
Online Discrepancy with Recourse for Vectors and Graphs

Anupam Gupta∗ Vijaykrishna Gurunathan † Ravishankar Krishnaswamy ‡

Amit Kumar § Sahil Singla ¶

Abstract

The vector-balancing problem is a fundamental problem in discrepancy theory: given T vectors in [−1, 1]n,
find a signing σ(a) ∈ {±1} of each vector a to minimize the discrepancy ‖∑

a
σ(a) · a‖∞. This problem has

been extensively studied in the static/offline setting. In this paper we initiate its study in the fully-dynamic
setting with recourse: the algorithm sees a stream of T insertions and deletions of vectors, and at each time
must maintain a low-discrepancy signing, while also minimizing the amortized recourse (the number of times
any vector changes its sign) per update.

For general vectors, we show algorithms which almost match Spencer’s O(
√
n) offline discrepancy bound,

with O(n polylog T) amortized recourse per update. The crucial idea behind our algorithm is to compute
a basic feasible solution to the linear relaxation in a distributed and recursive manner, which helps find a
low-discrepancy signing. We bound the recourse using the distributed computation of the basic solution, and
argue that only a small part of the instance needs to be re-computed at each update.

Since vector balancing has also been greatly studied for sparse vectors, we then give algorithms for low-
discrepancy edge orientation, where we dynamically maintain signings for 2-sparse vectors in an n-dimensional
space. Alternatively, this can be seen as orienting a dynamic set of edges of an n-vertex graph to minimize
the discrepancy, i.e., the absolute difference between in- and out-degrees at any vertex. We present a
deterministic algorithm with O(polylog n) discrepancy and O(polylog n) amortized recourse. The core ideas
are to dynamically maintain an expander-decomposition with low recourse (using a very simple approach),
and then to show that, as the expanders change over time, a natural local-search algorithm converges quickly
(i.e., with low recourse) to a low-discrepancy solution. We also give strong lower bounds (with some matching
upper bounds) for local-search discrepancy minimization algorithms for vector balancing and edge orientation.

1 Introduction

In the Online Vector Balancing problem introduced by Spencer [Spe77], vectors a1, a2, . . . , aT ∈ [−1, 1]n

arrive online, and the algorithm irrevocably assigns a sign σ(at) immediately upon seeing at, with the
goal of minimizing the discrepancy of the signed sum, i.e., ‖∑t σ(at) · at‖∞. Following a sequence of
works [BS20, BJSS20, BJM+21], the state-of-the-art bounds for this problem is an elegant randomized algorithm
that maintains a discrepancy of O(

√
n log(nT)) [ALS21]. Their result assumes an oblivious adversary, so that the

choice of arriving vectors does not depend on the internal state of the algorithm. Indeed, if we allow adaptive
adversaries then every online algorithm incurs Ω(

√
T) discrepancy [Spe77]. We think of T � n, so Ω(

√
T) is

much larger than O(
√
n log(nT)).

We initiate the study of Fully-Dynamic Vector Balancing, where vectors can both arrive or depart at each
time step, and the algorithm must always maintain a low-discrepancy signing of the vectors present in the system
at all times. Since it is easy to construct examples where no algorithm can guarantee non-trivial discrepancy
bounds if it is forced to commit to the sign of a vector upon arrival, we study the problem where the algorithm

∗(anupamg@cs.cmu.edu) Computer Science Department, Carnegie Mellon University. Supported in part by NSF awards CCF-
1907820, CCF1955785, and CCF-2006953.

†(krishnavijay1999@gmail.com) Computer Science Department, Stanford University
‡(rakri@microsoft.com) Microsoft Research.
§(amitk@cse.iitd.ac.in) Department of Computer Science and Engineering, Indian Institute of Technology Delhi.
¶(ssingla@gatech.edu) School of Computer Science, Georgia Tech.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

can re-sign the vectors from time to time. Indeed, many real-world applications that motivate such discrepancy-
based methods (such as in fair allocations, sparsification routines, etc.) have a fully-dynamic flavor to them, with
the corresponding inputs being dynamic in nature due to both insertions and deletions.

Problem (Fully-Dynamic Vector Balancing). We start with an empty collection of active vectors
A(0). At each time/update t ∈ [T], an adaptive adversary either inserts a new vector at ∈ [−1, 1]n, i.e.,
A(t) = A(t − 1) ∪ {at}, or removes an existing vector a ∈ A(t − 1), i.e., A(t) = A(t − 1) \ {a}. The goal is
to maintain signings σt : A(t) → {±1} to minimize the norm ‖∑a∈A(t) σt(a) · a‖∞. The algorithm can reassign

the sign of a vector a (i.e., set σt(a) 6= σt−1(a)), and the total recourse is the sum total of the reassignments.

Two trivial solutions exist: (a) recomputing low-discrepancy signings on the active set of vectors after every
update operation incurs optimal offline discrepancy guarantees with a recourse of Θ(T) per update, and (b) an
independent and uniformly random signing of every new vector maintains at any time t a signing of discrepancy
Θ(
√
T log n) w.h.p., while performing no recourse whatsoever. Since T � n, this is much larger than the optimal

offline discrepancy bounds of O(
√
n) for any collection of T vectors in [−1, 1]n [Spe85, Ban10, LM15]. We ask:

can we get near-optimal1 discrepancy bounds with a small amount of recourse?

1.1 Our Results and Techniques

Fully-Dynamic Vector Balancing. Our first main contribution is the design of an algorithm which maintains
low-discrepancy signings for the fully-dynamic problem that nearly matches the offline discrepancy bounds while
giving an amortized recourse that is only logarithmic in the sequence length T .

Theorem 1.1. (Fully-Dynamic: General Vector Balancing) There is an efficient algorithm for Fully-
Dynamic Vector Balancing with update vectors in [−1, 1]n which maintains signings σt(·) with discrepancy
O(
√
n) and an amortized recourse of O(n log T) per update, even against adaptive adversaries. For Komlos’

setting, i.e., if all the updates vectors have `2 length at most 1 (instead of `∞ length), the algorithm achieves
discrepancy O(

√
log(n)) with an amortized recourse of O(n log T) per update.

Since in this theorem we are competitive against adaptive adversaries, it illustrates the power of recourse: in
the absence of recourse, we get Ω(

√
T) lower bounds on the discrepancy even for arrival-only sequences of 2-

dimensional vectors. This is because the adversary can always make the next vector to be orthogonal to the
current signed sum.

At a very high level, our algorithm divides the instance into many parts of size O(n), obtains a good partial signing
for each part (such that all but n vectors are signed), and recurses on the residual instance. The algorithm imposes
a tree-like hierarchy on these parts, so that it can easily adapt to inserts or deletes with bounded recourse by
only re-running the computations on the part suffering the insertion/deletion, and on any internal node on the
corresponding root-leaf path from that part to the root. If we are not careful, the discrepancy of the overall vector
can be proportional to the number of parts, since we could accrue error in each part. However, we use linear
algebraic ideas inspired by [BG81] to couple all the parts, thereby always ensuring that the sum of the partial
signings across all nodes of the tree (except the root) is zero.

Fully-Dynamic Edge Orientation/Carpooling and Local Search. Given the general result above, next we
focus on the special case of orienting edges of a graph to minimize the maximum imbalance between the in- and
out-degrees. Fagin and Williams [FW83] posed the carpooling problem, which corresponds to vector balancing
with vectors of the form (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . .) ∈ R

n, and the graph discrepancy objective is precisely the
‖ · ‖∞ of the signed sum of vectors. [FW83, AAN+98] use this problem to model fairness in scheduling, where
edges represent shared commitments (such as carpooling), orientations give primary and secondary partners of
the commitment (e.g., driver and co-driver), and hence the discrepancy measures fairness for individuals, in terms
of how many commitments he/she is the primary partner for, relative to the total number of commitments he/she
is a part of.

1In this paper, we use “near-optimal” to mean optimal up to poly-logarithmic factors.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Somewhat surprisingly, [AAN+98] showed that any algorithm must suffer Ω(n) discrepancy on some worse-case
adaptive sequence of edge arrivals. On the other hand, for an oblivious sequence of edge arrivals, it is easy to
maintain orientations with O(

√
n log n) discrepancy by simply orienting edges randomly (while always orienting

repeated parallel edges (u, v) oppositely). To mitigate such strong lower bounds, [AAN+98] and recently Gupta
et al. [GKKS20] study a stochastic version of the problem where the arriving edges are sampled from a known
distribution: they design algorithms to maintain polylog(n, T)-discrepancy. The recent algorithm of Alweiss et
al. [ALS21] also extends to this special case giving O(log(nT)) discrepancy bounds for any oblivious sequence of
edge arrivals, not just stochastic ones. None of these prior algorithms extend to a fully-dynamic input consisting of
both insertions and deletions. Moreover, Theorem 1.1 guarantees near-optimal discrepancy only with O(n log T)
amortized recourse. In this paper, we give deterministic near-optimal discrepancy algorithms with near-optimal
amortized recourse.

Theorem 1.2. (Fully-Dynamic Edge Orientation) There is an efficient deterministic algorithm that main-
tains an orientation of polylog n discrepancy while performing an amortized recourse of polylog n per update.

Since this algorithm is deterministic, the guarantees also hold against adaptive adversaries: there are Ω(n)
discrepancy bounds for no-recourse algorithms against such adversaries, even for the setting of only arrivals.

At a high level, our algorithm can be seen as a composition of two modules. Firstly, we consider a simple
local-search procedure, which flips an edge from u → v to v → u if the current discrepancy of v exceeds that
of u by more than 2. Clearly, this reduces the discrepancy of the maximum of these two vertices. Our crucial
observation is that this process always maintains low-discrepancy signings when the graph is an expander. We find
this interesting, since we can show that there are bad local optima with poly(n) discrepancy for general graphs.
Secondly, we show how to dynamically maintain a partitioning of the edge set of an arbitrary graph G into a
disjoint collection of expanders G1, G2, . . . , G` with each vertex appearing in at most polylog n many expanders,
such that the amortized number of changes to G1, G2, . . . , G`, per update to G is bounded. (This expander
decomposition can be viewed as a “preconditioning” step.) We build on ideas recently developed for dynamic
graph algorithms [SW19, BvdBG+20]: our challenge is to show that dynamic expander decomposition can be
done along with local search on the individual expanders, and specifically to control the potential functions that
guide our proofs.

