Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

An Improved Local Search Algorithm for k-Median

Vincent Cohen-Addad* Anupam Guptal Lunjia Hu? Hoon Ohf David Saulpic?

Abstract

We present a new local-search algorithm for the k-median clustering problem. We show that local optima
for this algorithm give a (2.836 + €)-approximation; our result improves upon the (3 + ¢)-approximate local-
search algorithm of Arya et al. [AGK™01]. Moreover, a computer-aided analysis of a natural extension suggests
that this approach may lead to an improvement over the best-known approximation guarantee for the problem.

The new ingredient in our algorithm is the use of a potential function based on both the closest and
second-closest facilities to each client. Specifically, the potential is the sum over all clients,; of the distance
of the client to its closest facility, plus (a small constant times) the truncated distance to its second-closest
facility. We move from one solution to another only if the latter can be obtained by swapping a constant
number of facilities, and has a smaller potential than the former. This refined potential allows us to avoid the
bad local optima given by Arya et al. for the local-search algorithm based only on the cost of the solution.

1 Introduction

The k-median problem is a classic optimization problem for metric spaces, and has been widely studied by the
algorithm-design community with a two-fold motivation: on the one hand getting good algorithms for the k-median
problem immediately yields important practical implications in operations research, bioinformatics, or data
analysis. On the other hand, the study of the approximability of k-median has given us a deeper understanding of
key algorithmic ideas like primal-dual techniques and Lagrangian-multiplier preserving algorithms, sophisticated
dependent LP roundings, local search, iterative rounding, and algorithmic notions of stability.

Concretely, given a finite metric space (X,d), where the point set X is partitioned into client locations C and
possible facility locations F, with X := CUF, and a parameter k, the k-median problem asks to pick £ “medians”
F C F to minimize

(1.1) kmed(F) := Y " d(c, F).

ceC

Throughout the paper, given a set S C X, and point z € X we let d(x,S) denote mingeg d(z, s).

An interesting perspective on the k-median problem is to view it as a “metric set cover” problem, where one
needs to find & medians (seen as “sets”) to cover the clients (seen as the universe) — with the relaxation that each
client pays a cost that is a function of how well it is covered and this cost function is a metric. This perspective
has long been known (see e.g. [GK99, JMS02]), but although the complexity of the classic set cover problem is
well-understood since the 90s, the approximability of this metric variant is still quite open.

The current-best result is the 2.675-approximation of Byrka et al. [BPR115], improving on a breakthrough 2.732-
factor of Li and Svensson [LS16]. These papers use the clever idea of finding pseudo-approximations (i.e., solutions
with good cost but opening a few extra facilities) by first giving bi-point solutions (i.e., a feasible fractional solution
that is the convex combination of two integer solutions) using the primal-dual framework, and then rounding these
bi-point solutions carefully into integer solutions. Nevertheless, the gap between these results and the current best
hardness bound of 1+ 2/e remains large. While various techniques can give good approximations for k-median in
specific metrics, the current arsenal for getting a better approximation bound for the general case is not very rich.
E.g., a significant improvement using the bi-point rounding approach seems challenging, since it requires either

" *Google Research, Zurich and Sorbonne Université, Paris.
tCarnegie Mellon University, Pittsburgh PA 15217.
*Stanford University.
$Sorbonne Université, Paris.

1556 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

improving the quality of the bi-point solution computed (on which no progress has been made over the last 20
years), or improving on the rounding scheme. Other techniques to obtain O(1)-approximations are primal-dual,
or greedy-plus-pruning, but the best bounds using these techniques do not even give a 3-approximation. Finally,
the best result before [LS16] was an analysis of the p-swap local-search algorithm that tries to improve the current
solution by closing some p facilities and opening p others. Arya et al. [AGK 01| showed that any local optimum
was a (3 + 2/p)-approximation. However, they also showed instances with a matching “locality gap” for this
algorithm (see §A.2 for a simple example showing a gap arbitrarily close to 3). In summary, the only known way
to do better than a factor of 3 remains bi-point rounding.

In this paper, we draw on parallels with set cover and submodular optimization problems and propose an extension
of the simple local-search paradigm that has the potential to improve the current best-known approximation
factor. While our current analysis does not improve the best approximation it provides the first alternative to
bi-point solutions to go below a 3-approximation—namely, to 2.836—and offers the possibility of better results.
The new idea is to perform the local search with respect to some other “surrogate” potential ®(F') instead of
the k-median objective function. This allows us to avoid the bad local minima present in the standard local
search. Of course, this ® needs to be easily computable, and also to be close enough to the original objective
function so that finding a local-optimum with respect to ® implies a good approximation for k-median objective
as well. Such local-search procedures are called non-oblivious in the literature, and have been successful in several
settings [Ali94, KMSV98, FW12, FW14, GGK*18].

1.1 Our Approach and Results Let d;(c, F) be the distance between the client ¢ and the facility in F' that
is i*"-closest to it, so that di(c, F) = d(c, F) as defined above. Define the potential function

(1.2) B(F) =Y (dl(c, F)+Bmin { dy(c, F),ady(c, F) }).
ceC Y
closest truncated second-closest

For almost all of the paper, we choose @ = 3 and § = 1/5. While we motivate the potential in detail in §1.2,
consider two clients whose closest facilities are both at distance D: one with its second-closest facility at the
same distance D pays (14 8)D =~ 1.2 D, whereas another whose second-closest facility is much farther away pays
(14 aBf)D =~ 1.6 D. Hence a lower potential prefers solutions with good “backup” facilities, so that local moves
can then explore a richer space. Our main result is the following:

THEOREM 1.1. (PSEUDO-APPROXIMATION) Let o = 3,8 = 1/5, and let p(e),r(e) be sufficiently large constants
that depend only on €. If F is a local minimum of our non-oblivious local-search procedure with |F| =k facilities
and swap size p(e), then

kmed(F') < (2.836 4 ¢) - kmed(F™)

for any solution F* with k — r(e) facilities.

We can convert this pseudo-approximation into a regular approximation using ideas from [LS16, ABS10]. Indeed,
if the original instance is “stable” (i.e., if reducing the number of facilities by 7(g)) causes the optimal cost to
increase by more than (1 +¢)), we can get a PTAS [ABS10] in time poly(|X|"(¥)). Hence, this reduction of the
number of facilities does not change the optimal cost much, and then the pseudo-approximation of Theorem 1.1
is also a true approximation.

We are yet to understand the limitations of this specific potential function, and of this general approach. The

best lower bound for this potential function we currently know is the following:

THEOREM 1.2. (LOWER BOUND FOR ®) There exists € > 0 and an infinite family of instances on which the
local-minimum F of our non-oblivious local-search function with constant-sized swaps satisfies

kmed(F) > min{max{(3 — 28 —¢,1+ 48 —¢)}, max{2,« — £} } - kmed(F™).

Balancing the two terms gives us a locality gap lower bound of 2 - kmed(F™) for all values of «, 5.

This lower bound holds even if F is allowed to have more facilities than F*. The gap between the two results above
suggests that local-search with respect to @ still has the possibility of beating the current-best approximation
bounds.

1557 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Extending our Potential Function. We consider extending this non-oblivious approach using more expressive
potentials. E.g., we can look at the ¢ = 3 closest facilities, as follows: (we use d; as shorthand for d;(c, F'), and
(a A'b) :=min(a, b))

ég(F) = Z (d1 + Ba (Olgdl AN dg) +f3 (a3d1 A\ d3))
S — —_——

c€C truncated second-closest truncated third-closest

Again o4, 5; are constants, discussed in §7. A preliminary implementation of this LP discussed in that section
suggests that we can get an approximation ratio of 2.69. However, these are based on experiments, and since
we do not have a formal proof, computer-assisted or otherwise, these should just be considered circumstantial
evidence and promising first steps. We hope that we (or others) will be able to extend these to a formal proof.

1.2 Our Techniques Since the algorithm is just the p-swap local search algorithm, all the work is in the
analysis of the local optima.

The choice of the objective function. Our potential function is inspired by the work of Filmus and
Ward [FW12, FW14], who improved the local-search algorithm for submodular maximization from a !/2-factor
to the optimal (1 — 1/e)-factor. We describe their idea in the context of max-k-coverage: the potential gets a
bonus if it covers elements multiple times. I.e., for each element, we get a value of 1 if we cover it once, a small
bonus B if we cover it at least twice, a smaller additional bonus B3 if we cover it at least thrice, etc. The total
overall bonus is small compared to the gain in covering it once (so that the potential remains close to the true
objective), but enough to evade the bad local minima. Indeed, if an element is covered twice, the algorithm has
more flexibility in choosing local-search steps, since any single-set swap will leave this element still covered.

The k-median problem is a minimization problem, so the natural objectiveis > di(c)+>_,~, Bidi(c), where d;(c)
is the distance from c to its i*"-closest facility: this penalty term can incentivize each facility to have “backup”
facilities close to it. Indeed, just using d; + S2ds (for small constant S > 0) side-steps the standard bad examples
with respect to the objective function d;. However, this potential penalizes us too heavily for not having backups.
So if the instance has k widely-separated clusters, the penalty term overwhelms the original cost. This suggests
the potential (1.2) we eventually use:

NG [1 + (small constant) x min (1, da(c))] .

(large constant) x d;(c)

However, the introduction of the minimum in the objective function makes the analysis more involved, since it
forces a case distinction between clients which pay the truncated and untruncated values.

Important Swaps. The standard approach to analyze the quality of local optima for clustering problems is
to define a subset of swaps we call important. Since all swaps are non-improving, these important ones are too.
This non-improvement gives linear inequalities that relate the cost of the solution Fl,, after the swap to the cost
of the local optimum F. To relate Fey to the optimal solution F*, we define important swaps to be ones that
replace a constant number of local facilities P C F' with the same number of optimal facilities @ C F*. Hence,
the cost of Fjey is the sum of the costs for (1) “happy” clients that are now served optimally (or even better) in
Fhew because their optimal facility is in @, (2) the “sad” clients which were previously assigned to the facilities
in P that were swapped out, but which are not happy and hence require reassignment, and (3) the remaining
“indifferent” clients. The art in these proofs is to define the important swaps to control the reassignment cost for
the sad clients.

For example, we can pair each optimal facility with its closest local facility (assume for now this is a bijection),
and form the important swaps by swapping some constant-sized subset of these pairs. This ensures:

> d(e, F*)+) (d(e, F)+2d(c, F*)) + Y d(c,F) > cost(Fuew) > cost(F) = Y _d(c, F).
¢ happy c sad ¢ indifferent c
(see [GTO08] for details). Simplifying gives
> d(e, Fr)+) 2d(c, F*) > Y d(c,F).

¢ happy c sad ¢ happy

1558 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Summing over important swaps (one per local facility) means each client appears on the left at most twice (once
when happy, and once when sad) and on the right exactly once, which means ALG < 30PT. Handling the
non-bijective case loses another ¢ factor, so the local optimum is at most (3 + ¢) times the global optimum. The
important lessons are that (a) important swaps need to be “rich” enough to infer the small locality gap, and
(b) “simple” enough to be able to reason about.

However, the important swaps used in past works [AGK™T01, GT08] do not work with the new potential:
Figures B.11 and B.12 in Appendix B show instances and local solutions that cost three times the optimum
but are not locally optimal with respect to the new objective function. Yet previously-used important swaps are
not rich/expressive enough to deduce non-local-optimality, and only prove a 3-approximation.

New Swaps. Given a local solution F', we distinguish the far clients ¢ with da(c, F) > ad(c, F') from the close
ones with da(c, F) < ad(c, F'). The type of a client determines which value attains the minimum in the potential
function (1.2): a far client ¢ pays (1 + af)d(c, F') while a close one pays d(c, F') + Bda(c, F). The two types of
clients require different analysis.

Far Clients. Consider a facility ¢, of F' closest to the optimal facility f* for far client c¢. If /5 is also the local
facility that is closest to ¢, and if we pair it with f* client ¢ is a happy client (as described above) and we get
a good bound on the cost of client ¢ (so we should always associate f* with ¢3). Else if ¢5 is not a facility that
is the closest to ¢, then a simple argument using the triangle-inequality shows there exists a second facility in
the local solution at distance 2d(c, f*) + d(c, F') to ¢. But c is a far client, so this facility cannot be too close:
2d(c, f*) +d(c, F) > ad(c, F), and so d(c, F) < —25d(c, f*), which is an excellent bound.

Close Clients. On the other hand, the close clients, may now be sad both when their closest facility closes, and
also when their second-closest closes. E.g., consider a client whose closest optimal facility is far from the rest of
the instance, but which has two local facilities at the same distance to it (with d; ~ da). (See Figure 1.1.) In this
case, moving from two facilities to one in the local solution without opening the optimal facility incurs a large
reassignment cost. Hence, such clients want the swap which opens the optimal facility to also close both local
facilities close to them. If not, closing any one of these close local facilities would mean reassigning them to the
other, and suffering a cost of (1 + af)d;. These woud be very sad clients. So we would like to close both the
facilities for the close clients at the same time. Else the potential that was helping the far clients now hurts these
close ones when they become very sad.

Our approach mitigates the risks: we define two different swap structures and take a linear combination of the
inequalities obtained from these. Since the local-search algorithm tries all possible swaps, the resulting inequalities
remain valid. The two swaps structures can be viewed as follows. One of them, referred to as simple swaps, is
similar to the one described by [GT08], where each facility of F* is mapped to its closest facility in . The other
one, which resolves the “bad example” described in Figure B.11 for single swaps, is to also consider the reverse
map: i.e., to map each facility of F' to its closest one in F*. These two maps induce a directed graph G where
the vertices are F* U F', with an arc from f; to fo if f1 is mapped to f5 in the appropriate map. This graph G
has outdegree-1 and hence has a nice structure. We show how to break it into pieces of bounded size; these define
tree swaps. We then work with all the inequalities coming from these two families of swaps.

A final ingredient is randomization: instead of always mapping each facility f in one of the solutions to its closest
facility f’ in the other solution, we randomize these maps—we map f to its second-closest facility in the other
solution with some probability that depends on their relative distances. This allows us to again mitigate bad and
good scenarios for different types of clients that are in tension.

In summary, here’s what we do: we flip a coin to either consider simple swaps or tree swaps. In either case, we
randomly map some facilities to the closest or second-closest facilities in the other solution, and use this to build
a set of important swaps. Since all these are non-improving, this gives us linear inequalities that relate the local
cost to the optimum. Finally, we deduce the approximation ratio from these linear inequalities.

1.3 Related Work The first O(1)-approximation for the k-median problem was given by Charikar et
al. [CGTS99]. After many developments using, e.g., the primal-dual schema [JV01, CG99], greedy algo-
rithms (and dual fitting) [JMM™T03], improved LP rounding [CL12|, local-search [AGK™101], and pseudo-
approximations [LS16], the current best approximation guarantee is 2.675 [BPR *15]. The best hardness result is
(1+2/e) [GK99, JMS02]. Local-search algorithms have been widely used for clustering problems. Despite their

1559 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

® 1 client

ALG1

OPT1

ALG2

Figure 1.1: Illustration of the tension between clients for defining the swap structure. In order to get a good bound for the
right client, we need to open OPT1 and close both local facilities ALG1 and ALG2. However, closing both facilities and
opening OPT1 increases potential value of the left client to (14 aB)7 from (1 + 5)3.

simplicity, they often give good theoretical guarantee: the (3 + e)-approximation result of [AGKT01] was the
best factor for some time; a simplified proof is given in [GT08]. The best results for the closely related k-means
problem are by Ahmadian et al. [ANSW17], who give a 6.35 + e-approximation for Euclidean metrics and 9+ ¢
for general metrics, both using the primal-dual method: these improve on results of Kanungo et al. [KMN T02]
who show that the simple local-search with respect to the objective function gives a (9 + €)-approximation for
Euclidean k-means.

Ahmadian et al. [AFS13] give a local-search algorithm for mobile k-median, where they also construct a 1-tree
using the optimal and algorithm’s centers (and the original centers, which play a role for that problem), and
consider swaps based on its subtrees. However, the details of the analysis seem to be different from ours, since
the concerns in the two problems are quite different.

The use of an alternate potential function instead of the objective function in local-search was termed non-oblivious
by [Ali94, KMSV98|. Filmus and Ward [FW12, FW14] used non-oblivious local-search for the mazimum coverage
and submodular mazimization problems, getting 1 — 1/e-approximations in both cases. (A further simplification
of the submodular algorithm/analysis appears in [FFSW17].)

1.4 Paper Outline We formally define the algorithm in §2, and the set of important swaps in §3. We classify
the clients into types in §4, and bound the expected change in potential for each client type in §6; combining
them proves Theorem 1.1. In §7, we present how to construct a linear program that mimics our analysis. In
Appendix A, we prove the lower bound from Theorem 1.2. Details of calculations, as well as deferred proofs,
appear in the appendix.

2 The Local Search Algorithm

The algorithm performs swaps of constant size p = p(e) > 1/e: given any solution F' (initially arbitrarily chosen)
of k facilities from JF, it tries to find an improving valid swap. Here, a swap (P, Q) € (fp) X (fp) is valid if P C F,
Q C F\ F, and |P| = |Q)|, so that we close as many facilities as we open. A valid swap is improving if

O((F\P)UQ) < ©(F),

where ® is as defined in (1.2). If the algorithm finds an improving valid swap (P, Q), it sets F + (F'\ P)UQ,
and continues; if there are no such swaps it returns the local optimum F.

This algorithm can be made to run in polynomial time by only considering swaps that improve the potential
by (1 + 6n~9®)-factor; standard techniques (presented e.g. in Arya et al. [AGKT01]) show that this changes
the approximation factor by at most (1 + 0), since there are n©®) many different swaps. Observe that checking
whether we are at a (near)-local optimum, or finding an improving valid swap can be done in n°®) time. In the
rest of the paper we show the pseudo-approximation claimed in Theorem 1.1, i.e., the cost of a local optimum is
comparable to the cost of any solution F™* with k —r(e) facilities, where r(¢) is the number of extra local facilities.

Throughout the paper, we choose the swap size p(e) to be M([1/e] 4 1)4"/<] [1/51, and choose the number of extra
1/e
local facilities to be r(g) = M([1/c] + 1)1+16MY=1"* for a sufficiently large absolute constant M.

1560 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2.1 Proof Strategy Let us fix some notation: fix a local optimum F of size k£ and a global optimum F* of
size k — r(e); we call the former the local and the latter the optimal facilities. For a client ¢, let

e d*(c) :=d(c, F*) be its cost and f* its closest facility in the optimal solution F™*,
e dy(c) and dz(c) be its distances to the closest and second-closest facilities, and f; and fo be these facilities

in F', and
e &¢ :=d;(c) + fmin(da(c), ads(c)) be client ¢’s contribution to the potential. From now on, we fix o = 3
and 8 =1/5.

Our proof of Theorem 1.1 is based on the fact that at the local optimum F'| the potential change induced by a
valid swap (P, @) is non-negative, i.e., ®((F \ P)U Q) — ®(F) > 0. Defining the potential change of client ¢ on
swap (P, Q) to be

(2.3) dp,y(c) :i=2((F\ P)UuQ) — ®°(F),

we have

0< Z 5(13’@)(6)

ceC

This inequality holds for all valid swaps (P, Q); it remains true even if we extend the definition of valid swaps
to allow @ to intersect F' and/or to have a size smaller than P, because doing so never decreases the potential
change. We can thus take linear combinations of the inequality over all valid swaps (P, Q). In particular, for any
random set P of valid swaps,

ong[> D dpagle } ZE’P[> ol }

(P,Q)EP ceC cec (P,Q)EP

Theorem 1.1 is thus implied by the following lemma (and observing that 25233 < 2 .836):

LEMMA 2.1. There is a distribution over sets P of valid swaps such that for all clients c € C,

IE[3 Sira) (c)} < 2.5203d"(c) — 0.8888 dy (¢) + O(c) (d* (¢) + dy (c)).
(P,Q)eP

In order to prove this lemma, we build a randomized procedure generating the set P of swaps (where we call
elements of P important swaps), and divide our analysis into two cases: the amenable case and the defiant case.
In particular, given a client ¢, we define a suitable amenable event A and its complement defiant event D, and
show the following two lemmas, which immediately imply Lemma 2.1.

LeEMMA 2.2. (DEFIANT CASE) There is a distribution over sets P of valid swaps such that for all clients ¢ € C,

(2.4) E[to Y dne)(@)] <0@E) (@ () +di(e).

(P,Q)eP

LEMMA 2.3. (AMENABLE CASE) For the distribution over valid swap sets from Lemma 2.2, for any c € C,

(2.5) E [nA 3 b (c)} < 2.5203d"(c) — 0.8888 dy (c) + O(c) (d* (¢) + dy (c)).
(P,Q)eP

In §3, we define the distribution over sets P of important swaps. In §4 we classify the clients into types. We define
the amenable and defiant events for clients of each type and prove Lemma 2.2 in §5, and then prove Lemma 2.3
in §6.

1561 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3 Generating the Important Swaps

In this section, we describe our randomized procedure generating P, the set of important swaps, that proves
Lemmas 2.2 and 2.3. P contains valid swaps (P, Q), where P C F' has size at most p(¢), and @ is an arbitrary set
of facilities with size at most | P|. Every swap we generate has @ being a subset of F™*, the set of optimal facilities.
We say swap (P, Q) closes the local facilities in P, and opens the optimal facilities in Q. (By duplicating points
in the metric space, we assume F' and F™* are disjoint, and so are P, (Q.) Sometimes we say the swap contains the
local facilities in P and the optimal facilities in Q.

In order to prove Lemmas 2.2 and 2.3, we want to minimize the potential change of every client by always opening
a “nearby” optimal facility whenever we close a local facility. Roughly, we generate both simple and tree swap
sets by constructing a directed graph G over the vertex set F'U F™*, where every edge connects “nearby” local and
optimal facilities. We perform some surgery on this graph if needed: we remove vertices in F', duplicate vertices
in both F' and F*, and remove some edges, so that every connected component of the resulting graph has a small
size. Finally, we combine these connected components of G into small-sized groups so that the number of local
facilities in each group is no smaller than the optimal facilities in it. The swap set P consists of the swap defined
by each of these groups, closing/opening all the local/optimal facilities in it. In the following subsections, we
describe in detail our procedures generating the simple and tree swap sets. (Again, recall this is all in the analysis,
since the algorithm is just the p-swap local search that attempts to improve the potential.)

