
An Improved Local Search Algorithm for k-Median

Vincent Cohen-Addad* Anupam Gupta� Lunjia Hu� Hoon Oh† David Saulpic�

Abstract

We present a new local-search algorithm for the k-median clustering problem. We show that local optima
for this algorithm give a (2.836 + ϵ)-approximation; our result improves upon the (3 + ϵ)-approximate local-
search algorithm of Arya et al. [AGK+01]. Moreover, a computer-aided analysis of a natural extension suggests
that this approach may lead to an improvement over the best-known approximation guarantee for the problem.

The new ingredient in our algorithm is the use of a potential function based on both the closest and
second-closest facilities to each client. Speci�cally, the potential is the sum over all clients, of the distance
of the client to its closest facility, plus (a small constant times) the truncated distance to its second-closest
facility. We move from one solution to another only if the latter can be obtained by swapping a constant
number of facilities, and has a smaller potential than the former. This re�ned potential allows us to avoid the
bad local optima given by Arya et al. for the local-search algorithm based only on the cost of the solution.

1 Introduction

The k-median problem is a classic optimization problem for metric spaces, and has been widely studied by the
algorithm-design community with a two-fold motivation: on the one hand getting good algorithms for the k-median
problem immediately yields important practical implications in operations research, bioinformatics, or data
analysis. On the other hand, the study of the approximability of k-median has given us a deeper understanding of
key algorithmic ideas like primal-dual techniques and Lagrangian-multiplier preserving algorithms, sophisticated
dependent LP roundings, local search, iterative rounding, and algorithmic notions of stability.

Concretely, given a �nite metric space (X , d), where the point set X is partitioned into client locations C and
possible facility locations F , with X := C ∪F , and a parameter k, the k-median problem asks to pick k �medians�
F ¦ F to minimize

kmed(F) :=
�

c∈C
d(c, F).(1.1)

Throughout the paper, given a set S ¦ X , and point x ∈ X we let d(x, S) denote mins∈S d(x, s).

An interesting perspective on the k-median problem is to view it as a �metric set cover� problem, where one
needs to �nd k medians (seen as �sets�) to cover the clients (seen as the universe) � with the relaxation that each
client pays a cost that is a function of how well it is covered and this cost function is a metric. This perspective
has long been known (see e.g. [GK99, JMS02]), but although the complexity of the classic set cover problem is
well-understood since the 90s, the approximability of this metric variant is still quite open.

The current-best result is the 2.675-approximation of Byrka et al. [BPR+15], improving on a breakthrough 2.732-
factor of Li and Svensson [LS16]. These papers use the clever idea of �nding pseudo-approximations (i.e., solutions
with good cost but opening a few extra facilities) by �rst giving bi-point solutions (i.e., a feasible fractional solution
that is the convex combination of two integer solutions) using the primal-dual framework, and then rounding these
bi-point solutions carefully into integer solutions. Nevertheless, the gap between these results and the current best
hardness bound of 1+2/e remains large. While various techniques can give good approximations for k-median in
speci�c metrics, the current arsenal for getting a better approximation bound for the general case is not very rich.
E.g., a signi�cant improvement using the bi-point rounding approach seems challenging, since it requires either

*Google Research, Zurich and Sorbonne Université, Paris.
�Carnegie Mellon University, Pittsburgh PA 15217.
�Stanford University.
�Sorbonne Université, Paris.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

improving the quality of the bi-point solution computed (on which no progress has been made over the last 20
years), or improving on the rounding scheme. Other techniques to obtain O(1)-approximations are primal-dual,
or greedy-plus-pruning, but the best bounds using these techniques do not even give a 3-approximation. Finally,
the best result before [LS16] was an analysis of the p-swap local-search algorithm that tries to improve the current
solution by closing some p facilities and opening p others. Arya et al. [AGK+01] showed that any local optimum
was a (3 + 2/p)-approximation. However, they also showed instances with a matching �locality gap� for this
algorithm (see �A.2 for a simple example showing a gap arbitrarily close to 3). In summary, the only known way
to do better than a factor of 3 remains bi-point rounding.

In this paper, we draw on parallels with set cover and submodular optimization problems and propose an extension
of the simple local-search paradigm that has the potential to improve the current best-known approximation
factor. While our current analysis does not improve the best approximation it provides the �rst alternative to
bi-point solutions to go below a 3-approximation�namely, to 2.836�and o�ers the possibility of better results.
The new idea is to perform the local search with respect to some other �surrogate� potential Φ(F) instead of
the k-median objective function. This allows us to avoid the bad local minima present in the standard local
search. Of course, this Φ needs to be easily computable, and also to be close enough to the original objective
function so that �nding a local-optimum with respect to Φ implies a good approximation for k-median objective
as well. Such local-search procedures are called non-oblivious in the literature, and have been successful in several
settings [Ali94, KMSV98, FW12, FW14, GGK+18].

1.1 Our Approach and Results Let di(c, F) be the distance between the client c and the facility in F that

is ith-closest to it, so that d1(c, F) = d(c, F) as de�ned above. De�ne the potential function

Φ(F) :=
�

c∈C

�

d1(c, F)
� �� �

closest

+´min
�
d2(c, F), ³ d1(c, F)
� �� �

truncated second-closest

��

.(1.2)

For almost all of the paper, we choose ³ = 3 and ´ = 1/5. While we motivate the potential in detail in �1.2,
consider two clients whose closest facilities are both at distance D: one with its second-closest facility at the
same distance D pays (1+ ´)D ≈ 1.2D, whereas another whose second-closest facility is much farther away pays
(1 + ³´)D ≈ 1.6D. Hence a lower potential prefers solutions with good �backup� facilities, so that local moves
can then explore a richer space. Our main result is the following:

Theorem 1.1. (Pseudo-approximation) Let ³ = 3, ´ = 1/5, and let p(ε), r(ε) be su�ciently large constants
that depend only on ε. If F is a local minimum of our non-oblivious local-search procedure with |F | = k facilities
and swap size p(ε), then

kmed(F) f (2.836 + ε) · kmed(F ∗)

for any solution F ∗ with k − r(ε) facilities.

We can convert this pseudo-approximation into a regular approximation using ideas from [LS16, ABS10]. Indeed,
if the original instance is �stable� (i.e., if reducing the number of facilities by r(ε)) causes the optimal cost to
increase by more than (1 + ε)), we can get a PTAS [ABS10] in time poly(|X |r(ε)). Hence, this reduction of the
number of facilities does not change the optimal cost much, and then the pseudo-approximation of Theorem 1.1
is also a true approximation.

We are yet to understand the limitations of this speci�c potential function, and of this general approach. The
best lower bound for this potential function we currently know is the following:

Theorem 1.2. (Lower Bound for Φ) There exists ε > 0 and an in�nite family of instances on which the
local-minimum F of our non-oblivious local-search function with constant-sized swaps satis�es

kmed(F) g min{max{(3− 2´ − ε, 1 + 4´ − ε)},max{2, ³− ε}} · kmed(F ∗).

Balancing the two terms gives us a locality gap lower bound of 2 · kmed(F ∗) for all values of ³, ´.

This lower bound holds even if F is allowed to have more facilities than F ∗. The gap between the two results above
suggests that local-search with respect to Φ still has the possibility of beating the current-best approximation
bounds.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Extending our Potential Function. We consider extending this non-oblivious approach using more expressive
potentials. E.g., we can look at the q = 3 closest facilities, as follows: (we use di as shorthand for di(c, F), and
(a ' b) := min(a, b))

Φ3(F) =
�

c∈C

�

d1 + ´2 (³2d1 ' d2)
� �� �

truncated second-closest

+´3 (³3d1 ' d3)
� �� �

truncated third-closest

�

.

Again ³i, ´i are constants, discussed in �7. A preliminary implementation of this LP discussed in that section
suggests that we can get an approximation ratio of 2.69. However, these are based on experiments, and since
we do not have a formal proof, computer-assisted or otherwise, these should just be considered circumstantial
evidence and promising �rst steps. We hope that we (or others) will be able to extend these to a formal proof.

1.2 Our Techniques Since the algorithm is just the p-swap local search algorithm, all the work is in the
analysis of the local optima.

The choice of the objective function. Our potential function is inspired by the work of Filmus and
Ward [FW12, FW14], who improved the local-search algorithm for submodular maximization from a 1/2-factor
to the optimal (1 − 1/e)-factor. We describe their idea in the context of max-k-coverage: the potential gets a
bonus if it covers elements multiple times. I.e., for each element, we get a value of 1 if we cover it once, a small
bonus ´2 if we cover it at least twice, a smaller additional bonus ´3 if we cover it at least thrice, etc. The total
overall bonus is small compared to the gain in covering it once (so that the potential remains close to the true
objective), but enough to evade the bad local minima. Indeed, if an element is covered twice, the algorithm has
more �exibility in choosing local-search steps, since any single-set swap will leave this element still covered.

The k-median problem is a minimization problem, so the natural objective is
�

c d1(c)+
�

ig2 ´idi(c), where di(c)

is the distance from c to its ith-closest facility: this penalty term can incentivize each facility to have �backup�
facilities close to it. Indeed, just using d1+´2d2 (for small constant ´2 > 0) side-steps the standard bad examples
with respect to the objective function d1. However, this potential penalizes us too heavily for not having backups.
So if the instance has k widely-separated clusters, the penalty term overwhelms the original cost. This suggests
the potential (1.2) we eventually use:

�

c

d1(c)

�

1 + (small constant) ×min

�

1,
d2(c)

(large constant) × d1(c)

��

.

However, the introduction of the minimum in the objective function makes the analysis more involved, since it
forces a case distinction between clients which pay the truncated and untruncated values.

Important Swaps. The standard approach to analyze the quality of local optima for clustering problems is
to de�ne a subset of swaps we call important. Since all swaps are non-improving, these important ones are too.
This non-improvement gives linear inequalities that relate the cost of the solution Fnew after the swap to the cost
of the local optimum F . To relate Fnew to the optimal solution F ∗, we de�ne important swaps to be ones that
replace a constant number of local facilities P ¦ F with the same number of optimal facilities Q ¦ F ∗. Hence,
the cost of Fnew is the sum of the costs for (1) �happy� clients that are now served optimally (or even better) in
Fnew because their optimal facility is in Q, (2) the �sad� clients which were previously assigned to the facilities
in P that were swapped out, but which are not happy and hence require reassignment, and (3) the remaining
�indi�erent� clients. The art in these proofs is to de�ne the important swaps to control the reassignment cost for
the sad clients.