Indeed, using the above two modules to obtain Theorem 1.2 requires new ideas. When an update (insertion
or deletion) occurs to G, we first modify our expander decomposition, and re-run local search starting from the
prior local optima in each expander. While this ensures good discrepancy bounds, it could lead to many local
search moves. In order to bound the latter quantity, our idea is to use a potential function in each expander
to bound the recourse, such that each step of local search always decreases the potential by at least a constant.
This is somewhat delicate: a single update in G can change any particular expander Gi by a lot (even though
the amortized recourse is bounded), and hence the single-step potential change can be huge. We show how to
maintain some Lipschitzness properties for our potential function under inserts and deletes, which gives us the
final bounds of polylog n on both the discrepancy and the recourse.

Along the way, we also develop a better understanding of the strengths and limitations of local search as a
technique for discrepancy minimization problems, both for graphs and for general vectors.

Theorem 1.3. (Informal: Discrepancy of Local Optima) For edge orientation in expanders, any locally
optimal solution for local search using the simple potential Φ =

∑
v∈V disc(v)2 has discrepancy O(log n). For

arbitrary graphs, however, the discrepancy can be as bad as Ω(n1/3). For general vectors in {±1}n (and in

[−1, 1]n), the local search bound using the simple potential Φ =
∑

i∈[n]

(∑
t σ(at) · at(i)

)2
deteriorates to Ω(2n)

(and to Ω(
√
T)).

Signing s-Sparse Vectors for Online Arrivals. Finally, we consider the problem with s-sparse vectors,
which interpolates between the graphical case of s = 2 and the general case. In the offline setting, the classical
linear-algebraic algorithm of Beck and Fiala [BF81] constructs a signing with disrepancy 2s− 1 (independent of

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

n and T). Subsequent works by Banaszczyk [Ban98] and Bansal, Dadush, and Garg [BDG16] develop techniques
to get discrepancy O(

√
s log n), and a long-standing question in discrepancy theory is to improve this bound

to O(
√
s). Here we study the Online Vector Balancing problem only with arrivals. In this setting, the

algorithm of [ALS21] maintains signings of discrepancy O(
√
s log(nT)) without recourse, but against an oblivious

adversary. In Section 6 we give a generic reduction that can maintain near-optimal discrepancy for Online
Vector Balancing against adaptive adversaries, with small recourse.

Theorem 1.4. (Arrivals Only: Online Vector Balancing with Recourse) There is an efficient algo-
rithm for Online Vector Balancing with s-sparse vectors that achieves O(

√
s log n log T) discrepancy and

O(log T) amortized recourse per update against an adaptive adversary.

1.2 Further Related Work Discrepancy theory is a rich and vibrant area of research [Cha01, Mat09]. While
some initial works [Spe77, Bá79] focused on the online discrepancy problem, the majority of research dealt with
the offline setting, where the T vectors are given upfront. Near-optimal results are known for settings such as
discrete set systems [Spe85, Ban10, LM15] (i.e., vectors in {0, 1}n), sparse set systems [BF81] (s-sparse binary
vectors), and general vectors in the unit ball [Ban98, Bec81, Gia97, Rot14, BDGL19].

There has been a renewed interest in the online discrepancy setting, where many of the techniques developed for
the offline setting no longer extend. Most of the results for online vector discrepancy deal with stochastic settings
of the problem where the arriving vectors satisfy some distributional assumptions [AAN+98, BS20, BJM+21]. A
recent breakthrough work [ALS21] gives a very elegant randomized algorithm with near-optimal discrepancy for
general vectors arriving online. However, to the best of our knowledge, none of these ideas easily extend to the
fully-dynamic setting where vectors can also depart—which is the focus of this paper. In fact, we do not know
how to adapt existing ideas to establish non-trivial results for even the simple deletions-only setting: starting with
T vectors, a uniformly random subset of T/2 of these vectors are deleted one-by-one. Can we always maintain a
low-discrepancy signing of the remaining vectors with small recourse?

The study of dynamic algorithms also has a rich history, both in the recourse model, which measures the
number of updates made the algorithm per update, and the update-time model, which measures the running
time of the algorithm per update. Apart from graph problems, these models have been studied in a variety
of settings such network design [IW91, GK14, GGK16, LOP+15], clustering [GKLX20, CAHP+19], matching
[GKKV95, CDKL09, BLSZ14], and scheduling [PW93, Wes00, AGZ99, SSS09, SV10, EL14, GKS14], and set
cover [BHI18, BCH17, BK19, AAG+19, BHN19, BHNW20, GKKP17].

A different version of edge-orientation, commonly known as graph balancing, involves minimizing just the
maximum in-degree (see, e.g., [BF99, Kow07, KKPS14]): the techniques used for that version seem quite different
from those needed here.

Paper Outline. We present the results for Fully-Dynamic Vector Balancing and specifically Theorem 1.1
in §2. The results for graph balancing appear in §3. Other results for local-search algorithms appear in §4 and
§5. We close with an insertion-only algorithm for sparse vectors, and conclusions and open problems in §6.

2 Fully-Dynamic Vector Balancing

In this section, we prove Theorem 1.1. Given a set of vectors a1, a2, . . . , aT ∈ [−1, 1]n, the Bárány-Grinberg

algorithm signs them such that the discrepancy of the signed sum is at most 2n. However, this signing is highly
sensitive to insert or delete operations. We address this issue by recursively dividing the input sequence such that
we lose only O(n) discrepancy at each level of this recursion tree—we call this the distributed Bárány-Grinberg

algorithm. We then show how it can easily handle insert and delete operations with low recourse.

The main idea underlying the Bárány-Grinberg algorithm [BG81] is the following linear algebraic lemma.

Lemma 2.1. (Rounding Lemma [BG81]) Let a1, a2, . . . , aT ∈ [−1, 1]n be the columns of matrix A ∈ [−1, 1]n×T .
For any initial fractional signing x ∈ [−1, 1]T , there exists a (near-integral) signing y with all but n variables being
±1 such that Ay = Ax.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The signing y is obtained by moving to a basic feasible solution (BFS) of the following set of linear constraints
{Ay = Ax, y ∈ [−1, 1]T }, where x is treated as being fixed. Based on Lemma 2.1, Bárány and Grinberg [BG81]
gave the following offline algorithm: starting with the all-zeros vector as the fractional signing (i.e., x = 0), let
y be the almost-integral vector satisfying Ay = 0. Now randomly rounding the fractional variables (with bias
given by the yi values) and using concentration bounds shows a discrepancy of O(

√
n log n), or using sophisticated

rounding schemes can give the tight O(
√
n) discrepancy [Spe85, Ban10, LM15].

2.1 An Equivalent, Recursive Viewpoint A natural question is: can we extend the above Bárány-Grinberg

algorithm to the dynamic case? Naively using the rounding lemma does not work, since the rounded solutions y
and y′ for matrices A and A′ differing in one column could be very different. Our idea is to simulate the Bárány-

Grinberg algorithm in a distributed and recursive manner. We divide the sequence {1, . . . , T} into sub-sequences
of length 2n each, which gives us a set of m := T/2n sub-sequences (assume w.l.o.g., e.g., by padding, that T/2n
is a power of 2). Let P1, . . . , Pm denote these sub-sequences ordered from left to right. We build a binary tree T
of height log2 m on m leaves, where leaf j corresponds to the sub-sequence Pj . Similarly, for an internal node v,
define Pv as the sub-sequence formed by taking the union of Pj over all leaves j below v.

The signing algorithm DBG(v), where v is a node of T is shown in Algorithm 1. It assigns values yvi ∈ [−1, 1] to
the vectors ai for i ∈ Pv such that the following two conditions are satisfied:

(I1)
∑

i∈Pv
yvi ai = 0, and

(I2) all but at most n variables yvi , i ∈ Pv are either +1 or −1.

Applying this property to the root node yields Lemma 2.1. While the end result is identical to the one-shot
Bárány-Grinberg algorithm, this yields some crucial advantages in the dynamic setting. Indeed, when a vector is
inserted/deleted, only a single leaf’s sub-sequence changes. We will show that this leads to making changes in

the signing assigned by the ancestors of just this leaf, giving a total recourse of Õ(n) per update!

For a subset I of indices, let AI denote the submatrix of A given by the columns corresponding to I. Similarly,
for a vector z indexed by Pv and a subset F of Pv, define z|F as the restriction of z to F . The algorithm DBG(v)
begins by recursively assigning values to the two sub-sequences corresponding to its two children. Since these
assignments, satisfy the two invariant conditions above, combining the two solutions into a new solution x (in
line 4) leads to at most 2n fractional variables. Using Lemma 2.1, we reduce the number of fractional variables
to n. Finally, we can maintain a (integral) signing σ by randomly assigning signs to the fractional variables Fr at
the root r and retaining the values yr for rest of the vectors. We now show by induction that the two invariant
properties are satisfied, the proof is deferred to Appendix A.

Lemma 2.2. The variables yvi , i ∈ Pv satisfy the invariant properties (I1) and (I2) at the end of DBG(v).

Algorithm 1 Distributed-Bárány-Grinberg: DBG(v)

Input: A node v of T .
Output: (yv, Fv): an assignment yvi ∈ [−1, 1] for each i ∈ Pv, and Fv ⊆ Pv is the index set of “fractionally”
signed vectors, i.e., indices i such that −1 < yvi < 1.

1: if v is not a leaf then
2: Let vL and vR be the left and the right children of v respectively.
3: (yvL , FvL)← DBG(vL), (yvR , FvR)← DBG(vR).
4: Define F := FvL

∪ FvR , xi := yvLi for all i ∈ PvL
, xi := yvRi for all i ∈ PvR

.
5: else
6: Define F := Pv, xi = 0 for all i ∈ Pv.

7: Using Lemma 2.1 find a vector y′ ∈ [−1, 1]|F | such that (i) AF · y′ = AF · x|F , and (ii) there are at most n
indices (denoted by the set Fv ⊆ F) having −1 < y′i < 1.

8: Define yvi = xi for i ∈ Pv \ F and yvi = y′i for i ∈ F .
9: Return (yv, Fv).

