
∑

t

atxt ≤ B · 1d , x ∈ {0, 1}n
}
.

We consider two cases:
Case 1: OPTtrunc ≥ OPTbase

2 . In every scenario the value of Alglow is

Alglow =
∑

t

CtXt ≥
∑

t

trunc(Ct) ·Xt.(D.7)

Moreover, notice that the sequence trunc(C1), . . . , trunc(Cn) can be seen as an augmented version of the truncated

instance ((at, D̃)t, B), where the adversary performed the augmentation R̃t := trunc(Ct)− trunc(Vt) that is non-
negative and only depends on Vt. Moreover, in this Case 1 we have that all values in the truncated instance are

at most M = OPTbase

40 ≤ OPTtrunc

20 . Therefore, the approximation guarantee of Ãlg holds in this case hence

E

∑

t

trunc(Ct) ·Xt ≥ Ω(OPTtrunc) ≥ Ω(OPTbase),

where the last inequality again uses the assumption of Case 1. Combined with Equation (D.7) this gives that
Alglow has expected value at least Ω(OPTbase) as desired.

Case 2: OPTtrunc <
OPTbase

2 . Let X∗ ∈ {0, 1}n be the optimal solution for the original base instance
((at,Dt)t, B), namely OPTbase = E

∑
t VtX

∗
t . Since

Vt = trunc(Vt) + (Vt − trunc(Vt)) · 1(Vt > M),

we get

OPTbase = E

∑

t

trunc(Vt) ·X∗
t + E

∑

t

(Vt − trunc(Vt)) · 1(Vt > M) ·X∗
t

≤ OPTtrunc +E

∑

t

Vt · 1(Vt > M)

= OPTtrunc +
∑

t

E[Vt | Vt > M ] Pr(Vt > M),

where the inequality follows from the fact that X∗ is a feasible solution for OPTtrunc. Moreover, since we are in
Case 2, the second term in the RHS must contribute to at least half of OPTbase, namely

OPTbase ≤ 2
∑

t

E[Vt | Vt > M ] Pr(Vt > M).(D.8)

Now notice that we can express the value of Alghigh in every scenario as

Alghigh = Cτ ≥ Vτ =
∑

t

1(τ ≥ t) · 1(Vt > M) · Vt,
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so using the fact that τ is a stopping time (so 1(τ ≥ t) is defined by the history up to time t − 1) and that the
Vt’s are independent, the expected value becomes

EAlghigh =
∑

t

Pr(τ ≥ t) · E[Vt | Vt > M ] Pr(Vt > M) ≥ 1

2

∑

t

E[Vt | Vt > M ] Pr(Vt > M),

the inequality following because the probability of τ < t is at most the probability p that any item takes value
above M , and because we have assumed p ≤ 1

2 . Comparing with (D.8) we see that EAlghigh ≥ Ω(OPTbase) as
desired. This concludes the proof.

D.2 Proof of Lemma 4.1 We consider the following the concave relaxation to the base prophet instance,
where intuitively xt denotes the fraction of times item t is picked by the optimal offline algorithm:

max
x1,...,xn

∑

t

xt · E[Vt | Vt is in its top xt-quantile of Dt]

s.t.
∑

t

atxt ≤ B/4 · 1d

0 ≤ xt ≤ 1 .

We assume that the distributions are continuous, so that the quantiles are well-defined; this is without loss of
generality (see, e.g., [RWW20, §2]).

Let x∗t denote the optimal solution of the relaxation, and let valt := E[Vt | Vt is in its top x∗t -quantile]. To
prove that this relaxation’s objective value

∑
t x

∗
t valt is at least OPTbase

4 , observe that if an item t is picked
for xt fraction of times by the offline optimal solution, its contribution to the offline objective is at most
E[Vt | Vt is in its top xt-quantile]. Note that although the relaxation only allows budget B/4 · 1d (instead of
B · 1d), this only hurts the relaxation’s objective by at most a factor of 4.

Next we design the desired solution ψ1(V1), . . . , ψn(Vn) for the base prophet instance with expected: We pick
item t whenever its value Vt is in the top x∗t -quantile of Dt, that is, ψt(Vt) = 1(Vt is in the top x∗t -quantile of
Dt). The expected budget consumed by such an algorithm is at most

∑
t atx

∗
t ≤ B/4 ·1d, which proves Item 2. To

prove Item 1, note that the algorithm’s expected value is precisely the objective value
∑

t x
∗
t valt of the relaxation

above, which is at least OPTbase

4 .
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