For example, we can pair each optimal facility with its closest local facility (assume for now this is a bijection),
and form the important swaps by swapping some constant-sized subset of these pairs. This ensures:

�

c happy

d(c, F ∗) +
�

c sad

(d(c, F) + 2d(c, F ∗)) +
�

c indi�erent

d(c, F) g cost(Fnew) g cost(F) =
�

c

d(c, F).

(see [GT08] for details). Simplifying gives

�

c happy

d(c, F ∗) +
�

c sad

2d(c, F ∗) g
�

c happy

d(c, F).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Summing over important swaps (one per local facility) means each client appears on the left at most twice (once
when happy, and once when sad) and on the right exactly once, which means ALG f 3OPT . Handling the
non-bijective case loses another ε factor, so the local optimum is at most (3 + ε) times the global optimum. The
important lessons are that (a) important swaps need to be �rich� enough to infer the small locality gap, and
(b) �simple� enough to be able to reason about.

However, the important swaps used in past works [AGK+01, GT08] do not work with the new potential:
Figures B.11 and B.12 in Appendix B show instances and local solutions that cost three times the optimum
but are not locally optimal with respect to the new objective function. Yet previously-used important swaps are
not rich/expressive enough to deduce non-local-optimality, and only prove a 3-approximation.

New Swaps. Given a local solution F , we distinguish the far clients c with d2(c, F) g ³d(c, F) from the close
ones with d2(c, F) < ³d(c, F). The type of a client determines which value attains the minimum in the potential
function (1.2): a far client c pays (1 + ³´)d(c, F) while a close one pays d(c, F) + ´d2(c, F). The two types of
clients require di�erent analysis.

Far Clients. Consider a facility ℓ2 of F closest to the optimal facility f∗ for far client c. If ℓ2 is also the local
facility that is closest to c, and if we pair it with f∗, client c is a happy client (as described above) and we get
a good bound on the cost of client c (so we should always associate f∗ with ℓ2). Else if ℓ2 is not a facility that
is the closest to c, then a simple argument using the triangle-inequality shows there exists a second facility in
the local solution at distance 2d(c, f∗) + d(c, F) to c. But c is a far client, so this facility cannot be too close:
2d(c, f∗) + d(c, F) g ³d(c, F), and so d(c, F) f 2

³−1d(c, f
∗), which is an excellent bound.

Close Clients. On the other hand, the close clients, may now be sad both when their closest facility closes, and
also when their second-closest closes. E.g., consider a client whose closest optimal facility is far from the rest of
the instance, but which has two local facilities at the same distance to it (with d1 ≈ d2). (See Figure 1.1.) In this
case, moving from two facilities to one in the local solution without opening the optimal facility incurs a large
reassignment cost. Hence, such clients want the swap which opens the optimal facility to also close both local
facilities close to them. If not, closing any one of these close local facilities would mean reassigning them to the
other, and su�ering a cost of (1 + ³´)d1. These woud be very sad clients. So we would like to close both the
facilities for the close clients at the same time. Else the potential that was helping the far clients now hurts these
close ones when they become very sad.

Our approach mitigates the risks: we de�ne two di�erent swap structures and take a linear combination of the
inequalities obtained from these. Since the local-search algorithm tries all possible swaps, the resulting inequalities
remain valid. The two swaps structures can be viewed as follows. One of them, referred to as simple swaps, is
similar to the one described by [GT08], where each facility of F ∗ is mapped to its closest facility in F . The other
one, which resolves the �bad example� described in Figure B.11 for single swaps, is to also consider the reverse
map: i.e., to map each facility of F to its closest one in F ∗. These two maps induce a directed graph G where
the vertices are F ∗ ∪ F , with an arc from f1 to f2 if f1 is mapped to f2 in the appropriate map. This graph G
has outdegree-1 and hence has a nice structure. We show how to break it into pieces of bounded size; these de�ne
tree swaps. We then work with all the inequalities coming from these two families of swaps.

A �nal ingredient is randomization: instead of always mapping each facility f in one of the solutions to its closest
facility f ′ in the other solution, we randomize these maps�we map f to its second-closest facility in the other
solution with some probability that depends on their relative distances. This allows us to again mitigate bad and
good scenarios for di�erent types of clients that are in tension.

In summary, here's what we do: we �ip a coin to either consider simple swaps or tree swaps. In either case, we
randomly map some facilities to the closest or second-closest facilities in the other solution, and use this to build
a set of important swaps. Since all these are non-improving, this gives us linear inequalities that relate the local
cost to the optimum. Finally, we deduce the approximation ratio from these linear inequalities.

1.3 Related Work The �rst O(1)-approximation for the k-median problem was given by Charikar et
al. [CGTS99]. After many developments using, e.g., the primal-dual schema [JV01, CG99], greedy algo-
rithms (and dual �tting) [JMM+03], improved LP rounding [CL12], local-search [AGK+01], and pseudo-
approximations [LS16], the current best approximation guarantee is 2.675 [BPR+15]. The best hardness result is
(1 + 2/e) [GK99, JMS02]. Local-search algorithms have been widely used for clustering problems. Despite their

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2.1 Proof Strategy Let us �x some notation: �x a local optimum F of size k and a global optimum F ∗ of
size k − r(ε); we call the former the local and the latter the optimal facilities. For a client c, let

• d∗(c) := d(c, F ∗) be its cost and f∗ its closest facility in the optimal solution F ∗,
• d1(c) and d2(c) be its distances to the closest and second-closest facilities, and f1 and f2 be these facilities
in F , and

• Φc := d1(c) + ´min(d2(c), ³d1(c)) be client c's contribution to the potential. From now on, we �x ³ = 3
and ´ = 1/5.

Our proof of Theorem 1.1 is based on the fact that at the local optimum F , the potential change induced by a
valid swap (P,Q) is non-negative, i.e., Φ((F \ P) ∪ Q) − Φ(F) g 0. De�ning the potential change of client c on
swap (P,Q) to be

¶(P,Q)(c) := Φc((F \ P) ∪Q)− Φc(F),(2.3)

we have

0 f
�

c∈C
¶(P,Q)(c).

This inequality holds for all valid swaps (P,Q); it remains true even if we extend the de�nition of valid swaps
to allow Q to intersect F and/or to have a size smaller than P , because doing so never decreases the potential
change. We can thus take linear combinations of the inequality over all valid swaps (P,Q). In particular, for any
random set P of valid swaps,

0 f EP
� �

(P,Q)∈P

�

c∈C
¶(P,Q)(c)

�

=
�

c∈C
EP

� �

(P,Q)∈P
¶(P,Q)(c)

�

.

Theorem 1.1 is thus implied by the following lemma (and observing that 2.5203
0.8888 f 2.836):

Lemma 2.1. There is a distribution over sets P of valid swaps such that for all clients c ∈ C,

E

� �

(P,Q)∈P
¶(P,Q)(c)

�

f 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).

In order to prove this lemma, we build a randomized procedure generating the set P of swaps (where we call
elements of P important swaps), and divide our analysis into two cases: the amenable case and the de�ant case.
In particular, given a client c, we de�ne a suitable amenable event A and its complement de�ant event D, and
show the following two lemmas, which immediately imply Lemma 2.1.

Lemma 2.2. (Defiant Case) There is a distribution over sets P of valid swaps such that for all clients c ∈ C,

E

�

1D
�

(P,Q)∈P
¶(P,Q)(c)

�

f O(ε) (d∗(c) + d1(c)).(2.4)

Lemma 2.3. (Amenable Case) For the distribution over valid swap sets from Lemma 2.2, for any c ∈ C,

E

�

1A
�

(P,Q)∈P
¶(P,Q)(c)

�

f 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).(2.5)

In �3, we de�ne the distribution over sets P of important swaps. In �4 we classify the clients into types. We de�ne
the amenable and de�ant events for clients of each type and prove Lemma 2.2 in �5, and then prove Lemma 2.3
in �6.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

3 Generating the Important Swaps

In this section, we describe our randomized procedure generating P, the set of important swaps, that proves
Lemmas 2.2 and 2.3. P contains valid swaps (P,Q), where P ¦ F has size at most p(ε), and Q is an arbitrary set
of facilities with size at most |P |. Every swap we generate has Q being a subset of F ∗, the set of optimal facilities.
We say swap (P,Q) closes the local facilities in P , and opens the optimal facilities in Q. (By duplicating points
in the metric space, we assume F and F ∗ are disjoint, and so are P,Q.) Sometimes we say the swap contains the
local facilities in P and the optimal facilities in Q.

In order to prove Lemmas 2.2 and 2.3, we want to minimize the potential change of every client by always opening
a �nearby� optimal facility whenever we close a local facility. Roughly, we generate both simple and tree swap
sets by constructing a directed graph G over the vertex set F ∪F ∗, where every edge connects �nearby� local and
optimal facilities. We perform some surgery on this graph if needed: we remove vertices in F , duplicate vertices
in both F and F ∗, and remove some edges, so that every connected component of the resulting graph has a small
size. Finally, we combine these connected components of G into small-sized groups so that the number of local
facilities in each group is no smaller than the optimal facilities in it. The swap set P consists of the swap de�ned
by each of these groups, closing/opening all the local/optimal facilities in it. In the following subsections, we
describe in detail our procedures generating the simple and tree swap sets. (Again, recall this is all in the analysis,
since the algorithm is just the p-swap local search that attempts to improve the potential.)

3.1 Generating the Important Simple Swaps We start by constructing a random directed graph G0 over
vertices F ∪F ∗. The graph is de�ned by a random function Ä : F ∗ → F that maps each optimal facility to a local
facility: this gives a bipartite graph with F ∗ vertices have out-degree one, and F vertices having no out-degree.
In previous analyses, Ä(f∗) was de�ned as the closest local facility to f∗, but in our analysis, we choose Ä(f∗)
randomly from the two closest local facilities to f∗ in order to cover a larger neighborhood with good balance.
Indeed, independently for every optimal facility f∗, we choose Ä(f∗) from ¸1 and ¸2, where ¸1 = ¸1(f

∗) and
¸2 = ¸2(f

∗) ∈ F are the �rst and second closest local facilities to f∗. The probability of choosing ¸i depends on

the value of Ä = Ä(f∗) := d(f∗,¸1)
d(f∗,¸2)

∈ [0, 1]. When Ä(f∗) f 3/4, we choose Ä(f∗) = ¸1 with probability 1; when

Ä(f∗) > 3/4, we choose Ä(f∗) = ¸1 with probability (5/2 − 2Ä) and Ä(f∗) = ¸2 with the remaining probability
(2Ä− 3/2).