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2.2 Dealing with Update Operations Before describing the insert/delete operations, we describe a useful
subroutine UpdateVector, which given an assignment yold to a1, . . . , aT , updates it to a new assignment ynew

when one of the vectors aj in the sequence changes. The algorithm is very similar to Algorithm 1, but it needs
to recurse on only one child of v. the one containing the index j. As a result, the vectors yold and ynew differ in
at most O(n log T) coordinates. Details are deferred to Appendix A.

Dynamic Insert and Delete. We now discuss the algorithm when an insert or delete operation happens. The
algorithm works in phases: a new phase starts when the number of vectors becomes 2` for some `, and ends when
this quantity reaches 2`−1 or 2`+1. Whenever a new phase starts, we run DBG algorithm to find an assignment
y. During a phase, we always maintain exactly 2`+1 vectors – this can be ensured at the beginning of this phase
by padding with 2` zero vectors. This ensures that the tree T does not change during a phase.

When a delete operation happens, we call DBGUpdate, where the deleted vector gets updated to the zero vector.
Similarly, when an insert operation happens, we update one of the zero vectors to the inserted vector. Thus, we
get the following result:

Lemma 2.3. The amortized recourse of this fully-dynamic algorithm is O(n logN) per update operation, where
N is the maximum number of active vectors at any point in time.

Proof. The work done at the beginning of a phase can be charged to the length of the input sequence at this
time. This results in O(1) amortized recourse. We show in Corollary A.1 that the amortized recourse after each
update during a phase is O(n logN). This proves the overall amortized recourse bound.

Finally, since there are only n fractional variables at the root, we can use any state-of-the-art offline discrepancy
minimization algorithm to sign these vectors, e.g., to get O(

√
n) discrepancy for vectors with unit `∞-norm

[Spe85, Ban10, LM15], or to get O(
√

log n) discrepancy for vectors with unit `2-norm [BDG16, BDGL19]. This
proves Theorem 1.1.

3 Fully-Dynamic Edge Orientation

We next consider the case of dynamically orienting edges in a graph to maintain bounded discrepancy. In this
problem, at each time/update an adaptive adversary either inserts a new edge et = (u, v) or removes an existing
edge e from a graph G(t). Assigning an orientation to each edge (u, v) as u → v or v → u, the discrepancy of a
vertex v is disc(v) = | |δin(v)| − |δout(v)| |, where δin(v) and δout(v) are the sets of in- and out-edges incident at
v. Our goal is to minimize maxv∈V disc(v). The algorithm is allowed to re-orient any edge e, and the amortized
recourse is the average number of re-orientations per edge insertion/deletion. We now present the first fully-
dynamic algorithms with polylog(n) discrepancy and recourse.

Useful Notation For an undirected graph G and any set S ⊆ V , define E(S) as the set of edges whose endpoints
are both in S; for sets S, T , define E(S, T) = {e ∈ E | |e ∩ S| = |e ∩ T | = 1}. Define the volume of a set S to be
vol(S) =

∑
v∈S deg(v).

Definition 3.1. (φ-Expander) A graph G is a φ-expander if for all subsets S ⊆ V ,

|E(S, V − S)| ≥ φ ·min(vol(S), vol(V − S)) .

In this case, we also say the graph G has conductance at least φ.

Definition 3.2. (γ-Weak-Regularity) For γ ∈ [0, 1], an undirected graph G is γ-weakly-regular if the
minimum degree of any vertex is at least γ times the average degree 2m/n.

3.1 High Level Overview We now provide a detailed overview of our algorithm, and then delve into the
individual components. A natural algorithm for the edge orientation problem is a local search procedure: while
there exists an edge (u, v) currently oriented u → v such that disc(v) > disc(u) + 2, flip its orientation to
v → u. Although locally optimal orientations could have discrepancy Ω(n1/3) for general graphs (see an example
in Section 4.3), our first crucial result is that they always have low discrepancy on expanders.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 3.3. Let G(V,E) be a γ-weakly-regular φ-expander. Then the discrepancy of any solution produced by
Local-Search is O

(
logm
φγ

)
.

The proof of this theorem appears in Section 3.2. In order to apply our local search algorithm to arbitrary graphs,
our plan is to use the powerful idea of expander decompositions (see, e.g., [ST04, SW19, BvdBG+20]). At a high
level, such schemes decompose any graph G into a disjoint union of expanders with each vertex appearing in a
small number of them. For concreteness, we use the following result from [GKKS20, Theorem 19]2.

Theorem 3.4. (Decomposition into Weakly-Regular Expanders) Any graph G = (V,E) can be decom-
posed into an edge-disjoint union of smaller graphs G1, G2, . . . , Gk such that: (a) each vertex appears in at most
O(log2 n) many smaller graphs, and (b) each of the smaller subgraphs Gi is a φ/4-weakly-regular φ-expander,
where φ = Θ(1/ log n).

In order to make this into a dynamic decomposition, our algorithm follows a natural idea of maintaining logm
levels/scales, and placing each edge of the current graph G at one of these levels. We use Gi to denote the subgraph
formed by the level-i edges; crucially, we ensure that Gi has at most 2i edges. For each level i, we maintain
the expander decomposition of Gi into

⋃
j Gi,j where Gi,j represents the jth expander in this decomposition.

Since each vertex appears in at most log2 n expanders at every level, overall any vertex will appear in O(log3 n)
expanders. Hence, our goal is to maintain a low-discrepancy signing for each expander, with bounded number of
re-orientations as the expander changes due to updates. Next we discuss how insertions are easier to handle, but
deletions require several new ideas.

Insertions. When edges are inserted into G, we insert it into G1 (the lowest scale) and orient it arbitrarily.
Whenever a level i becomes full, i.e., |Gi| > 2i, we remove all edges and add them to the higher level i + 1, and
recompute the expander decomposition using Theorem 3.4 from scratch for the graph consisting of all edges in
this level. We also recompute an optimal offline low-discrepancy discrepancy orientation for each expander3. Of
course, we may need to cascade to higher levels if the next level also overflows. However, the total cost of all
these edge reorientations can be easily charged to the recent arrivals that caused the overflow.

Deletions. Our insertion procedure guarantees that an expander Gi,j only observes deletions in its lifetime
(before the expander decomposition at its level is recomputed). So when the adversary deletes an edge from G
(called a primary deletion), we can remove it from the corresponding expander Gi,j it belongs to, and simply
re-run local search from the current orientation if it continues to have expansion at least, say φ/6. We can then
bound the recourse by tracking the changes to the associated `2 potential Φ for this graph. However, what do
we do when Gi,j ceases to be an expander? Our idea is to simply identify a cut of sparsity < φ/6 and remove
the smaller side ∆P from the graph Gi,j , and repeat if necessary. This is called the Prune procedure and we
formally describe it in Section 3.3. The edges which are incident to ∆P are re-inserted into the system using the
insertion algorithm. In Theorem 3.5, we bound the number of pruned edges (also called secondary deletions) in
terms of the number of actual adversarial edge deletions which caused the drop in expansion, and so we are able
to amortize the recourse of re-inserting these pruned edges back into our algorithm.

Theorem 3.5. Let G0 = (V0, E0) be a φ-expander with m edges, n vertices, and minimum degree δ. For a
subset S ⊆ V0, let vol0(S) denote its initial volume in G0. There is an algorithm called Prune (described
in Section 3.3), which for every adversarial deletion of any edge in G0, outputs a (possibly empty) set of vertices
∆P to be pruned/removed which satisfies the following properties.

Let Pt denote the aggregate set of vertices pruned over a sequence of t adversarial deletions inside G0, i.e.,
Vt := V0 \ Pt and Gt is the graph with the undeleted edges of E0 that are induced on Vt. Then, for each
1 ≤ t ≤ φ2m/20:

2For ease of exposition, we use a result that runs in exponential time; using approximate low-conductance cuts gives a polynomial
runtime with additional logarithmic factors.

3It is easy to optimally orient any graph in the offline setting: we consistently orient the edges of all cycles, to be left with a forest.

We can then again orient all the maximal paths between pairs of leaves in a consistent manner, to end up with an orientation where
every vertex has discrepancy in {−1, 0, 1}.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

(i) Pt ⊆ Pt+1.
(ii) Gt is a φ/6-“strong expander”, i.e., for any subset A ⊆ Vt,

|Et(A, Vt \A)| ≥ (φ/6) ·min
(
vol0(A), vol0(Vt \A)

)
.

Hence the minimum degree of a vertex in Vt is at least φδ/6.
(iii) vol0(Pt) ≤ 6t/(5φ).

Similar ideas have recently been used for dynamic graph algorithms, e.g. in [SW19, BvdBG+20], but our
algorithms and analyses are more direct since we are concerned only with the amortized recourse rather than the
update time. However, new challenges appear due to our discrepancy minimization setting.

A ‘Potential’ Problem. While the above procedure identifies the set of edges to prune, so that the residual
graph remains an expander, we still need to maintain a low-discrepancy orientation on the expander as it undergoes
deletions and prunings. Indeed, the above ideas essentially allow us to cleanly reduce the fully dynamic problem
to the follow special case of only handling deletions on expanders: let G = (V,E) be a φ/6-expander, currently
oriented according to local search. Then, suppose e is an adversarial deletion, and suppose ∆P is the set of
vertices to be removed as computed by the Prune procedure. Then, how many flips would we need to end-up
at a locally-optimal orientation on G[V \∆P], which we know has bounded discrepancy since G[V \∆P] is an
expander? If we can bound this in terms of the number of edges incident to ∆P , then we would be done, since
these are precisely the number of secondary deletions, which are in turn bounded in terms of adversarial deletions.

A natural attempt is to simply re-run local search on G[V \ ∆P] starting from the current orientation. While
this will converge to a low-discrepancy solution because G[V \∆P] is an expander, our recourse analysis proceeds
by tracking a quadratic potential function, and this could increase a lot if we suddenly remove all edges incident
to ∆P en masse. Removing the edges one by one is also also an issue as the intermediate graphs won’t satisfy
the desired expansion to argue both discrepancy as well as recourse (which indirectly depends on having good
discrepancy bounds to control the potential). To resolve this issue, we craft a collection of “fake” intermediate
graphs that interpolate between the graphs G and G[V \∆P] which ensure that (i) all of them have good expansion
properties, and (ii) the potential change in moving from one to another is bounded. Our overall algorithm is to
then repeatedly re-run local search after moving to each intermediate graph, until we end up with the final
orientation on G[V \∆P].