3.1 Generating the Important Simple Swaps We start by constructing a random directed graph G over
vertices F'U F*. The graph is defined by a random function 7 : F* — F that maps each optimal facility to a local
facility: this gives a bipartite graph with F™* vertices have out-degree one, and F' vertices having no out-degree.
In previous analyses, 7(f*) was defined as the closest local facility to f*, but in our analysis, we choose 7(f*)
randomly from the two closest local facilities to f* in order to cover a larger neighborhood with good balance.
Indeed, independently for every optimal facility f*, we choose 7(f*) from 7; and ne, where 11 = n1(f*) and
12 = n2(f*) € F are the first and second closest local facilities to f*. The probability of choosing 7; depends on

the value of p = p(f*) := 382:25 € [0,1]. When p(f*) < 3/4, we choose 7(f*) = 1, with probability 1; when
p(f*) > 3/4, we choose 7(f*) = m with probability (5/2 — 2p) and 7(f*) = 12 with the remaining probability
(20— 92).

Intuitively, 7(f*) is the facility used as a fallback to serve clients of f*’s cluster when their closest local facility is
swapped out. More precisely, we design the swaps such that either f* or 7(f*) is open. To bound the reassignment
cost to 7(f*), we therefore must ensure that 7(f*) is as close as possible to f*. When p(f*) is small, there is
therefore a huge incentive in choosing 7(f*) = 7. However, when p(f*) is close to 1, there is no difference
between 77 or 72. Our probability distribution is chosen such as to implement that intuition. It has been tuned
experimentally: using our LP formulation, we were able to look for a choice of of 7 that gives a good approximation
guarantee while being simple enough to prove that guarantee.

This defines the graph Gy. We wish to generate swaps according to the connected components of Gy, i.e., every
swap closes all the local facilities in a connected component and opens all the optimal facilities in the same
connected component. However, such swaps may not be valid because 1) the size of a connected component
may be much larger than p, and 2) there may be more optimal facilities in a connected component than local
facilities (since every connected component of Gy contains exactly one local facility). We solve these issues by
two procedures: degree reduction and balancing.

Degree reduction. The size of a connected component of G being too large is caused by local facilities with
high in-degree. We solve the problem by removing all local facilities that could potentially have high in-degree
from the graph. We call these the heavy local facilities. To keep the number of local facilities in the graph
unchanged, we duplicate other local facilities, which we call local surrogates. We formally define heavy local
facilities and local surrogates as follows. We first define N(f*) C {n;,n2} and call it the set of local neighbors of
f5 I p(f*) < 2/3, we define N(f*) = {m }; otherwise, we define N(f*) = {n1,n2}. We choose t4 = [1/c] as the
degree threshold. Now the heavy local facilities are as follows:

DEFINITION 3.1. (HEAVY LOCAL FACILITY) A local facility f € F is heavy if it is a local neighbor of more than
tq + 1 optimal facilities.

1562 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Note that 7(f*) must be a local neighbor of f* because 3/4 > 2/3. Therefore, only heavy local facilities can have
in-degree more than t4 4+ 1 in G. For every heavy local facility, we choose a local surrogate uniformly at random
from the local candidates defined as follows:

DEFINITION 3.2. (LOCAL CANDIDATE) A local facility f € F is a local candidate if it is not heavy and every
optimal facility in 7=(f) has a heavy local neighbor.

Note that, unlike our definition of heavy local facilities, the definition of local candidates depends on the random
function 7. The following claim (proved in Appendix E.1) shows that there are enough local candidates from
which the heavy local facilities can choose:

CraM 3.1. The number of local candidates is at least t4/2 times the number of heavy local facilities.

We are ready to describe our degree reduction procedure:

1. Remove all the edges incident to heavy local facilities;

2. Replace each heavy local facility f by its local surrogate s, chosen uniformly at random without replacement
from the local candidates. Hence, in the graph the vertex labeled f (and now having no in-edges due to
step 1) is replaced by one labeled s. So a local surrogate appears twice now: the original copy of s, and a
single isolated vertex as a surrogate for f.

Let GG; denote the graph after degree reduction. Clearly, every local facility has degree at most tq + 1 in Gy, and
thus every connected component has size at most t4 + 2. The next claim follows directly from Claim 3.1:

CrLAM 3.2. The constructed graph Gy satisfies following properties:

i. Heavy local facilities do not appear in G1.

1. Local facilities chosen as local surrogates appear twice: once as the original copy and once as an isolated
vertex.

i15. Other local facilities and all optimal facilities appear once.

vi. Every optimal facility f* points to the original copy of 7(f*) unless 7(f*) is heavy.

v. Any local facility is chosen as a local surrogate with probability at most 2/ts, and only when it is a local
candidate.

Balancing. Since a connected component of G; may contain more optimal facilities than local ones we combine
connected components together to form groups with at least as many local facilities as optimal ones, using the
following claim (proved in Appendix E.2):

CrAM 3.3. (BALANCING PROCEDURE) Consider a universe U = RUG of red points R and green points G, with
|G| = |R| + r. Let the collection of sets Si,...,Sn partition U, and let |S;| < x for all i. Moreover, let H be a
graph on the vertices [N]| with mazimum degree at most 0 < r. Lastly, r > Q(#) for some 0 < e < 1. Then we
can merge these sets together into new sets Ty, ..., Ty such that

(i) each T has size |Tj| < O(x?),

(ii) 1Ty RI < 1T, 01 G,

(111) if there is an edge {i,j} for i,j € [N], then S; is not merged with S;, and
(iv) for all i # j, S; is merged with S; with probability at most .

Recall that our degree reduction step did not change the total number of local and optimal facilities, so there are
still 7(¢) more local facilities than optimal facilities. We identify F*, F' with R, G in Claim 3.3 respectively, and
define every S; as the set of facilities in every connected component of G;. Note that |S;| < tq +2. S; and S}
are connected by an edge in H if and only if they contain two copies of the same local facility: one contains the
original copy of a local facility and the other contains a new copy created as a local surrogate. The maximum
degree of H is at most 1 due to Claim 3.2 and the fact that there is at most one local facility in each connected
component. Since r(g) > Q((tg + 2)°/¢), we use Claim 3.3 to combine components of G; into balanced groups,
where every group contains at most O((tq + 2)?) < p(¢) facilities. Every group thus defines a valid swap, and we
define P as the set of these swaps. Figure 3.2 shows an example of the simple swap set P we generate.

1563 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FDIII&E‘IT}DITI
PANKAANAANA
3 z P E (f*)’ D k y
y Yy y k Yy Yy
Y () vy Yy Y y
z P

3.2 Generating the Important Tree Swaps Again, we start by constructing a directed graph Gy. Unlike
simple swaps where only optimal facilities have out-edges, tree swaps require every local facility to also have an
out-edge to an optimal facility in Gy. In particular, every local facility f has an out-edge to 7(f), the optimal
facility closest to it. Every optimal facility still has an out-edge to 7(f*) € {n1,n2}, but we pick 7(f*) from a
different distribution: if p(f*) < 2/3, then 7(f*) = 71 with probability 1; else 7(f*) = n; with probability 1/2 and
7(f*) = no otherwise.

Agiim‘/A‘\D
/ \ o

y /%ﬁ%

i

[[
N AT

KAR
am=lishin

33 E y Go - Yy q

Since every vertex of Gy has out-degree one, Gy is a I-forest, with every connected component being a 1-tree, i.e.,
a directed tree with a directed cycle as its root (see Figure 3.3), hence the name tree swaps. Having constructed
Gy, we generate the tree swap set P by three procedures: degree reduction, edge deletion, and balancing. The
balancing step remains essentially the same as in simple swaps, but the degree reduction step requires a new
ingredient to deal with optimal facilities with high in-degree, which did not exist in the simple swaps case. The
edge deletion step is also unique to tree swaps. Next, we describe these three steps in detail.

Degree reduction. We first modify G so that every vertex has in-degree bounded by tq + 1. In the same way
as simple swaps, we can remove local facilities with high in-degree by removing heavy local facilities, but we need
an additional procedure to deal with heavy optimal facilities with high in-degree. Specifically, we say f* is a
heavy optimal facility if it has in-degree more than ¢4 after heavy local facilities are removed, in other words,
|7=1(f*)\{heavy local facilities}| > t4. For such a heavy optimal facility f* with in-degree s, we partition its
children into [s/tq] groups. Every group, except sometimes the last one, contains exactly t4 children. We make
sure that the first group contains the tq4 closest children to f*. For each group other than the first one, we create
a new copy of f* and change the out-edges from the children in the group to point to the new copy of f*. The
new copy of f* has an out-edge pointing to a new copy of a local facility f chosen uniformly at random from the
previous group. We call the new copy of f an optimal surrogate. They are needed to keep the difference between
the number of local and optimal facilities unchanged. We also add an out-edge from f pointing back to the new

1564 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

t
%
T, Ty T, Ty T, T, Ty T. Ty T,
34 - y f* ta =2 S T
S fr 5>ty |—5/td-|
y E i y
fr z a d z
a d a b f* {a,b,c,d, e}

copy of f*, as illustrated in Figure 3.4.
In summary, the degree reduction procedure for tree swaps consists of the following steps:

1. Remove edges incident to all heavy local facilities;

2. Replace every heavy local facility by its local surrogate, chosen uniformly at random without replacement

from the local candidates;

Deal with heavy optimal facilities as above;

4. Add self-loops to vertices with no out-edge (due to step 1) to retain the 1-forest structure (this facilitates a
cleaner presentation of our next procedure: edge deletion).

@

Let G denote the graph after degree reduction. G is still a 1-forest, and every vertex in Gy now has in-degree at
most tg + 1. Moreover, the following claim is apparent (by observing that Claim 3.1 still holds in the tree swaps
case because its proof is completely independent of the distribution of 7(f*)):

Cram 3.4. Constructed graph G1 follows following properties:

i. Fvery optimal facility appears in Gy at least once.

1. Bvery local facility appears in G1 at most three times: once as the original copy, once as a local surrogate,
and once as an optimal surrogate.

iii. Heavy local facilities do not appear in G.

iv. No two copies of the same facility appear in the same connected component.

v. The original copy of any optimal facility f* points to the original copy of T(f*), unless 7(f*) is heavy.

vi. The original copy of any local facility f points to w(f), although it might be a new copy of 7(f).

vii. Any local facility is chosen as a local surrogate with probability at most 2/ts, and as an optimal surrogate
with probability at most 1/t,.

viti. Every local surrogate is a local candidate.

The degree-reduction step ensures that vertices in (G; have bounded in-degree, but a connected component of G,
could still have large size (it could have large height or contain a long cycle). We deal with this problem in our
next procedure: edge deletion.

Edge deletion. Next, we remove edges from G; to ensure that every connected component in the resulting
graph is a tree of height at most ¢, — 1, where we choose the height threshold ¢, uniformly at random from
2[1/<],2[1/e]?, - -+, 2[1/][/<]. Specifically, for each connected component 7" of G, if the root cycle has length less
than ¢, we insert dummy vertices into the cycle to make the length exactly ¢;. Then we pick a vertex r in the

1565 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

root cycle uniformly at random, and delete the out-edge from r. This makes 7" a directed tree rooted at r. We
then delete edges on the a - th-th levels for all a € N. See Figure 3.5 for an example.

A
A A\

.
\E\A
o

W r(y) y a-ty y T)

RN
71N

Let G5 be the graph after the edge deletion step. It is clear that every connected component of Gs is a directed
tree with height at most ¢, — 1, possibly containing some dummy vertices. Moreover, every vertex v has in-degree
at most ty + 1 due to the degree reduction procedure. Therefore, the number of vertices in every connected
component of G is at most (g + 1)%. Moreover, we have the following claim for every connected component T
of G1, which is apparent from our edge deletion procedure:

CLAIM 3.5. After dummy vertices are added into T, the edge out of vertex v € T is deleted if and only if the
(unique) simple path from v to r has length divisible by ty.

If the cycle length of T is at most ¢y, vertices on the cycle are still connected after edge deletion. Indeed, we delete
only one edge in the cycle in this case. Therefore, after edge deletion, we ignore all the dummy vertices and still
consider all the edges on the original cycle as not deleted by convention. This doesn’t change the (non-dummy)
vertices in every connected component of Go, and thus doesn’t change P we eventually generate. With this
convention, we have the following corollary of Claim 3.5:

COROLLARY 3.1. Any edge in G is deleted with probability at most 2/v,. Moreover, if the cycle length is at most
th, edges on the cycle are never deleted.

Proof. The second part is assumed by our convention. We thus assume henceforth that the edge is not on the
cycle, or the cycle length is more than t,. Suppose the edge is the out-edge of vertex v. By Claim 3.5, the edge
is deleted if and only if the simple path p* from v to r has length divisible by ¢,. Suppose the cycle length after
dummy vertices are added to it is £ > t,, and let £ = ut,, + w for u,w € Z with 0 < w < ty. There are at most
u + 1 choices of r such that p* has length divisible by ¢,,. Therefore, the edge is deleted with probability at most
(u-l—l)/ﬁzu/ﬁ-&—l/fﬁl/th+1/th:2/th. 0

After edge deletion, each connected component of Gy contains at most (tq + 1)™ < p(e) vertices. However,
the number of local and optimal facilities in the component may not match (e.g., the blue tree containing r in
Figure 3.5 has three extra local facilities, whereas the rightmost tree has one extra optimal facility). We fix this
in the same way as in the simple swaps case using the balancing procedure.

Balancing. The balancing procedure is essentially the same as in the simple swaps case, based on Claim 3.3
again. The only difference is that the size of every connected component is now much larger ((tq + 1)), and the
maximum degree of H is also much larger. Since optimal facilities may now have new copies, we may combine
two connected components each containing a copy of the same optimal facility in the balancing step; this is fine
because it only decreases the number of optimal facilities in a swap. However, we still need to make sure that

1566 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

no two copies of the same local facility are combined together, again by adding edges into H between connected
components containing copies of the same local facility. Since a local facility can have at most 3 copies by
Claim 3.4, the maximum degree of H is at most 2(tq + 1)™. Since we kept the number of extra local facilities
unchanged, it’s still r(g) > Q(((ta +1)™)5(2(tq + 1)™)3/¢), so Claim 3.3 gives balanced groups each containing at
most O((tq + 1)%") < p(e) facilities. Every group thus defines a valid swap, and we define P as the set of these

tree swaps.
Client Types

We now classify the clients into a small number of types (based on
how the client connects to facilities in the local and global solutions).
The classification allows us to give a client-by-client analysis instead of
a swap-by-swap analysis used in prior works. We make this change in
perspective because the potential ® depends on the two closest facilities,
and so we need a better handle on the local neighborhood of a client to
bound the reassignment costs when closing one of the close facilities.

For a client ¢, recall that f1(c) and fy(c) are the closest and second-
closest local facilities; we say f; and fo when there is no ambiguity.
Figure 4.6 shows a picture of a generic client ¢ and its related facilities.

We partition the set of clients into types based on the relationships
between their local and optimal facilities, as follows. The far clients are
those for which dy > ad;, and hence the potential just depends on the
closest facility (f1); the other kinds of clients are called close, for which
both f; and f5 are relevant.

e Far case (where dy > ad;). Note that fo does not play any role
in the far case, so the clients are classified according to how f;
and f* are related.

— Type A: n1(f*) = f1.
— Type B: n2(f*) = f1.
— Type E: f1 & {m(f*),n2(f")}-

772[;] ne = f1 n2 []

ne(f*) [] f2

d(f*7772)

f1

o/ L FN—e— | f

Y 4

m=fi m] m]

(a) Type A (b) Type B

47 C

e Close case (where dy < ady); now clients are classified according
to how f1, fo and f* are related.

— Type A: ni(f*) = f1 and n2(f*) # fa.
— Type B: mi(f*) # f2 and n2(f*) = f1.
— Type C: n1(f*) = f1 and na2(f*) = fo.

1567

(c) Type E

Copyright (© 2022 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

— Type D: ni(f*) = f2 and n2(f*) = f1-

— Type E: fi & {m(f*),m2(f")}-

n2 []
A

Jf2

n2 = f1

f2

m = fi
(a) Type A
e = f2 e = f1
c
£/ £/
A 4 A\ 4
m=fi n = fo
(c) Type C (d) Type D (e) Type E
48 C C y E " f2 Yy

5 Amenable and Defiant Events

Not all swaps are easy to argue about. Having fixed a client ¢, we define the amenable event and defiant event for
this client—the former captures the case where the swaps in P are easy to reason about, and the latter the case
where we throw up our hands and use a crude bound on the potential change. Thankfully, the latter happens
very rarely, so the loss is small.

Recall that fi(c), f2(c) are the two closest local facilities to ¢. Let f* = f*(c) be the optimal facility that c is
assigned to; then ny (f*),n2(f*) are the two closest local facilties to f*. We define the amenable and defiant events
as follows:

DEFINITION 5.1. (AMENABLE/DEFIANT) The defiant event D for a client ¢ of type A, B or E is the union of the
following events:

(i) f1, f2, or T(f*) is chosen as a local or optimal surrogate in the degree reduction step;

(ii) P is a tree swaps set, and the out-edge from the original copy of f*, fi1 or fo is deleted in the edge
deletion step.

(iii) P is a simple swaps set, and two connected components each containing a facility in {f*} U {f1, fa} U
{m,m2} are grouped together in the balancing step.

The amenable event A is the complement of D.
For type C and D clients, we enlarge the defiant event slightly to include ¢g* := 7(f;) and

g = argminge g\ (, 1, d(h,g")

as follows:

1568 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DEFINITION 5.2. (AMENABLE/DEFIANT FOR TYPE C AND D) The defiant event D for a client ¢ of type C or D
is the union of the events (i), (ii), (#i) in Definition 5.1 and the following events:

(i’) T(g*) is chosen as a local or optimal surrogate in the degree reduction step;

(ii’) P is a tree swaps set, and the out-edge from the original copy of g* is deleted in the edge deletion step.

(iii’) P is a simple swaps set, and two connected components each containing a facility in {f1,g} are grouped
together in the balancing step.

The amenable event A is the complement of D.

The events A and D depend on the client ¢, but we choose to omit ¢ in our notation because we will always focus
on a fixed client ¢ in our proof. We now turn to proving Lemma 2.2 on the potential change due to defiant events.
The approach is simple: we first show a crude upper bound that holds for all swap sets P that we generate, and
then show that the probability of the defiant event is small enough so that we can afford to apply this crude upper
bound.

CrAIM 5.1. There is an absolute constant v > 0 such that for any client ¢, and any swap set P that we generate,
we have 3 p o)ep O(P@)(c) < ¥(d"(c) + di(c)).

CLAIM 5.2. Pr[D] < O(e) for all clients c.

The proof of Claim 5.2 follows from Claims 3.2 to 3.4, Corollary 3.1, and a trivial union bound. We defer the
proof of Claim 5.1 to Appendix E.3. The two claims above imply Lemma 2.2, and hence control the effect of the
defiant events. We focus next on the amenable events and the proof of Lemma 2.3.

6 The Potential Change due to Amenable Events

Having bounded the potential change due to defiant events, we now turn to bounding the potential change due
to amenable events. Let us recall the claim we want to prove:

LEMMA 2.3. (AMENABLE CASE) For the distribution over valid swap sets from Lemma 2.2, for any c € C,

(2.5) E {1{ a4 Y o (c)} < 2.5203d*(c) — 0.8888 d. (c) + O(e) (d*(c) + di (c)).
(P,Q)eP

This section gives an explicit proof that can be verified by hand. In §7 we show how to generate a much larger
set of valid inequalities. Solving the resulting linear program gives improved bounds, but these are more tedious
to verify manually.

6.1 Implications of Amenability

CrLAIM 6.1. (IMPLICATIONS OF AMENABILITY) For any client, swap sets P generated on the amenable event A
have the following properties:

(i) Any local facility f € {f1, fo} is closed in at most one swap in P;

(i) Any swap in P closing T(f*) must open the original copy of f*;

(Tii) If P is a tree swap set, any swap in P closing f € {f1, fo} must open 7(f);

(Siii) If P is a simple swap set, no swap in P closes two local facilities in {f1, fo} U{m,n2} simultaneously;
(Siv) If P is a simple swap set, any swap in P closing a local facility in {f1, fo}\{7(f*)} does not open f*.

For clients of type C or D, we additionally have the following: (recall that we defined g* as w(f1), and g as the
local facility closest to g* other than f1 and f):

(ii’) Any swap in P closing T(g*) must open the original copy of g*;

(Siii’) If P is a simple swap set, no swap in P closes both f1 and g.

1569 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. [Proof of Claim 6.1] Recall that the amenable event A is the complement of the defiant event D, defined
in Definition 5.1.

Implication (i) follows from item (i) of Definition 5.1 directly.

Implication (ii) follows from items (i) and (ii) of Definition 5.1. Without loss of generality, we assume 7(f*) is
not heavy, since heavy local facilities are never closed. On the amenable event, 7(f*) is closed only as its original
copy, by item (i) of Definition 5.1. The edge to 7(f*) from the original copy of f* is never deleted by item (ii) of
Definition 5.1, so the original copies of f* and 7(f*) must be in the same swap.

Implication (Tii) also follows from items (i) and (ii) of Definition 5.1, for a similar reason. Again, assume without
loss of generality that neither f; nor fs is heavy. On the amenable event, fi; and fo are closed only as their
original copies by item (i) of Definition 5.1, and the edges f; — m(f;) are never deleted by item (ii).

Implications (Siii) and (Siv) both follow from item (iii) of Definition 5.1. When we generate the simple swap set,
every connected component of the graph G; contains at most one local facility, and thus different facilities in
{f1, fo} U{n1,n2} must be in different connected components, which are not combined in the balancing step due
to item (iii) of Definition 5.1. This proves implication (Siii). Moreover, the connected component of f* doesn’t
contain any local facility other than 7(f*) € {n1,n2}. This proves implication (Siv).

(i”) and (Siii’) can be proved in the same way as (ii) and (Siii) using Definition 5.2. O

6.2 Notation and Useful Inequalities Let A¢(c) denote the expected potential change on client ¢ restricted
to some generic event &:

Ag(c) :ZE[]lg 3 5(P7Q)(c)]

(P,Q)eP

Our goal in Lemma 2.3 is thus to upper bound A 4(c) for the amenable event A. In our proof, we consider
sub-events £ of A, and prove worst-case upper-bounds for the potential change restricted to each sub-event &.
Formally, given a suitable partition A =& U---U &, we define dg(c) := 3 p g)ep O(p,@)(c) to be the worst-case
(maximum) value for each event &, and then use:

t

(6.6) A = Y0 Ae (@) < Y Pl 06, (0)

i=1

For technical reasons, it is more convenient to assume dg(c) is no smaller than, say, —10d; (c¢). We thus re-define
dg(c) as —10d1(c) when dg(c) < —10d;(c). This doesn’t affect our analysis, as all our upper bounds for d¢(c) are
larger than —10d;(c). Also, Claim 5.1 implies that dg(c) < O(d* + dy).

To apply (6.6), we need to understand Pr[€] and d¢(c) for the following events (and their intersections): the
amenable event A and its complement defiant event D, the simple event S and its complement tree event T.
The simple event S is further partitioned into S; and S, and the tree event 7 is partitioned into 77 and 7s,
representing whether f* points to 71 or 2. These events are defined for a fixed client ¢, and we omit ¢ in our
notations for brevity.