Intuitively, Ä(f∗) is the facility used as a fallback to serve clients of f∗'s cluster when their closest local facility is
swapped out. More precisely, we design the swaps such that either f∗ or Ä(f∗) is open. To bound the reassignment
cost to Ä(f∗), we therefore must ensure that Ä(f∗) is as close as possible to f∗. When Ä(f∗) is small, there is
therefore a huge incentive in choosing Ä(f∗) = ¸1. However, when Ä(f∗) is close to 1, there is no di�erence
between ¸1 or ¸2. Our probability distribution is chosen such as to implement that intuition. It has been tuned
experimentally: using our LP formulation, we were able to look for a choice of of Ä that gives a good approximation
guarantee while being simple enough to prove that guarantee.

This de�nes the graph G0. We wish to generate swaps according to the connected components of G0, i.e., every
swap closes all the local facilities in a connected component and opens all the optimal facilities in the same
connected component. However, such swaps may not be valid because 1) the size of a connected component
may be much larger than p, and 2) there may be more optimal facilities in a connected component than local
facilities (since every connected component of G0 contains exactly one local facility). We solve these issues by
two procedures: degree reduction and balancing.

Degree reduction. The size of a connected component of G0 being too large is caused by local facilities with
high in-degree. We solve the problem by removing all local facilities that could potentially have high in-degree
from the graph. We call these the heavy local facilities. To keep the number of local facilities in the graph
unchanged, we duplicate other local facilities, which we call local surrogates. We formally de�ne heavy local
facilities and local surrogates as follows. We �rst de�ne N(f∗) ¦ {¸1, ¸2} and call it the set of local neighbors of
f∗. If Ä(f∗) f 2/3, we de�ne N(f∗) = {¸1}; otherwise, we de�ne N(f∗) = {¸1, ¸2}. We choose td = +1/ε, as the
degree threshold. Now the heavy local facilities are as follows:

Definition 3.1. (heavy local facility) A local facility f ∈ F is heavy if it is a local neighbor of more than
td + 1 optimal facilities.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Note that Ä(f∗) must be a local neighbor of f∗ because 3/4 > 2/3. Therefore, only heavy local facilities can have
in-degree more than td +1 in G0. For every heavy local facility, we choose a local surrogate uniformly at random
from the local candidates de�ned as follows:

Definition 3.2. (local candidate) A local facility f ∈ F is a local candidate if it is not heavy and every
optimal facility in Ä−1(f) has a heavy local neighbor.

Note that, unlike our de�nition of heavy local facilities, the de�nition of local candidates depends on the random
function Ä . The following claim (proved in Appendix E.1) shows that there are enough local candidates from
which the heavy local facilities can choose:

Claim 3.1. The number of local candidates is at least td/2 times the number of heavy local facilities.

We are ready to describe our degree reduction procedure:

1. Remove all the edges incident to heavy local facilities;
2. Replace each heavy local facility f by its local surrogate s, chosen uniformly at random without replacement

from the local candidates. Hence, in the graph the vertex labeled f (and now having no in-edges due to
step 1) is replaced by one labeled s. So a local surrogate appears twice now: the original copy of s, and a
single isolated vertex as a surrogate for f .

Let G1 denote the graph after degree reduction. Clearly, every local facility has degree at most td + 1 in G1, and
thus every connected component has size at most td + 2. The next claim follows directly from Claim 3.1:

Claim 3.2. The constructed graph G1 satis�es following properties:

i. Heavy local facilities do not appear in G1.
ii. Local facilities chosen as local surrogates appear twice: once as the original copy and once as an isolated
vertex.
iii. Other local facilities and all optimal facilities appear once.
vi. Every optimal facility f∗ points to the original copy of Ä(f∗) unless Ä(f∗) is heavy.
v. Any local facility is chosen as a local surrogate with probability at most 2/td, and only when it is a local
candidate.

Balancing. Since a connected component of G1 may contain more optimal facilities than local ones we combine
connected components together to form groups with at least as many local facilities as optimal ones, using the
following claim (proved in Appendix E.2):

Claim 3.3. (Balancing Procedure) Consider a universe U = R∪G of red points R and green points G, with
|G| = |R| + r. Let the collection of sets S1, . . . , SN partition U , and let |Si| f x for all i. Moreover, let H be a

graph on the vertices [N] with maximum degree at most ¹ f r. Lastly, r g Ω
!
x5¹3

ε

�
for some 0 f ε f 1. Then we

can merge these sets together into new sets T0, . . . , TM such that

(i) each Tj has size |Tj | f O(x2),
(ii) |Tj ∩R| f |Tj ∩G|,
(iii) if there is an edge {i, j} for i, j ∈ [N], then Si is not merged with Sj, and
(iv) for all i ̸= j, Si is merged with Sj with probability at most ε.

Recall that our degree reduction step did not change the total number of local and optimal facilities, so there are
still r(ε) more local facilities than optimal facilities. We identify F ∗, F with R,G in Claim 3.3 respectively, and
de�ne every Si as the set of facilities in every connected component of G1. Note that |Si| f td + 2. Si and Sj

are connected by an edge in H if and only if they contain two copies of the same local facility: one contains the
original copy of a local facility and the other contains a new copy created as a local surrogate. The maximum
degree of H is at most 1 due to Claim 3.2 and the fact that there is at most one local facility in each connected
component. Since r(ε) g Ω((td + 2)5/ε), we use Claim 3.3 to combine components of G1 into balanced groups,
where every group contains at most O((td + 2)2) f p(ε) facilities. Every group thus de�nes a valid swap, and we
de�ne P as the set of these swaps. Figure 3.2 shows an example of the simple swap set P we generate.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

F ∗

F

F i g u r e 3. 2 : A n e xa m p l e o f a s i m p l e s w a p s e t P . Ed g e s c o r r e s p o n d t o Ä(f∗)'s . Da s h e d e d g e s a r e r e m o v e d . T h e b l a c k f a c i l i t y
i s a l o c a l s u r r o g a t e r e p l a c i n g a h e a v y l o c a l f a c i l i t y. T h e o r i g i n a l c o p y o f t h e b l a c k s u r r o g a t e i s t h e f a c i l i t y w i t h r e d b o u n d a r y,
c h o s e n r a n d o m l y f r o m t h e l o c a l c a n d i d a t e s (b l u e), a s s u m i n g e v e r y ye l l o w o p t i m a l f a c i l i t y h a s a h e a v y l o c a l n e i g h b o r . G r a y
b o xe s c o r r e s p o n d t o t h e s w a p s i n P .

3.2 Generating the Important Tree Swaps Again, we start by constructing a directed graph G0. Unlike
simple swaps where only optimal facilities have out-edges, tree swaps require every local facility to also have an
out-edge to an optimal facility in G0. In particular, every local facility f has an out-edge to Ã(f), the optimal
facility closest to it. Every optimal facility still has an out-edge to Ä(f∗) ∈ {¸1, ¸2}, but we pick Ä(f∗) from a
di�erent distribution: if Ä(f∗) f 2/3, then Ä(f∗) = ¸1 with probability 1; else Ä(f∗) = ¸1 with probability 1/2 and
Ä(f∗) = ¸2 otherwise.

F i g u r e 3. 3: Ev e r y c o n n e c t e d c o m p o n e n t o f G0 i s a 1 -t r e e . L o c a l f a c i l i t i e s a r e r e p r e s e n t e d b y s qu a r e s , w h i l e o p t i m a l f a c i l i t i e s
a r e r e p r e s e n t e d b y t r i a n g l e s .

Since every vertex of G0 has out-degree one, G0 is a 1-forest, with every connected component being a 1-tree, i.e.,
a directed tree with a directed cycle as its root (see Figure 3.3), hence the name tree swaps. Having constructed
G0, we generate the tree swap set P by three procedures: degree reduction, edge deletion, and balancing. The
balancing step remains essentially the same as in simple swaps, but the degree reduction step requires a new
ingredient to deal with optimal facilities with high in-degree, which did not exist in the simple swaps case. The
edge deletion step is also unique to tree swaps. Next, we describe these three steps in detail.

Degree reduction. We �rst modify G0 so that every vertex has in-degree bounded by td + 1. In the same way
as simple swaps, we can remove local facilities with high in-degree by removing heavy local facilities, but we need
an additional procedure to deal with heavy optimal facilities with high in-degree. Speci�cally, we say f∗ is a
heavy optimal facility if it has in-degree more than td after heavy local facilities are removed, in other words,
|Ã−1(f∗)\{heavy local facilities}| > td. For such a heavy optimal facility f∗ with in-degree s, we partition its
children into +s/td, groups. Every group, except sometimes the last one, contains exactly td children. We make
sure that the �rst group contains the td closest children to f∗. For each group other than the �rst one, we create
a new copy of f∗ and change the out-edges from the children in the group to point to the new copy of f∗. The
new copy of f∗ has an out-edge pointing to a new copy of a local facility f chosen uniformly at random from the
previous group. We call the new copy of f an optimal surrogate. They are needed to keep the di�erence between
the number of local and optimal facilities unchanged. We also add an out-edge from f pointing back to the new

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

T

f∗

a b c d e

Ta Tb Tc Td Te

→

T a d

f∗ f∗ f∗

a b c d e

Ta Tb Tc Td Te

F i g u r e 3. 4: T h e � g u r e s h o w s t h e d e c o m p o s i t i o n o f h i g h i n -d e g r e e o p t i m a l f a c i l i t y f∗ f o r td = 2 . Sh a d e d r e c t a n g u l a r b o xe s
c o r r e s p o n d t o p a r t o f t h e o r i g i n a l t r e e t h a t d o e s n o t c h a n g e . Si n c e t h e d e g r e e o f f∗ i s 5 g td , w e c r e a t e +5/td, t r e e s . T h e
� r s t t r e e s t a ys i n t h e o r i g i n a l t r e e . Ea c h r e m a i n i n g t r e e g e t s a f∗'s c h i l d c h o s e n u n i f o r m l y a t r a n d o m f r o m t h e p r e v i o u s
t r e e . f∗ g e t s o p e n 2 e xt r a t i m e s , b u t w e a l s o c l o s e a a n d d t o b a l a n c e t h e n u m b e r o f o p e n i n g a n d c l o s u r e . I n t h i s e xa m p l e
a a n d d a r e c h o s e n a s o p t i m a l s u r r o g a t e s . A n d a a n d b a r e t w o c l o s e s t c h i l d r e n t o f∗ a m o n g {a, b, c, d, e} .

copy of f∗, as illustrated in Figure 3.4.