We now formalize this in the following theorem, which bounds the recourse needed to move from a locally optimal
orientation in G[V] to one in G[V \∆P]. Let H denote any graph with a current orientation represented by ~H.
We then define the following potential

Φ(~H) :=
∑

v∈V (H)

disc(v)2 .

Theorem 3.6. Let Gt−1 = (Vt−1, Et−1) be a φ/6-expander as maintained by our algorithm, and suppose the
adversary deletes an edge et ∈ Et−1. Moreover, suppose an associated set of vertices ∆P ⊆ Vt−1 are pruned by
Prune to obtain the graph Gt = (Vt, Et) which is a φ/6-expander, where Vt = Vt−1 \∆P and Et is the subset of
Et−1 \ {et} induced on Vt.

Then, starting from a locally optimal orientation ~Gt−1 we can compute a locally optimal orientation ~Gt by
performing at most Lt flips satisfying

Lt ≤
(

logm

φ2γ
+

vol0(∆P) logm

φ2γ

)
+ Φ(~Gt−1)− Φ(~Gt) .

With this our algorithm description is complete. For the discrepancy analysis, note that our algorithm at
all times maintains a locally optimal orientation in each expander at each level, and every vertex appears in
at most polylog(n) expanders from Theorem 3.4, giving us an overall discrepancy of polylog(n) by combining
with Theorem 3.3. For the recourse analysis, any time the insertion algorithm overflows and a rebuild happens
in the higher level, we can charge the recourse to the adversarial insertions as well as re-insertions of the edges

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

removed by Prune. The latter is in turn bounded in terms of the adversarial deletions by Theorem 3.5. Finally,
we bound the total recourse within an expander, as parts of it are pruned out, for which we appeal to Theorem 3.6.
Since Theorem 3.5 (iii) ensures that the total volume of all the sets which are pruned can be bounded in terms of
O(1/φ) times the number of adversarial deletions, we get that the total number of flips done over a sequence of
adversarial deletions in any expander is at most logm

φ3γ times the number of adversarial deletions plus the potential

Φ(~G0) of the initial expander, which is small since we start with an optimal orientation where each vertex has
discrepancy at most 1 when the expander is formed.

3.2 Local-Search for Weakly-Regular Expanders In this section we prove Theorem 3.3 that local search
ensures low discrepancy on any weakly-regular expander. Recall that the local search flips an edge (u, v) oriented
from u to v whenever disc(v) > disc(u) + 2.

Algorithm 2 Local-Search

Input: Graph G = (V,E) and an initial partial orientation.
Output: Revised orientation which is a local optimum.

1: Arbitrarily direct any undirected edges in G.
2: While there exists a directed edge (u, v) such that flipping it decreases Φ :=

∑
u disc(u)2, flip it.

Proof. [Proof of Theorem 3.3] Let ~G = (V, ~E) be the directed graph corresponding to a local optimum. Consider
the node v with largest discrepancy k; without loss of generality, assume k ≥ 0. We perform a breadth-first-search
(BFS) in ~G starting from v, but only following the incoming edges at each step. Let Li be the vertices at level

i during this BFS, i.e., Li is the set of vertices w for which the shortest path in ~G to v contains i edges. Let Si

denote the set of vertices up to level i, i.e., Si :=
⋃i

i′=0 Li′ . The fact that ~G is a local optimum means there are
no improving flips, and hence the discrepancy of any vertex in Li is at least k − 2i. In turn, this implies that
there are at least k/2 layers, and the discrepancy of any vertex in Sk/4 is at least k/2. We now show that the
volume of Sk/4’s complement is large.

Claim 3.7. vol(V \ Sk/4) ≥ 2γm/3.

Proof. Each node in Sk/4 has discrepancy at least k/2, and each node in V \ Sk/4 has discrepancy at least −k.
Since the total discrepancy of all the vertices in V is 0, it follows that

0 =
∑

v∈V

disc(v) ≥ |Sk/4| · k/2− |V \ Sk/4| · k.

This implies that |V \ Sk/4| ≥ n/3. Now γ-weak-regularity implies each vertex in G has degree at least γ · 2mn ,
and hence the sum of the degrees of the vertices in V \ Sk/4 is at least 2mγ/3.

We now show that the size of the edge set E(Si) increases geometrically.

Claim 3.8. For any i ≤ k/4, |E(Si+1)| ≥ (1 + φγ/3)|E(Si)|.

Proof. Given a directed graph ~G and a subset X of vertices, let δ−(X) and δ+(X) denote the set of incoming
edges into X (from V \X), and the set of outgoing edges from X (to V \X) respectively. Since the discrepancy
of each vertex in Si is positive,

0 ≤
∑

w∈Si

disc(w) =
∑

w∈Si

(
|δ−(w)| − |δ+(w)|

)
= |δ−(Si)| − |δ+(Si)|.

The expansion property now implies that

|δ−(Si)| ≥ 1
2 |δ(Si)| ≥ φ

2 ·min
(
vol(Si), vol(V − Si)

)
.(3.1)

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2. vol0(B′) < φ
6 vol0(A): Consider the cut (A, V0 \B). Now,

|E0(A, V0 \B)| = |E0(A, V0 \A)| − |E0(A,B′)|
≥ φ · vol0(A)− vol0(B′) ≥ 5/6 · vol0(A).

On the other hand, A is pruned by our algorithm because it is a sparse cut, i.e., |E′
t(A, V0 \B)| < φ

6 ·vol0(A).

Therefore, the total number of deletions t is at least 5φ
6 vol0(A) − φ

6 vol0(A) = 4φ
6 vol0(A). Now we argue as

in the first case. We get

t >
3φ

6
vol0(A) +

φ

6
vol0(A) >

3φ

6
vol0(A) + vol0(B′) ≥ 3φ

6
vol0(B′ + A) =

φ

2
vol0(B) .

Since t ≤ φ2m/20, we again get vol0(B) ≤ m.

3.4 Dynamic Local-Search on Expanders with Deletions In this section we show how to dynamically
maintain a locally-optimal orientation of an expander, as parts of it are pruned out over time, thereby
proving Theorem 3.6. The algorithm appears as Algorithm 4. We assume that the expander Gt−1 is maintained
by dynamic pruning procedure Prune and satisfies the expansion properties of Theorem 3.5. We also assume that
we have a locally optimal orientation ~Gt−1 inductively maintained by Algorithm 4. Then, when the adversary
deletes an edge et and Prune computes a set ∆P of vertices to remove from Gt−1 to obtain a graph Gt, we show

how to compute a locally optimal orientation ~Gt with a bounded number of flips.

Recall that we do this via a potential function argument. For any graph H and current orientation ~H, the
potential of this orientation is Φ(~H) :=

∑
v∈V (H) disc(v)2. Indeed, the main issue is that there could be some

vertices in Vt−1 \ ∆P which are incident to many edges from ∆P . Hence, if we remove ∆P in one shot, the
potential of the residual graph could increase a lot. To resolve this, we replace ∆P by a set F of an equal number
|∆P | of fake vertices, and replace all the edges between Vt := Vt−1 \∆P and ∆P with edges between Vt and F in

a balanced round-robin manner to preserve the discrepancy of every vertex of Vt w.r.t. its discrepancy in ~Gt−1.
Due to this balanced way of distributing the edges, we can show that the potential of the fake graph over Vt∪F is
no more than that of ~Gt−1, and moreover, even after deleting a subset F ′ ⊆ F of fake vertices, Gt ∪ (F \F ′) is an
expander. These properties motivate running the following algorithm: transition from Gt ∪ F to Gt by removing
the fake vertices (and its incident edges) one-by-one, and re-running local search after each deletion.

Algorithm 4 Prune-and-Reorient(~Gt−1, et,∆P)

Input: Graph Gt−1 = (Vt−1, Et−1) with orientation ~Gt−1, deleted edge et, and pruned set ∆P ⊆ Vt−1.

Output: A low-discrepancy orientation ~Gt for Gt = (Vt, Et) where Vt := Vt−1 \ ∆P and Et is the subset of
Et−1 \ {et} induced on Vt.

1: Create fake vertices F := {f1, . . . , fN}, where N = |∆P |, and define Ht := (Vt ∪ F,Et).
2: Let E+ be edges in Et−1(Vt,∆P) \ {et} oriented from Vt to ∆P . Denote E+ = {e1, . . . , er}, such that all

edges incident to a vertex in Vt appear consecutively.
3: for i = 1, . . . , r do
4: For edge ei = (vi, pi) ∈ E+, add edge (vi, f(i mod N)+1) into Ht oriented from vi to f(i mod N)+1.

5: Repeat above loop for edges E− in Et−1(Vt,∆P) \ {et} oriented into Vt; adds more edges to Ht.
6: Run Local-Search on Ht.
7: for each 1 ≤ j ≤ N do
8: Remove vertex fj and incident edges from Ht.
9: Run Local-Search on (the current graph) Ht.

10: Define the final orientation ~Gt to be the final orientation ~Ht of Ht (there are no fake vertices).

Proof. [Proof of Theorem 3.6] Let Hj
t denote the graph Ht after the removal of the fake vertices f1, . . . , fj , so

that H0
t = Ht. Since t is fixed, we suppress the subscript t for the rest of this discussion.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1. |Ej(Sf , Vt \ Sr)| ≥ volj(Sf)/2: In this case,

|Ej(S,W j \ S)| ≥ |Ej(Sr, Vt \ Sr)|+ |Ej(Sf , Vt \ Sr)| ≥ φ

12
volj(Sr) +

1

2
volj(Sf) ≥ φ

12
volj(S).

2. |Ej(Sf , Vt \ Sr)| ≤ volj(Sf)/2: This implies volj(Sr) ≥ volj(Sf)/2. Therefore,

|Ej(S,W j \ S)| ≥ |Ej(Sr, Vt \ Sr)| ≥ φ

12
volj(Sr) =

φ

36
(volj(Sr) + 2volj(Sr)) ≥ φ

36
volj(S).