Recall that f* is the optimal facility closest to ¢, and p = p(f*) := %. To generate the set P of important

swaps, we choose 7(f*) from different distributions depending on the value of p(f*), and thus the probability of
the events Sy, Ss, 71, T2 depends on p(f*) as follows:

Ratio-types | Pr[Si] | Pr[S;] Pr[Ti] | Pr[T3] |

0<p(f)<%s | 1> : Y2

s <p(f)<3a| 1) : /4 Ya

Sa<p(ff)<1 [Sfa—p|p=3a] 14 Y4
) -y

Since Pr[D] = O(e) due to Claim 5.2, the probability of any event £ N A is at least Pr[€] — O(e).

1570 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Bounding the worst-case change dg(c). We fix an arbitrary swap set P generated under event £, and analyze
the effect of each swap in P. Let {(f*)) denote the swap in P that opens f*; such a swap always exists. There
may be multiple such swaps in P when we perform tree swaps, in which case we let {(f*)) be the swap that
opens the original copy of f*. For a local facility f € {f1, f2}, let (—f)) denote the swap in P that closes f. By
implication (i) of amenability, there is at most one such swap as long as £ is a sub-event of the amenable event
A. When there is no swap closing f (which happens when f is a heavy facility), we are often in a better situation
because our bound for -y (c) is often non-negative, so we will mostly focus on the case where ((—f)) does exist.

Before we begin giving bounds for the various client types, let us record in Table 2 some inequalities we will
frequently use. Recall that 71 (f*) and n2(f*) are the closest and second-closest local facilities to f*, and 7(f) is
the closest optimal facility to f. These inequalities are proven in Appendix C.

Bound Conditions (if any) ‘
dy <2d* 4 dy (6.7) m(f*) # f1
d(c,m(f1)) < 2d; + d* (6.8)
max{d(c, ;1 (f*)), d(c,n2(f*))} < 2d* + dy (6.9) m(f*) # f1
min(d*,dy) + fmax(d*,dy) < (1 —p)d*+28d; (6.10)

U q

6.3 Bounds for Clients of Type E We now give an upper bound for the expected potential change A 4(c)
for any client c of type E. We give the entire proofs here; for clients of other types we will defer the proofs to the
appendices.

LEMMA 6.1. For any client ¢ of type E, we have

Aalc) < 25d*(c) — 0.9dy(c) + O(e)(d* + dy).

In our proof, we partition the amenable event A = (SN .A) U (T N.A) depending on whether we have a simple
swap or a tree swap, and then bound A 4(c) by

Aye) < Pr[S N .A] ~dsnalc) + Pr[Tﬂ .A] ~d7nalc)
(6.11) < PT[S} . 5SHA(C) + PI"[T] . (57*0_,4(0) + O(E) (d* + dl).

The second inequality is implied by Claim 5.2 and our assumption that dg(c) > —10d;. To use (6.11) we give
upper bounds for dsna(c) and d7n.4(c) for clients of both subtypes (close and far) in the next subsections. In
other words, we pick an arbitrary swap set P generated under these events, and bound the potential change for
client ¢ due to the swaps in P.

6.3.1 Far Clients of Type E: dy(c¢) > adi(c) Simple Swaps. We fix a “far” client ¢ and an arbitrary swap
set P generated conditioned on the event SN A for this client, and bound the sum }_ p o) cp d(p,)(€).

e Given the swap {(f*)) € P (which is not ((—f1)) by implication (Siv) of amenability), ¢ has an additional
option of going to f*, giving

e Next, by implication (i) of amenability, the set P contains at most one swap {(—f1)). If {(—f1) does exist,
both 71 and 7, are open (by implication (Siii) of amenability), and both at distance < 2d* + dy from c.
Therefore,

O~y (€) < (1+B)(2d" + dr) — (1 + af)dy.

This quantity is non-negative: since ¢ has type E, 1 # f and also d(c,m1) < 2d* + d;. But ¢ is a far client,
then d(c,n1) > ad;. Putting the two together:

(1+B8)2d" +di) — (L+aB)dy > di + B(2d" +d1) — (1 +aB)d, > 0.

e Finally, all other swaps in P leave f; open, and thus they cannot increase the potential for c.

1571 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Combining these, when the swap ((—f1)) exists,

(6.12) D deay(©) <oy (e) +dgapy(e) < (2+38)d" — (208 - B) di.
(P,Q)eP

In case ((—f1)) does not exist, (6.12) still holds since our bound for ¢,y is non-negative. Since P was a generic
swap set conditioned on being amenable,

dsnalc) <|(2+3B)d" — (208 — B)di],

Tree Swaps. We now turn to tree swaps, and fix an arbitrary swap set P generated on the event 7 N .A. Again,
P contains at most one swap ((—f1)) that closes f1, by amenability. We first consider the case where {(—f1)) exists
and is the same as ((f*)). In this case, all other swaps in P have non-positive potential changes, so

(6.13) Z (5(p’Q)(C) < (5<<ﬂf1>> (o) <A+ aB)d — (14 apf)d;.
(P,Q)eP

Next, consider the case where (—f1)) # (f*). On swap ((f*)), client ¢ can go to both d* and dy. On swap {—f1)),
¢ can go to m(f1) at distance < 2d; +d*, and also to 7(f*) € {n1, 72} at distance < 2d* + d;. Both these facilities
7m(f1) and 7(f*) must be open after the swap {(—f1)) due to implications (ii) and (Sii) of amenabilityx. All other
swaps in P have non-positive potential changes, so

D> dpo)(©) < Sy (©) + gy ()

(P,Q)EP
(Ggsey) <di+8d —(1+ap)d
(O-119) +(2d" +d1) + B(2dy + d*) — (1 +af) dy
(6.14) = (2+28)d" — (208 — 2B) d1.

In the case where ((—f1)) doesn’t exist, (6.14) still holds, because our bound for ¢,y (c) is non-negative. By our
choice of & = 3 and 8 = 1/5, (6.13) is dominated by (6.14). Since P is a generic swap set,

S7alc) | (2+28)d" — (208 —28)di |

Summarizing the simple swaps case and the tree swaps case, we have

(2+38)d* — (208 — B)dy < 2.6d* — dy,
(2+28)d* — (208 — 2B) dy < 2.4d* — 0.84,.

dsnalc)

<
drnalc) <

Now substituting into (6.11), we get a bound for all type E far clients c:

Aule) < 1f2- Ssnale) +1/2- S7rale) + O(e)(d* +dy)

(6.15) <|2.5d* —0.9dy |+ O(e)(d* + d1).

This proves Lemma 6.1 for far clients of type E. The proof for all other types of clients will have a similar structure:
we will identify which swaps affect client ¢, then we sum up the inequalities with the right probabilities. In some
cases we will need to look at cases depending on p.

6.3.2 Close Clients of Type E: ds(c) > adi(c) Simple swaps. Now we consider the case of close clients
c. We fix an arbitrary swap set P, and focus on ((f*)), (—/f1)), and {(—f2)) (All other swaps cause a non-positive
potential change). Suppose these three swaps are different. When f* opens, the client ¢ can be served by both f*
and f;. When f; closes, ¢ can be served by f; and 71, and when f5 closes, ¢ can be served by f; and 7;: in both
these cases, we use implication (Siii) of amenability to ensure that both the corresponding facilities are open. We

1572 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

know that da < d(c,n1) because ¢ has type E; by (6.9) we get d(c,m1) < 2d* + d;. Putting everything together,
the three swaps yield:

(Ogs=y) Ssnalc) <d* +Bdy —di — Bds
(Og=pn) Vdo 4+ B2d* +dy) —di — Bdo
(O~123) +di + B(2d* +di) —di — Bdo

=[(1+4B)d" — (2-3B)d1 + (1-38) dy |

We address the assumption that the three swaps are different. As argued above, condition (Siv) of amenability
for type E clients means that for simple swaps, (—f1)) # ((f >> However, fo could be 7(f*), so it may happen
that {(—f2) = ((f*>>, and hence that dsna(c) < &y s+ + dy~p). Moreover, ((=f1)) may not exist, in which case
dsnalc) < Oy + y—r,y or even dsna(c) < dyp-y. But s1nce our bounds above for both &,y and dy~p,) are
non—negatlve We 1nfer that the boxed upper bound remains valid in all these cases.

Tree swaps. We now consider tree swaps. Fix an arbitrary swap set P generated on the event 7 N A. For a
client c¢ in the close case, there are three swaps that are relevant to c—those containing f*, f1, and fo—although
some of these swaps may coincide. (Also, no other swaps can increase the potential.)

When f; and f; belong to the same swap. First suppose that f; and fs belong to the same swap in P. We
start from the case where (f*)) # {(—f1,f2)). For the swap ((f*)), the client ¢ can be served by both f* and f;.
And when f; and f; are both closed, ¢ can be served by 7(f*) (which is either 7, or n2) and 7(f1). By (6.9) we
get that d(c, 7(f*)) is at most 2d* + dy, and by (6.8) we get d(c, 7(f1)) < 2dy + d*. Hence,

> Sy (©) S Spey + O-pumpay
(P,Q)EP

(gs-y) < (d* + Bdy) — (dy + Bda)
(O=fr,mf2)) + (2d" + dv) + B(2dy + d*) — (di + B da)

=|B+8)d —(1-38)d —23ds |

On the other hand, if f*, fi, and f2 all belong to the same swap, we can assign ¢ to f*

D @) (©) < Ose i)
(P,Q)eP

(O s+ ~f1,-12)) <(1+af)d —dy —Bdy

(since 2d* + dy > ds) + B(2d* + dy — d2)
=1 +aB+268)d —(1—p)d1 —28d
<3.2d"—-0.4d; —0.4d,.

These two bounds are identical for our choices of o = 3 and 8 = /5.

When f; and f; belong to different swaps. Next, consider the case when f; and f5 belong to different swaps
in P. Let us first assume ((f*)) is neither {(—f1)) nor {(f2)). In the swap {(f*)) the client can served by f* and f;.
When one of f; or fs is closed, the client ¢ can be served by the other facility, and by 7(f*), which is at distance
at most 2d* + d; from ¢ (by (6.8)). Hence,

(0= with (6.10)) > dpoy(e) < (1 —B)d +28dy —di — Bdy
(P.Q)eP

(O~p1y) +dy+ B(2d* +dy) —dy — Bdo

(0~£29) +dy+B2d* +dy) —dy — Bdy

=[(1+38)d" — (2—4B)di + (1-38) do |

1573 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Our bound for sy does not require f> to remain open after the swap, and our bound for -,y is non-negative.
Therefore, the above bound also holds when ((—f2) = (f*). When {(—f1)) = {(f*)), we still have the above bound:

O+ ~ny) > bdple) <d +Bdy—dy — Bdy

(P,Q)eP
(0~£29) +di+ B(2d" +dy) —di — Bda
(non-negative terms) +B8d*+ 8di+ (1 —28)(d2 —dy)

=[(1+38)d" — (2—4B)di + (1-38) d |

Summarizing all these bounds (using that &« = 3 and 8 = 0.2),

Ssnalc) < (1+48)d* — (2—3B8)dy + (1 —3B)dy = 1.8d* — 1.4d; + 0.4ds
57na(c) < max{3.2d* —0.4dy —0.4ds,1.6d* — 1.2d; + 0.4d}.

Combining and using (6.7) to get ds < 2d* 4 d; if the ds terms do not cancel out, we get for close clients ¢:
Aale) <VY2-dsna+ 126704+ O(e)(d" +dy)

(6.16) <|2.5d* —0.9d; |+ O(e)(d* + dy).

Lemma 6.1 follows from the bound in (6.15) for the far clients and the one from (6.16) for the close clients.

6. All Other Client TypesSimilarly, we can bound A 4(c) for every other client type A-D. We summarize
this in the following theorem: the calculations behind the expressions can be found in Appendix D.

LEMMA 6.2. For any far client c of type A or B, we have

(6.17) Au(c) < 247d*(¢) — 1.13dy(c) + O(e)(d* + dy)

For any close client ¢; of type i € {A,B,C,D}, we have

(6.18) Ag(en) <2.375d*(cp) — 0.9d1(ca) + O(e)(d* + dy)
(6.19) Au(cg) <2.4d*(cg) —0.9d1(cg) + O(e)(d* + dy)

(6.20) Ay(ec) €£2.2d*(cc) — 0.8888d1(cc) + O(e)(d* + dy)
(6.21) Aa(ep) < 2.5203d*(ep) — 0.8888d;(cp) + O(e)(d* + dy)

Lemmas 6.1 and 6.2 imply that every client c¢ satisfies

A 4(e) £2.5203d"(c) — 0.8888 dy(c) + O(e)(d* + dy).
This proves Lemma 2.3, and hence Lemma 2.1 and Theorem 1.1.
7 A Computer-Aided Analysis using inear Programming

In this section we show how to generate a set of valid inequalities, then solve the resulting linear program to
find an upper bound on our approximation ratio. We describe the ideas for the potential &, that only takes the
second-closest facility into account, and indicate how to extend it to ®, for higher values of ¢ > 2. Of course, the
size of the LP increases exponentially as ¢ increases.

To recall, our proof strategy in the previous section was to consider a local optimum, and then:
1. define a (randomized) collection of important swaps that are contained within our actual set of swaps;

2. for every client type, write constraints that apply to all clients of that type;
3. carefully combine those constraints to have only a few remaining constraints; and

1574 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4. manually check these remaining contraints.

An automated proof could avoid the last two steps by directly checking the entire set of constraints. Since every
constraint we derive is a linear inequality on the distances, a linear program can be used for this automated proof.
Put differently, our goal is to write a linear program that constructs a “worst-case example” for our potential
function. Specifically, the program seeks values of the distances dy,ds, and d* for each client type, so as to

maximize the ratio between the costs of the optimum and local solutions, while respecting the set of constraints.
1

Variables and constraints of the PLet us focus on simple swaps, the constraints for tree swaps are similar.
We want to express the fact that simple swaps at a local optimum do not decrease the potential. We first classify
facilities into types according to their ratio p; we consider only a fine net of values for p, and use continuity of the
potential to control the loss due to this discretization. All facilities with a given ratio are treated the same way in
the proof: our LP considers that all facilities of the same type are swapped at the same time. Specifically, we have
a variable s, corresponding to the difference in the potential function after applying simple swaps for all facilities
with ratio p. The constraint saying that simple swaps do not decrease the potential is therefore > pSp 2 0.

The value of the variable s, is controlled by the clients connected to facilities having ratio p: each client type %
has a contribution to it. In an Sj-swap (where j € {1,2}), let dg, (i;2,y*,3?) be the potential change due to all
clients of type-i connected to facilities with ratio p, in function of x,y' and y?, respectively the total distance
from those clients to the optimal solution, their closest and their second closest facility of the local solution. This
difference of potential is described in Section 6: we illustrate it with clients of type A, in the far case. We denote
AF those clients. As presented in D.1.1, the S; and Sy swaps for those clients show

(1+aB)d — (1+aB)d
(A1) (1 + af) +) d" = ((1 =1/p)(1 + af) + af) di

651 OA(C)

<
ds,nalc) <

For bounding ds,n4(c), we upper bounded the potential value of the swap by d* + Bd; when f* is opened.
However, we could be more precise: it could be the case that d* < dy or d; < ad*. Therefore, this lead to 3 other
possible upperbounds, namely (1 + a3)d*, d* 4+ 8d;, and (1 + af)d;.

This translates to three other inequalities, one for each of those cases:

(when we choose (1 + af)d*) 0s,na(c) < ((2+Yo) 1 +aB))d" — ((2 =) (1 + aB))dy
(when we choose d* + 8d;) ds,nale) S (L +Yo) I+ af)+1)d" = ((2—=1p)(1+aB) - B)d;
(when we choose (1 + «f3)d;) 05,na(c) < (14 Yp) 1+ af))d* — (1 —=1p)(1+afB))d

More generally, the LP encodes all possible combinations of variables giving valid bound on the potential
after a swap. Note that then number of such inequalities grows exponentially with ¢, because each term
min(a;dy(c),d;(c)) doubles the number of valid inequalities.

Going back to type A, this gives rise to the constraints

(7.22) 85, (AF; TaF, s Unr, s URF.p) < (1+ aB)aar, — (1+ aB)yar ,

(7.23) 85, (AF; ZAF, 0 UAF s YAF p) < (14 /o) (1 + af) + B) zar,, — (1 — Yo)(1 + af) + aB) yae ,
(7.24) 85, (AF; ZAF oy Ynr, s YR o) < ((2+1/0) (1 + af)) zar,p — (2= /p)(1 + aB)) vae

(7.25) 85, (AF; ZAF. 0, UAF s UaF) < (14 1/0) (14 aB) + 1) zar, — (2= o) (1 + aB) — B) yae,
(7.26) 85, (AF; TAF o, YAF s YaF,p) < (14 1/0)(1+ aB)) zar,, — (1 = Yo) (1 4 af)) yar

where the variables z; , denote the total cost of clients of type ¢ connected to facilities with ratio p in the optimal
solution, and yf o denote the total distance from those clients to their j-th closest facility in the local solution.

TIn fact, it does not come up with a concrete example, since we do not maintain all the triangle inequalities between the clients,
but only the triangle inequalities in some local neighborhood around each client. It is conceivable that using more triangle inequalities

would lead to an even better result, but that increases the complexity even further.

1575 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

This definition of dg;, (i) yields the following constraint on s, : for j = 1,2,

. 1 2
Z 65']' ('L7 Li,ps Yi,po yi,p) 2 Sps
1€ST

where ST is the set of client types.

Moreover, the triangle inequality gives constraints on the variables xiyp,yily 0 yz o for instance, for type AF, we
would have

(7.27) YRF., < TaFp T (10) (S TaF,p + YAF ,)-

The constraints due to tree swaps are defined analogously, with a variable ¢, being the potential change after
applying tree swaps for all facilities of type p, and d7, (i) being the potential change due to all clients of type-i
connected to facilities with ratio p. For ¢ > 2, we need to consider more than one ratio, so we let p be the vector
of size ¢ — 1 that describes ratio of all two consecutive n; and n;4q for all j € {1,...,¢ — 1}. Let R be the set of
values of p after discretization: we use R := {5 | i € {0,...,100}}47 1. In that case, all clients with ratio in
[i-1072 (i + 1) - 10~2) are considered to have p =i - 10~2 for each index. This means that our bounds for § are

slightly relaxed to cover an interval instead of a precise p. The j** index of a ratio correspond to d?}f (c()c Lnigffﬁc()c))))) .

Let C be the set of client types. For ¢ = 2, each ¢ € C contains client type (A, B, C, D, E), ratio p, underlying form
of tree-graph (e.g. f1 and f2 belong to same tree in n;-swap), and whether ds < ad; or not. For j € {2,...,q}, let
C; be the set of clients with d; < a;d;. For ¢ = 2, Cz is the set of close clients (i.e., d2 < ady). Let C” denote set
of clients with ratio p. The general structure of the LP is the following:

(7.28) maxz Yy}

ieC
(7.29) st > a=1
ieC
(7.30) vl < oy} Vie{2,...,qhi€C;
(7.31) yl > ajy! Vie{2,...,q}i¢C;
(7.32) Z(SSj(i;xi,yil,...,yf)Zsp VpeR,je{l,....q}
ieCP
(7.33) ZcSTj(i;xi,y},...,yf)ztp VpeR,je{l,...,q}
ieCr
(7.34) > 5, >0
PER
(7.35) > t,>0
pPER
(7.36) Triangle-inequalities
(7.37) Js; (434,91, - - -, yd) < enumerated-upperbounds VieC,je{2,..,q}
(7.38) or, (15 4, yl, ..., y!) < enumerated-upperbounds VieC,je{2,...,q}
(7.39) y! >0, x>0 VieC,je{l,...,q}

Note that Y, .0yl / > icc i = ;e ¥i is the locality gap. Constraints (7.30) and (7.31) restrict each distance
based on whether they are ‘far’ client or ‘close’ client. Constraints (7.32) can be seen as the following: for each
ratio p we pick j € {1,...,¢} that minimizes the sum of potential difference after performing S; swap, then make
7(f*) = mn; for all f* with ratio p. Similarly, (7.33) chooses 7(-) for tree swaps. Then (7.34) and (7.35) ensure
the potential difference is non-negative after performing simple swap and tree swap respectively. We also add
triangle inequalities (e.g., (7.27)). Lastly, we add upperbounds for each potential difference in (7.37) and (7.38)
(e.g., (7.22) - (7.26)).

1576 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Implementing this approach, and then solving the resulting LP for for potential ®5 and ®3 gives us the following
numbers:

Potential ‘ Bound

Dy 2.7786
D 2.6861

For ®5, the LP finds that taking o = 3,8 = 0.2 yields the best result, whereas for ®3 we set manually
a=25708=0308 =p5-034. As always, we get an additive £ term because of the defiant swaps. However,
let us emphasize that these implementations should be considered preliminary, since they have not been formally
verified. We hope that formal proofs of these results can be given in the near future.

A ocality Gap for PotentialD,

In this section, we give lower bounds on the locality gap, and prove Theorem 1.2. We show locality gap examples
of max{2,a}, 3 — 2, and 1 + 45 for the potential function ®5. Putting these together, the locality gap is
minge(o,1),ae1,00) Max{3 —2f, 1444}, max{2, a}. Note max{3—23,1+4f} is 2%, when we set 8 = 1/3. Therefore
we show a locality gap of 2.

In this section, we show a locality gap of 2 for ®;. We divide the cases into three main cases:

e When oo <2
e When o > 2 and 8 <1/3
e When o > 2 and 8 > 1/3

We mainly use two types of example that we call “bi-clique” and “double-bi-clique” described in Figure A.9
Figure A.10 respectively. In bi-clique we have k + r local facilities on the right, where r = O(1) is the number
of extra local facilities, and k optimal facilities are on the left. There is a client between every (local, optimal)
facility pair, at unit distance from the optimal facility, and at distance d from the local facility.

9 - q T r=20

In double-bi-clique, we have two back-to-back bi-cliques as in Figure A.10. Each bi-clique is constructed the same
way as Figure A.9 except the number of facilities are halved. Consider a client ¢ with an edge going into f;, create
an edge at distance d between ¢ and i*? local facility in the other bi-clique. Now every client has an optimal
facility at distance 1, and two local facilities at distance d.

1577 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

For all cases we calculate the potential difference after performing a swap of size p. There are mainly 4 different
types of clients.

e C,: the set of clients with their f* opened.

e (Cq: Clients with their f; closed and f* not opened

e (C5: Clients with its f5 closed and f* not opened

e (C3: Clients with its f* closed, fi opened, and f> opened.

We use ¢, ¢1, c2, c3 to denote generic client for sets C,, C1, Co, and Cs respectively. We first calculate potential
difference for each client type, then sum them over.