In summary, the degree reduction procedure for tree swaps consists of the following steps:

1. Remove edges incident to all heavy local facilities;
2. Replace every heavy local facility by its local surrogate, chosen uniformly at random without replacement

from the local candidates;
3. Deal with heavy optimal facilities as above;
4. Add self-loops to vertices with no out-edge (due to step 1) to retain the 1-forest structure (this facilitates a

cleaner presentation of our next procedure: edge deletion).

Let G1 denote the graph after degree reduction. G1 is still a 1-forest, and every vertex in G1 now has in-degree at
most td + 1. Moreover, the following claim is apparent (by observing that Claim 3.1 still holds in the tree swaps
case because its proof is completely independent of the distribution of Ä(f∗)):

Claim 3.4. Constructed graph G1 follows following properties:

i. Every optimal facility appears in G1 at least once.
ii. Every local facility appears in G1 at most three times: once as the original copy, once as a local surrogate,
and once as an optimal surrogate.
iii. Heavy local facilities do not appear in G1.
iv. No two copies of the same facility appear in the same connected component.
v. The original copy of any optimal facility f∗ points to the original copy of Ä(f∗), unless Ä(f∗) is heavy.
vi. The original copy of any local facility f points to Ã(f), although it might be a new copy of Ã(f).
vii. Any local facility is chosen as a local surrogate with probability at most 2/td, and as an optimal surrogate
with probability at most 1/td.
viii. Every local surrogate is a local candidate.

The degree-reduction step ensures that vertices in G1 have bounded in-degree, but a connected component of G1

could still have large size (it could have large height or contain a long cycle). We deal with this problem in our
next procedure: edge deletion.

Edge deletion. Next, we remove edges from G1 to ensure that every connected component in the resulting
graph is a tree of height at most th − 1, where we choose the height threshold th uniformly at random from
2+1/ε,, 2+1/ε,2, · · · , 2+1/ε,+1/ε,. Speci�cally, for each connected component T of G1, if the root cycle has length less
than th, we insert dummy vertices into the cycle to make the length exactly th. Then we pick a vertex r in the

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

root cycle uniformly at random, and delete the out-edge from r. This makes T a directed tree rooted at r. We
then delete edges on the a · th-th levels for all a ∈ N. See Figure 3.5 for an example.

r

F i g u r e 3. 5: Exa m p l e f o r th = 4 . No d e s w i t h t h e s a m e c o l o r c o r r e s p o n d t o n o d e s i n t h e s a m e c o n n e c t e d c o m p o n e n t a f t e r
e d g e d e l e t i o n . We s t a r t f r o m r (r a n d o m l y c h o s e n), a n d r e p e a t e d l y c u t e d g e s o n a · th s t e p s a w a y f r o m r (d a s h e d e d g e s).

Let G2 be the graph after the edge deletion step. It is clear that every connected component of G2 is a directed
tree with height at most th− 1, possibly containing some dummy vertices. Moreover, every vertex v has in-degree
at most td + 1 due to the degree reduction procedure. Therefore, the number of vertices in every connected
component of G2 is at most (td + 1)th . Moreover, we have the following claim for every connected component T
of G1, which is apparent from our edge deletion procedure:

Claim 3.5. After dummy vertices are added into T , the edge out of vertex v ∈ T is deleted if and only if the
(unique) simple path from v to r has length divisible by th.

If the cycle length of T is at most th, vertices on the cycle are still connected after edge deletion. Indeed, we delete
only one edge in the cycle in this case. Therefore, after edge deletion, we ignore all the dummy vertices and still
consider all the edges on the original cycle as not deleted by convention. This doesn't change the (non-dummy)
vertices in every connected component of G2, and thus doesn't change P we eventually generate. With this
convention, we have the following corollary of Claim 3.5:

Corollary 3.1. Any edge in G1 is deleted with probability at most 2/th. Moreover, if the cycle length is at most
th, edges on the cycle are never deleted.

Proof. The second part is assumed by our convention. We thus assume henceforth that the edge is not on the
cycle, or the cycle length is more than th. Suppose the edge is the out-edge of vertex v. By Claim 3.5, the edge
is deleted if and only if the simple path p∗ from v to r has length divisible by th. Suppose the cycle length after
dummy vertices are added to it is ℓ g th, and let ℓ = uth + w for u,w ∈ Z with 0 f w < th. There are at most
u+ 1 choices of r such that p∗ has length divisible by th. Therefore, the edge is deleted with probability at most
(u+ 1)/ℓ = u/ℓ+ 1/ℓ f 1/th + 1/th = 2/th.

After edge deletion, each connected component of G2 contains at most (td + 1)th f p(ε) vertices. However,
the number of local and optimal facilities in the component may not match (e.g., the blue tree containing r in
Figure 3.5 has three extra local facilities, whereas the rightmost tree has one extra optimal facility). We �x this
in the same way as in the simple swaps case using the balancing procedure.

Balancing. The balancing procedure is essentially the same as in the simple swaps case, based on Claim 3.3
again. The only di�erence is that the size of every connected component is now much larger ((td + 1)th), and the
maximum degree of H is also much larger. Since optimal facilities may now have new copies, we may combine
two connected components each containing a copy of the same optimal facility in the balancing step; this is �ne
because it only decreases the number of optimal facilities in a swap. However, we still need to make sure that

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

no two copies of the same local facility are combined together, again by adding edges into H between connected
components containing copies of the same local facility. Since a local facility can have at most 3 copies by
Claim 3.4, the maximum degree of H is at most 2(td + 1)th . Since we kept the number of extra local facilities
unchanged, it's still r(ε) g Ω(((td +1)th)5(2(td +1)th)3/ε), so Claim 3.3 gives balanced groups each containing at
most O((td + 1)2th) f p(ε) facilities. Every group thus de�nes a valid swap, and we de�ne P as the set of these
tree swaps.

4 Client Types

f∗

¸2(f
∗)

¸1(f
∗)

c

f1

f2

d∗

d2

d1d(f∗, ¸1)

d(f∗, ¸2)

F i g u r e 4. 6: T h e s qu a r e s a r e l o c a l f a c i l i t i e s ,
t r i a n g l e s a r e o p t i m a l f a c i l i t i e s , c i r c l e a r e
c l i e n t s . T h e t h i c k r e d e d g e o u t o f c g o e s t o
i t s c l o s e s t l o c a l f a c i l i t y f1; t h e t h i c k r e d e d g e
o u t o f f∗ g o e s t o i t s c l o s e s t l o c a l f a c i l i t y
¸1(f

∗) .

We now classify the clients into a small number of types (based on
how the client connects to facilities in the local and global solutions).
The classi�cation allows us to give a client-by-client analysis instead of
a swap-by-swap analysis used in prior works. We make this change in
perspective because the potential Φ depends on the two closest facilities,
and so we need a better handle on the local neighborhood of a client to
bound the reassignment costs when closing one of the close facilities.

For a client c, recall that f1(c) and f2(c) are the closest and second-
closest local facilities; we say f1 and f2 when there is no ambiguity.
Figure 4.6 shows a picture of a generic client c and its related facilities.

We partition the set of clients into types based on the relationships
between their local and optimal facilities, as follows. The far clients are
those for which d2 g ³d1, and hence the potential just depends on the
closest facility (f1); the other kinds of clients are called close, for which
both f1 and f2 are relevant.

� Far case (where d2 g ³d1). Note that f2 does not play any role
in the far case, so the clients are classi�ed according to how f1
and f∗ are related.

� Type A: ¸1(f
∗) = f1.

� Type B: ¸2(f
∗) = f1.

� Type E: f1 ̸∈ {¸1(f∗), ¸2(f∗)}.

f∗

¸2

¸1 = f1

c

(a) Type A

f∗

¸2 = f1

¸1

c

(b) Type B

f∗

¸2

¸1

c
f1

(c) Type E

F i g u r e 4. 7: F a r Ca s e

� Close case (where d2 f ³d1); now clients are classi�ed according
to how f1, f2 and f∗ are related.

� Type A: ¸1(f
∗) = f1 and ¸2(f

∗) ̸= f2.

� Type B: ¸1(f
∗) ̸= f2 and ¸2(f

∗) = f1.

� Type C: ¸1(f
∗) = f1 and ¸2(f

∗) = f2.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

� Type D: ¸1(f
∗) = f2 and ¸2(f

∗) = f1.

� Type E: f1 ̸∈ {¸1(f∗), ¸2(f∗)}.

f∗

¸2

¸1 = f1

c

f2

(a) Type A

f∗

¸2 = f1

¸1

c

f2

(b) Type B

f∗

¸2 = f2

¸1 = f1

c

(c) Type C

f∗

¸2 = f1

¸1 = f2

c

(d) Type D

f∗

¸2

¸1

c

f1

(e) Type E

F i g u r e 4. 8: Cl o s e Ca s e . F o r T yp e E , t h e c l i e n t 's f2 c a n b e a n y o n e o f d a s h e d e d g e s .

5 Amenable and De�ant Events

Not all swaps are easy to argue about. Having �xed a client c, we de�ne the amenable event and de�ant event for
this client�the former captures the case where the swaps in P are easy to reason about, and the latter the case
where we throw up our hands and use a crude bound on the potential change. Thankfully, the latter happens
very rarely, so the loss is small.

Recall that f1(c), f2(c) are the two closest local facilities to c. Let f∗ = f∗(c) be the optimal facility that c is
assigned to; then ¸1(f

∗), ¸2(f∗) are the two closest local facilties to f∗. We de�ne the amenable and de�ant events
as follows:

Definition 5.1. (Amenable/Defiant) The de�ant event D for a client c of type A, B or E is the union of the
following events:

(i) f1, f2, or Ä(f∗) is chosen as a local or optimal surrogate in the degree reduction step;
(ii) P is a tree swaps set, and the out-edge from the original copy of f∗, f1 or f2 is deleted in the edge
deletion step.
(iii) P is a simple swaps set, and two connected components each containing a facility in {f∗} ∪ {f1, f2} ∪
{¸1, ¸2} are grouped together in the balancing step.

The amenable event A is the complement of D.

For type C and D clients, we enlarge the de�ant event slightly to include g∗ := Ã(f1) and

g := argminh∈F\{f1,f2} d(h, g
∗)

as follows:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Definition 5.2. (Amenable/Defiant for type C and D) The de�ant event D for a client c of type C or D

is the union of the events (i), (ii), (iii) in De�nition 5.1 and the following events:

(i') Ä(g∗) is chosen as a local or optimal surrogate in the degree reduction step;
(ii') P is a tree swaps set, and the out-edge from the original copy of g∗ is deleted in the edge deletion step.
(iii') P is a simple swaps set, and two connected components each containing a facility in {f1, g} are grouped
together in the balancing step.