Hence the proof of Lemma 3.1 follows.

Next we show that Local-Search gives low discrepancy on the graphs Hj , even though they may not be weakly-
regular.

Lemma 3.2. For every j ∈ {0, . . . , N}, the discrepancy of Hj at a local optimum is O
(
logm
φ2γ

)
.

Proof. We apply Corollary 3.1 to Hj . Lemma 3.1 implies that Hj is φ/36-expander, so it suffices to show that a
large fraction of the vertices of Hj have large degree.

First of all, since we allow at most D = φ2m/20 deletions, vol0(Pt) ≤ 6
5φ ·

φ2m
20 = 3φm

50 by Theorem 3.5(iii). Using

γ-weak-regularity of G0 and γ = φ/4 (Theorem 3.4), this implies |Pt| ≤ n
2mγ ·

3φm
50 = 3n

25 . So Hj has at least

22n/25 vertices. It follows that |Pt| ≤ 3n′/22 ≤ n′/7, where n′ denotes the number of vertices in Hj . Now,
Theorem 3.5(ii) implies that the degree of any vertex belonging to set Vt in the graph Gt is at least φδ/6, where
δ ≥ 2γm/n. (This uses that G0 is γ-weakly-regular). Thus, the degree of any vertex in Vt in the intermediate
graph Hj is also at least

φδ

6
=

2γφm

6n
≥ 22γφm′

75n′
=

(
11γφ

75

)
· 2m′

n′
,

where m′, n′ denote the number of edges and vertices in Hj respectively (since m′ ≤ m and n′ ≥ 22n/25 as shown
above). The desired result now follows from Corollary 3.1.

We are now ready to conduct the potential-based analysis for bounding the number of flips. We bound the
recourse by studying the `2-potential Φ(~Hj) :=

∑
w∈V (Hj) disc(w)2 as we transition from Gt−1 to Gt. Indeed,

note that a flip made by local search decreases the potential by at least 1, so the recourse is at most the total
increase in the potential. This increase happens during Algorithm 4 when we replace ∆P by F to get the graph
Ht (with its resulting orientation), and when we remove the fake vertex fj from Hj−1

t to get Hj
t (in line 8). We

bound the potential increase during each of these steps.

We give some notation first. Let ~Gt−1, ~Gt, ~H
j
t be the subgraphs Gt−1, Gt, H

j
t oriented after running Local-

Search respectively. Let ~G′
t−1 denote ~Gt−1 \ {et}. Recall that E+, E− (and therefore Ht) are defined using

edges of ~G′
t−1. Let H̃t be the orientation of Ht just after we replace ∆P by F in ~G′

t−1 (i.e., before line 6).

Similarly let H̃j (we again suppress the subscript t for ease of notation) be the orientation of Hj just after we
remove fj but before we run Local-Search on it (in line 9). Since edges are added in a round-robin manner
between Vt and ∆P in Ht, there are no parallel edges.

Claim 3.11. Φ(~G′
t−1)− Φ(~Gt−1) is at most O

(
logm
φ2γ

)
.

Proof. Recall that ~G′
t−1 is obtained by removing et from ~Gt−1. Let d be the maximum discrepancy of a vertex

in ~Gt−1. Theorem 3.5 implies that Gt−1 is an Ω(φγ)-weakly-regular Ω(φ)-expander, so Theorem 3.3 implies

that the discrepancy d is O
(
logm
φ2γ

)
. Hence the removal of et from ~Gt−1 can increase the potential by at most

2((d + 1)2 − d2) = 2(2d + 1) = O
(
logm
φ2γ

)
, thus proving the claim.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Next, we show that the potential cannot increase while going from ~G′
t−1 to H̃t. This uses the fact that we

essentially re-distributed all the edges in E+ and E− in a balanced round-robin manner.

Claim 3.12. Φ(H̃t)− Φ(~G′
t−1) ≤ 0.

Proof. For a given sum s and variables satisfying
∑N

i=1 xi = s, the optimal (w.r.t. `2 norm) integer assignment

of variables has xi ∈ {ba+−a−

N c, ba+−a−

N c + 1} for all i and is unique up to permutations. For our problem,
s = a+ − a− and the xi’s denote the discrepancies of the fake vertices. So it suffices to prove the following:

Claim 3.13. For each addition of an edge (v, f) ∈ (E+ ∪ E−) in Algorithm 4, ∃ d′ such that just after the
addition, {disc(f ′) | f ′ ∈ F} ⊆ {d′, d′ + 1}. In particular, after the addition of all edges, {disc(f ′) | f ′ ∈ F} ⊆
{ba+−a−

N c, ba+−a−

N c+ 1}.

Proof. Recall that we first add the edges in E+. Since they are added in round robin fashion, the claim is trivially
true up to this point. At this point, there will be some prefix of vertices F ′ ⊆ F with discrepancy d′ + 1 and the
rest have discrepancy d′. Now consider the addition of edges in E−. If |E−| ≤ |F ′|, then nodes in F \ F ′ remain
unchanged and the discrepancy of some nodes in F ′ will become d′, thus still satisfying the desired property.
If |E−| > |F ′|, then after |F ′| insertions, all nodes will have discrepancy d′, and after this point, discrepancies
decrease by 1 in a round-robin fashion, thus maintaining the desired property. In particular, after the insertion of
all edges, we have d′ = ba+−a−

N c. This is because if a+−a−

N is integral, then all vertices in F will have discrepancy
a+−a−

N = ba+−a−

N c and if a+−a−

N is non-integral, since it is the average discrepancy, it is a convex combination of

d′ and d′ + 1, implying d′ = ba−−a+

N c.

As explained in the beginning of the proof, the claim immediately implies that Φ(H̃t) ≤ Φ(~G′
t−1).

Claim 3.14. For any j ∈ {1, . . . , N}, if δ(fj) is the degree of fj in Ht, the potential change is

Φ(H̃j)− Φ(~Hj−1) ≤ O

(
δ(fj) logm

φ2γ

)
.

Proof. Let d be the maximum discrepancy of a vertex in ~Hj−1. When we remove the fake vertex fj from ~Hj−1,
the discrepancy of the neighbors of fj changes by 1, and so the potential increases by at most 2dδ(fj). Lemma 3.2

shows that d is O
(
logm
φ2γ

)
.

Claims 3.11, 3.12 and 3.14 show that the total increase in the potential due to deletion of et, creation of Ht

and deletion of a fake vertices is at most logm
φ2γ + vol0(∆P) logm

φ2γ . If Lt denotes the number of flips performed by

Local-Search during Prune-and-Recolor(Gt−1, et), then

Φ(~Gt)− Φ(~Gt−1) ≤
(

logm

φ2γ
+

vol0(∆P) logm

φ2γ

)
− Lt.

This completes the proof of Theorem 3.6.

We end this section by using Theorem 3.6 in an aggregate sense, over a sequence of t adversarial deletions.

Theorem 3.15. Let G0 = (V0, E0) be a γ-weakly-regular φ-expander with m edges and n vertices. Suppose at
most D = φ2m/20 edges are deleted adversarially. Then for any t ≤ D, the total number of edge flips performed
by Algorithm 4 during the first t deletions is at most O

(
logm
φ3γ · t + m

)
.

Proof. The proof is to simply combine Theorems 3.5 and 3.6 over the sequence of adversarial deletions. Indeed,
we can use the facts that the total volume of the pruned set is at most vol0(Pt) ≤ 6t/(5φ) along with Φ(~G0) ≤ m

(optimal offline orientation of G0 has discrepancy at most n ≤ m), and Φ(~Gt) ≥ 0 to complete the proof.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

3.5 Putting Everything Together We now formally describe our overall algorithms and analyses. To keep
track of the internal states of the algorithms, we maintain an internal clock which is initialized at moment τ = 0
(but eventually τ will exceed time t). At any moment τ , we maintain a decomposition of the current graph
Gcurr(τ) into several subgraphs {Gi(τ)}i≥0, where Gi(τ) is the level-i subgraph of Gcurr(τ). These subgraphs
maintain the following invariants:

(I1) For each moment τ and level i, the graph Gi(τ) has at most 2i edges.

(I2) For every τ and i, subgraph Gi(τ) has a creation moment τ0 which is at most τ . Graph Gi(τ) is a subgraph
of Gi(τ0), i.e., we only delete edges from this level between τ0 and τ .

(I3) For each τ and i, we maintain a decomposition of Gi(τ) into subgraphs Gi,j(τ) for j ≥ 1, such that any
vertex appears in at most log2 n of these subgraphs. Moreover, if τ0 is the creation moment of Gi(τ), then
Gi,j(τ0) is γ-weakly-regular φ-expander for all j, and Gi,j(τ) is a subgraph of Gi,j(τ0) for all j.

Although not mentioned explicitly in the invariants, the subgraph Gi,j(τ) also has expansion and the weak-
regularity properties given by Theorem 3.5: in the notation of this theorem, Gi,j(τ) = Gt, where G0 is the
corresponding subgraph at the creation moment τ0 of Gi(τ).

Edge Insertions. We first consider the (easier) case of adversarial edge insertions. The algorithm appears in
Algorithm 5. We first insert the edge e into level-1. Whenever a level-j subgraph overflows (i.e., has more than
2j edges), we empty this level and move all the edges to the subsequent level. If this process stops at level j, we
build a new expander decomposition of the graph at this level using Theorem 3.4, and also recompute an optimal
offline low-discrepancy discrepancy orientation for each expander. As mentioned before, it is easy to optimally
orient any graph in the offline setting: we consistently orient the edges of all cycles, to be left with a forest.
We can then again orient all the maximal paths between pairs of leaves in a consistent manner, to end up with
an orientation where every vertex has discrepancy in {−1, 0, 1}. Note that since it is the optimal discrepancy
solution, it is also a locally optimal orientation.

Algorithm 5 Insert(e, τ)

Input: Edge e to be inserted in Gcurr(τ).
Output: Graph Gcurr(τ + 1) with decomposition into levels.