We assume there is no client with their f; and fs both closed: those clients can only hurt the quality of the
solution, and given a swap that closes f; and fs of some clients it is easy to construct a strictly better set of
swaps with no such client.

A.1 When a <2 We first give lower bound examples when o < 2. We divide the case further into two cases:
when o < 4/3 +1/38) and when o > 4/3 + 1/(38).

Subcase I: o < 4/3+1/(38). We create a bi-clique presented in Figure A.9 with d = 2 —¢’, where ¢/ ~ O(1/k) is
a small quantity to be specified later. Note that every client has k + r — 1 local facilities at distance 2 + d, thus
the second closest facility is never closed for any client. Then for each client we get the potential differences:

AP =1+af—-(2—-€&)-2—-YaB=-1-aB+& +£ap
AP = (4—e)+ (4—£Vp—-(2-¢)—(2-€)aB >2+48—2ap
AD =0

AP =0

Note |C,| = p(k + r) and |C1| = p(k — p).
Summing up gives

> AP > p(k+1)(—1—af+& +&'af) +plk—p)(2+48 — 208)
ceC

> pk(1 448 — 3aB) + pke’ +rp(—1 — afB) — p*(2 4+ 48 — 2a5)
(for a < 4/3 + 1/(38)) >pk(14+48—3aB) >0

The second inequality holds for any ¢ > p2(2+4672°;i)+”’(1+0‘6) = O(1/k). Hence, this example shows a locality
gap of 2 — o(1) when a < min(2,4/3 + 1/(38)).

Subcase II: o > 4/3+1/(38). Since we focus on o < 2 and 5 < 1, this subcase implies that 8 > 1/2 and « > 5/3.
To deal with it, we create a double-bi-clique presented in Figure A.10 with d = 2. Note that every client has

two local facilities at distance 2, and k + r — 2 facilities at distance 4. Then for each client, we get the following
potential differences:

AP =1+aB—2-28=—1+aB—283
AP =2+ 208 —2— 28 > 2a8 — 28
AP =2+ 208 —2—28 > 2a8 — 28

AP =0
Let p; and py be the number of optimal facilities in the first clique that belong to the swap. Let py be the number
of optimal facilities in the second clique that belong to the swap. Then we have |C,| = %pl + %pg = %p.

Similarly let p} and p) be the number of local facilities in the first and second clique that belong to the swap.
Then we have [Cy| = p} (5 — p1) +5(5 — p2) > (5 — p)p. Also note that |C2| > (5 — p)p. Summing up gives

STATE > ofa(k + r)(~1+ af — 26) + 2p(k/2 — p)(208 — 26)

ceC

1578 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

> pk/2(—1+ 5a8 — 68) — rp/2(1 + 23 — aB) — 2p*(2a8 — 2)
(for « > 5/3 and 8 > 1/2.) > pk(1/12) — v/2p(1 + 28 —) — 2p*(2a8 — 23) > 0
The last inequality holds for r <

and p < Since r and p are absolute constant (i.e, o(k)),

k k
24(1+2B8—ap) 18(2aB8—28)"
the inequality is valid for big enough k. Hence, this example shows a locality gap of 2 when 4/3 + /38 < o < 2,

in particular when § > 1/2 and 2 > « > 5/3 This concludes therefore the case o < 2.

A.2 When 5 < 1/2 and a > 2 In this section we give a bi-clique example showing a locality gap when
B < 1/3 and a > 2. for constant-sized swap. Consider the bi-clique graph in Figure A.9 with distance
d = min{3 — 25 — &/, a}. We divide the case into two subcases. In first case we consider when 3 — 28 < a.
Then we consider when 3 — 28 > a.

Subcase I: 3 — 28 < a. We will first consider the case when 3 — 23 < «. In that case, the current potential

value of a client in the local solution is ®°(F) = (3 —25 —¢') + (5 — 25 —) (since a > 2 > 2:§§ for 5 < 1/2).

For the p(k + r) clients in C,, where k + r is the number of local facilities, if 3 — 28 — &’ < a we get the following
potential difference:

AP >1+4+83-28—-¢)—3-28-¢)—pBb-28—-¢)=-2+¢
Note that if a client’s f* is opened but its f; is closed, the client contributes 1+ 8(5—28—¢’') > 1+ 5(3—28—¢'),
and hence the above inequality is still valid for those clients.

There are p(k — p) clients in Cq, and they induce the following potential difference:
AP =(5-28—-€e)+B(5—-28—-¢)—3-28-¢)—p(B-28-¢)=2
Finally, clients in C3 and C4 do not induce a change in the potential value.

The sum over all clients yields

S A > p(k +r)(e — 2) + 2p(k - p)
ceC

= pk(0) + p(k +7)(¢") — 2(pr) — 2p* > 0.

The last inequality holds for any & > 25&:252 = O(1/k).

Hence, in the case where a > 2, 8 < 1/2 and 3 — 28 < «, this example shows a locality gap of 3 — 28 — o(1) > 2.
Case II: 2 < a<3—28. When 2 < a < 3—23, client’s closest distance is now «. Thus the potential value of a
client before any swap is ®°(F) = a + (2 + «)3. Note that 2 + a < o? for a > 2. We have the same number of
clients in each set. Furthermore, we get the potential differences:

AP >1+af—a—(2+a)f>1—a—28

AP =2+a)+ 24+) f—a—(2+a)8=2

ADP2 =0

AP =0

The sum over all clients yields

DAY > p(k+r)(1—a—28) +p(k —p)(2)
ceC

> pk(3 — 28 — a) +pr(l — a —28) — 2p°
(a<3-28-¢) > pke’ —pr(a+28—1) —2p* > 0.
The last inequality holds for any & > pr(aﬁ—gﬂ)w = 0(1/k).

Hence, in the case where o <3 — 28, a > 2 and § < 1/3, this example shows a locality gap of a > 2.

1579 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A.3 When § > /2 and o > 2 Finally we give lower bound examples when S > 1/2 and o > 2. We use
double-bi-clique in described Figure A.10 with d = min{1 + 48 — &', a}.

Subcase I: 1443 < «. Here, the current potential function value for a client is ®¢(F) = (1+45—¢')+8(1+45—¢").

k—i—r)

There are p(clients in C,, and the potential difference for a client ¢, € C, is

AP =1+ p(1+48—¢)—(1+B)(1+48—¢')=—-48+¢.

There are at least p(g —p) clients in C;. Recall a > 2 > ‘;’iig = for B > 1/2. The potential difference for ¢; € C;
is

AV = (1+48—¢)+ BB +4B—¢) - (1+B)(1+48 - &) =28

There are p(% — p) clients in Cy, and they get the same swap value as clients in C;. Clients in C3 do not induce
any change in the potential.

Then sum over all clients yields

Saeez g (5) ven (550) as (B -) = (M) asn ot) 20

ceC

The difference in potential function is therefore positive for all ¢’ > 4%1??” =0 (%) Hence, this example shows

a locality gap of 1+ 48 —o(1) > 2 — o(1) when a > max(2,1+ 43) and 8 > 1/2.

Case II: 2 < a <1+48. When a <1+ 40, clients’ closest and the second closest local facilities are both at
distance «. Thus the current potential value for a client is ®¢(F) = a4+ /3. We have the same number of clients
in each set. We get the following potential differences:

AP =14af—-a—-af>1—«

(Note 2 < « implies (2 + a) < a?.) AP =a+ 24+ a)f—a—af =20
ADP? =a+ 2+ a)f—a—af =20
A =0

The sum over all clients yields

S a0z p(555) (- o)+ 204 -)28)
k

ceC
> D1 at4p) — (o —1) - 2°(28)
(a<1+48-¢) > D) P (o 1) — 2p2(26) >

The last inequality holds for any & > w = O(1/k). Hence, this example shows a locality gap of
a—o(l) >2—-o(1)When2<a<1+4ﬂandﬁ>1/2

B Motivating our Swaps

In this section we present examples that motivate our choice of potential function and our swaps. In particular
they show that the swap structures defined in previous works are not powerful enough to prove our results.

1580 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

O 100 clients
® 1 client

ALG1

Figure B.11: A bad scenario for the swap structures defined by [GT08].

The analysis in [GTO08] matches each optimal facility to its closest local facility. So it matches both OPT1,
OPT2 to ALG2 and both OPT3, OPT4 to ALG4, leaving ALG1 and ALG3 with no facility of opt matched to
them. Hence, two swaps are defined: (1) swapping in OPT1 and OPT2 and removing ALG2 and ALG j for some
J € {1,3} that remains unspecified in their analysis, and (2) swapping in OPT3 and OPT4 and removing ALG4
and ALG(4-j). Now, if we consider the swaps defined by choosing j = 3, the set of equations obtained does not
allow us to deduce that the solution is not a local optimum, as long as « > 5/3 and for any 8 < 1.

® 1 client

Figure B.12: A bad scenario for the swap structures defined by Arya et al. [AGKT 01].

The definition of the swap structure in [AGK101] does not uniquely identify which local facility is matched to
which optimal facility. Hence, if the analysis matches ALG1 with OPT4, ALG2 with OPT3, ALG3 with OPT2
and ALG4 with OPT1, the set of linear equations obtained does not allow us to deduce that the instance is not
a local optimum.

1581 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

C Useful Inequalities

In this section, we prove the inequalities in Table 2. We also give some more inequalities in Table 3; these will be
used in §D.

Bound ‘ Coundition

dy = (Yp)dy — (1 +1/p) d” (C1) | m(f*) =11
dy < d* + (/p)(d1 + d*) (C2) | m(f)=h
d(c,m2(f*)) < d* +1/p(d* + du) (C3) | m(f*) =11
dy < d* + p(dy + d¥) (CA) | m(f) #h
dle,m(f7) <d +p(d* +di) <2d"+dy (C.5) | m(f") # fr
d(c,m2(f*)) <2d* +dy (C6) | m(f*)# fr
d(c,m(f2)) < 2dy + d” (C7) | m(f)#h
S M q
For clients ¢ with n1(f*) = f1:
dy > d(f*,m2) — d* = Ld(f*,m) — d* > (/o) dy — (14 1/p) d*, (proving (C.1))
dy < d*+d(f*,me) =d*+ %d(f*,m) <d"+ ;(dl +d*). (proving (C.2))
d(c,m) < d(c, f*)+d(f*,m2) =d* + (Yp)d(f*, f1) < d* + Yp(d* + dv). (proving (C.3))
Else when n1(f*) # f1:
d(c,m) < d(c, f*) +d(f*,m) = d(c, [*) + pd(f*,m2) < d" + p(d” + du) (proving (C.5))
d(c,m2) < d(c, f*) + d(f*,m2) < d" 4 (d* + dy). (proving (C.6))
dy < d(e,m) (Cgﬁ) d* + p(dy +d*), (proving (C.4) and (6.7))
Combining (C.5) and (C.6) gives (6.9).
Recalling that 7(f) is the closest optimal facility to f, we get for any client c,
d(CﬂT(fl)) < d(C7 f1) + d(f177T(f1)) <di+ d(fl7 f*) < 2d; +d* (pI‘OVng (68))
d(c,m(f2)) < d(c, f2) + d(fa, m(f2)) < do + d(f2, f*) < 2d2 + d". (proving (C.7))

To prove (6.10), we use that for any a,b > 0 and § < 1, the expression min(a, b)+ S max(a,b) = min(a+3b, b+ Sa)
is smaller than any convex combination (1—\)(a+ 8b)+ A(b+ SBa) with A € [0, 1]. Setting A = ﬁ and simplifying
gives (1 — B)a + 20b. Using a = d* and b = d; completes the proof.

D Proof of emma 6.2

We now present the proof of Lemma 6.2, giving bounds for all the client types other than type E. The idea is the
same for each one: First we fix a client ¢ of some type. We partition the amenable event into some sub-events,
and look on some sub-event £. We consider a generic swap set P generated under that event, and give an upper
bound for the maximum potential change for client ¢ due to these swaps. Combining over all sub-events (with
the correct probability values) gives the expected potential change. The largest such change for each client type
is then shown to be the one recorded in Lemma 6.2.

When we prove upper bounds for the potential change caused by a swap set P, we assume that both (—f1)
and ((—f2) exist in P (if f is heavy ((—f)) does not exist). As we mentioned in Section 6.2, our bounds also
hold in cases where either of them does not exist, because our upper bounds for J,- sy is non-negative as long as

(f*) # (=f) for any f € {f1, f2}-

In the rest of this section, we prove each inequality from Lemma 6.2.

1582 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA 6.2. For any far client c of type A or B, we have

(6.17) Au(c) < 247d*(c) — 1.13dy(c) + O(e)(d* + dy)

For any close client ¢; of type i € {A,B,C,D}, we have

(6.18) Aulca) < 2.375d* (ca) — 0.9d1 (ca) + O()(d* + dy)
(6.19) Au(cg) < 2.4d"(cg) — 0.9dy(cg) + O(e)(d* + dy)

(6.20) Au(ec) < 2.2d"(cc) — 0.8888 dy(cc) + O(e)(d* + dy)
(6.21) Au(ep) < 2.5203 d* (cp) — 0.8888 dy(cp) + O(e)(d* + dy)

D.1 Proof of (6.17): Far Clients of Type A and B In this section, we show that for any far case client ¢
of type A or B, we have
A y(e) £2467d"(c) —1.13085d1(c) + O(e)(d* + dy).

We give different analysis depending on whether f* points to n; or 7o; this is different from our type E analysis,
where our bounds are the same in both cases. Formally, we partition the amenable event A as the union of S;NA,
SaNA, TiNA, and Ta N A. We upper-bound A 4(c) by

Aa(c) < Pr[S1 N AJds,nale) + Pr[Sa N Alds,nalc) + Pr[Ti N AJdrnale) + Pr[Ta N Aldrnalc)
(D.8) < Pr[S1]6s,na(c) + Pr[Sa]ds,na(c) + Pr[Ti)o7 na(c) + Pr[Taldrnalc) + O(e)(d* + dy).

The probabilities Pr[S1], Pr[Sa], Pr[T1], Pr[73] are given in Table 1. We proceed by showing upper-bounds for the
¢ values, the potential changes of client ¢ on the worst-case swap set P, for far clients of type A and B in the
following subsections.

D.1.1 Far clients of type A: fi =

Simple swaps with 7(f*) = 1 Type A clients have f; = 7, which is the same as 7(f*), so we have
(f*)» = (—f1) in P by implication (ii) of amenability. On that swap, the client can be served by f*. Therefore,

(O p+,~f1)) bs,nalc) < \ (1+aB)d* —(1+aB)d \

Simple swaps with 7(f*) = 72 Since 7(f*) = n2 # f1, we know ((f*)) # (—f1)) by implication (Siv) of
amenability. On swap {(f*)), ¢ can be served by both f* and f;. On swap (—f1)), ¢ can be served by 7o (by
implication (Siii) of amenability). Note that d(c,n2) < d* + 1/p- (d* + d1) by (C.3). Therefore,

(Opp) Ss,nalc) < dy+ Bd* — (1+afB)dy
(O-py) + (L4 aB)(d* +Yp- (d* +dr)) — (1 +af)dy

=[(1+ /)1 +ap) +B)d" — (1= Yp)(1 + aB) + aB) di |

Tree swaps with 7(f*) = n; We have (f*)) = {(—f1)) by implication (ii) of amenability. On that swap, the
client can be served by {(f*)). Therefore,

(B¢s i) drinale) <|(1+aB)d" — (1+ap)di |

Tree swaps with 7(f*) =no If {(f*)) = {(—f1)), then we have the same bound as above:

(D.9) > Spoy(e) < (A +ap)d — (1+aB)di.
(P,Q)EP

If (f*) # {—f1), then on swap {(—f1)), ¢ can be served by 7y and w(f1), by implications (ii) and (Tii) of
amenability. We already showed d(c,n2) < d* + 1/p - (d* + d1). We also have d(c,7(f1)) < 2d; + d* by (6.8).
Therefore,

(Ogs=y) Y b)) <di+Bd - (1+aB)d
(P,Q)EP

1583 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(O-f1)) + (d" + Yo (d* +d1)) + B(2d1 + d*) — (1 + af) dy
(D.10) =14+1Ye+28)d" — (14 2a8—28—1/p)d;.

For our choice of «, 8, (D.10) is larger than (D.9), so we have

drnalc) <[(1+ Yo +28)d" — (14208 — 28— Yp)di |

Summarizing, we have

dsinalc) <(L+ap)d” = (1+ap)d =16d" - 1.6d,
ds,n4(¢) (L +Yp)(L +af) +) d" — (1 =Y/p)(1 + aB) + aB) dy
= (1.8 +1.6/p)d* — (22— 1.6/p)ds
drinalc) (1 +ap)d* — (1 +aB)d; =1.6d*—1.6d;
dnalc) (1 +1Yp+28)d* — (1 +2a8 — 26 —1/p) dy =(14+1/p)d* — (1.8 —1/p)d;
We now combine these inequalities using (D.8). If p(f*) < 2/3, we have Pr[&1] = Pr[71] = /2 and

Pr[Sy] = Pr[Tz] = 0. Therefore,
Ayle) <Y2-ds,na(c) + 12 01na(c) + O(e)(d* + dy)
<[L6¢ 164 |+ OE) @ +)
If 2/3 < p(f*) < 3/4, we have Pr[S1] = 1/2, Pr[Ss] = 0, Pr[T1] = 1/4, Pr[T3] = /4. Therefore,

Aule) <VY2-ds,na(c) + /4 07na(c) + Y/4- drna(c) + O(e)(d" + dy)
<34 (164" — 1.6dy) + 1/~ (L4 +3/2)d" — (1.8 — 3/2)dy) + O(e)(d" + dv)

=[1.925d" — 1.275.d, |+ O(e)(d" + dy).

If p(f*) > 3/4, we have Pr[S1] = 5/4 — p, Pr[Sa] = p — 3/4, Pr[T1] = Pr[73] = /4. Therefore,
Aule) < (52— p) - 0s,nalc) + (p = 3/4) - bsunale) + Ya- drinalc) +1/4- drnalc) + O(e)(d” + di)
< (3+0.2p—0.95/p)d* — (0.6p+ 0.95/p — 0.4) dy + O(c)(d* + dy)
< (340.2—0.95)d" — (0.6 + 0.95 — 0.4) dy + O(e)(d* + dy)
=2.25d" — 1.15dy |+ O(e)(d* +).

D.1.2 Far clients of type B: f; =7y When cis a far client of type B, we have ((f*)) = (—f1)) on S2NA and
T2N A. This is exactly the situation for type A clients on S; N.A and 73 N.A. Therefore, we have the same bound
for all of these cases:

(Os.~0) Ssinale) | (1+aB)d" — (1+aB)di |

(g s=~p1p) drnale) < ‘ (I1+ap)d* —(1+aB)d ‘

We continue to bound ds,n4(c) and d751.4(c).

Simple swaps with 7(f*) = n; By implication (Siv) of amenability, we have (f*)) # (—f1). On swap (f*)),
the client can be served by f* and fi;. On swap ((—f1)), the client can be served by 7, (by implication (Siii) of
amenability). Also, d(c,m1) < d* + p(d* +dy) by (C.5). Therefore,

(Ggry) dsinale) <di +Bd" — (1+ap)ds

(O-=s11) + (1L +ap)(d” +p(d” +di)) = (1+ap)dy

=[(1+p)(1+aB)+B)d" — (1 - p)(1 +ah) +aB)di]

1584 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Tree swaps with 7(f*) = If {(f*)) = (—f1)), then we have

(D.11) > S <A +aB)d - (1+aB)d;.
(P,Q)EP

If (f*) # (—f1)), then on swap (—f1)), ¢ can be served by 7 and w(f;) by implications (ii) and (Tii) of
amenability. We showed d(c,n1) < d* + p(d* + dy). We also have d(c, 7(f1)) < 2dy + d* by (6.8). Therefore,

(Ggrey) > Spoy(e) <di+Bd —(1+aB)d

(P,Q)EP
(O-p1y) + (d* + p(d* +dy)) + B(2d1 + d*) — (1 +af) d;
(D.12) =(1+p+28)d* —(1+2a8—28—p)di.

Taking the maximum of (D.11) and (D.12) using o = 3, 8 = 0.2, we have

drnalc) < ‘ (1.4 + max{p,0.2}) d* — (1.8 — max{p, 0.2}) dy ‘

Summarizing, we have

ds;nale) < ((L+p)1+aB)+8)d" — (1 - p)(1 +aB) +aB)di
= (1.8 4 1.6p)d* — (2.2 — 1.6p) d;

0sona(c) < (T+af)d” — (1+af)dy =1.6d" - 1.6d;
d7nalc) < (1.4 + max{p,0.2}) d* — (1.8 — max{p,0.2}) dy
dnnalc) < (A +ap)d” — (1+ab)d =1.6d" —1.6d;
We now combine these inequalities using (D.8). If p(f*) < 2/3, we have Pr[S;] = Pr[7T1] = 1/2 and

Pr[Sy] = Pr[Tz2] = 0. Therefore,

Aule) <Yz dsnalc) +1/2-0rina(c) + O(e)(d" + di)
<12 (L84 1.6 x 2/3)d* — (2.2 — 1.6 x 2/3)d;)
+ 12 (14 +2/3)d" — (1.8 — 2/3)dy)
+ O(e)(d* + dy)
<[2.46667d" — 1.13333d, |+ O(e)(d* +).

If 2/3 < p(f*) < 3/4, we have Pr[S1] = 1/2, Pr[Sq] = 0, Pr[T1] = /4, Pr[T3] = /4. Therefore,

Au(c) < V2 bs,nalc) +Ya- drnalc) + a- 5pnalc) + Oe)(d* + di)
<12 (1.8 4 1.6 x 3/4)d* — (2.2 — 1.6 x 3/4)d;)
/s (1A +3/8)d* — (1.8 — 3/4)dy)
+1/a- (1.6d" — 1.6dy)
+O()(d +dy)
=|2.4375d" — 1.1625d; |+ O(e)(d* + dh).

If p(f*) > 3/4, we have Pr[S1] = 5/4 — p, Pr[Sa] = p — 3/4, Pr[T1] = Pr[72] = /4. Therefore,

Aule) < (54— p) - sinalc) + (p = 3/4) - 6s,nalc) + Y4 0rinale) + Ya- drnalc) + O(e)(d" + dv)
(1.8 4 2.05p — 1.6p%)d* — (2.4 — 2.85p + 1.6p%)d1 + O(e)(d* + d1)
(1.842.05-3/a— 1.6+ (3/4)2)d* — (2.4 — 2.85 - 285/3.2 + 1.6 - (2:85/3.2)%)d; + O(e)(d* + dy)

<|24375d" — 1.13085d; |+ O(e) (d* +).

ININ A

1585 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

D.2 Proof of (6.18): Close Clients of Type A In this section, we show that for any close case client ¢ with
type A, we have
A4(e) £2.375d"(c) — 0.9d1(c).