The amenable event A is the complement of D.

The events A and D depend on the client c, but we choose to omit c in our notation because we will always focus
on a �xed client c in our proof. We now turn to proving Lemma 2.2 on the potential change due to de�ant events.
The approach is simple: we �rst show a crude upper bound that holds for all swap sets P that we generate, and
then show that the probability of the de�ant event is small enough so that we can a�ord to apply this crude upper
bound.

Claim 5.1. There is an absolute constant µ > 0 such that for any client c, and any swap set P that we generate,
we have

�

(P,Q)∈P ¶(P,Q)(c) f µ(d∗(c) + d1(c)).

Claim 5.2. Pr[D] f O(ε) for all clients c.

The proof of Claim 5.2 follows from Claims 3.2 to 3.4, Corollary 3.1, and a trivial union bound. We defer the
proof of Claim 5.1 to Appendix E.3. The two claims above imply Lemma 2.2, and hence control the e�ect of the
de�ant events. We focus next on the amenable events and the proof of Lemma 2.3.

6 The Potential Change due to Amenable Events

Having bounded the potential change due to de�ant events, we now turn to bounding the potential change due
to amenable events. Let us recall the claim we want to prove:

Lemma 2.3. (Amenable Case) For the distribution over valid swap sets from Lemma 2.2, for any c ∈ C,

E

�

1A
�

(P,Q)∈P
¶(P,Q)(c)

�

f 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).(2.5)

This section gives an explicit proof that can be veri�ed by hand. In �7 we show how to generate a much larger
set of valid inequalities. Solving the resulting linear program gives improved bounds, but these are more tedious
to verify manually.

6.1 Implications of Amenability

Claim 6.1. (Implications of amenability) For any client, swap sets P generated on the amenable event A
have the following properties:

(i) Any local facility f ∈ {f1, f2} is closed in at most one swap in P;
(ii) Any swap in P closing Ä(f∗) must open the original copy of f∗;
(Tii) If P is a tree swap set, any swap in P closing f ∈ {f1, f2} must open Ã(f);
(Siii) If P is a simple swap set, no swap in P closes two local facilities in {f1, f2} ∪ {¸1, ¸2} simultaneously;
(Siv) If P is a simple swap set, any swap in P closing a local facility in {f1, f2}\{Ä(f∗)} does not open f∗.

For clients of type C or D, we additionally have the following: (recall that we de�ned g∗ as Ã(f1), and g as the
local facility closest to g∗ other than f1 and f2):

(ii') Any swap in P closing Ä(g∗) must open the original copy of g∗;
(Siii') If P is a simple swap set, no swap in P closes both f1 and g.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. [Proof of Claim 6.1] Recall that the amenable event A is the complement of the de�ant event D, de�ned
in De�nition 5.1.

Implication (i) follows from item (i) of De�nition 5.1 directly.

Implication (ii) follows from items (i) and (ii) of De�nition 5.1. Without loss of generality, we assume Ä(f∗) is
not heavy, since heavy local facilities are never closed. On the amenable event, Ä(f∗) is closed only as its original
copy, by item (i) of De�nition 5.1. The edge to Ä(f∗) from the original copy of f∗ is never deleted by item (ii) of
De�nition 5.1, so the original copies of f∗ and Ä(f∗) must be in the same swap.

Implication (Tii) also follows from items (i) and (ii) of De�nition 5.1, for a similar reason. Again, assume without
loss of generality that neither f1 nor f2 is heavy. On the amenable event, f1 and f2 are closed only as their
original copies by item (i) of De�nition 5.1, and the edges fi → Ã(fi) are never deleted by item (ii).

Implications (Siii) and (Siv) both follow from item (iii) of De�nition 5.1. When we generate the simple swap set,
every connected component of the graph G1 contains at most one local facility, and thus di�erent facilities in
{f1, f2} ∪ {¸1, ¸2} must be in di�erent connected components, which are not combined in the balancing step due
to item (iii) of De�nition 5.1. This proves implication (Siii). Moreover, the connected component of f∗ doesn't
contain any local facility other than Ä(f∗) ∈ {¸1, ¸2}. This proves implication (Siv).

(ii') and (Siii') can be proved in the same way as (ii) and (Siii) using De�nition 5.2.

6.2 Notation and Useful Inequalities Let ∆E(c) denote the expected potential change on client c restricted
to some generic event E :

∆E(c) := E

�

1E
�

(P,Q)∈P
¶(P,Q)(c)

�

.

Our goal in Lemma 2.3 is thus to upper bound ∆A(c) for the amenable event A. In our proof, we consider
sub-events E of A, and prove worst-case upper-bounds for the potential change restricted to each sub-event E .
Formally, given a suitable partition A = E1 ∪ · · · ∪ Et, we de�ne ¶E(c) :=

�

(P,Q)∈P ¶(P,Q)(c) to be the worst-case

(maximum) value for each event E , and then use:

(6.6) ∆A(c) =
t�

i=1

∆Ei
(c) f

t�

i=1

Pr[Ei] ¶Ei
(c).

For technical reasons, it is more convenient to assume ¶E(c) is no smaller than, say, −10d1(c). We thus re-de�ne
¶E(c) as −10d1(c) when ¶E(c) < −10d1(c). This doesn't a�ect our analysis, as all our upper bounds for ¶E(c) are
larger than −10d1(c). Also, Claim 5.1 implies that ¶E(c) f O(d∗ + d1).

To apply (6.6), we need to understand Pr[E] and ¶E(c) for the following events (and their intersections): the
amenable event A and its complement de�ant event D, the simple event S and its complement tree event T .
The simple event S is further partitioned into S1 and S2, and the tree event T is partitioned into T1 and T2,
representing whether f∗ points to ¸1 or ¸2. These events are de�ned for a �xed client c, and we omit c in our
notations for brevity.

Recall that f∗ is the optimal facility closest to c, and Ä = Ä(f∗) := d(f∗,¸1(f
∗))

d(f∗,¸2(f∗)) . To generate the set P of important

swaps, we choose Ä(f∗) from di�erent distributions depending on the value of Ä(f∗), and thus the probability of
the events S1,S2, T1, T2 depends on Ä(f∗) as follows:

Ratio-types Pr[S1] Pr[S2] Pr[T1] Pr[T2]
0 f Ä(f∗) f 2/3 1/2 · 1/2 ·
2/3 < Ä(f∗) f 3/4 1/2 · 1/4 1/4
3/4 < Ä(f∗) f 1 5/4− Ä Ä− 3/4 1/4 1/4

T a b l e 1 : P r o b a b i l i t y d i s t r i b u t i o n f o r e a c h r a t i o -t yp e .

Since Pr[D] = O(ε) due to Claim 5.2, the probability of any event E ∩ A is at least Pr[E]−O(ε).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Bounding the worst-case change ¶E(c). We �x an arbitrary swap set P generated under event E , and analyze
the e�ect of each swap in P. Let ïïf∗ðð denote the swap in P that opens f∗; such a swap always exists. There
may be multiple such swaps in P when we perform tree swaps, in which case we let ïïf∗ðð be the swap that
opens the original copy of f∗. For a local facility f ∈ {f1, f2}, let ïï¬fðð denote the swap in P that closes f . By
implication (i) of amenability, there is at most one such swap as long as E is a sub-event of the amenable event
A. When there is no swap closing f (which happens when f is a heavy facility), we are often in a better situation
because our bound for ¶ïï¬fðð(c) is often non-negative, so we will mostly focus on the case where ïï¬fðð does exist.
Before we begin giving bounds for the various client types, let us record in Table 2 some inequalities we will
frequently use. Recall that ¸1(f

∗) and ¸2(f
∗) are the closest and second-closest local facilities to f∗, and Ã(f) is

the closest optimal facility to f . These inequalities are proven in Appendix C.

Bound Conditions (if any)
d2 f 2d∗ + d1 (6.7) ¸1(f

∗) ̸= f1
d(c, Ã(f1)) f 2d1 + d∗ (6.8)

max{d(c, ¸1(f∗)), d(c, ¸2(f∗))} f 2d∗ + d1 (6.9) ¸1(f
∗) ̸= f1

min(d∗, d1) + ´max(d∗, d1) f (1− ´) d∗ + 2´ d1 (6.10)

T a b l e 2 : Us e f u l I n e qu a l i t i e s

6.3 Bounds for Clients of Type E We now give an upper bound for the expected potential change ∆A(c)
for any client c of type E. We give the entire proofs here; for clients of other types we will defer the proofs to the
appendices.

Lemma 6.1. For any client c of type E, we have

∆A(c) f 2.5 d∗(c)− 0.9 d1(c) +O(ε)(d∗ + d1).

In our proof, we partition the amenable event A = (S ∩ A) ∪ (T ∩ A) depending on whether we have a simple
swap or a tree swap, and then bound ∆A(c) by

∆A(c) fPr[S ∩ A] · ¶S∩A(c) + Pr[T ∩ A] · ¶T ∩A(c)

fPr[S] · ¶S∩A(c) + Pr[T] · ¶T ∩A(c) +O(ε)(d∗ + d1).(6.11)

The second inequality is implied by Claim 5.2 and our assumption that ¶E(c) g −10d1. To use (6.11) we give
upper bounds for ¶S∩A(c) and ¶T ∩A(c) for clients of both subtypes (close and far) in the next subsections. In
other words, we pick an arbitrary swap set P generated under these events, and bound the potential change for
client c due to the swaps in P.

6.3.1 Far Clients of Type E: d2(c) g ³d1(c) Simple Swaps. We �x a �far� client c and an arbitrary swap
set P generated conditioned on the event S ∩ A for this client, and bound the sum

�

(P,Q)∈P ¶(P,Q)(c).

� Given the swap ïïf∗ðð ∈ P (which is not ïï¬f1ðð by implication (Siv) of amenability), c has an additional
option of going to f∗, giving

¶ïïf∗ðð(c) f (d1 + ´ d∗)− (1 + ³´) d1.

� Next, by implication (i) of amenability, the set P contains at most one swap ïï¬f1ðð. If ïï¬f1ðð does exist,
both ¸1 and ¸2 are open (by implication (Siii) of amenability), and both at distance f 2d∗ + d1 from c.
Therefore,

¶ïï¬f1ðð(c) f (1 + ´)(2d∗ + d1)− (1 + ³´) d1.