1: Find the smallest i such that {e} ∪G1(τ) ∪ · · · ∪Gi(τ) has at most 2i edges.
2: Set Gi′(τ + 1) = ∅ for i′ = 1, . . . , i− 1.
3: Set Gi′(τ + 1)← Gi′(τ), for all i′ > i and Gi(τ + 1)← {e} ∪G1(τ) ∪ · · · ∪Gi(τ).
4: Let the expander decomposition of Gi(τ + 1) (using Theorem 3.4) return subgraphs Gi,j(τ + 1), j ≥ 1; define

their creation moment to be τ + 1.
5: Find a discrepancy-at-most-1 orientation for each Gi,j(τ + 1), j ≥ 1.
6: τ ← τ + 1

Edge Deletions. For the case of adversarial edge deletions, when an edge e is deleted from subgraph Gi,j(τ),

we first check if
φ2mi,j

20 edges have been deleted from Gi,j(τ0), where τ0 is the creation moment of Gi(τ) and
mi,j was the number of edges in Gi,j(τ0). If so, we remove the subgraph Gi,j(τ) and re-insert these edges (these
are called internal inserts). Otherwise, we run Algorithm 3 on Gi,j(τ) and edge e to get subset ∆P , and then
call Algorithm 4 which removes ∆P (via secondary deletes) and reorients edges of Gi,j(τ). Finally, the edges of
∆P are re-inserted (causing more internal inserts). The algorithm is shown formally in Algorithm 6.

We are now ready to analyze the discrepancy of Gcurr(τ) for all τ , as well as the amortized recourse. We will
prove the following quantitative version of Theorem 1.2.

Theorem 3.16. (Main Theorem: Graph Orientation) Suppose we start with the empty graph on n vertices
and it undergoes adversarial edge insertions and deletions. There is an algorithm that maintains discrepancy of
O(log7 n) with an amortized recourse of O(log5 n) per update.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 6 Delete(e, τ)

Input: Edge e to be deleted from Gcurr(τ).
Output: Graph after deletion of edge e.

1: Find the level i and index j such that e belongs to Gi,j(τ).
2: Let τ0 ← creation moment of Gi(τ), and mi,j ← number of edges in Gi,j(τ0).
3: Let Ti,j be the set of τ ′ ∈ [τ0, τ] at which an adversarial edge deletion happened in Gi,j(τ

′).
4: if |Ti,j | ≥ φ2mi,j/20 then
5: Remove all edges in Gi,j(τ), re-insert all except e one-by-one using Algorithm 5 while incrementing τ .
6: else
7: ∆P ← Prune(Gi,j(τ), e) (see Algorithm 3, where t = |Ti,j |, and Gt−1 = Gi,j(τ)).
8: Gi,j(τ + 1)← Prune-and-Reorient(Gi,j(τ), e,∆P) (see Algorithm 4) and τ ← τ + 1.
9: Reinsert edges of ∆P except e one-by-one while incrementing τ using Algorithm 5.

Proof. Firstly, we can assume w.l.o.g. that we never have parallel edges, as we can handle repetitions in the
following black-box manner. Let E denote the set of active edges and let E′ denote the set of active edges in the
no-repetitions black-box. For the copies of an edge e in E (call it Te), we will maintain the following invariants:
(a) if |Te| is even, then e /∈ E′ and half of them are signed +1 and, (b) if |Te| is odd, then e ∈ E′ and the 1’s
and −1’s in Te differ by at most one such that overall the signs add up to σ′(e). These invariants ensure that the
discrepancy for E is equal to that for E′. To maintain these invariants:

1. If |Te| is even and e is added/deleted in E, then call insert procedure with e into E′ and for each edge e′

whose orientation changes in E′, you have to flip exactly one copy in Te′ to satisfy the invariant.

2. If |Te| is odd and e is added/deleted in E, then you have to re-orient at most one of edge in Te to ensure
that +1’s and −1’s are equal in Te. Then call delete procedure on e from E′. Again, for each edge e′ flipped
in E′, you have to flip exactly one copy in Te′ to satisfy the invariant.

For the rest of the proof we assume that there are no parallel edges. We first bound the recourse of the algorithm.
There are two sources of recourse:

(a) While performing a discrepancy-at-most-1 orientation in Line 5 of Insert (Algorithm 5): this could happen
due to adversarial insert or internal inserts, i.e., due to lines 5 or 9 in Algorithm 6.

(b) During Local-Search performed inside procedure Prune-and-Reorient, called in line 8 of Algorithm 6.

We first bound the number of calls to the Insert procedure. Let T denote the total number of adversarial inserts
and deletes.

Claim 3.17. The total number of calls to Insert procedure is at most 2T
φ2γ .

Proof. Clearly, the number of adversarial inserts is at most T . First consider the internal inserts caused by line 5
of Algorithm 6. These can be charged to the φ2γmi,j adversarial deletes in the set Ti,j . Therefore, the number of
such calls to Insert procedure is at most T

φ2γ . Similarly, the number of inserts in line 9 of Algorithm 6 is at most

vol0(∆P), the total number of such internal inserts corresponding to a fixed expander graph which undergoes

D′ ≤ D adversarial edge deletions is at most 6D′

5φ (by Theorem 3.5). Summing over all expanders, this quantity

is at most 6T
5φ . Thus, the overall number of calls to Insert is at most 2T

φ2γ .

We now bound the recourse caused by rebuilding of levels due to insertions.

Claim 3.18. The total re-orientations due to Line 5 of Insert is at most 4T logm
φ2γ .

Proof. For a fixed level i?, let T ′ be the set of τ when we call Insert and the index i selected in line 1 in
Algorithm 5 happens to be i?. For any such moment τ , the total number of edges added to Gi(τ + 1) is at most
2i

?

and at least 2i
?−1. It follows that the number of re-orientations due to Line 5 of Insert at this moment is also

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

at most 2i
?

. Note that we empty the levels 1, . . . , i? − 1 at this moment. Therefore, between any two consecutive
moments in T ′, we must have inserted at least 2i

?−1 edges (these could be either adversarial or internal inserts).
Thus, the total number of re-orientations due to Line 5 of Insert for all moments in T ′ is at most twice the total
number of calls to Insert, which is at most 2T

φ2γ (by Claim 3.17).

Since there are at most logm levels, the desired result follows.

We will next bound the recourse due to local-search steps in the Prune-and-Reorient procedure.

Claim 3.19. The total number of re-orientations due to Local-Search called in line 6 of Algorithm 4 is

O
(

T logn
γφ3

)
.

Proof. Consider any particular expander graph Gi,j(τ0) created at moment τ0. Consider the calls to the Prune-
and-Reorient procedure where the deleted edge belongs to Gi,j(τ

′) for some τ ′ ≥ τ0. We know that D′ ≤ D,
this inequality could be strict because we may remove all the level i edges at some moment because of line 2
in Algorithm 5. Theorem 3.15 shows that the total number of re-orientations due to Local-Search called in line 6

of Prune-and-Reorient procedure during these D′ moments is at most (a constant factor of) D′ logm
γφ3 + mi,j ,

where mi,j is the number of edges in Gi,j(τ). When we add the above for all expanders, the first term is at most
T logm
γφ3 . The second term is the sum over all expanders that get created during the algorithm of the number of

edges in the expander. Expanders are created in line 4 of Algorithm 5, and so their total size can be bounded in
the same manner as the argument used in the proof of Claim 3.18. Hence this quantity is at most 4T logm

φ2γ .

Since we use φ, γ = Θ(1/ log n), the above results show that the amortized recourse is at most O
(
γ−1φ−3 log n

)
=

O
(
log n · log3 n · log n

)
= O(log5 n). We now bound the discrepancy of any vertex.

Claim 3.20. The discrepancy of any vertex is bounded by O(log7 n) at all times.

Proof. From Lemma 3.2, discrepancy of a vertex in any expander is O(φ−2γ−1 logm), which is O(log4 n) since
we use γ, φ = Θ(1/ log n). Since each vertex appears in at most O(log3 n) expanders, we get that the discrepancy
is bounded by O(log7 n) at all times.

This completes the proof of Theorem 3.16.

4 Lower Bounds for Local Search

In this section, we will show that for general vectors and general graphs, typical `2-potential local search procedures
do not guarantee low discrepancy.

4.1 The `2-Potential for General Vectors The `2-potential for a signing {εi} for vectors ai is∑
j(
∑

i εiaij)
2 = ‖S‖2, where S :=

∑
i εiai. Hence we are at a local optimum if for each i, the potential

change ‖S − 2εiai‖2 − ‖S‖2 due to flipping ai is non-negative. We will show that there exist locally optimal
solutions on T vectors with discrepancy Ω(

√
T).

Consider the following set of vectors in 2 dimensions: T/2 vectors of the form (1, 1/
√
T) and T/2 vectors of the

form (−1, 1/
√
T) with signing ε = 1. Adding these vectors, we get S = (0,

√
T). Now, for any vector a (w.l.o.g.

a = (1, 1/
√
T)) in the collection,

||S − 2a||22 − ||S||22 = ||(−2,
√
T − 2√

T
)||22 − ||(0,

√
T)||22 = 4 +

(√
T − 2√

T

)2

− T =
4

T
> 0.

Hence, this is indeed a local optimum and has discrepancy
√
T .

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

4.2 The `2-Potential for {±1}-Vectors The `2-potential for a signing {εi} for ±1-vectors ai is∑
j(
∑

i εiaij)
2 = ‖S‖2, where S :=

∑
i εiai. Hence we are at a local optimum if for each i, the potential

change ‖S − 2εiai‖2 − ‖S‖2 due to flipping ai is non-negative. Since ‖ai‖22 = n, the above condition is equivalent
to showing

Sᵀ(εiai) ≤ n(4.4)

for all i. We can show an Ω(2n/2) locality gap in this case.

Lemma 4.1. There is a family of instances of {±1} vectors, one for each n that is a multiple of 8, having local
optima with discrepancy Ω(2n/2) but global optima having zero discrepancy.

Proof. We construct a {±1} matrix M with n columns and 2 ·∑n/2
i=1 ri rows, where ri is set later. We prove

that giving signs ε = 1 to the rows of this matrix is a local optimum with large discrepancy. Let S = εεεM
denote the sum of the rows of M . Our construction consists of repeating units, where the ith repeating unit (for
i = 1, . . . , n/2) is the following 2× n sub-matrix:

[[
−1 −1
−1 −1

]
repeated i− 1 times,

[
1 1
1 1

]
,

[
1 −1
−1 1

]
repeated n

2 − i times

]

2×n

.