D.2.1 Clients with p(f*) < 2/3 We first consider the case where p(f*) < 2/3. Our analysis for this case is
very simple: we directly use A 4(c) < Pr[A]d.4(c) < da(c) + O(e)(d* 4 d1) without considering sub-events of A.

Let us fix a generic swap set P generated on the amenable event A. p(f*) < 2/3 implies that 7(f*) always equals
to m = fi. By implication (ii) of amenability, we have ((f*)) = ((—=f1)) in P. Therefore,

(O p+~f1)) 6a(c) < (L+aB)d —dy — Bds
(S¢~fay) +(1+aB)dy —di — Bds
=(1+ap)d* — (1—aB)d, —2Bds.

Note that this bound also holds when ((—f2)) = ((f*, —f1)), because our bound for ((f*,—f1)) does not require fo
to remain open after the swap and §y- s,y is non-negative.

If d; < d*, then we have

(d1 < d”) dale) <A+ af+p)d" —(L—aBf+p)d —28dy
(dg > dy) <(A+af+p)d —(1—-aB+38)d

If dy > d*, we have

dale) <(I+aB)d* —(1—apf)d; —20dsy

(averaging (C.1) with dy > dy) <(1+apf)d* —(1—af)d, —28 (1 + 1/Pd 1+ 1/Pd*>

2 2
(p <2/3and d* < d;) <(14ap)d —(1—ap)d —28 (Zdl - id*)

= (1+af+258)d* — (1—af +2.58)d;

=12.1d" —0.9d; |

D.2.2 Clients with p(f*) > 2/3 Now we turn to close clients of type A with p(f*) > 2/3. Our analysis for
simple swaps adopts the usual strategy:

Asna(c) < Pr[S1 N AJds,~alc) + PriSe N Alds,nalc)
< Pl“[Sﬂ(SslmA(C) + Pr[SQ](SSzﬁA(C) +0(e) (d* +dy).

However, we will be a little more careful in our tree swaps analysis. We further partition the tree events 7; and
To as Ty = T11 U Ti2 and T3 = T21 U Tao in the following way. 771 is defined as the intersection of 7; and the
event that (f*)) is the only swap closing any facility in {fi, fo}. 721 is defined as the intersection of 73 and the
event that there is a swap which closes both f; and fo but does not open the original copy of f*. Ti2 and Tas are
defined accordingly: 712 = T1\711 and To2 = T2\ 7a1.

Recall that p(f*) > 2/3 implies Pr[T;] = Pr[72] = /4. The naive way to bound A7~ .4(c) is by the following:

Arna(e) < Pr[Ti]orinalc) + Pr[Ta]dr,nalc) + O(e)(d” + di)
=14 max{07;,na(c), 673,n4(c)} + /4 - max{d7;,na(c), 07panalc)} + O(e)(d" + du).

If we ignore the O(e)(d* + dy) term, the above bound is equal to /4 times the maximum of all four sums:
071nA(C) + 073,n4(€), 07,na(C) + 0730n4(€), 0T30n4(C) + O73,n4(€), Ti5na(C) + 073,na(c). However, by relating
the probabilities of 711 and 7T21, we have the following lemma (proved in Appendix E.4), which gives an improved
bound by not taking d7;,na(c) + 075,n4(c) into the maximum.

1586 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA D.1. (TYPE A AVERAGING) For a close client of type A with p(f*) > 2/3, we have

A7na(c) < /4 max{d7;,na + 672104, 671104 + 073004, 071004 + 075504} + O()(d” + da).

We now proceed to show upper bounds for the worst-case potential change on each event.

Simple swaps with 7(f*) = We have {(f*)) = (—f1)) # {(—f2)) by implications (ii) and (Siv) of amenability.
On swap (f*)), the client can be served by f*, and on {(—f2)), the client can be served by f; (at distance d;) and
n2 (at distance < d* + 1/p- (d* + dy)), by implication (Siii) of amenability. Therefore,

(6<<f*7_'f1>>) dsinalc) < (1 +aB)d* —dy — Bds

(Orap) +di+ B+ (@7 +d1)) —di = Bd;

=[(U+aB+B+8)0)d —(1-8/p)di - 28ds]

Simple swaps with 7(f*) = 72 By implications (Siii) and (Siv) of amenability, the three swaps {(f*)),{(—f1)),
{(—f2) are all different. On swap ((f*)), the client can be served by f* and f;. On swap {(—f1)), the client can be
served by fa and 72. On swap ((—f2)), the client can be served by f; and 72. Therefore,

(gs-y) dsynalc) <d* +Bdi —dy — Bds
(-p13) +dy+ B(d* + Yo (d* +dv)) — dy — Bdy
(6¢-r29) +di + B(d* 4 Yp- (d" +d1)) —di — Bds

=[(1+28+28/p)d" — (2= B—28/p)dr + (1 3P) d> |

Tree swaps with 7(f*) =, On 711 NA, {(f*)) is the only swap closing any facility in {f1, f2} by the definition
of 711. In other words, both {(—f1)) and {(—f2)) coincide with {(f*)) as long as they exist. Therefore,

(3s+ f1.m12) Srnale) | (1+aB)d* —di — Bdy |

On T12 N A, we have {(f*) = (—f1)) # {(—f2) by implication (ii) of amenability. On swap ((f*)), the client can
be served by f*. On swap ((—f2)), the client can be served by f; and 7(f2) by implication (Tii) of amenability.
We have d(c,7(f2)) < 2d2 + d* by (C.7). Therefore,

CYTERY O7anale) < (L +af)d* —di — Bdsy
(0g-r29) +dy+B(2dy +d") —dy — Bdy

=|(1+aB+B)d —di]

Tree swaps with 7(f*) =72 On Ta1 N A, we have (—f1)) = (—f2)) # (f*)). On swap ((f*)), the client can be
served by f* and f1. On swap ((—f1, 7f2)), the client can be served by 7, and 7(f1) by implications (ii) and (Tii)
of amenability. We have d(c,n2) < d* 4+ 1/p- (d* + d1) and d(c,7(f1)) < 2dy + d*. Therefore,

(gs-y) 0nalc) <d* +Bdy —dy — Bda
(6=t1,~f2)) + (d" 4 1/p(d* + dy)) + B(2dy +d*) — dy — Bdo

=[@+B+Yp)d —(2-38—1p)di — 2B |

On Ta2N A, we first consider the case where all three swaps (f*)), (—f1)), (—f2)) are different. On swap (f*)), the
client can be served by f*. On swap {(—f1)), the client can be served by fo and 7(f1) (at distance < 2d; +d*), by
implication (Tii) of amenability. On swap ((—f2)), the client can be served by f1 and 7(f2) (at distance < 2ds+d*),
again by implication (Tii) of amenability. Therefore,

(gs-y) 67ana(c) < (L+aB)d* —dy — Bdy

1587 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(O-p1y) +dy + B(2dy +d*) —diy — Bdy
(0g-r29) +dy + B(2dy +d*) —di — Bds

<|(L+aB+28)d — (2—28)di + (1 - B) da |

Since our bound for §y -y (c) doesn’t require either f; or f> to remain open after the swap, and both ¢,y and
d(~,) are non-negative, the above bound also holds when ((—f1)) and/or ((—f2)) coincides with ((f*)).

Summarizing, we have

dsinalc) <L+ aB + B+ 68/p)d" — (1 —B/p)d1 — 2B ds
— (1.840.2/p)d* — (1—0.2/p) di — 0.4ds
sua() <(1+ 26+ 28/p) d* — (2 — B — 28/,) dy + (1 - 36) dy
— (144 0.4/p)d* — (1.8 — 0.4/p) dy + 0.4dy

dminale) A+ aB)d* —dy — fds =1.6d*—d; —0.2d,
Oranale) K1+ aB + B)d" —dy =1.8d* —d;
07nalc) <2+ B+ 1p)d* — (238 —1/p)d1 —20dy

— (224 1p)d* — (LA — 1) dy — 0.4ds
0730nalc) (1 +aBf +26)d* — (2—28)d; + (1 -) da
=2d* —1.6d; +0.8ds

J

We now combine these bounds to show an upper bound for A 4(c¢) using Lemma D.1. Note that our bound for
07;,n4(c) is smaller than our bound for d7,,n4(c), so we only need to consider cases where the maximum in
Lemma D.1 is attained at either d1;,n4(c) + d73,na(c) or d7,na(c) + d7punalc).

When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2 and Pr[Sy] = 0. Therefore, if the maximum in Lemma D.1 is
attained at 67;,n4(c) 4+ d15,n4(c), we have
Aule) <V2-0s,0a(c) + 14+ (01,04(¢) +073104(c)) + O(e)(d” + du)
< (1.85+0.35/p)d* — (1.1 — 0.35/p)d1 — 0.35ds + O(e)(d" + dy)
(do > dy) < (1.85+0.35 x 3/2)d* — (1.45 — 0.35 x 3/2)d; + O(e)(d* + dy)

=|2.375d" — 0.925d; |+ O(e)(d* +).

If the maximum in Lemma D.1 is attained at d7,,n4(c) + d7,na(c), we have

Aulc) < 1/2-6s,nalc) + Y1+ (573,n4(c) + 0755n4(c)) + O(e)(d" + dv)
< (1.85+0.1/p)d* — (1.15 — 0.1/p)dy + O(e)(d* + dy)
< (1.85+ 0.1 x 3/2)d* — (1.15 — 0.1 x 3/2)dy + O(e)(d" + dy)

=[2d" —di [+ O(e)(@" +).

When p(f*) > 3/4, we have Pr[S1] = 5/4 — p and Pr[Sa] = p — 3/4. Therefore, if the maximum in Lemma D.1 is
attained at 67;,n4(c) + 015,na(c), we have

AA(S) < (/2= p) - 5,04(0) T (9 — ¥4) - 6,04(0) + /1 - (573,04(0) + S7sna(€)) + O(E)(d" +di)
(2.35+0.2/p — 0.4p)d* — (0.3 — 0.2/p + 0.8p)d1 — (0.95 — 0.8p)ds + O(e)(d* + dy)
(ds > dy) (2.35+0.2/p — 0.4p)d* — (1.25 — 0.2/p)d1 + O(e)(d" + dy)
(2.354 0.2 x 4/3 — 0.4 x 3/4)d* — (1.25 — 0.2 x 4/3)d; + O(e)(d* + d1)

<[2.31667d* —0.98333d1 |+ O(e) (" + dy).

VAN VAN VAN VA

If the maximum in Lemma D.1 is attained at d7,,n4(c) + d7,na(c), we have

Aale) < (31— p) - 65,04() + (p — 3/4) - S530.4(0) + V1 - (571204(€) + S7230(0)) + O(&)(d* +)

1588 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

< (2.35 — 0.05/p — 0.4p)d* — (0.35 4 0.05/p + 0.8p)dy + (0.8p — 0.6)dz + O(e)(d* + dy)

(d* +dv))
< (2.55 — 0.65/p + 0.4p)d* — (0.65/p + 0.8p — 0.45)dy + O(e)(d* + dy)
<

(2.55 — 0.65 + 0.4)d* — (0.65 - 4/\/i3 + 0.8 - VI3/a — 0.45)d; + O(c)(d* + dy)
<|23d" —0.99222d; |+ O(e)(d* +).

(do <d*+1/p-

D.3 Proof of (6.19): Close Clients of Type B In this section, we show that for any close case client ¢ with
type B, we have

Ay(e) £2.4d"(c) —0.9dy(c).

In our type A analysis, we further partitioned the tree events 7; and 75 as 71 = 711 U712 and T3 = Ta1 U Taa. We
require this partitioning also in our type B analysis, with the roles of 7; and 7, flipped. Specifically, we define
T11 as the intersection of 77 and the event that there is a swap which closes both f; and fo but does not open the
original copy of f*. We define To; as the intersection of 75 and the event that ((f*)) is the only swap closing any
facility in {f1, f2}. We define 715 and 722 accordingly as 712 = 71\711 and T22 = T2\72:1. Similar to Lemma D.1,
we have the following lemma for type B:

LEMMA D.2. (TYPE B AVERAGING) For a close client of type B with p(f*) > 2/3, we have

Arra(c) < Ya-max{d7;,na + 675,04, 071204 + 073:04, 071004 + 073004 + O(e)(d" 4 dy).

We now proceed to bound the worst-case potential changes in different events.

Simple swaps with 7(f*) = n; By implications (Siii) and (Siv), all three swaps {((f*), (—f1), (—f2) are
different. On swap {(f*)), the client can be served by f* and f;. On swap ((—f1)), the client can be served by
f2 and m; by implication (Siii) of amenability. On swap ((—f2)), the client can be served by f; and 7;, again by
implication (Siii) of amenability. Note that d(c,m) < d* + p(d* + d1) by (C.5). Therefore,

(O rp) Ssinalc) <d* +Bdy —dy — Bdy
(O-$13) Fdo + B(d* + p(d* + b)) — di — Bds
(~p20) Fdy+ B + p(d* +d1)) — dy — Bds

=[(1+28+208)d" — (2— B —2pB)ds + (1-38) d |

Simple swaps with 7(f*) = 12 By implications (ii) and (Siv), we have ((f*)) = {(—f1)) # {(—f2)). On swap
{(f*), the client can be served by f*. On swap {(—f2)), the client can be served by f; and 757, by implication (Siii)
of amenability. Therefore,

CXTY) s,nalc) < (1+apf)d* —dy — Bds
(0¢-r29) +dy + B(d* + p(d* +d1)) — di — Bda
=[(L+aB+B8+pB)d" — (1 pB)di —28ds

Tree swaps with 7(f*) =1 On 731 N A, we have (—f1)) = (—f2)) # (f*). On swap ((f*)), the client can be
served by f* and f;. On swap ((—f1,—f2)), the client can be served by 7 and 7(f;) by implication (ii) and (Tii)
of amenability. We have d(c,n1) < d* + p(d* + d1) and d(c, 7(f1)) < 2d; + d* by (6.8). Therefore,

(Gp) 67nalc) <d*+ Bdi —dy — Bds
(04=fr,~fa)) + (d* + p(d* + dv)) + B(2dy + d*) — dy — Bds
<|@+B+p)d —(2-38—p)di — 23|

1589 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

On Ti2N A, we first consider the case where all three swaps {(f*)), (—f1)), {—f2)) are different. On swap (f*)), the
client can be served by f*. On swap {(—f1)), the client can be served by f2 and n;. On swap {(—f2)), the client can
be served by f1 and 7;. After both (—f1)) and {(—f2)), 71 is open by implication (ii) of amenability. Therefore,

(gs=y) 0715n4(c) < (L4 af)d* —dy — Bdy
(Og-113) Fdo+ B(d* + p(d* +d1)) — dy — Bds
(O~£23) +di + B(d* + p(d* +dy)) — dy — Bdy

<|[(L+aB+28+208)d" — (2—2pB)d1 + (1 38) dp |

Since our bound for § -y (c) doesn’t require either fi or fa to remain open after the swap, the above bound also
holds when {(—f1)) and/or {(—f2)) coincides with {(f*)).

Tree swaps with 7(f*) =ns On 731 NA, {(f*) is the only swap closing any facility in {f1, fo} by the definition
of 721. In other words, both ((—f1)) and {(—f2)) coincide with ((f*)) as long as they exist. Therefore,

CITRRARY Oranale) <[(1 +aB)d” —di — Bds |

On T2 N A, we have (f*) = (—f1)) # (—f2)) by implication (ii) of amenability. On swap ((f*)), the client can
be served by f*. On swap ((—f2)), the client can be served by f; and 7(f2). Therefore,

CITER) 673na4(c) < (14 aB)d* —dy — Bds
(0g-r29) +dy + B(2dy + d*) — dy — Bdz
=[(1+aB+B)d —di]

Summarizing, we have

dsinalc) S(1+28+2pB)d" — (2— B —2pB)d1 + (1 —3B)d2
= (144 0.4p)d* — (1.8 — 0.4p) dy + 0.4d;

8s,nalc) <1+ aB+ B+ pB)d* — (1 — pB)dy —28ds (1.840.2p)d* — (1 — 0.2p)dy — 0.4ds
ornalc) <2+ B+p)d — (238 —p)di —28d> = (22+p)d* — (1.4 —p)dy — 0.4d
6mana(c) (1 +aB+28+2pB)d" — (2 —2pB)di+ (1 —3B) do

= (24 0.4p)d* — (2 — 0.4p) dy + 0.4dy
Ornale) (14 af)d” —dy — Bda =1.6d" —d; —0.2ds
0Tanalc) <A +af +B)d* —dy =1.8d* —d;

Now we combine these inequalities to get an upper bound for A 4(c). When p(f*) < 2/3, we have Pr[S;] =
Pr[Ti] = /2 and Pr[S5] = Pr[73] = 0. Therefore,

Aule) <V2-0s,na(c) + 12 - max{d7;,na(c), 67i,na(c)} + O(e)(d” + dy).
If the maximum is attained at d7;,n4(c), we have

Aale) <1/2-ds,na(c) + 12 073,n4(c) + O(e)(d" + d1)
< (1.8+0.7p)d* — (1.6 — 0.7p)dy + O(e)(d* + dy)
< (184 0.7 x 2/3)d* — (1.6 — 0.7 x 2/3)dy + O(e)(d* +)

=[2.26667d" — 1.13333d, |+ O(e)(d" +).

If the maximum is attained at d7,,n4(c), we have

Aale) < 12+ 85,0a(0) + /2 7ian a(c) + O(E)(d" + dy)

1590 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

< (1.7 +0.4p)d* — (1.9 — 0.4p)dy + 0.4dy + O(e)(d* + dy)
(dy < V2 (d* + p(d* + dy)) + /2 - ady) < (1.9 4 0.6p)d* — (1.3 — 0.6p)dy + O(e)(d* + dy)
< (1.9 4 0.6 x 2/3)d* — (1.3 — 0.6 x 2/3)dy + O(e)(d* + dy)

=[2.3d" —0.9d; |+ O(e)(d* + dy).

When p(f*) > 2/3, we apply Lemma D.2 to combine the inequalities. Note that our bound for §7,,n.4(c) is smaller
than our bound for d7,,~n.4(c), so we only need to consider cases where the maximum in Lemma D.2 is attained
at either d7;,na(c) + 073,na(c) or dr,na(c) + 07pnalc).
When 2/3 < p(f*) < 3/4, we have Pr[S;] = /2, Pr[Sy] = 0,Pr[T;1] = Pr[T2] = /4. If the maximum in Lemma D.2
is attained at d7;,na(c) + d73,n4(c), we have

Aule) VY2 bsnalc) + Y4 (673,n4(c) + 673104(c)) + O(e)(d” + d1)
(1.65 4 0.45p) d* — (1.5 — 0.45p) d1 + 0.05d3 + O(e)(d* + dy)
(1.65 4 0.45p) d* — (1.35 — 0.45p) d1 + O(e)(d* + dy)
(1.65 4 0.45 x 3/4)d* — (1.35 — 0.45 x 3/4)dy + O(e)(d* + dy)

=[1.9875d" — 1.0125d, |+ O(e)(d* +).

(d2 S Oédl)

VAN VAN VAN VA

If the maximum in Lemma D.2 is attained at d7,,n4(c) + d7,na(c), we have

A(e) < V2 65,m4(¢) + 14+ (07,04(C) + 673an4(c)) + O(E)(d* + dy)
< (1.65+ 0.3p) d* — (1.65 — 0.3p) di + 0.3ds + O(e)(d* + dy)
(dy < d* + p(d* + dy)) < (1.95+ 0.6p) d* — (1.65 — 0.6p) d1 + O(c)(d* + dy)
< (1.95+ 0.6 x 3/a)d" — (1.65 — 0.6 x 3/a)dy + O(e)(d" + dy)

—|2.4d* — 1.2dy |+ O(e)(d* + dy).

When p(f*) > 3/4, we have Pr[S1] = 5/4— p, Pr[Sa] = p—3/4, Pr[T1] = Pr[T3] = 1/4. If the maximum in Lemma D.2
is attained at d7;,n4(c) + d75,na(c), we have

Aule) < (5/a=p) - dsinale) + (p = 3/4) - ds,nale) + /4 (0n,na(c) + 671na(c) + O(e)(d™ + du)
< (1.354p—0.2p%)d* — (2.1 — 1.4p + 0.2p%) dy + (0.65 — 0.8p) da + O(e)(d* + dy).
When p < 0.8125 = 0.65/0.8, we use do < ady:
Aale) < (1.35+p —0.20%)d* — (0.15 + p + 0.2p%) dy + O(e)(d* + dy)
(1.35 + 0.8125 — 0.2 x 0.81252)d* — (0.15 + 3/4 4 0.2 x (3/4)%)d; + O(e)(d* + dy)
=[2.03047d" — 1.0125d; |+ O(e)(d* + dy).
When p > 0.8125, we use do > dy:
Aule) < (1.35+ p—0.2p%) d* — (1.45 — 0.6p + 0.2p%) dy + O(e)(d* + dy)
< (1.35+1—0.2)d* — (1.45 — 0.6 + 0.2)dy + O(e)(d* + dy)
=[2.15d" — 1.05d; |+ O(e)(d" + dy).

<
<

If the maximum in Lemma D.2 is attained at d7;,n4(c) + d7,na(c), we have
Aule) < (/2= p) - dsinalc) + (p = 3/1) - dsynalc) + /4 - (07,04() + 0735n4(c)) + O(e)(d” + da)
< (1.35 4 0.85p — 0.2p%) d* — (2.25 — 1.25p + 0.2p%) d1 + (0.9 — 0.8p) d2 + O(e)(d* + d)

(d2 < d* + p(d* + d1))
< (2.25+0.95p — p?)d* — (2.25 — 2.15p + p?) dy + O(e)(d* + dy)

; (2.25 4 0.95 x 3/4 — (3/2)?)d* — (2.25 — 2.15 + 1)dy + O(e)(d* + dy)

=[2.4d" — 1.1dy |+ O(e)(d* + dy).

1591 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

D. Proof of (6.20): Clients of Type C In this section, we show that for any client ¢ with type C, we have
Ay(e) <2.2d"(c) — 0.8888d1(c).

If the client c¢ satisfies p(f*) < 2/3, we have the same bound as in the type A case in Appendix D.2.1, where our
analysis was independent of whether f» = 1y or not. That is

Aa(e) <[2.1d(¢) = 0.9di(c) |+ Oe)(d* + d).

We thus focus on clients with p(f*) > 2/3. Compared to our analysis for other client types, our analysis for type C
involves a larger neighborhood of the client. In particular, the optimal facility ¢* := 7(f1) and the local facilities
close to it play a crucial role in our analysis. This makes it important to consider finer-grained events. Recall
that we used Si,Sa, 71, T2 to denote simple/tree events restricted to f* pointing to 77 or 2. We now also define
events Sy, S5, T{, T3 similarly, except that they depend on where g* points to, rather than f*. We classify clients
into subtypes according to the characteristics of the swap sets generated on these events:

CramMm D.1. (SUBTYPES WITHIN TYPE C) For a client ¢ of type C, one of the following is true:

(a) f1 is heavy.
(b) fa is heavy.