This quantity is non-negative: since c has type E, ¸1 ̸= f and also d(c, ¸1) f 2d∗ + d1. But c is a far client,
then d(c, ¸1) g ³d1. Putting the two together:

(1 + ´)(2d∗ + d1)− (1 + ³´) d1 g d1 + ´(2d∗ + d1)− (1 + ³´) d1 g 0.

� Finally, all other swaps in P leave f1 open, and thus they cannot increase the potential for c.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Combining these, when the swap ïï¬f1ðð exists,

(6.12)
�

(P,Q)∈P
¶(P,Q)(c) f ¶ïïf∗ðð(c) + ¶ïï¬f1ðð(c) f (2 + 3´) d∗ − (2³´ − ´) d1.

In case ïï¬f1ðð does not exist, (6.12) still holds since our bound for ¶ïï¬f1ðð is non-negative. Since P was a generic
swap set conditioned on being amenable,

¶S∩A(c) f (2 + 3´) d∗ − (2³´ − ´) d1 .

Tree Swaps. We now turn to tree swaps, and �x an arbitrary swap set P generated on the event T ∩A. Again,
P contains at most one swap ïï¬f1ðð that closes f1, by amenability. We �rst consider the case where ïï¬f1ðð exists
and is the same as ïïf∗ðð. In this case, all other swaps in P have non-positive potential changes, so

(6.13)
�

(P,Q)∈P
¶(P,Q)(c) f ¶ïï¬f1ðð(c) f (1 + ³´)d∗ − (1 + ³´)d1.

Next, consider the case where ïï¬f1ðð ̸= ïïf∗ðð. On swap ïïf∗ðð, client c can go to both d∗ and d1. On swap ïï¬f1ðð,
c can go to Ã(f1) at distance f 2d1 + d∗, and also to Ä(f∗) ∈ {¸1, ¸2} at distance f 2d∗ + d1. Both these facilities
Ã(f1) and Ä(f∗) must be open after the swap ïï¬f1ðð due to implications (ii) and (Sii) of amenabilityx. All other
swaps in P have non-positive potential changes, so

�

(P,Q)∈P
¶(P,Q)(c) f ¶ïïf∗ðð(c) + ¶ïï¬f1ðð(c)

f d1 + ´ d∗ − (1 + ³´) d1(¶ïïf∗ðð)

+ (2d∗ + d1) + ´(2d1 + d∗)− (1 + ³´) d1(¶ïï¬f1ðð)

= (2 + 2´) d∗ − (2³´ − 2´) d1.(6.14)

In the case where ïï¬f1ðð doesn't exist, (6.14) still holds, because our bound for ¶ïï¬f1ðð(c) is non-negative. By our
choice of ³ = 3 and ´ = 1/5, (6.13) is dominated by (6.14). Since P is a generic swap set,

¶T ∩A(c) f (2 + 2´) d∗ − (2³´ − 2´) d1 .

Summarizing the simple swaps case and the tree swaps case, we have

¶S∩A(c) f(2 + 3´) d∗ − (2³´ − ´) d1 f 2.6 d∗ − d1,

¶T ∩A(c) f(2 + 2´) d∗ − (2³´ − 2´) d1 f 2.4 d∗ − 0.8 d1.

Now substituting into (6.11), we get a bound for all type E far clients c:

∆A(c) f 1/2 · ¶S∩A(c) + 1/2 · ¶T ∩A(c) +O(ε)(d∗ + d1)

f 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(6.15)

This proves Lemma 6.1 for far clients of type E. The proof for all other types of clients will have a similar structure:
we will identify which swaps a�ect client c, then we sum up the inequalities with the right probabilities. In some
cases we will need to look at cases depending on Ä.

6.3.2 Close Clients of Type E: d2(c) g ³d1(c) Simple swaps. Now we consider the case of close clients
c. We �x an arbitrary swap set P, and focus on ïïf∗ðð, ïï¬f1ðð, and ïï¬f2ðð (All other swaps cause a non-positive
potential change). Suppose these three swaps are di�erent. When f∗ opens, the client c can be served by both f∗

and f1. When f1 closes, c can be served by f2 and ¸1, and when f2 closes, c can be served by f1 and ¸1: in both
these cases, we use implication (Siii) of amenability to ensure that both the corresponding facilities are open. We

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

know that d2 f d(c, ¸1) because c has type E; by (6.9) we get d(c, ¸1) f 2d∗ + d1. Putting everything together,
the three swaps yield:

¶S∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ d2 + ´(2d∗ + d1)− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(2d∗ + d1)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + 4´) d∗ − (2− 3´) d1 + (1− 3´) d2 .

We address the assumption that the three swaps are di�erent. As argued above, condition (Siv) of amenability
for type E clients means that for simple swaps, ïï¬f1ðð ̸= ïïf∗ðð. However, f2 could be Ä(f∗), so it may happen
that ïï¬f2ðð = ïïf∗ðð, and hence that ¶S∩A(c) f ¶ïïf∗ðð + ¶ïï¬f1ðð. Moreover, ïï¬f1ðð may not exist, in which case
¶S∩A(c) f ¶ïïf∗ðð + ¶ïï¬f2ðð or even ¶S∩A(c) f ¶ïïf∗ðð. But since our bounds above for both ¶ïï¬f1ðð and ¶ïï¬f2ðð are
non-negative, we infer that the boxed upper bound remains valid in all these cases.

Tree swaps. We now consider tree swaps. Fix an arbitrary swap set P generated on the event T ∩ A. For a
client c in the close case, there are three swaps that are relevant to c�those containing f∗, f1, and f2�although
some of these swaps may coincide. (Also, no other swaps can increase the potential.)

When f1 and f2 belong to the same swap. First suppose that f1 and f2 belong to the same swap in P. We
start from the case where ïïf∗ðð ̸= ïï¬f1,¬f2ðð. For the swap ïïf∗ðð, the client c can be served by both f∗ and f1.
And when f1 and f2 are both closed, c can be served by Ä(f∗) (which is either ¸1 or ¸2) and Ã(f1). By (6.9) we
get that d(c, Ä(f∗)) is at most 2d∗ + d1, and by (6.8) we get d(c, Ã(f1)) f 2d1 + d∗. Hence,

�

(P,Q)∈P
¶(P,Q)(c) f ¶ïïf∗ðð + ¶ïï¬f1,¬f2ðð

f (d∗ + ´ d1)− (d1 + ´ d2)(¶ïïf∗ðð)

+ (2d∗ + d1) + ´(2d1 + d∗)− (d1 + ´ d2)(¶ïï¬f1,¬f2ðð)

= (3 + ´) d∗ − (1− 3´) d1 − 2´ d2 .

On the other hand, if f∗, f1, and f2 all belong to the same swap, we can assign c to f∗

�

(P,Q)∈P
¶(P,Q)(c) f ¶ïïf∗,¬f1,¬f2ðð

f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1,¬f2ðð)

+ ´(2d∗ + d1 − d2)(since 2d∗ + d1 g d2)

= (1 + ³´ + 2´) d∗ − (1− ´) d1 − 2´ d2

f 3.2 d∗ − 0.4 d1 − 0.4 d2.

These two bounds are identical for our choices of ³ = 3 and ´ = 1/5.

When f1 and f2 belong to di�erent swaps. Next, consider the case when f1 and f2 belong to di�erent swaps
in P. Let us �rst assume ïïf∗ðð is neither ïï¬f1ðð nor ïïf2ðð. In the swap ïïf∗ðð the client can served by f∗ and f1.
When one of f1 or f2 is closed, the client c can be served by the other facility, and by Ä(f∗), which is at distance
at most 2d∗ + d1 from c (by (6.8)). Hence,

�

(P,Q)∈P
¶(P,Q)(c) f (1− ´) d∗ + 2´ d1 − d1 − ´ d2(¶ïïf∗ðð with (6.10))

+ d2 + ´(2d∗ + d1)− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(2d∗ + d1)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + 3´) d∗ − (2− 4´) d1 + (1− 3´) d2 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Our bound for ¶ïïf∗ðð does not require f2 to remain open after the swap, and our bound for ¶ïï¬f2ðð is non-negative.
Therefore, the above bound also holds when ïï¬f2ðð = ïïf∗ðð. When ïï¬f1ðð = ïïf∗ðð, we still have the above bound:

�

(P,Q)∈P
¶(P,Q)(c) f d∗ + ´ d2 − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(2d∗ + d1)− d1 − ´ d2(¶ïï¬f2ðð)

+ ´ d∗ + ´ d1 + (1− 2´)(d2 − d1)(non-negative terms)

= (1 + 3´) d∗ − (2− 4´) d1 + (1− 3´) d2 .

Summarizing all these bounds (using that ³ = 3 and ´ = 0.2),

¶S∩A(c) f (1 + 4´) d∗ − (2− 3´) d1 + (1− 3´) d2 = 1.8 d∗ − 1.4 d1 + 0.4 d2

¶T ∩A(c) f max{3.2 d∗ − 0.4 d1 − 0.4 d2, 1.6 d
∗ − 1.2 d1 + 0.4 d2}.

Combining and using (6.7) to get d2 f 2d∗ + d1 if the d2 terms do not cancel out, we get for close clients c:

∆A(c) f 1/2 · ¶S∩A + 1/2 · ¶T ∩A +O(ε)(d∗ + d1)

f 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(6.16)

Lemma 6.1 follows from the bound in (6.15) for the far clients and the one from (6.16) for the close clients.

6.4 All Other Client TypesSimilarly, we can bound ∆A(c) for every other client type A�D. We summarize
this in the following theorem: the calculations behind the expressions can be found in Appendix D.

Lemma 6.2. For any far client c of type A or B, we have

∆A(c) f 2.47 d∗(c)− 1.13 d1(c) +O(ε)(d∗ + d1)(6.17)

For any close client ci of type i ∈ {A,B,C,D}, we have

∆A(cA) f 2.375 d∗(cA)− 0.9 d1(cA) +O(ε)(d∗ + d1)(6.18)

∆A(cB) f 2.4 d∗(cB)− 0.9 d1(cB) +O(ε)(d∗ + d1)(6.19)

∆A(cC) f 2.2 d∗(cC)− 0.8888 d1(cC) +O(ε)(d∗ + d1)(6.20)

∆A(cD) f 2.5203 d∗(cD)− 0.8888 d1(cD) +O(ε)(d∗ + d1)(6.21)

Lemmas 6.1 and 6.2 imply that every client c satis�es

∆A(c) f 2.5203 d∗(c)− 0.8888 d1(c) +O(ε)(d∗ + d1).