This unit is repeated ri times. We will later set ri to an even number, implying that any vector appears an even
number of times. Therefore, by signing these even number of copies in an alternating fashion, we get that the
global optimum has discrepancy 0. By construction, S = (s1, s1, s2, s2, ..., sn/2, sn/2) for some integers sj . Define
~s := (s1, s2, . . . , sn/2).

Claim 4.1. Let B be the n
2 × n

2 lower-triangular matrix with 1s on the diagonal and −1s in the lower triangle.
Then using ~r := (r1, . . . , rn/2)ᵀ = n

4 (B−1)ᵀB−11 results in M whose row-sum S = (s1, s1, s2, s2, . . . , sn/2, sn/2)
satisfies ~s := (s1, s2, . . . , sn/2)ᵀ = 2Bᵀ~r. Moreover, εi = 1 for all i is a local optimum.

Proof. The row sum (s1, s1, s2, s2, . . . , sn/2, sn/2) satisfies:

2r1 − . . .− 2rn/2−1 − 2rn/2 = s1

...

2rn/2−1 − 2rn/2 = sn/2−1

2rn/2 = sn/2

which implies ~s = 2Bᵀ~r. Next, we check the condition (4.4) for local optimality: for any vector a in the ith

repeating unit,
〈S, a〉 = −2s1 − 2s2 − . . .− 2si−1 + 2si = 2(B~s)i = 2(B · 2Bᵀ~r)i = n.

Putting the facts from Claim 4.1 together, the discrepancy vector ~s = 2Bᵀ~r = n
2B

−11. We explicitly write down
the inverse of the lower-triangular matrix as follows:




1

−1
. . .

...
. . .

. . .
...

. . .
. . .

−1 · · · · · · −1 1




−1

k×k

=




1

1
. . .

2
. . .

. . .
...

. . .
. . .

. . .

2k−2 · · · 2 1 1




,

Using this, we get that ~s has entries of value Ω(2n/2), which proves Lemma 4.1.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We can show that for {±1} vectors, discrepancy at a local optimum is bounded by a function of n, independent
of T . Without loss of generality, S has all positive coordinates. For any vector u ≥ 1,

‖S‖∞ ≤ 〈S, u〉

Suppose there is such a u of the form
∑

xiai with xi ≥ 0, then we will get ‖S‖∞ ≤ n · (∑xi) since 〈S, ai〉 ≤ n.
Clearly xi = 1 is a feasible solution, but instead let us optimize it as follows.

min
∑T

i=1 xi

xi ≥ 0 for i = 1, . . . , T (T constraints)
∑T

i=1 xiai ≥ 1 (n constraints)

Let x∗ be a corner in the feasible region. By definition of a corner, we will have T linearly independent tight
constraints at x∗. Let n′ ≤ n of them be of the second kind and T − n′ of the first kind. That is, there are
n′ non-zero x∗

i ’s. Then we will have
∑

i:x∗

i
6=0 x

∗
i a

′
i = 1, where a′i is obtained from ai by retaining only the n′

coordinates corresponding to tight constraints. Arranging these n′-dimensional vectors as columns of a matrix,
we get a n′ × n′ matrix V with V β = 1, where β is a n′ dimensional vector containing the nonzero x∗

i ’s. V is
full rank since if the rows had a non-trivial linear combination giving zero, then using those coefficients for the
n′ type-2 tight constraints will give a vector that is non-zero only at positions i where x∗

i = 0. So it is a linear
combination of the T − n′ type 1 tight constraints of the form xi = 0. This contradicts the linear independence
of the tight constraints at a vertex. Hence V is full rank, which implies β = V −11.

Claim 5.1. The entries of β are bounded by nO(n).

Proof. For a k × k matrix M , det(A) =
∑

π∈Sk
sign(π)m1,π(1)m2,π(2)...mk,π(k). Since there are at most kk

permutations, any k × k matrix with ±1 entries has determinant at most kk. We know that V −1 = adj(V)
det(V) and

each entry of adj(V) is the determinant of a (n′ − 1) × (n′ − 1) submatrix of V (i.e., by removing a row and
column). Also since V is an invertible ±1 matrix, | det(V)| ≥ 1. Hence we have that entries of V −1 are bounded
by (n′ − 1)n

′−1 = O(nn), and since β = V −11, the entries of β are also bounded by nO(n).

Now recall that ‖S‖∞ ≤ n · (∑T
i=1 αi) = n · (∑n′

j=1 βj) since β is a n′ dimensional vector containing the non-zero

xi’s. Claim 5.1 implies that this quantity is at most n · (∑n′

j=1 n
O(n)) ≤ n · (n′ · nO(n)) = nO(n).

5.2 Local Search for General Graphs: Upper Bounds In this section, we will show upper bounds for a
simple variant of Local-Search involving flips along directed paths instead of single edges. We will refer to it
by Path-Local-Search with parameter L (Algorithm 7). This is simpler than the method involving expander
decompositions (Theorem 3.16), but does not guarantee logarithmic bounds. (In the next section, we show our
analysis is tight.)

Algorithm 7 Path-Local-Search

Input: Graph G = (V,E) and an initial partial coloring, Parameter L.
Output: Revised orientation which is a local optimum.

1: Arbitrarily direct any undirected edges in G.
2: While there exists a directed path (u0, . . . , ul) with l ≤ L such that disc(ul) > disc(u0) + 2, flip all the edges

in the directed path.

Theorem 5.2. Suppose we start with the empty graph on n vertices and it undergoes adversarial edge insertions
and deletions such that at any point, the graph does not have multiple edges. Then there is a deterministic
algorithm that achieves O(D) discrepancy with O(

√
n/D) amortized recourse for any Ω(1) ≤ D ≤ O(n).

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. Let t = 2a1 + 2a2 + . . . + 2as , where a1 > a2 > . . . > as ≥ 0. Let τi =
∑

j≤i 2aj . To prove the
discrepancy bound, the main observation is that at each timestep t, the current signing consists of the output
of A on dlog2 te different subintervals of the input sequence: {v1, . . . , vτ1}, {vτ1+1, . . . , vτ2}, all the way down to
{vτs−1+1, . . . , vτs = vt}. (This can be proved using an inductive argument.) The discrepancy for each of these
logarithmically-many is at most D, by our assumption on the algorithm A, which proves the first claim. The
second claim uses that each time a vector is given a new sign, it belongs to an subinterval of twice the length;
this can happen only O(log T) times.

Using the algorithm of [Ban98, BDG16] gives us the following result.

Corollary 6.1. There is an algorithm for the insert-only setting that ensures a discrepancy of O(
√

log n log T)
for any sequence of vectors of `2 length at most 1 (and hence discrepancy of O(

√
s log n log T) for any sequence

of s-sparse vectors with entries in [−1, 1]) in O(log T) amortized recourse per update.

Another interesting future direction is to get near-optimal discrepancy for small worst-case recourse per update
(instead of amortized recourse). E.g., in the setting of Open Problem 6.1, can we achieve Õ(1) discrepancy in
Õ(1) worst-case recourse per update? It will also be interesting to improve Corollary 6.1 to get O(1) amortized
recourse per update, or to even get O(1) worst-case recourse per update.

A Missing Details of Section 2

We first prove Lemma 2.2, which is restated below.

Lemma 2.2. The variables yvi , i ∈ Pv satisfy the invariant properties (I1) and (I2) at the end of DBG(v).

Proof. The proof is by induction on the height of v: we also add to the induction hypothesis the statement that
all the indices i ∈ Pv such that −1 < yvi < 1, belong to Fv. For a leaf node, the set F = Pj , and so using line 7,
we see that

∑
i∈Pj

y′iai = 0. Since yvi = y′i for all i ∈ Pj , the invariant (I1) follows. Invariant (I2) holds because
of Lemma 2.1.

Now suppose v is an internal node and assume that the induction hypothesis holds for its children vL and vR. Since
the assignment x just combines yvL and yvR (line 5), it follows from induction hypothesis that

∑
i∈Pv

xiai = 0.
We ensure in line 5 that

∑
i∈F y′iai =

∑
i∈F aixi. Therefore,

∑

i∈Pv

yvi ai =
∑

i∈F

y′iai +
∑

i∈Pv\F

xiai =
∑

i∈Pv

xiai = 0.

This proves that (I1) is satisfied for yv. For property (I2), first observe that if i /∈ F , then xi ∈ {−1,+1} by
induction hypothesis, and so yvi = xi ∈ {−1,+1} as well. For the indices i ∈ F , at most n of these satisfy
y′i ∈ (−1,+1) (by Lemma 2.1) and so all the variables yvi , i /∈ Fv are either +1 or −1.

We now give details of the procedure DBGUpdate in Algorithm 8. When a vector ah changes to anewh , we only
run the algorithm in Lemma 2.1 for the ancestors of the leaf j in T for which h ∈ Pj . We now show that this
procedure has the desired properties:

Claim A.1. Suppose the assignment yold satisfies the following properties for every node v: (i)
∑

i∈Pv
yoldi ai = 0,

and (ii) there are at most n indices i ∈ Pv for which −1 < yoldi < +1. Then the assignment yr, where r is the root
node, returned by DBGUpdate(r, yold, h, anewh) also satisfies these properties for every node v (with ah replaced
by anewh). Further yr and yold differ in at most O(n log T) coordinates.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 8 Distributed-Bárány-Grinberg Update: DBGUpdate(v, yold, h, anewh)

Input: A node v of T , assignment yold satisfying (I1) and (I2), an index j ∈ Pv where the corresponding vector
aj changes to anewj .
Output: (yv, Fv): an assignment yvi ∈ [−1, 1] for each i ∈ Pv, and Fv ⊆ Pv is the index set of “fractionally”
signed vectors, i.e., indices i such that −1 < yvi < 1.

1: if v is not a leaf then
2: Let vL and vR be the left and the right children of v respectively.
3: Let ` ∈ {L,R} be such that j ∈ Pv`

and `′ denote {L,R} \ {`}.
4: (yv` , Fv`

)← DBGUpdate(a`, y
old, j, anewj), and Fv`′ := {i ∈ Pv`′ | −1 < yoldi < 1}.