(¢) A facility h is open near ¢ after the simple swap closing fi. Formally, a facility h # fo is open after swap
{(—f1) at distance d(c,h) < 3dy +2d* on SN A.

(d) g # f*, p(g*) > 3/4, and for all b = 1,2, any swap set P generated on S, N A, a facility h # fo is open

: 2dy +d*, ifo=1
after swap (—f1)) at distance d(c,h) < { 2y +d* + Ys(dy +d*), ifb=2

(e) For any swap set P generated on To N A, {(f*) closes both fi and fs.

(f) g% # [*, p(g*) > 2/3, and there exists b € {1,2} such that for any swap set P generated on T, N A, {(f*))
closes both f1 and fs.

We prove this claim in Appendix E.5. Below we present our bounds for each of these subtypes.

D. .1 When f; is a heavy facility f; being heavy implies that the swap ((—f1)) doesn’t exist. We thus focus
on ((f*)) and ((=f2)).

Simple swaps with 7(f*) = n; By implication (Siv) of amenability, we have (f*)) # (—f2). On swap (f*)),
the client can be served by f*, and on swap ((—f2)), the client can be served by f;. Therefore,

(6¢ren) 6sinale) < (1+aB)d* —dy — Bds
(O~123) + (1 +aB)di —di — Bds
=1+ ap)d" — (1 - aB)ds — 28d, |

Tree swaps with 7(f*) = n; Let us first assume ({(f*)) # (—f2)). On swap ((f*)), the client can be served by
f*, and on swap ((—f2)), the client can be served by f; and 7(f2) by implication (Tii) of amenability. Note that
d(e,m(f2)) < 2dy + d* by (C.7). Therefore,

(Ogry) o7:nA(c) < (1 +aB)d” —dy — Bds

(Og=r20) +dy + B(2dy + d*) — dy — Bda

=|(1+ap+B)d" —di]

The inequality also holds when ((f*)) = {(—f2)) since our bound for ¢, -y does not require fp to remain open after
the swap.

1592 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Simple & tree swaps with 7(f*) = 7y We have ((f*)) = (—f2)) by implication (ii) of amenability. On that
swap, the client can be served by f*. Therefore,

(Ose~p29) Ssanale) <[(1 +aB)d" —d — Bds
(Os+=r29) drnale) <|(1+aB)d” —di — Bdy |

Summarizing, we have

dsinalc) <(14+apf)d* — (1 —af)d; — 2Bdy =1.6d" —0.4d; — 0.4d>
ds,nalc) <(1+af)d” —di — Bda =1.6d" —dy —0.2d,
orinalc) <1 +af+p)d" —d; =18d* — d;
drnalc) (1 +ap)d* —dy — Bdy =1.6d* —dy —0.2dy

We now combine these inequalities to get an upper bound for A 4(c).
When 2/3 < p(f*) < 3/4, we have Pr[S;] = /2, Pr[Ss] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

Aule) <VY2-0s,na(c) + 14 dnalc) +1/4- 0na(c) + O(e)(d* + dr)
<1.65d* —0.7d; — 0.25dsy + O(E)(d* + dl)

(do > dy) <[1.65d" —0.95d1 |+ O(e)(d" +).

When p(f*) > 3/4, we have Pr[S;] = 5/4 — p, Pr[Sa] = p — 3/4, Pr[T1] = Pr[T2] = 1/4. Therefore,
Aule) < (54 =p) - dsinalc) + (p = 3/4) - dsinalc) + /4 - 0rnale) + Y4 dnnale) + O(e)(d™ + di)
<1.65d* — (06p + 025) dy — (04 — 02p) do + O(E)(d* + dl)
(do > d1) < 1.65d" — (0.4p+0.65) dy + O(e)(d* + d1)
< 1.65d* — (0.4 % 3/4+0.65) dy + O()(d* + dy)
=[1.65d" = 0.95d; |+ O(e) (d" + dv).

D. .2 When f; is a heavy facility f> being heavy implies that ((—f2)) does not exist. We thus focus on
(/7)) and (= f1)-

Simple & tree swaps with 7(f*) = n; We have {(f*)) = (—f1)) by implication (ii) of amenability. On that
swap, the client can be served by f*. Therefore,

Osei~m)) Ssinale) | (L+aB)d” —di - Bdz |
(Ose=1y) 0rinalc) <[(1+aB)d” —di — Bd;),

Simple swaps with 7(f*) = 1, Implication (Siv) of amenability implies that {(f*)) # (—/f1)). On swap {f*)),
the client can be served by f*. On swap {(—f1)), the client can be served by fs. Therefore,

(gs-y) ds,nalc) < (1+apf)d* —dy — Bdy
(O-113) + (14 aB)ds — di — Bd>
(D.13) =[(1+ap)d" —2di + (1+aB - 28)ds |

Tree swaps with 7(f*) = n; We first assume that {(f*)) # (—f1)). On swap ((f*)), the client can be served by
f*. On swap ((—f1)), the client can be served by fo and m(f;), by implication (Tii) of amenability. Note that
d(e,m(f1)) < dy +d(f1,7(f1)) < 2dy + d*. Therefore,

(6¢en) 6rnalc) < (L+apf)d" —dy — Bdy

1593 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(Og-r») +dy + B(2d1 + d*) — di — Bds
=[(1+aB+B)d" — (2—28)di + (1 - 28)ds |

The above inequality also holds when ((f*)) = ((—f1)) because our bound for §y -y does not require f; to remain
open after the swap. and dy-y,y is non-negative.

Summarizing, we have

dsinalc) <(1+ap)d* —di — Bdy =1.6d" —dy —0.2d>
ds;nalc) KA+ af)d” —2di + (1 +aB —28)ds =1.6d" —2dy +1.2d,
drinalc) (1 +ap)d* —di — Bds =16d" —di —0.2ds
drralc) <A +af+pB)d* —(2—26)dy + (1 —26)dy =1.8d" —1.6d, +0.6d

We now combine these inequalities to get an upper bound for A 4(c).
When 2/3 < p(f*) < 3/4, we have Pr[S;] = /2, Pr[Ss] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,
Aule) £1/2-bs,nalc) + /4 0rina(c) +1/4- drnalc) + O(e)(d™ +di)
<[1.65d" — 1.15d; |+ O(e)(d" + dy).

When p(f*) > 3/4, we have Pr[S;1] = 5/4 — p, Pr[Sa] = p — 3/4, Pr[T1] = Pr[T2] = 1/4. Therefore,
Aule) < (5/4—p) - dsinale) + (p—3/4) - dsynale) + /4 drinalc) + /4 drna(c) + O(e)(d" + dv)
1.65d" — (p+0.4)dy + (1.4p — 1.05) do + O(e)(d* + dy)

(p>3/4 and do < d* + Yp(d* + d1))
(2+1.4p—1.05/p)d* — (p+1.05/p — 1) dy + O(e)(d* + d1)
(2414 —1.05)d* — (1+1.05 — 1)dy + O(e)(d* + dy)

=[2.35d" — 1.05.dy |+ O(e)(d" + dy).

IAINA

IAIA

D. .3 There exists h such that d(c,h) < 3d; + 2d* in simple swaps

Simple swaps with 7(f*) = By implications (ii) and (Siv) of amenablity, we know (f*) = (—f1)) # (—f2).
On swap ((f*,—f1)), the client can be served by f*. On swap (—f2)), the client can be served by f;. Therefore,

CITY) 6sinalc) < (1+aB)d* —dy — Bds
(0¢=r2)) +(1+apf)d —di — Bds
=|(1+ap)d" — (1-aP)di—28d>),

Simple swaps with 7(f*) = 7, By implications (ii) and (Siv) of amenablity, we know ((f*)) = (—f2)) # (—f1))-
On swap {(f*,~f2)), the client can be served by f*. On swap ((—f1)), the client can be served by fo and h.
Therefore,

(6<<f*7_'f2>>) ds,nalc) < (1 +apf)d” —dy — Bds

(O-py) +dy + B(3dy + 2d%) — dy — Bdy

:](1+a6+2ﬁ)d*—(2—35)d1+(1—23)d2\.

Tree swaps with 7(f*) = n; By implication (ii) of amenability, we know {(f*) = {(—f1)). Let us first assume
that (—f2)) # {(f*,~f1)- On swap ((f*,—f1), the client can be served by f*. On swap ((—f2)), the client can be
served by f1 and m(f2) by implication (Tii) of amenability. We have d(c, 7(f2)) < 2dy + d* by (C.7). Therefore,

YTy 51inalc) < (1+aB)d* —dy — Bdy

1594 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(O-s21) +dy+ B(2dy + d*) — dy — By
:\(1+a,@+ﬂ)d*—d1 \

This inequality also holds when ((—f2)) = ((f*,—f1)), because our bound for s« sy does not require fo to
remain open after the swap and §(-y,) is non-negative.

Tree swaps with T(f*) = 19 By implication (ii) of amenability, we know {(f*)) = ((—f2)). Again, let us first
assume that (—f1)) # (f*,—f2). On swap {(f*,—f2)), the client can be served by f*. On swap ((—f1)), the
client can be served by fo and 7(f1) by implication (ii) of amenability. We have d(c, 7(f1)) < 2d; + d* by (6.8).
Therefore,

(O p+,~f2)) 573nalc) < (1 +aB)d* —dy — Bdy
(Og-p19) +do+ B(2d1 +d*) — dy — Bda
=[(1+ap+B)d — (2-28)di + (1-2B)ds),

This inequality also holds when ((—f1)) = ((f*,—f2)), because our bound for ¢« s,y does not require f; to
remain open after the swap and d(-y,y is non-negative.

Summarizing, we have

ds,nalc) <1+ af)d” — (1 —af)d —26dy =1.6d* —0.4d; —0.4d,
6s,nalc) <14+ af+2B)d* — (2—38)dy + (1 —28)dsy =2d* —1.4d, +0.6d-
drinale) (1 +af +B)d* —d =18d" — d;
drnalc) <1 +aB+B)d* — (2—-28)dy + (1 —28)ds =18d" —1.6d, +0.6d,

We now combine these inequalities to get an upper bound for A 4(c).

When 2/3 < p(f*) < 3/4, we have Pr[S;] = /2, Pr[Ss] = 0, Pr[T1] = Pr[72] = 1/4. Therefore,

Aqlc) <VY2-05,na(c)+ Y1 drna(c) + Y4 dnnalc) + Oe)(d" + dy)
< 1.7d* —0.85d; — 0.05ds + O(e)(d* + dy)

> <[084 |+ 0 +).
When p(f*) > 3/4, we have Pr[S;] = 5/4 — p, Pr[Sz] = p — 3/4,Pr[T1] = Pr[T3] = /4. Therefore,

Aule) < (5/4—p) - bsinale) + (p—3/4) - dsynale) +1/4- drnale) + Y1 drnalc) + O(e)(d" + dv)

<
<(1.4404p)d* — (0.1 +p)di + (p —0.8)da + O(e)(d* + d1).
When p < 0.8, we use do > dy:

Au(c) < (1.4 +04p)d* —0.9dy + O(e)(d* + dy)
<[1.72d" = 0.94d1 |+ O(e)(d* +).

When p > 0.8, we use do < d* 4+ d(f*,d2) < d* +1/p- (d* +d1):

Aa(e) < (L6+ 14p—0.8/p)d* — (p+0.8/p —0.9)dy + O(e)(d* + dy)
< (1.6 +1.4—0.8)d* — (2/0.8 — 0.9)dy + O(e)(d* + dy)
<[2.2d" —0.88885d1 |+ O(e)(d" + du).

1595 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

D. . d(e,h) <2dy+d* or d(e,h) < 2dy + d* +4/3(d* + dp) in simple swaps We have the same bound for
A 4(c) in this case as the previous case. Indeed, our previous bounds for ds,n4(c), 073n.a(c) and d7;n4(c) remain
valid. We replace our bound for ds,n4(c) by a bound for

(D.14)

05,na(c) := Pr[81]Sa2]ds:ns,na(c) + Pr[S5]S2]ds;ns,nalc).

We show that we can upper-bound d§, - 4(c) by the same expression as in (D.13). Our previous bound for és,n.4(c)
is linear in d(c, h) with a non-negative coefficient: ds,na(c) < A-d(c,h)+ B with A >0, so

581F‘ISQHA(C) <A- (le + d*) + B
<4

6Séﬂs2ﬂA(C) (2d1 +d* +4/3(d* +d1)) + B.

Plugging them into (D.14), we have

05,n4(0)

(Pr[S!|S,] - (2dy + d*) + Pr[S4|Sa] - (2dy + d* + 4/3(d* + dy))) + B

<A
<A-(Y2-(2dy +d*)+ 12 (2dy +d" +4/3(d" +dy))) + B
<A

(3d1 + Qd*) + B.

D. .5 (f*)) closes f; and f; on TN A If 7(f*) = 11, we get the same bounds as before:

Osina(e) <|(1+ap)d" — (1 - aB)di —28ds),
drinale) <|(1L+aB+8)d —di |

We continue to bound ds,n4(c) and d7,~.4(c).

Simple swaps with 7(f*) = 7o By implications (ii) and (Siv), we have (f*)) = (—f2) # (—/f1). On swap
{f*,—f2), the client can be served by f*. On swap ((—f1)), the client can be served by fs. Therefore,

(0=~ 120)
(6¢-r1y)

ds,nalc) <(14apf)d* —dy — Bdy
+(14+aB)de—di —fBdo

=[(1+aB)d" —2di + (1 +aB—2)d> |

Tree swaps with 7(f*) =7 On T2 N A, we know ((f*)) closes both f; and fo. Therefore,

(6= mfr~f2))

Summarizing, we have

Orina(e) | (1 +ap)d’ —di — Bdy |

6810./4 &
57’10_,4 c

(c)
5520,4(6)
(c)
(c)

dmanalc

~—~ ~~ —~

1+aB)d* —(1—aB)d, —2Bds =1.6d* —0.4d; —0.4d5
1+ aB)d* —2d; + (1+ aB —28)ds =1.6d* —2d; + 1.2d,
1+aB+B)d* —dy =1.8d* —d;
1+aB)d* —dy — Bds =1.6d* —d; —0.2d>

We now combine these inequalities to get an upper bound for A 4(c).

When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2, Pr[S2] = 0, Pr[T1] = Pr[72] = /4. Therefore,

Aule) < 12+ 8s,0a(0) + 1 57ina(c) + /4~ S73ma(c) + O(E) (d" + dy)

(d2 > dy)

<1.65d* —0.7dy — 0.25dy + O(e)(d* + dy)
<[1.65d" —0.95d, |+ O(e)(d* +).

1596 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

When p(f*) > 3/4, we have Pr[S;] = 5/4 — p, Pr[Ss] = p — 3/4,Pr[T1] = Pr[T3] = /4. Therefore,

Aule) < (5/a=p) - ds,nalc) + (p —3/4) - ds,nale) + /4 drinalc) + 14 dpnale) + O(e)(d™ + di)
<1.65d* — (1.6p — 0.5)dy + (1.6p — 1.45) dy + O(e)(d* + dy).

When p < 1.45/1.6, we use dg > dy:

Aule) <[1.65d" —0.95dy |+ O(e)(d* + dy).

When p > 1.45/1.6, we use do < d* + Yp- (d* + dy):
Aa(c) < (1.8+1.6p—1.45/p) d* — (1.6p+ 1.45/p — 2.1) dy + O(e)(d* + dy)
< (1.84 1.6 — 1.45)d* — (2/1.6 x 1.45 — 2.1) dy + O(e)(d* + dy)
<[1.954" — 0.94630d; |+ O(e)(d* +).

D. .6 (f*)) closes f; and f> on 7/ N A for some b € {1,2} Bounds for simple swaps remain the same as
before:

ds,nale) <|(1+aB)d” — (1-aB)di —28ds],
Ssunale) <[(L+aB)d” —2dy + (1+aB - 28)ds |

For tree swaps, we partition 7 N A as the union of 7 N7;_,NA, ToNT;_,NAand 7/ NA. On the first two
events, our bounds are the same as in Appendix D.4.3:

drimy nale) <[(1+aB +B)d" —di |
010y ,na(e) <[(L+aB +B)d" — (2= 28)di + (1 —28)ds],
On 7/ N A, we have ((f*)) closes both f; and fs. Therefore,

O p1,-f20) drynale) <[(1+aB)d* —di — By |

Summarizing, we have

ds,nale) (1 +aB)d” — (1 —af)d; —2Bdy =1.6d* —0.4d, —0.4d,
ds,nalc) <1+ af)d* —2di + (14 af — 28) dy =1.6d* —2d; +1.2d>
ornTy_nale) S(L+af +B)d" —di =1.8d" —d;
57y ,nale) <(L+aB+B)d" — (2—2B)di + (1 — 2B) da =1.8d* —1.6d; + 0.6 d>
orrnalc) <(1+aB)d” —di — Bds =1.6d* —dy —0.2dy

We now combine these inequalities to get an upper bound for A 4(c).

When 2/3 < p(f*) < 3/4, we have Pr[S;| = 1/2,Pr[Ss] = 0,Pr[Ti NT;_,] = Pr[TaNT;_,] = Y8,Pr[T)] = Ya.
Therefore,

Aule) Y2 0s,nalc) + V8- 0ria7y_,nalc) +1/8 - dnary_ nalc) + Y4 d7na(c) + O(e)(d" + di)
<1.65d" — 0.775d; — 0.175dy + O(e)(d* + dy)
(dy > dy) <|1.65d" — 0.95d; |+ O(e)(d" +).

When p(f*) > 3/4, we have Pr[S;] = 5/4 — p,Pr[Ss] = p —3/4,Pr[Ti N T;_,| = Pr[Ta N T3_,] = /8, Pr[T)] = Y/a.
Therefore,

Aule) < (54— p) - dsinalc) + (p—3/4) - ds,nale) + /8- Sy, nale) + /8- drary nalc)

1597 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

+ Y1 dynale) + O(e)(d” + dv)
<1.65d" — (1.6p — 0.425) d1 + (1.6p — 1.375) d + O()(d* +).

When p < 1.375/1.6, we use dy > dy:

Aule) <[1.65d" —0.95dy |+ O(e)(d* + dy).

When p > 1.375/1.6, we use dy < d* + 1/p(d* + dy):

Au(c) < (1875 + 1.6p — 1.375/p) d* — (1.6p + 1.375/p — 2.025) dy + O(e)(d* + dy)
< (1.875+ 1.6 — 1.375) d* — (2v/1.6 x 1.375 — 2.025) dy + O(e)(d" + d1)
<[2.1d" —0.94147d |+ O(e) (d* +).

D.5 Proof of (6.21): Clients of Type D In this section, we show that for any client ¢ with type D, we have

A(c) < 2.5203d*(c) — 0.8888 d; (c).

Similar to Claim D.1 for type C clients, we also have the following claim classifying type D clients into subtypes.
The only change is in item (e), where we replace T3 by 7; because the roles of 77 and 75 are now swapped.

Craim D.2. (TYPE D SUBCASES) For a client ¢ of type D, one of the following is true:

(a) f1 is heavy.
(b) fa is heavy.

(¢) A facility h is open near ¢ after the simple swap closing f1. Formally, a facility h # fs is open after swap
{(=f1) at distance d(c,h) < 3dy +2d* on SN A.

(d) g # f*, p(g*) > 3/4, and for all b = 1,2, any swap set P generated on S, N A, a facility h # fo is open

: 2dy +d*, ifb=1
after swap (—f1)) at distance d(c,h) < { 2y +d* + Ys(dy +d*), ifb=2

(e) For any swap set P generated on Ty N A, {f*) closes both fi and fa;

(f) g* # f*, p(g*) > 2/3, and there exists b € {1,2} such that for any swap set P generated on T, N A, {(f*)
closes both f1 and f5.

D.5.1 When f; is a heavy facility f; being heavy implies that ((—f;)) doesn’t exist. We thus focus on ((f*))
and {(—f2)-

Simple & tree swaps with 7(f*) =17, We have ((f*)) = ((—f2)) by implication (ii) of amenability. Therefore,

(Oire,=fa) dsinale) < \ (14 apf)d* —dy — Bds \

CITRRAY drinale) <[(L+aB)d" —di — Bds |

Simple swaps with 7(f*) = 1, By implication (Siv) of amenability, we have {(f*)) # (—f2)). On swap {(f*))
the client can be served by f*. On swap ((—f2)), the client can be served by f;. Therefore,

(Sry) Ss,nalc) < (1+apf)d —dy — Bdy
(O¢~fay) +(1+aB)d, —dy — Bda
=|(L+aB)d" — (1 —aB)d —23d

1598 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Tree swaps with 7(f*) =12 Let us first assume that (f*) # (—f2)). On swap ((f*)), the client can be served
by f*. On swap {(—f2)), the client can be served by f; and 7 (f3), by implication (Tii) of amenability. We have
d(e,m(f2)) << 2dy + d* by (C.7). Therefore,

(O s-p) Ornale) < (1+ap)d” —di — fdy

(0= 121) +di+BQ2d2 +d°) —di — Bd>

=[(1+aB+B)d" —di]

This inequality also holds when (—f2)) = (f*)), because our bound for J-y does not require f> to remain open
after the swap and J- s,y is non-negative.

ds,nalc) <(1+apf)d* —dy — Bdy =1.6d" —d; —0.2d>
ds,na(c) (1 +apf)d* — (1 —af)dy —20dy =1.6d" —0.4d; —0.4d,
drinalc) <1 +apf)d” —dy — Bds =1.6d" —d; —0.2d,
omnalc) <A +af +pB)d" —d =1.8d" — d;

We now combine these inequalities to get an upper bound for A 4(c).

When p(f*) < 2/3, we have Pr[S;] = Pr[T1] = Y/2, Pr[Ss] = Pr[Tz] = 0. Therefore,
Aqle) <VY2-05,na(c)+ Y2 drna(c) + O(e)(d* + dr)
(di < db) <[L6d" —1.2di |+ O()(d" +dy).
When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2, Pr[S2] = 0, Pr[T1] = Pr[T2] = /4. Therefore,

Aule) <Y/2-bs,na(c) + Y4 drinalc) + Y4 drnalc) + O(e)(d” + di)
<1.65d* —dy —0.15dy + O(e)(d* + dy)

(dy < do) <[1.65d" — 1.15d; |+ O(e)(d* +).