This proves Lemma 2.3, and hence Lemma 2.1 and Theorem 1.1.

7 A Computer-Aided Analysis using L inear Programming

In this section we show how to generate a set of valid inequalities, then solve the resulting linear program to
�nd an upper bound on our approximation ratio. We describe the ideas for the potential Φ2 that only takes the
second-closest facility into account, and indicate how to extend it to Φq for higher values of q g 2. Of course, the
size of the LP increases exponentially as q increases.

To recall, our proof strategy in the previous section was to consider a local optimum, and then:

1. de�ne a (randomized) collection of important swaps that are contained within our actual set of swaps;
2. for every client type, write constraints that apply to all clients of that type;
3. carefully combine those constraints to have only a few remaining constraints; and

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

4. manually check these remaining contraints.

An automated proof could avoid the last two steps by directly checking the entire set of constraints. Since every
constraint we derive is a linear inequality on the distances, a linear program can be used for this automated proof.
Put di�erently, our goal is to write a linear program that constructs a �worst-case example� for our potential
function. Speci�cally, the program seeks values of the distances d1, d2, and d∗ for each client type, so as to
maximize the ratio between the costs of the optimum and local solutions, while respecting the set of constraints.
1

Variables and constraints of the L P.Let us focus on simple swaps, the constraints for tree swaps are similar.
We want to express the fact that simple swaps at a local optimum do not decrease the potential. We �rst classify
facilities into types according to their ratio Ä; we consider only a �ne net of values for Ä, and use continuity of the
potential to control the loss due to this discretization. All facilities with a given ratio are treated the same way in
the proof: our LP considers that all facilities of the same type are swapped at the same time. Speci�cally, we have
a variable sÄ corresponding to the di�erence in the potential function after applying simple swaps for all facilities
with ratio Ä. The constraint saying that simple swaps do not decrease the potential is therefore

�

Ä sÄ g 0.

The value of the variable sÄ is controlled by the clients connected to facilities having ratio Ä: each client type i
has a contribution to it. In an Sj-swap (where j ∈ {1, 2}), let ¶Sj

(i;x, y1, y2) be the potential change due to all
clients of type-i connected to facilities with ratio Ä, in function of x, y1 and y2, respectively the total distance
from those clients to the optimal solution, their closest and their second closest facility of the local solution. This
di�erence of potential is described in Section 6: we illustrate it with clients of type A, in the far case. We denote
AF those clients. As presented in D.1.1, the S1 and S2 swaps for those clients show

¶S1∩A(c) f(1 + ³´) d∗ − (1 + ³´) d1

¶S2∩A(c) f((1 + 1/Ä)(1 + ³´) + ´) d∗ − ((1− 1/Ä)(1 + ³´) + ³´) d1

For bounding ¶S2∩A(c), we upper bounded the potential value of the swap by d∗ + ´d1 when f∗ is opened.
However, we could be more precise: it could be the case that d∗ f d1 or d1 f ³d∗. Therefore, this lead to 3 other
possible upperbounds, namely (1 + ³´)d∗, d∗ + ´d1, and (1 + ³´)d1.

This translates to three other inequalities, one for each of those cases:

¶S2∩A(c) f ((2 + 1/Ä)(1 + ³´)) d∗ − ((2− 1/Ä)(1 + ³´)) d1(when we choose (1 + ³´)d∗)

¶S2∩A(c) f ((1 + 1/Ä)(1 + ³´) + 1) d∗ − ((2− 1/Ä)(1 + ³´)− ´) d1(when we choose d∗ + ´d1)

¶S2∩A(c) f ((1 + 1/Ä)(1 + ³´)) d∗ − ((1− 1/Ä)(1 + ³´)) d1.(when we choose (1 + ³´)d1)

More generally, the LP encodes all possible combinations of variables giving valid bound on the potential
after a swap. Note that then number of such inequalities grows exponentially with q, because each term
min(³jd1(c), dj(c)) doubles the number of valid inequalities.

Going back to type A, this gives rise to the constraints

¶S1
(AF;xAF,Ä, y

1
AF,Ä, y

2
AF,Ä) f (1 + ³´)xAF,Ä − (1 + ³´)y1AF,Ä(7.22)

¶S2
(AF;xAF,Ä, y

1
AF,Ä, y

2
AF,Ä) f ((1 + 1/Ä)(1 + ³´) + ´)xAF,Ä − ((1− 1/Ä)(1 + ³´) + ³´) y1AF,Ä(7.23)

¶S2
(AF;xAF,Ä, y

1
AF,Ä, y

2
AF,Ä) f ((2 + 1/Ä)(1 + ³´))xAF,Ä − ((2− 1/Ä)(1 + ³´)) y1AF,Ä(7.24)

¶S2
(AF;xAF,Ä, y

1
AF,Ä, y

2
AF,Ä) f ((1 + 1/Ä)(1 + ³´) + 1)xAF,Ä − ((2− 1/Ä)(1 + ³´)− ´) y1AF,Ä(7.25)

¶S2
(AF;xAF,Ä, y

1
AF,Ä, y

2
AF,Ä) f ((1 + 1/Ä)(1 + ³´))xAF,Ä − ((1− 1/Ä)(1 + ³´)) y1AF,Ä,(7.26)

where the variables xi,Ä denote the total cost of clients of type i connected to facilities with ratio Ä in the optimal

solution, and yji,Ä denote the total distance from those clients to their j-th closest facility in the local solution.

1In fact, it does not come up with a concrete example, since we do not maintain all the triangle inequalities between the clients,
but only the triangle inequalities in some local neighborhood around each client. It is conceivable that using more triangle inequalities
would lead to an even better result, but that increases the complexity even further.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

This de�nition of ¶Sj
(i) yields the following constraint on sÄ : for j = 1, 2,

�

i∈ST
¶Sj

(i;xi,Ä, y
1
i,Ä, y

2
i,Ä) g sÄ,

where ST is the set of client types.

Moreover, the triangle inequality gives constraints on the variables xi,Ä, y
1
i,Ä, y

2
i,Ä: for instance, for type AF, we

would have

y2AF,Ä f xAF,Ä + (1/Ä)(f xAF,Ä + y1AF,Ä).(7.27)

The constraints due to tree swaps are de�ned analogously, with a variable tÄ being the potential change after
applying tree swaps for all facilities of type Ä, and ¶Tj

(i) being the potential change due to all clients of type-i
connected to facilities with ratio Ä. For q > 2, we need to consider more than one ratio, so we let Ä be the vector
of size q − 1 that describes ratio of all two consecutive ¸j and ¸j+1 for all j ∈ {1, ..., q − 1}. Let R be the set of
values of Ä after discretization: we use R := { i

100 | i ∈ {0, . . . , 100}}q−1. In that case, all clients with ratio in
[i · 10−2, (i+ 1) · 10−2) are considered to have Ä = i · 10−2 for each index. This means that our bounds for ¶ are

slightly relaxed to cover an interval instead of a precise Ä. The jth index of a ratio correspond to
d(f∗(c),¸j(f

∗(c)))
d(f∗(c),¸j−1(f∗(c))) .

Let C be the set of client types. For q = 2, each i ∈ C contains client type (A,B,C,D,E), ratio Ä, underlying form
of tree-graph (e.g. f1 and f2 belong to same tree in ¸1-swap), and whether d2 f ³d1 or not. For j ∈ {2, ..., q}, let
Cj be the set of clients with dj f ³jd1. For q = 2, C2 is the set of close clients (i.e., d2 f ³d1). Let C

Ä denote set
of clients with ratio Ä. The general structure of the LP is the following:

max
�

i∈C
y1i(7.28)

s.t.
�

i∈C
xi = 1(7.29)

yji f ³jy
1
i ∀j ∈ {2, . . . , q}, i ∈ Cj(7.30)

yji g ³jy
1
i ∀j ∈ {2, . . . , q}, i ̸∈ Cj(7.31)

�

i∈Cρ

¶Sj
(i;xi, y

1
i , . . . , y

q
i) g sÄ ∀Ä ∈ R, j ∈ {1, . . . , q}(7.32)

�

i∈Cρ

¶Tj
(i;xi, y

1
i , . . . , y

q
i) g tÄ ∀Ä ∈ R, j ∈ {1, . . . , q}(7.33)

�

Ä∈R
sÄ g 0(7.34)

�

Ä∈R
tÄ g 0(7.35)

Triangle-inequalities(7.36)

¶Sj
(i;xi, y

1
i , . . . , y

q
i) f enumerated-upperbounds ∀i ∈ C, j ∈ {2, ..., q}(7.37)

¶Tj
(i;xi, y

1
i , . . . , y

q
i) f enumerated-upperbounds ∀i ∈ C, j ∈ {2, ..., q}(7.38)

yji g 0, xi g 0 ∀i ∈ C, j ∈ {1, . . . , q}(7.39)

Note that
�

i∈C y
1
i /

�

i∈C xi =
�

i∈C y
1
i is the locality gap. Constraints (7.30) and (7.31) restrict each distance

based on whether they are `far' client or `close' client. Constraints (7.32) can be seen as the following: for each
ratio Ä we pick j ∈ {1, ..., q} that minimizes the sum of potential di�erence after performing Sj swap, then make
Ä(f∗) = ¸j for all f∗ with ratio Ä. Similarly, (7.33) chooses Ä(·) for tree swaps. Then (7.34) and (7.35) ensure
the potential di�erence is non-negative after performing simple swap and tree swap respectively. We also add
triangle inequalities (e.g., (7.27)). Lastly, we add upperbounds for each potential di�erence in (7.37) and (7.38)
(e.g., (7.22) - (7.26)).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Implementing this approach, and then solving the resulting LP for for potential Φ2 and Φ3 gives us the following
numbers:

Potential Bound
Φ2 2.7786
Φ3 2.6861

For Φ2, the LP �nds that taking ³ = 3, ´ = 0.2 yields the best result, whereas for Φ3 we set manually
³ = 2.5, ´ = 0.3, ´2 = ´ · 0.34. As always, we get an additive ε term because of the de�ant swaps. However,
let us emphasize that these implementations should be considered preliminary, since they have not been formally
veri�ed. We hope that formal proofs of these results can be given in the near future.

A L ocality Gap for PotentialΦ2

In this section, we give lower bounds on the locality gap, and prove Theorem 1.2. We show locality gap examples
of max{2, ³}, 3 − 2´, and 1 + 4´ for the potential function Φ2. Putting these together, the locality gap is
min´∈[0,1],³∈[1,∞) max{3−2´, 1+4´},max{2, ³}. Note max{3−2´, 1+4´} is 2 1

3 , when we set ´ = 1/3. Therefore
we show a locality gap of 2.