5: Define F := Fv`
∪ Fv`′

, xi := yv`

i for all i ∈ Pv`
, xi := yoldi for all i ∈ Pv`′ .

6: else
7: Define F := Pv, xi = 0 for all i ∈ Pv.

8: Using Lemma 2.1 find a vector y′ ∈ [−1, 1]|F | such that (i) AF · y′ = AF ·x|F , (ii) there are at most n indices,
call it Fv ⊆ F , such that −1 < y′i < 1 (note that if h ∈ F , then column h of AF is anewh).

9: Define yvi = xi for i ∈ Pv \ F and yvi = y′i for i ∈ F .
10: Return (yv, Fv).

Proof. Let the index h belong to Pj , where j is a leaf node in T . Let w0 = j, w1, w2, . . . , wH = r, be the path
from j to the root r of T . We prove the following by induction on `. The assignment (yw` , Fv`

) returned by
DBGUpdate(w`, y

old, h, anewh) has the following properties: (i)
∑

i∈Pw`

yw`

i ai = 0, (ii) If −1 < yi < 1 for some

i ∈ Pw`
, then i ∈ Fw`

, (iii) yold|Pw`
and yw` differ in at most 2n(` + 1) coordinates.

The base case when ` = 0 follows easily because of line 8 and Lemma 2.1. Now suppose the induction hypothesis
is true for ` − 1. Assume wlog that w`−1 is the left child of w` and w′ be the right child of w`. By induction
hypothesis and property of yold, we see that (here x is the assignment defined during DBGUpdate for w`):

∑

i∈Pw`

xiai =
∑

i∈Pw`−1

y
w`−1

i ai +
∑

i∈Pw′

yoldi ai = 0.

This proves property (i). Property (ii) can be shown similarly. Again, it follows from induction hypothesis and
the property of yold that |F | ≤ 2n, and so (i) x and yw` differ in at most 2n coordinates, and (ii) yold|Pw`

and x
differ in at most 2n` coordinates. This implies property (iii).

Corollary A.1. The amortized recourse during a phase of the DBGUpdate algorithm is O(n logN).

Proof. When a phase begins, we run Algorithm 1 to ensure that the assignment y satisfies the conditions stated
in Claim A.1 (for the assignment yold). Using this result, we see that after each update operation, these conditions
continue to be satisfied. Therefore, Claim A.1 shows that the recourse encountered after each update operation
is O(n logN).

References

[AAG+19] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna Saha. Dynamic
set cover: improved algorithms and lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 114–125, 2019. 4

[AAN+98] Miklos Ajtai, James Aspnes, Moni Naor, Yuval Rabani, Leonard J Schulman, and Orli Waarts. Fairness in
scheduling. Journal of Algorithms, 29(2):306–357, 1998. 2, 3, 4

[AGZ99] Matthew Andrews, Michel X Goemans, and Lisa Zhang. Improved bounds for on-line load balancing.
Algorithmica, 23(4):278–301, 1999. 4

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[ALS21] Ryan Alweiss, Yang P. Liu, and Mehtaab Sawhney. Discrepancy minimization via a self-balancing walk. In
Proceedings of STOC, 2021. 1, 3, 4, 24

[Ban98] Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Struct.
Algorithms, 12(4):351–360, 1998. 4, 25

[Ban10] Nikhil Bansal. Constructive Algorithms for Discrepancy Minimization. In Proceedings of FOCS 2010, pages 3–10,
2010. 2, 4, 5, 6

[BCH17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic approximate
vertex cover and fractional matching in O(1) amortized update time. In International Conference on Integer
Programming and Combinatorial Optimization, pages 86–98. Springer, 2017. 4

[BDG16] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for komlós conjecture matching banaszczyk’s
bound. In Proceedings of FOCS 2016, pages 788–799, 2016. 4, 6, 25

[BDGL19] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-Schmidt walk: A cure for the
Banaszczyk blues. Theory Comput., 15:1–27, 2019. 4, 6

[Bec81] József Beck. Balanced two-colorings of finite sets in the square I. Combinatorica, 1(4):327–335, 1981. 4
[BF81] József Beck and Tibor Fiala. “Integer-making” theorems. Discrete Appl. Math., 3(1):1–8, 1981. 3, 4
[BF99] Gerth Stø lting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In Algorithms and data

structures (Vancouver, BC, 1999), volume 1663 of Lecture Notes in Comput. Sci., pages 342–351. Springer, Berlin,
1999. 4

[BG81] Imre Bárány and Victor S Grinberg. On some combinatorial questions in finite-dimensional spaces. Linear Algebra
and its Applications, 41:1–9, 1981. 2, 4, 5

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic data structures
for vertex cover and matching. SIAM Journal on Computing, 47(3):859–887, 2018. 4

[BHN19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A New Deterministic Algorithm for Dynamic
Set Cover. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 406–423.
IEEE, 2019. 4

[BHNW20] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Xiaowei Wu. An Improved Algorithm for
Dynamic Set Cover. arXiv preprint arXiv:2002.11171, 2020. 4

[BJM+21] Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Online discrepancy minimization
for stochastic arrivals. In Proceedings of SODA, pages 2842–2861, 2021. 1, 4

[BJSS20] Nikhil Bansal, Haotian Jiang, Sahil Singla, and Makrand Sinha. Online vector balancing and geometric
discrepancy. In Proceedings of STOC, pages 1139–1152, 2020. 1

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically Maintaining a (2 + ε)-Approximate Minimum
Vertex Cover in O(1/ε2) Amortized Update Time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1872–1885. SIAM, 2019. 4

[BLSZ14] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite matching in offline
time. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 384–393. IEEE, 2014. 4

[BS20] Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. Random Struct. Algorithms, 57(4):879–891,
2020. 1, 4

[BvdBG+20] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol
Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR,
abs/2004.08432, 2020. 3, 7, 8

[Bá79] I Bárány. On a class of balancing games. Journal of Combinatorial Theory, Series A, 26(2):115–126, 1979. 4
[CAHP+19] Vincent Cohen-Addad, Niklas Oskar D Hjuler, Nikos Parotsidis, David Saulpic, and Chris Schwiegelshohn.

Fully Dynamic Consistent Facility Location. In Advances in Neural Information Processing Systems, pages 3250–3260,
2019. 4

[CDKL09] Kamalika Chaudhuri, Constantinos Daskalakis, Robert D. Kleinberg, and Henry Lin. Online bipartite perfect
matching with augmentations. In IEEE INFOCOM 2009, pages 1044–1052. IEEE, 2009. 4

[Cha01] Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge University Press, 2001. 4
[EL14] Leah Epstein and Asaf Levin. Robust algorithms for preemptive scheduling. Algorithmica, 69(1):26–57, 2014. 4
[FW83] Ronald Fagin and John H. Williams. A fair carpool scheduling algorithm. IBM J. Res. Dev., 27(2):133–139,

March 1983. 2
[GGK16] Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: maintaining a constant-competitive

Steiner tree online. SIAM Journal on Computing, 45(1):1–28, 2016. 4
[Gia97] Apostolos A Giannopoulos. On some vector balancing problems. Studia Mathematica, 122(3):225–234, 1997. 4
[GK14] Anupam Gupta and Amit Kumar. Online Steiner tree with deletions. In Proceedings of the twenty-fifth annual

ACM-SIAM symposium on Discrete algorithms, pages 455–467. SIAM, 2014. 4
[GKKP17] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online and Dynamic

Algorithms for Set Cover. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

STOC 2017, pages 537–550, New York, NY, USA, 2017. ACM. 4
[GKKS20] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla. Online carpooling using expander

decompositions. In Proceedings of FSTTCS, pages 23:1–23:14, 2020. 3, 7
[GKKV95] Edward F Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vitter. Online perfect matching and mobile

computing. In Workshop on Algorithms and Data Structures, pages 194–205. Springer, 1995. 4
[GKLX20] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. The Power of Recourse: Better Algorithms for

Facility Location in Online and Dynamic Models. arXiv preprint arXiv:2002.10658, 2020. 4
[GKS14] Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching, scheduling, and flows.

In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 468–479. SIAM, 2014.
4

[IW91] Makoto Imase and Bernard M Waxman. Dynamic Steiner tree problem. SIAM Journal on Discrete Mathematics,
4(3):369–384, 1991. 4

[KKPS14] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic graphs with
worst-case time bounds. In Automata, languages, and programming. Part II, volume 8573 of Lecture Notes in Comput.
Sci., pages 532–543. Springer, Heidelberg, 2014. 4

[Kow07] L ukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inform. Process. Lett., 102(5):191–195, 2007. 4
[LM15] Shachar Lovett and Raghu Meka. Constructive Discrepancy Minimization by Walking on the Edges. SIAM J.

Comput., 44(5):1573–1582, 2015. 2, 4, 5, 6
[LOP+15] Jakub Lacki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power of dynamic

distance oracles: Efficient dynamic algorithms for the Steiner tree. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 11–20, 2015. 4

[LSS21] Yang P. Liu, Ashwin Sah, and Mehtaab Sawhney. A gaussian fixed point random walk. CoRR, abs/2104.07009,
2021. 24

[Mat09] Jǐŕı Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science & Business Media, 2009.
4

[PW93] Steven Phillips and Jeffery Westbrook. Online load balancing and network flow. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 402–411, 1993. 4

[Rot14] Thomas Rothvoß. Constructive Discrepancy Minimization for Convex Sets. In Proceedings of FOCS 2014, pages
140–145, 2014. 4

[Spe77] Joel Spencer. Balancing games. Journal of Combinatorial Theory, Series B, 23(1):68–74, 1977. 1, 4
[Spe85] Joel Spencer. Six standard deviations suffice. Trans. Am. Math. Soc., 289(2):679–706, 1985. 2, 4, 5, 6
[SSS09] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded migration. Mathematics

of Operations Research, 34(2):481–498, 2009. 4
[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 81–90, 2004. 7

[SV10] Martin Skutella and José Verschae. A robust PTAS for machine covering and packing. In European Symposium
on Algorithms, pages 36–47. Springer, 2010. 4

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger, and simpler. In
Proceedings of SODA, pages 2616–2635, 2019. 3, 7, 8

[Wes00] Jeffery Westbrook. Load balancing for response time. Journal of Algorithms, 35(1):1–16, 2000. 4

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