When p(f*) > 3/4, we have Pr[S;] = 5/4 — p, Pr[Sa] = p — 3/4,Pr[T1] = Pr[T2] = /4. Therefore,

Aule) < (/2= p) - dsinalc) + (p = 3/1) - ds,nalc) + Y4 0rinalc) + Ya- drnale) + O(e)(d” + da)
< 1.65d* — (1.45 — 0.6p) d; — (0.2p) da + O(e)(d* + dy)

<[1.65d" — 1.05d; |+ O(e)(d" + dy)

D.5.2 When f> is a heavy facility f> being heavy implies that the swap ((—f2)) doesn’t exist. We thus focus
on (f*)) and (/).

Simple swaps with 7(f*) =7, We have {(f*) # (—f1)) by implication (Siv) of amenability. On swap ({(f*)),
the client can be served by f* and f;. On swap ((—f1)), the client can be served by f. Therefore,

Ogrey) Ssina(c) < d° + Bdy —dy — Bdy

(O-py) + (1 +apf)dy —di — Bds

d* = (2= B)di + (1+ap — 28)ds |

We can also use (1 — 3)d* + 2 d; to upper-bound &y (by (6.10)) and get

Ssinale) <[(1=B)d" = (2= 28)di + (1 + B —28)ds |

1599 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Tree swaps with 7(f*) =1, Let us first assume that (f*) # (—f1)). On swap ((f*)), the client can be served
by f* and f1. On swap {(—f1)), the client can be served by fo and 7(f1) by implication (Tii) of amenability. We

have d(c,7(f1)) < 2dy + d* by (6.8). Therefore,
(Ogs-) 0rina(c) S d* + Bdi —dy — Bdy
(Og-p1p) +do +B(2dy +d") — di — Bdy
=1+ B)d" — (2—3B)ds + (1 —28) da |

If {(—f1) = (f*), we still have the same bound:

Ogs+~1) 0rinalc) S d* + Bdzy —dy — B dy

(non-negative terms) +(1—=28)(da—dy) +Bd*+ Bdy
=1+p)d" —(2-38)d1 + (1 —28) ds.

Simple & tree swaps with 7(f*) =1, We have (f*)) = (—/f1)) by implication (ii) of amenability. Therefore,

(Os.~0) Ssunale) <[(L+aB)d” —di - Bdz |
CXTERY drnalc) < d* + Bdy — dy — Bdy

=

Summarizing, we have

Ssinale) <d* —(2—B)di + (1 +aB —2B)da —d* —1.8d; +1.2dy
dsinalc) Q=) d" — (2—-28)dy + (1 + af — 28)dy =0.8d" —1.6d; + 1.2ds
ds,nalc) <(1+apf)d” —dy — Bds =1.6d* —d; —0.2ds
drnalc) <A+ B)d* — (2 —3B)d1 + (1 — 28)d> =1.2d" —1.4d; + 0.6 ds
d7na(c) <d” —dy =d —d;

We now combine these inequalities to get an upper bound for A 4(c).

When p(f*) < 2/3, we have Pr[S;] = Pr[T1] = 1/2,Pr[Sz] = Pr[T2] = 0. In this case we use the second inequality

for 6s,na(c). Therefore,

Aule) VY2 bsnalc) + Y2 d1na(c) + O(e)(d” + dv)

(dy < d* + p(d* + dy)) < (1.940.9p) d* — (1.5 — 0.9p) dy + O(e)(d* + dy)

< (1.940.9-2/3)d" — (1.5—0.9-2/3)dy + O()(d* + dy)

<|2.5d* —0.9d, |+ O(e)(d* + dy).

When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2,Pr[S2] = 0,Pr[T;] = Pr[Tz] = /4. In this case we use the first

inequality for ds,n4(c). Therefore,

Au(e) < 1/2 -0s,nalc) + 1/4 “Ornale) + Y4 dpnalc) + O(e)(d* + dh)

<1.05d* —1.5dy +0.75ds + O(E)(d* + dl)

(dy < d* + p(d* + dy)) < (1.8 4 0.75p) d* — (1.5 — 0.75p) dy + O(e)(d* + ds)

< (1.8+0.75-3/a) — (1.5 — 0.75 - 3/a) dy 4 O(e)(d* + dy)

<|2.3625d" — 0.9375d; |+ O(e)(d" +).

1600

Copyright (© 2022 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

When p(f*) > 3/4, we have Pr[S1] = 5/a — p, Pr[Ss] = p — 3/4,Pr[T1] = Pr[T2] = /4. In this case we use the first
inequality for ds,n4(c). Therefore,
Aule) < (54— p) - dsinalc) + (p = 3/4) - ds,nalc) + Y4 0inalc) + Ya- drnale) + O(e)(d” + dv)
< (0.6 +0.6p)d* — (2.1 —0.8p)dy + (1.8 — 1.4p) da + O(e)(d* + dy)
(d2 < d* + p(d* + dv))
< (244 p—14p%)d* — (2.1 —2.6p + 1.4p*) dy + O(e)(d* + dy)
< (2.4 +3/a—1.4(3/4)%) d* — (2.1 — 2.6 - 13/14 + 1.4(13/14)%) dy + O(e)(d* + dy)

<[2.3625d" — 0.8928d |+ O(e) (d* +).

D.5.3 There exists a facility /4 such that d(c,h) < 3d; + 2d* in simple swaps

Simple swaps with 7(f*) = n; Implications (ii) and (Siv) of amenability imply (f*)) = (—=f2)) # (—/f1)). On
swap ((f*,f2)), the client can be served by f* and fi. On swap {(—f1)), the client can be served by fo and h.
Therefore,

(O p+~720) ds,nalc) <d" + Bdy —dy — fdy

(O-119) +dy + B(3dy +2d*) — dy — Bds

=[(1+28)d" — (2—4B)d1 + (1 - 28) dy |

In 5+ ~f,y, we can use 0.776(1 + aB)d* + 0.224(d* + B d;) instead of d* + B d;. This gives

0s,nale) <|(1+28+0.77608)d" — (2— 3.2248) dy + (1 — 28)ds |

Simple swaps with 7(f*) = 1, Implications (ii) and (Siv) of amenability imply (f*)) = (—f1)) # (—f2)). On
swap (f*, /1)), the client can be served by f*. On swap {(—f2)), the client can be served by f;. Therefore,

(XTI bsynalc) < (1 +aB)d* —dy — Bdy
(8¢-12)) +(1+aB)d —dy — Sda
:\ (1+aB)d* — (1—aB)d, —28d; \

Tree swaps with 7(f*) = n; We have {(f*)) = {(—f2) by implication (ii) of amenability. Let us first assume
that (—f1)) # {(f*, ~f2)- On swap ((f*, - f2)), the client can be served by f*. On swap (—f1)), the client can be
served by fo and 7(f1) by implication (Tii) of amenability. Note that d(c,7(f1)) < 2d; + d* by (6.8). Therefore,
Ogs+,~f2) 0rinalc) < (1+ap)d* —di - Bds

(0g-11») +do + B(2dy +d*) —dy — Bda

=1 +ap+B8)d —(2—-28)di + (1-2B)ds .

This inequality also holds when ((=f1)) = ((f*,—f2)), because our bound for s+ s, does not require f to
remain open after the swap and dy-y,y is non-negative.

In 6 s+ ~s,y, we can use d* + 3 d; instead of (14 «3)d*. This gives

drinale) <[(1+8)d" — (2—38)di + (1 —28) dz |

This bound also holds when {(—f;)) = {(f*, —f2)) because in this case we have

(O s* = fam) Orinale) S d* + Bdy —di — Bdy
(non-negative terms) + (1= p)(d2 — dy) + Bdy + Bd”
={1+p8)d" —(2-38)dy + (1 —28)ds.

1601 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Tree swaps with 7(f*) =1, We have ((f*)) = ((—f1)) by implication (ii) of amenability. Let us first assume that
{(=fa)y # (f*,—f1)- Onswap ((f*,—f1)), the client can be served by f*. On swap ((—f2)), the client can be served
by f1 and 7 (f2) by implication (Tii) of amenability. Note that d(c, 7(f2)) < da + d(f2,7(f2)) < da + d(f2, f*) <
do + pd(f1, f*) < ds + p(dy + d*). Therefore,

(O p+~fu)) 613na(c) < (1 +ap)d* —dy — Bdy
(O¢~fay) +dy + B(da + p(d* + d1)) — di — Bda

:‘(1+a5+pﬂ)d**(1*05)d1*5d2‘-

This inequality also holds when (—f2)) = (f*,—f1)), because our bound for &y« -y does not require f to
remain open after the swap and - y,) is non-negative.

Summarizing, we have

dsnale) <(1+28)d" — (2 —48)dy + (1 —28) ds =1.4d* —1.2d; + 0.6 ds
6s,na(c) <(1+28+0.776a8) d* — (2 —3.2248) d1 4+ (1 — 28)dy = 1.8656 d* — 1.3552d; + 0.6 dy
ds,nalc) KA +af)d — (1 —aB)dy —28d; =1.6d*—0.4d; —0.4d,
Orinalc) S0 +af+B)d* —(2—28)d1 + (1 —283)d; =1.8d* —1.6d; + 0.6ds
drinalc) (1 +B)d* — (2 -3B8)d1 + (1 - 28) d2 =1.2d" — 1.4d; + 0.6 ds
Srynalc) (1 +aB+pB)d* — (1 — pB)dy — Bda = (1.6 +0.2p)d* — (1 —0.2p)d; —0.2ds

We now combine these inequalities to get an upper bound for A 4(c).

When p(f*) < 2/3, we have Pr[S;] = Pr[T;] = /2, Pr[Sz] = Pr[T2] = 0. We use the first bound for ds,n4(c) and
the second bound for §7;74(c). Therefore,

Aule) < 12+ 0s,nalc) +1/2- drnalc) + O(e)(d” + di)
< 1.3d* = 1.3dy + 0.6dy + O(c)(d* + dy)
(dy < d* + p(d* + dy)) < (1.940.6p) d* — (1.3 — 0.6p) dy + O(e)(d* + dy)
< (1.940.6-2/3)d* — (1.3 — 0.6 -2/3) dy + O(e)(d* + dy)

< [Z30 00]+ Oe)r +

When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2, Pr[Sa] = 0, Pr[T;] = Pr[T2] = /4. We use the first bound for both
8s,nalc) and 67,14 (c). Therefore,

Aule) VY2 bs,nalc) + Y4 6rina(c) + Ya- drnale) + O(e)(d™ + di)
< (1554 0.05p) d* — (1.25 — 0.05p) dy + 0.4ds + O(e)(d* + dy)
(dy < d* + p(d* + dy)) < (1.95 +0.45p) d* — (1.25 — 0.45p) dy + O(e)(d* + d1)
< (1.95+ 0.45 - 3/a) d* — (1.35 — 0.45 - 3/a) dy + O(e)(d* + dy)
=[2.2875d" —0.9125d; |+ O(e)(d* +).

When p(f*) > 3/4, we have Pr[S;] = 5/4 — p, Pr[Sa] = p — 3/4, Pr[T1] = Pr[T2] = /4. We use the second bound for
ds,n.4(c) and the first bound for d1;4(c). Therefore,

Aule) < (31— p) - 65,04() + (p — 3/4) - S530.4(0) + Y4 - 57ina(c) + 4 - S73a() + O()(d" +)

1602 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

< (1.982 — 0.2156p) d* — (2.044 — 1.0052p) dy + (1.15 — p) dy 4 O(e)(d* + dy)

< (3.132 — 0.0656p — p2) d* — (2.044 — 2.1552p + p?) dy + O(e)(d* + dy)

< (3.132 — 0.0656 - 3/4 — 3/42) d* — (2.044 — 2.1552 + 12) dy + O(e)(d* + dy)
<[2.5203d" — 0.8888d1 |+ O(e)(d" + dy).

D.5. d(c,h) < 2dy +d* or d(c,h) < 2dy + d* + 4/3(d* + d1) in simple swaps Similarly to Appendix D.4.4,
our bound for A 4(c¢) in the previous case remains valid in this case.

D.5.5 ((f*)) closes f; and f; on 73 N A If 7(f*) = 12, we get the same bounds as before:

Ssunale) <|(1+ap)d” — (1 - aB)di —28ds),

5rna(e) <[(L+aB+pB)d" — (1 - pB)di — Bds),

We proceed to bound ds,~.4(c) and d7;n.4(c).

Simple swaps with 7(f*) = 7 Implications (ii) and (Siv) of amenability implies {(f*) = {(—f2)) # {(—f1)). On
swap ((f*, =f2)), the client can be served by f* and f;. On swap {(—f1)), the client can be served by fs. Therefore,

(0=~ 120) Ssinale) < d* + Bdy —dy — Bds
(6=f1p) +(14+aB)de—di —Bds
' — (2= B)di + (1 +ap—28)dy |

Tree swaps with 7(f*) =n; On 7; N A, we assumed that ((f*)) closes f1 and f. Therefore,

(O s+ 1,2 120) S7inalc) <[(1+aB)d" —di — Bz |

Summarizing, we have

dsinalc) <d* = (2—B)di + (1 +af —28)da =d*—18d, +1.2d>
ds,na(c) (1 +apf)d* — (1 —af)dy —20ds =1.6d" —0.4d; —0.4d,
dninalc) <1 +ap)d” —d — Bdy =1.6d" —dy —0.2d,
drnale) <1+ aB+pB)d — (1 —pB)dy — Bdy = (1.6 +0.2p) d* — (1 —0.2p)d; — 0.2d

We now combine these inequalities to get an upper bound for A 4(c).

When p(f*) < 2/3, we have Pr[S;] = Pr[T;] = /2, Pr[Ss] = Pr[T2] = 0. Therefore,

Au(c) < 1/2-65,n4(¢) + V2 - 57na(c) + O)(d* + dy)
<1.3d* — 1.4dy +0.5ds + O(e)(d* + dy)

(dy < d* + p(d* + dy)) < (1.8 +0.5p)d* — (1.4 — 0.5p) dy + O(e)(d* + dy)
< (184 0.5 x 2/3) d* — (14— 0.5 x 2/3) dy + O(e)(d* + dy)

<[2.13334d" — 1.06666 d |+ O(e) (4" + dy).

When 2/3 < p(f*) < 3/4, we have Pr[S;] = 1/2, Pr[S2] = 0, Pr[T1] = Pr[72] = /4. Therefore,
Aule) <1/2-0s,n4(c) +1/1-61na(c) + /1 dpnalc) + O(e)(d" + d)
< (1.3+0.05p) d* — (1.4 — 0.05p) dy + 0.5ds + O(e)(d* + dy)

1603 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(do < d* 4 p(d* + dy))

When p(f*) > 3/4, we have Pr[S;]

Aale) < (5/a—p)-ds,nalc) + (p—3/4) - ds,nalc) +
< (0.85 + 0.65p) d* —

(do < d* 4 p(d* + dy))

(1.8 4 0.55p) d* — (1.4 — 0.55p) d1 + O(e)(d* + dy)
(1.8 4 0.55 x 3/a) d* — (1.4 — 0.55 x 3/4) dy + O(e)(d* + dy)

=|2.2125d" — 0.9875.dy |+ O(e)(d" + dy).

<
<

=5/4— p,Pr[Ss] = p — 3/4,Pr[T1] = Pr[T3] = 1/4. Therefore,

Ya-érnale) + /4 drna(c) + O(e)(d" + dr)
(2.45 — 1.45p) dy + (1.7 — 1.6p) d3 + O(e)(d* + dy)

< (2554 0.75p — 1.6p%) d* — (2.45 — 3.15p + 1.6p?) dy + O(e)(d* + dy)

< (2554 0.75 x 34— 1.6 x (3/4)?)

+ O(e)(d" + dv)

d* — (245 — 3.15 x 3:15/3.2 + 1.6 x (3-15/3.2)%) d;

<[2.2125d* — 0.89960d; |+ O(e)(d* + dy).

D.5.6 ((f*) closes fi and f; on 7, N.A Bounds for simple swaps remain the same as before:

Ssinale) <[d" = (2= B)di + (1 +aB - 28)ds |
Ss.na(c) <[(L+aB)d" — (1—aB)di —28d; |

For tree swaps, we partition 7 N A as the union of 71 N7;_, N A, TaNT;_, N Aand 7/ N A. On the first two

events, our bounds are the same as in Appendix D.5.3:

+aB+B)d" — (2-28)d + (1 - 28)ds |
—(1—pB)di — Bds |

617y ,nalc <’

Srrry ynale) <|(L+aB +pB)d’

On 7, N A, we assumed that ((f*)) closes fi; and f,. Therefore,

O~ p1,-f20) dyna <|(1+aB)d* —di — By |

Summarizing, we have

& —(2-8)di +(1+aB-28)ds =d* —1.8d, +1.2ds
(]. +OZB) d* — (1 —aﬂ) d1 — 25d2 =1.6d" —0.4d1 —0.4d2
(

<
ds,nalc) <
<(I+af+p)d —(2-28)d; +(1-28)d

Srims na(©)
=18d* —1.6d; +0.6ds

Srnrs nale) <1+ aB+pB)d* — (1— pB)di — Bdy = (16+0.2p)d* — (1—0.2p)dy — 0.2
Srinale) <(1+af)d* —di — Bds =1.6d" —dy —0.2d,

We now combine these inequalities to get an upper bound for A 4(c).

When p(f*) < 2/3, we have Pr[Si] = Y2, Pr[T: N T3_,] = Pr[T)] = /4, Pr[Ss] = Pr[To N T;_,] = 0. Therefore,

Aule) < 1/2-6s,na(c) + /a0y nale) +1/4- drnale) + O(e)(d" + dr)
<1.35d* = 1.55d; + 0.7dy + O(e)(d" + dy)
< (2.05+0.7p)d* — (1.55 — 0.7p) d1 + O(e)(d* + d1)
< (2.05 4 0.7 x 2/3)d* — (1.55 — 0.7 x 2/3) dy + O(e)(d* + dy)

(do < d* + p(d* + dy))

1604 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

<[2.51667d" — 1.08333d; |+ O(e)(d" + du).

When 2/3 < p < 3/4, we have Pr[S;] = 1/2,Pr[Ss] = 0,Pr[Ti N T;_,] = Pr[Ta N T3_,] = /8, Pr[T;] = /a. Therefore,

Aule) < V2 0snalc) + Vs 0rnry ,nale) +1/8 - dna7y nalc) + Y4+ d7yna(c) + O(e)(d” + di)
< (1.325 + 0.025p) d* — (1.475 — 0.025p) dy + 0.6 dy + O(e)(d* + dy)

(dy < d* + p(d* + dv))
< (1.925 + 0.625p) d* — (1.475 — 0.625p) d1 + O(e)(d* + dy)

< (1.925 + 0.625 x 3/1) d* — (1475 — 0.625 x 3/4) dy + O(e)(d* + dy)
=|2.30375d" — 1.00625 dy |+ O(e)(d" + dy).

When p > 3/4, we have Pr[Si] = 5/4 — p,Pr[Ss] = p —3/4,Pr[Ti N T3_,] = Pr[Ta N TJ_,] = Y8, Pr[T)] = Ya.
Therefore,
Aule) < (51— p) - dsinalc) + (p—3/4) - ds,nale) + Vs - 0pary ,nalc) +1/8 - dnars nalc)
£ aSrnale) + OE)(d" +)

< (0.875 + 0.625p) d* — (2.525 — 1.425p) dy + (1.8 — 1.6p) do + O(e)(d* + dy)
(do < d* 4 p(d* +dy)) < (2.675+0.825p — 1.6p?) d* — (2.525 — 3.225p + 1.6p%) dy + O(e)(d* + dy)

< (2.675+ 0.825 x 3/a — 1.6 x (3/4)2) d* — (2.525 — 3.225 + 1.6) dy + O(e)(d* + dy)

=|2.39375d" — 0.9y |+ O(e)(d* +).

E Omitted Proofs

E.1 Proof of Claim 3.1: There are enough local candidates

CrLaM 3.1. The number of local candidates is at least /2 times the number of heavy local facilities.

Proof. Let Fj, be the set of heavy local facilities, F, C F \ Fj, be the set of local facilities pointed to by at least
one optimal facility with no heavy local neighbor, and F, be the remaining local facilities, which are exactly the
local candidates. |Fy|+|F,|+ |F.| = the number of local facilities, which in turn is at least the number of optimal
facilities. There are at least (tq + 2)|F}|/2 many optimal facilities having a heavy local neighbor because 1) a
heavy local facility is a neighbor of at least tq + 2 optimal facilities, and 2) each optimal facility has at most 2
local neighbors. Finally, each local facility in Fj, is pointed to by an optimal facility with no heavy local neighbor,
so the total number of optimal facilities is at least (tq + 2)|Fr|/2 + |Fp,|. In other words, |F.| > 4% |Fy|. O

E.2 Proof of Claim 3.3: Balancing Procedure

CramM 3.3. (BALANCING PROCEDURE) Consider a universe U = RUG of red points R and green points G, with
|G| = |R| + . Let the collection of sets Si,...,Sn partition U, and let |S;| < x for all i. Moreover, let H be a
graph on the vertices [N] with mazimum degree at most 0 < r. Lastly, r > Q(”Z—eg) for some 0 < e < 1. Then we
can merge these sets together into new sets Ty, ..., T such that

(i) each T; has size |T;| < O(x?),

(i) |T; "R < |T; NG,

(iii) if there is an edge {i,j} fori,j € [N], then S; is not merged with S;, and
(iv) for all i # j, S; is merged with S; with probability at most .

Proof. [Proof of Claim 3.3] Recall |G| = |R| + r, where r > % suffices. For each integer s € {—z,...,z}
let Dy be the sets S with discrepancy |S NG| — |S N R|. Each set in Dy can be output immediately. If for some
i,j we have |D;| > j/e and |D_;| > i/e, and there is no edge in H, then we can choose some j sets uniformly at
random from D;, and i sets from D_;, and merge these together.

1605 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

However, since there are forbidden sets (a set S; and Ss are forbidden if there is an edge between them in H), we
need one more ingredient. We claim that if some D;, D_; have > 8226 sets, then we can find j sets from D; and
i sets from D_; that are not forbidden for each other. Indeed, pick a random collection of j sets from D; and %
sets from D_;. The probability that any one set has an edge to any of the other ¢+ j — 1 sets is < %7;91)9 < ﬁ
Hence, a union bound over all the ¢ + j sets says that with probability at least a half, this collection does not

have any edges of H within it, and hence we can merge this collection together.

However, above procedure does not ensure two sets are combined with probability at most . To do so, if we find
2

some pair D;, D_; with > 8%‘9 sets, then we can randomly partition each of D; and D_; into 1/e equal-sized

subgroups with 8226 sets each. Now we can merge some j sets from any subgroup from D; with some i sets

from a randomly chosen subgroup of D_; to form a set with equal number of greens and reds, exactly as above.
8x20
€

Henceforth, we assume that for each D;, D_;, at least one has fewer than sets.

Finally, since the greens outnumber the reds by r, we know there exists a value j > 0 such that |D;| > r/z =

162%02(6 + 1) /e. Thus, we know each D, with s < 0 has at most @ sets each. We randomly divide D; into

16262 parts of of size z(f + 1) sets each. Note any two sets S, and Sp fall in the same part with probability at

€

most {5557 < €. From each part pick x sets that have no edge in H between themselves and call them a positive

group; this can be done because the maximum degree of H is at most #. Each such positive group has at least
2 3

x extra green points. On the other hand, there are at most x - % = 8"";—9 negative sets, i.e., in {D;};<0. Each

negative set has edges to at most 6 sets, so there are at most @

162302 t 8x20?
13

sets with an edge to some negative set. Since

there are positive groups, there are at leas positive groups with no edge to any negative set, so we
can merge each negative set with a randomly-chosen such positive group. This ensures that each new set has
more green points than red, and two sets are combined with probability at most g5z < . The newly-created
sets have of size at most O(z?). Finally, each remaining set can form a group by itself, because they have more
green points. O

E.3 Proof of Claim 5.1: Crude Upper Bound of Potential Change

CrAIM 5.1. There is an absolute constant v > 0 such that for any client ¢, and any swap set P that we generate,
we have 3 p o)ep 0(P@)(c) < ¥(d*(c) + di(c)).

Proof. Since every local facility is closed by at most 3 swaps in P, there are at most 6 swaps in P that closes any
facility in {f1, f2}. Thus, it suffices to show that d(p,q)(c) < O(d* + dy) for these 6 swaps (P, Q).

If f* has a heavy local neighbor h, the client can be served by h at distance < d* + 3/2(d* + dy). We assume
henceforth that f* has no heavy local neighbor, which means 7(f*) is not heavy and never closed as a local
surrogate.

When P is a simple swap set, the client can be served by either f* (at distance < d*) or 7(f*) (at distance
< d* 4 4/3(d* +dy)). When P is a tree swap set, we show that one of the following facilities must be open after
every swap in P:

f* at distance < d*,
7(f*) at distance < d* + 3/2(d* + dy),
m(T(f*)) at distance < d* + 2-3/2(d* + dy).

It suffices to show that any swap closing 7(f*) must open either f* or w(7(f*)). If 7(f*) is closed as an
optimal surrogate, 7(7(f*)) must be open because edges on short cycles are not deleted in the edge deletion
step (Corollary 3.1). We thus focus on the swap closing the original copy of 7(f*) henceforth.

Consider the 1-forest Gy before edge deletion. The edges in G; from f* to 7(f*) and from 7(f*) to =(r(f*))
cannot both be deleted in the edge deletion step, because we always choose t, as an even number and G, is
bipartite (when self-loops are ignored). Therefore, either f* or 7(7(f*)) must be in the same swap with 7(f*),
as desired. |

E. Proof of emma D.1: Combining Type A Inequalities

1606 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA D.1. (TYPE A AVERAGING) For a close client of type A with p(f*) > 2/3, we have

A7nalc) <4 max{07,na + 07104, 071104 + 075004, 675504 + 0755041 + O(€)(d” + du).
We first prove Lemma D.1 assuming the following lemma, which we prove later.

LEMMA E.1. For a close client of type A with p(f*) > 2/3, we have
PI’[7—21] < PI[ITH} + 0(6)

Proof. [Proof of Lemma D.1] Define p;; := Pr[7;;]. Note that p(f*) > 2/3 implies that p11 + p12 = pa1 + paz = V4.
Define pa := p11—p21 = pa2—pi12. Lemma E.1 implies pa > —O(e). Define dpax := max{d7,na+075,n4, 073, 1A+
03004, 0T12n A + 0T3an.a}. Claim 5.1 implies dmax < O(d* + d1). Lemma D.1 is proved by the following chain of
inequalities:

ATﬁA(C) < Pr[7—11 N A](STHQA(C) + Pr[7—12 N A](s'rmn_A(C)
+ Pr[T21 N AJo75,na(c) + Pr[T22 N Ald7,n4(c)
< p11073,n4(c) + P12073,n.4(c)
+ P21075;n.4(€) + P22675,n.4(C)
(Claim 5.2 and dg(c) > —10d,) +O(e)(d" +dy)
= p21673,nA(C) + PadTinalc) + p12d7i.nalc)
+ P21075,n.4(€) + PAdTnA(C) + P120T5,n4(C)
+ O(e)(d* + dy)
< P210max + Pa(073,n4(¢) + 073,n4(¢)) + Pr2dmax + O(e)(d" + d1)
(pa > —O0(e), 6¢(c) > —10d; and bpmax < O(d* + dy))
< P210max + PAOmax + P120max + O(e)(d" + dy)
= (p21 + Pa + P12)0max + O(e)(d* + dy)
=14 5pax + O(e)(d" + dy).

d

We now turn to proving Lemma E.1. Before doing so, we need some deeper understandings of the edge deletion
procedure, which we establish in Appendix E.4.1. The proof of Lemma E.1 is presented in Appendix E.4.2.

E. .1 Probability of Surviving Edge Deletion Let T be a 1-tree in the 1-forest GG; before the edge deletion
procedure. The edge deletion procedure splits T into several connected components by deleting some edges from
T. In this section, we prove upper and lower bounds on the probabilities that paths in 7" remain connected after
edge deletion.

Let ¢ > 0 denote the cycle length of 7. Condition on the height threshold ¢, being fixed. We prove the following
two lemmas:

LeEMMA E.2. (UPPER BOUND) Suppose p is a directed simple path in T of length s. If £ > ty, then the probability

that no edge in p is deleted is at most max{ tht:S,O}(l +tn/l). If £ < ty, and we further assume that p doesn’t

contain any cycle edge, then the probability is ezactly max{ t“t:S,O}.

Proof. If s > t,,, the lemma is trivial because any path after edge deletion has length at most ¢, — 1. We assume
s <ty henceforth.

Suppose vertices on p are vg < v1 < - -+ < vs. We first consider the case where £ > t,. We prove that as long as

the (unique) simple path p* from vy to r has length equal to —1,—2,--- , —s modulo ¢, some edge on path p is
deleted. Indeed, suppose p* has length —i modulo t,. If p* doesn’t contain any vertex in {vy,- - ,vs}, then the
edge out of v; is deleted by Claim 3.5. Otherwise, » must be one of v1,vs,- - ,vs, in which case the edge out of r
is deleted.

1607 Copyright (© 2022 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Suppose £ = uty, + w for u,w € Z where 0 < w < t,. There are at most (¢, — s)(u + 1) choices of r such that p*
has length not in {—1,---, —s} modulo ¢,. Therefore, when ¢ > ¢, the probability that no edge in p is deleted is

at most (t, — s)(u+ 1)/ = tht%S (e 4ty < tht:S (1 +tp/0).

When ¢ < t;, and p doesn’t contain a cycle edge, an edge on the path p is deleted if and only if p* has length
—1,-2,--- ,—s modulo t;, by Claim 3.5. Since the cycle length is exactly ¢, after dummy vertices are inserted on
it, the probability that no edge on p is deleted is exactly t"t—f 0

LeEmMMA E.3. (LOWER BOUND) Let v1,v2,v* be vertices in T and p1,ps be directed simple paths in T' from vy and
vg to v*, respectively. Suppose both p1 and ps have lengths no greater than s. If £ > ty,, then the probability that

no edge on either path p1,ps is deleted is at least max{ t“t;S,O}(l =2ty /). If ¢ < ty,, and we further assume that
th

=2 0},

vy is on the cycle, then the probability is at least max{

Proof. Again, the lemma is trivial if s > ¢,. Assume s < t;, henceforth.

Let us first consider the case where ¢ > t,. Consider the vertices on the cycle that are different from v* but have
paths to v* with length at most s. There are at most s such vertices, and they form a contiguous part of the
cycle. If r is not among these vertices, then the simple path p* from v* to r contains no vertex on p; or ps except
v* itself. If we further assume that p* has length not in —1, —2,--- , —s modulo ¢y, then by Claim 3.5 no edge on
either path pq,po is deleted. Therefore, assuming ¢ — s = uty, + w for u, w € Z where 0 < w < ty,, the probability

that no edge on either path is deleted is at least u(tn, — s)/¢ = t"t—:é b — t*‘t—;s (1 - ey > t"t—:& (1 =2tp/0).

When ¢ < t, and vy is on the cycle, every edge on p; must be on the cycle. Since no edge on the cycle is deleted
by our convention, the probability that no edge on either path is deleted is lower bounded by the probability that
no edge on the shortest path p’ from vy to the cycle is deleted. p’ is a part of ps, so p’ has length at most s.
By the second part of the previous lemma, the probability that no edge on p’ is deleted is at least max{ t“t:S ,0}.
d

E. .2 Proof of emma E.1 We are now ready to prove Lemma E.1. Define D’ as the union of the defiant
event D (Definition 5.1) and the following events:

(i) P is a tree swap set, and, before edge deletion, the cycle in the 1-tree containing the original copy of f* has
length £ in the range (th, [Y/<] - th);

(ii) P is a tree swap set, and two connected components each containing a facility in {f1, fa} are combined in
the balancing procedure.

Event (i) happens with probability O(e) because our height threshold ¢, is chosen uniformly at random from
2[1/],2[1/=12,--- ,2[1/c]T/<]. Event (ii) happens with probability O(¢) as well due to Claims 3.3 and 3.4. By a
union bound with Claim 5.2, we have

CramMm E.1. The event D' happens with probability O(e).

Proof. [Proof of Lemma E.1] If either f; or fo is heavy, then 73, never happens. Indeed, 73; assumes the existence
of a swap closing both f; and f;, but heavy local facilities are never closed. Hence, we assume neither f; nor f,
is heavy.

By Claim E.1 and the union bound, it suffices to prove Pr[72:1\D’] < (1 + O(¢g)) Pr[T11 UD']. By law of total
probability, it suffices to prove

(E.15) Pr[72:\D'|&;] < (1 + O(e)) Pr[Tiy UD'|E;]

for a partition &1, &, - -+ , & of the entire probability space.

If & = S, then both sides of (E.15) become zero. Let us condition on the tree event T henceforth. Conditioned
on T, the probabilities of 7(f*) = m; and 7(f*) = 72 are both 1/2 since p(f*) > 2/3. Note that the set of heavy
local /optimal facilities doesn’t depend on the random function 7. Therefore, if we condition on the 7’s of all
optimal facilities except f*, the out-edges of the original copies of all facilities in G; except f* are determined,
where G is the 1-forest after degree reduction but before edge deletion. Let G7 be G with the out-edge of the
original copy of f* removed. If we ignore the identity of the local and optimal surrogates, everything else in

1608 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

G7 is determined. Moreover, the conditioning we did is independent of 7(f*), so the conditional probabilities of
7(f*) =n and 7(f*) = 1 are both still 1/2.

Note that f* may be a heavy optimal facility, in which case f* has new copies in G;. We use f* to refer to only
the original copy. 7(f*) may also be a heavy local facility when 7(f*) = 12 (note that we assumed 7, = f; is not
heavy), in which case f* points to itself in G;. If either f; or fs is chosen as a surrogate, then 73;\D’ cannot
happen because D’ happens. We thus assume f; and fy only appear as their original copies in G;. Since f* is
the only vertex in G7 that doesn’t have an out-edge, f* is the root of a tree, and all other connected components
of G are 1-trees.

We divide our proof into five cases depending on the structure of G7:

1. f*, f1, fo are all in the different connected components;

2. f*, f1 are in the same tree, different from fo;

3. f*, fo are in the same tree, different from f1;

4. f1, fo are in the same 1-tree (denoted by T'), different from f*;
5. all three are in the same tree (denoted by 7).

Let &; denote the event that f; and fo are in the same connected component in Ga, where Gy is the graph after
the edge deletion procedure. Since D’ includes the case where the edge from f* to 71 = f1 is deleted in the edge
deletion step, we have & N7y C 711 UD’. Let & denote the event that f; and fy are in the same connected
component in G5 but different from f*. Since subtracting D’ rules out the possibility of fi and fy being combined
in the balancing step, we have To;\D’ C & C &;.

In case 1, T31\D’ never happens because &£ never happens. Indeed, f1,f» must be in different connected
components in G; and thus must be in different connected components in Gs.

In cases 2&3, T21\D’ never happens either because £ never happens. Indeed, the only way f; can connect to fo
(by an undirected path in G7) is through f*, and in the edge deletion procedure, there is no way to put fi, fa in
the same connected component of G5 without also putting f* in it.

In case 4, f* is not on the cycle part of 7', so the height threshold ¢, and the choice of r € T in the edge deletion
step are both independent of 7(f*). Once conditioned on ¢, r, whether or not f; and f are in the same connected
component in Gy is determined. We assume that f; and f5 are in the same connected component of G2 because
otherwise T2;\D’ never happens. If 7(f*) = n1(= f1), then we know 717 U D’ must happen, because & N Ty
happens. Moreover, 721\D’ happens only when 7(f*) = 7y simply because 731 C T3. Therefore, if we let £ be
the event summarizing all the conditioning we did so far, we have

Pr(Ti1 UD'|E] =Pr[r(f*) = m|€] = 1/2,
Pr[Tan\D'|E] < Pr(r(f*) = m2|€] = V2,

and thus (E.15) holds for & = €.

Case 5 is a little tricky since the cycle structure of T, the 1-tree in GG; containing all of f*, f1, f2, may depend on
where f* points to. Condition on the height threshold ¢, being fixed, and let £ be the event summarizing all the
conditioning we did so far. Let f, be the least common ancestor of f; and f5 in 7%, and let s denote the path
length from f; to f, maximized over i = 1, 2.

Conditioned on 7(f*) = 1y, or equivalently 77, the probability of 717 UD’ is 1 if the cycle length ¢ of T is in the
range (tn, [1/<] - th), and if £ is not in the range, the conditional probability of 711 UD’ is at least the conditional
probability of &1, which is at least max{ t"t:s,O}(l — O(e)) by Lemma E.3 (Observe that fi = n; is on the cycle
of T because f* points to it on event 77). Therefore,

th — S

Pr{Ti UD'[E] 2 Pr(r(f*) = m €] - max { ==, 0}(1 - O(e))

0}(1 - 0()).
Oun the other hand, 731 \D’ happens only when 7(f*) = n9. Condition on 7(f*) = nq. If the cycle length ¢ is in the

range (ty, [1/<] -tn), then T21\D’ never happens. If £ < t,, and f, is on the cycle, then T2;\D’ never happens either
because & never happens. Indeed, the only possible undirected path in 7' connecting f; with fs without passing

— S

(E.16) = 1/2 - max { th

1609 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

through f* intersects the cycle, so f1, fo have to connect to the cycle after edge deletion to make &, happen, but
the cycle contains f* and remains connected after edge deletion (because ¢ < ¢,). Therefore, we assume either
> [1e] - ty, or £ < t, and f, is not on the cycle. In this case, the conditional probability of 721\D’ is at most

the conditional probability of &, which is at most max { t"tzs , 0}(1 + O(g)) by Lemma E.2. Therefore,

th — s

Pr[T51\D'|€] < Pr[r(f*) = n2|&] - max{ 70}(1 +0(e))

S

(E.17) — 1. max{tht: 0}1+06).

Combining (E.16) and (E.17), we know (E.15) holds for & = €£. 0

E.5 Proof of Claim D.1: Subtypes within Type C

CramMm D.1. (SUBTYPES WITHIN TYPE C) For a client ¢ of type C, one of the following is true:

(a) f1 is heavy.
(b) fa is heavy.

(c) A facility h is open near ¢ after the simple swap closing f1. Formally, a facility h # fo is open after swap
{(—f1) at distance d(c,h) < 3dy +2d* on SN A.

(d) g* # f*, p(g*) > 3/4, and for all b = 1,2, any swap set P generated on S; N A, a facility h # fo is open

. 2, + d*, i h=1
after swap {(—f1) at distance d(c,h) < { 2y +d* + Ys(dy +d*), ifb=2

(e) For any swap set P generated on To N A, {(f*)) closes both fi and fs.

(f) g* # [*, p(g*) > 2/3, and there exists b € {1,2} such that for any swap set P generated on T N A, (f*))
closes both f1 and fs.

Proof. Recall that ¢* is w(f1) and S; is the event that P is a simple swap and ¢g* points to 7,(g*). Similarly 7,
is the event that P is a tree swap and ¢g* points to 1,(g*).

If either f; or fy is heavy, then condition (a) or (b) holds. We assume neither f; nor fy is heavy henceforth. In
other words, the swaps (—f1)) and {(—f2)) both exist.

Let g be the closest local facility to ¢* that is different from f; and f5. Intuitively, we show that either a client
is close to g or there is a tree that contains all fi1, fo, and f*.

If d(g, g*) < d(f1,9"), then we have d(c,g) < dv +d(f1,9%) +d(g,9%) < di +2d(f1,9*) < 3dy + 2d*. Furthermore,
when we generate tree swaps, fi points to ¢* = 7(f1) in the 1-forest Gy after degree reduction. If f; points to
a new copy of g*, we know that f; is not among the t4 closest local facilities to g* in 77 1(g*). Therefore, we
know d(g,¢*) < d(f1,9*). Note that g and f; are not closed in the same simple swap by implication (Siii’) of
amenability, so condition (c) holds in this case.

We can now assume that f; points to the original copy of ¢* and d(g,g*) > d(f1,9*). If ¢* = f*, we know
condition (e) holds, because both edges f1 — f*, f* — f2 remain after the edge deletion step by amenability. We
assume g¢* # f* henceforth.

If p(g*) < 2/3, we know 7(g*) = 1 (¢*) deterministically. Moreover, d(g, g*) > d(f1,¢*) implies that 7(g*) is either
fior fo. It n1(g*) = f1, then {(—f1)) must open ¢g* by implication (ii’) of amenability, so condition (c) holds in
this case since d(c, g*) < di +d(f1,9*) < 2d; + d*. Otherwise, 71 (g*) = f2, and then condition (e) holds, because
the edges f1 — g*, 9" — f2, f* — f2 all survive edge deletion by amenability, so fi1, fo, f* must all be in the same
swap.

It remains to consider the case where p(g*) > 2/3. If fo = m(g9*) € {m(9*),m2(g9*)}, then condition (f) holds
because the edges fi — ¢*, 9" — fo, f* = 7(f*) € {f1, f2} all survive edge deletion on 7, N A (see the left graph
in Figure E.13). Otherwise, fo ¢ {n1(¢*),n2(¢*)}, and in this case we know 7;(¢*) = f1 and 72(g*) = g because

1610 Copyright (© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

d(g,g*) > d(f1,9*). We show that condition (c) or (d) holds, depending on whether p(g*) < 3/4. Indeed, on S{N.A,
we know ((—f1)) opens g* at distance < 2d; +d* by implication (ii’) of amenability, and on S;N.A, we know either
g* or g is open after swap ((—f1)), again by implication (ii’) of amenability, and d(c, g) < 2d; +d*+1/p(g*)- (d* +d1)
(see the right graph in Figure E.13). 0

vaz f2
’ \\\

7/ ~

7/

~
~ ’
’ ~ ’
’ ~ ’

L] A\

- h T g

Yo (d +dy)

+dy & 77777777777 ’D

e

|Q.

Figure E.18: In the figure, dashed edges represent the random function 7. In the left graph, whenever g* points to fa,
1, f2, [* are all in the same swap, so condition (f) holds. In the right graph, condition (d) holds.

Acknowledgments We thank Amit Kumar, Ola Svensson, and Justin Ward for fruitful initial discussions.
Special thanks to Guru Guruganesh, with whom we obtained some early results on this problem. AG and HO
are supported in part by NSF awards CCF-1907820, CCF1955785, and CCF-2006953. LH is supported by NSF
Award IIS-1908774 and a VMware fellowship. Moreover, this work was also partially funded by the grant ANR-
19-CE48-0016 from the French National Research Agency (ANR). Some of this work was conducted while LH
was an undergraduate at Tsinghua University visiting CMU and TTI-Chicago.

References

[ABS10] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Stability yields a PTAS for k-median and k-means clustering. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 28-26, 2010, Las Vegas,
Newvada, USA, pages 309-318, 2010.

[AFS13] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search based approximation algorithms for
mobile facility location problems. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annuael ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1607-1621.
SIAM, 2013.

[AGK™01] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristic for k-median and facility location problems. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, STOC ’01, page 21-29, New York, NY, USA, 2001. Association for Computing
Machinery.

[Ali94] Paola Alimonti. New local search approximation techniques for maximum generalized satisfiability problems. In
Algorithms and Complezity, Second Italian Conference, CIAC ’94, Rome, Italy, February 23-25, 1994, Proceedings,
pages 40-53, 1994.

[ANSW17] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means and
Euclidean k-median by primal-dual algorithms. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 61-72, 2017.

[BPR"15] Jarostaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved
approximation for k-median, and positive correlation in budgeted optimization. In Proceedings of the Twenty-Sizth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, page 737-756, USA, 2015. Society for Industrial
and Applied Mathematics.

[CG99] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location and k-median
problems. In 40th Annual Symposium on Foundations of Computer Science, FOCS 99, 17-18 October, 1999, New
York, NY, USA, pages 378-388, 1999.

[CGTS99] Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. A constant-factor approximation algorithm
for the k-median problem (extended abstract). In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, STOC ’99, page 1-10, New York, NY, USA, 1999. Association for Computing Machinery.

[CL12] Moses Charikar and Shi Li. A dependent LP-rounding approach for the k-median problem. In Automata,
Languages, and Programming - 89th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part I, pages 194-205, 2012.

[FFSW17] Moran Feldman, Yuval Filmus, Roy Schwartz, and Justin Ward. A tight combinatorial algorithm for
submodular maximization subject to a matroid constraint. https://www.cs.toronto.edu/"yuvalf/NOLS.pdf,
January 2017.

1611 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/20/22 to 74.98.201.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[FW12] Yuval Filmus and Justin Ward. The power of local search: Maximum coverage over a matroid. In 29th Symposium
on Theoretical Aspects of Computer Science (STACS 2012), pages 601-612, 2012.

[FW14] Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-oblivious local search.
SIAM J. Comput., 43(2):514-542, 2014.

[GGK™18] Martin Grof, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie Schmidt, and José
Verschae. A local-search algorithm for steiner forest. In 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 31:1-31:17, 2018.

[GK99] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location algorithms. J. Algorithms,
31(1):228-248, 1999.

[GT08] Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR,
abs/0809.2554, 2008.

[JMM*03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM, 50(6):795-824, 2003.

[IMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location problems. In
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 02, page 731-740, New
York, NY, USA, 2002. Association for Computing Machinery.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274-296, 2001.

[KMN'02] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. A local search approximation algorithm for k-means clustering. In Proceedings of the Eighteenth Annual
Symposium on Computational Geometry, SCG 02, page 1018, New York, NY, USA, 2002. Association for Computing
Machinery.

[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani. On syntactic versus computational
views of approximability. STAM J. Comput., 28(1):164-191, 1998.

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J. Comput., 45(2):530-547,
2016.

1612 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