In this section, we show a locality gap of 2 for Φ2. We divide the cases into three main cases:

• When ³ f 2
• When ³ > 2 and ´ f 1/3
• When ³ > 2 and ´ > 1/3

We mainly use two types of example that we call �bi-clique� and �double-bi-clique� described in Figure A.9
Figure A.10 respectively. In bi-clique we have k + r local facilities on the right, where r = O(1) is the number
of extra local facilities, and k optimal facilities are on the left. There is a client between every (local, optimal)
facility pair, at unit distance from the optimal facility, and at distance d from the local facility.

...
...

1 d

F i g u r e A . 9: A n i l l u s t r a t i o n o f t h e b i -c l i qu e e xa m p l e w i t h r = 0 .

In double-bi-clique, we have two back-to-back bi-cliques as in Figure A.10. Each bi-clique is constructed the same
way as Figure A.9 except the number of facilities are halved. Consider a client c with an edge going into fi, create
an edge at distance d between c and ith local facility in the other bi-clique. Now every client has an optimal
facility at distance 1, and two local facilities at distance d.

1 d

d 1
d

d

F i g u r e A . 1 0: T h e d o u b l e -b i -c l i qu e e xa m p l e w i t h k = 4 a n d r = 0 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

For all cases we calculate the potential di�erence after performing a swap of size p. There are mainly 4 di�erent
types of clients.

• Co: the set of clients with their f∗ opened.
• C1: Clients with their f1 closed and f∗ not opened
• C2: Clients with its f2 closed and f∗ not opened
• C3: Clients with its f∗ closed, f1 opened, and f2 opened.

We use co, c1, c2, c3 to denote generic client for sets Co, C1, C2, and C3 respectively. We �rst calculate potential
di�erence for each client type, then sum them over.

We assume there is no client with their f1 and f2 both closed: those clients can only hurt the quality of the
solution, and given a swap that closes f1 and f2 of some clients it is easy to construct a strictly better set of
swaps with no such client.

A.1 When ³ f 2 We �rst give lower bound examples when ³ f 2. We divide the case further into two cases:
when ³ f 4/3 + 1/(3´) and when ³ > 4/3 + 1/(3´).

Subcase I: ³ f 4/3+ 1/(3´). We create a bi-clique presented in Figure A.9 with d = 2− ε′, where ε′ ≈ O(1/k) is
a small quantity to be speci�ed later. Note that every client has k + r − 1 local facilities at distance 2 + d, thus
the second closest facility is never closed for any client. Then for each client we get the potential di�erences:

∆Φco = 1 + ³´ − (2− ε′)− (2− ε′)³´ = −1− ³´ + ε′ + ε′³´

∆Φc1 = (4− ε′) + (4− ε′)´ − (2− ε′)− (2− ε′)³´ g 2 + 4´ − 2³´

∆Φc2 = 0

∆Φc3 = 0

Note |Co| = p(k + r) and |C1| = p(k − p).

Summing up gives

�

c∈C
∆Φc g p(k + r)(−1− ³´ + ε′ + ε′³´) + p(k − p)(2 + 4´ − 2³´)

g pk(1 + 4´ − 3³´) + pkε′ + rp(−1− ³´)− p2(2 + 4´ − 2³´)

g pk(1 + 4´ − 3³´) g 0(for ³ f 4/3 + 1/(3´))

The second inequality holds for any ε′ g p2(2+4´−2³´)+rp(1+³´)
pk = O(1/k). Hence, this example shows a locality

gap of 2− o(1) when ³ f min(2, 4/3 + 1/(3´)).

Subcase II: ³ > 4/3+1/(3´). Since we focus on ³ f 2 and ´ f 1, this subcase implies that ´ > 1/2 and ³ > 5/3.
To deal with it, we create a double-bi-clique presented in Figure A.10 with d = 2. Note that every client has
two local facilities at distance 2, and k + r − 2 facilities at distance 4. Then for each client, we get the following
potential di�erences:

∆Φco = 1 + ³´ − 2− 2´ = −1 + ³´ − 2´

∆Φc1 = 2 + 2³´ − 2− 2´ g 2³´ − 2´

∆Φc2 = 2 + 2³´ − 2− 2´ g 2³´ − 2´

∆Φc3 = 0

Let p1 and p2 be the number of optimal facilities in the �rst clique that belong to the swap. Let p2 be the number
of optimal facilities in the second clique that belong to the swap. Then we have |Co| = k+r

2 p1 +
k+r
2 p2 = k+r

2 p.
Similarly let p′1 and p′2 be the number of local facilities in the �rst and second clique that belong to the swap.
Then we have |C1| = p′1(

k
2 − p1) + p′2(

k
2 − p2) g (k2 − p)p. Also note that |C2| g (k2 − p)p. Summing up gives

�

c∈C
∆Φc g p/2(k + r)(−1 + ³´ − 2´) + 2p(k/2− p)(2³´ − 2´)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

g pk/2(−1 + 5³´ − 6´)− rp/2(1 + 2´ − ³´)− 2p2(2³´ − 2´)

g pk(1/12)− r/2p(1 + 2´ − ³´)− 2p2(2³´ − 2´) g 0(for ³ > 5/3 and ´ > 1/2.)

The last inequality holds for r f k
24(1+2´−³´) and p f k

48(2³´−2´) . Since r and p are absolute constant (i.e, o(k)),

the inequality is valid for big enough k. Hence, this example shows a locality gap of 2 when 4/3 + 1/3´ f ³ f 2,
in particular when ´ > 1/2 and 2 g ³ g 5/3 This concludes therefore the case ³ f 2.

A.2 When ´ f 1/2 and ³ > 2 In this section we give a bi-clique example showing a locality gap when
´ f 1/3 and ³ > 2. for constant-sized swap. Consider the bi-clique graph in Figure A.9 with distance
d = min{3 − 2´ − ε′, ³}. We divide the case into two subcases. In �rst case we consider when 3 − 2´ f ³.
Then we consider when 3− 2´ > ³.

Subcase I: 3 − 2´ f ³. We will �rst consider the case when 3 − 2´ f ³. In that case, the current potential
value of a client in the local solution is Φc(F) = (3− 2´ − ε′) + ´(5− 2´ − ε′) (since ³ > 2 g 5−2´

3−2´ for ´ f 1/2).

For the p(k + r) clients in Co, where k + r is the number of local facilities, if 3− 2´ − ε′ f ³ we get the following
potential di�erence:

∆Φco g 1 + ´(3− 2´ − ε′)− (3− 2´ − ε′)− ´(5− 2´ − ε′) = −2 + ε′

Note that if a client's f∗ is opened but its f1 is closed, the client contributes 1+´(5−2´−ε′) g 1+´(3−2´−ε′),
and hence the above inequality is still valid for those clients.

There are p(k − p) clients in C1, and they induce the following potential di�erence:

∆Φc1 = (5− 2´ − ε′) + ´(5− 2´ − ε′)− (3− 2´ − ε′)− ´(5− 2´ − ε′) = 2

Finally, clients in C3 and C4 do not induce a change in the potential value.

The sum over all clients yields
�

c∈C
∆Φc g p(k + r)(ε′ − 2) + 2p(k − p)

= pk(0) + p(k + r)(ε′)− 2(pr)− 2p2 g 0.

The last inequality holds for any ε′ g 2pr+2p2

p(k+r) = O(1/k).

Hence, in the case where ³ g 2, ´ f 1/2 and 3− 2´ f ³, this example shows a locality gap of 3− 2´ − o(1) g 2.

Case II: 2 f ³ f 3− 2´. When 2 f ³ f 3− 2´, client's closest distance is now ³. Thus the potential value of a
client before any swap is Φc(F) = ³ + (2 + ³)´. Note that 2 + ³ f ³2 for ³ g 2. We have the same number of
clients in each set. Furthermore, we get the potential di�erences:

∆Φco g 1 + ³´ − ³− (2 + ³)´ g 1− ³− 2´

∆Φc1 = (2 + ³) + (2 + ³)´ − ³− (2 + ³)´ = 2

∆Φc2 = 0

∆Φc3 = 0

The sum over all clients yields
�

c∈C
∆Φc g p(k + r)(1− ³− 2´) + p(k − p)(2)

g pk(3− 2´ − ³) + pr(1− ³− 2´)− 2p2

g pkε′ − pr(³+ 2´ − 1)− 2p2 g 0.(³ f 3− 2´ − ε′)

The last inequality holds for any ε′ g pr(³−1−2´)+2p2

pk = O(1/k).

Hence, in the case where ³ f 3− 2´, ³ g 2 and ´ f 1/3, this example shows a locality gap of ³ g 2.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

A.3 When ´ > 1/2 and ³ > 2 Finally we give lower bound examples when ´ > 1/2 and ³ > 2. We use
double-bi-clique in described Figure A.10 with d = min{1 + 4´ − ε′, ³}.

Subcase I: 1+4´ f ³. Here, the current potential function value for a client is Φc(F) = (1+4´−ε′)+´(1+4´−ε′).

There are p(k+r
2) clients in Co, and the potential di�erence for a client co ∈ Co is

∆Φco = 1 + ´(1 + 4´ − ε′)− (1 + ´)(1 + 4´ − ε′) = −4´ + ε′.

There are at least p(k2 − p) clients in C1. Recall ³ > 2 g 3+4´−ε′

1+4´−ε′ for ´ > 1/2. The potential di�erence for c1 ∈ C1
is

∆Φc1 = (1 + 4´ − ε′) + ´(3 + 4´ − ε′)− (1 + ´)(1 + 4´ − ε′) = 2´

There are p(k2 − p) clients in C2, and they get the same swap value as clients in C1. Clients in C3 do not induce
any change in the potential.

Then sum over all clients yields

�

c∈C
∆Φc g −4´p

�
k + r

2

�

+ ε′p

�
k + r

2

�

+ 4´

�
pk

2
− p2

�

= ε′
�
p(k + r)

2

�

− 4´p (p+ r/2) g 0

The di�erence in potential function is therefore positive for all ε′ > 4´r+8´p
(k+r) = O

!
1
k

�
. Hence, this example shows

a locality gap of 1 + 4´ − o(1) g 2− o(1) when ³ g max(2, 1 + 4´) and ´ g 1/2.

Case II: 2 f ³ f 1 + 4´. When ³ f 1 + 4´, clients' closest and the second closest local facilities are both at
distance ³. Thus the current potential value for a client is Φc(F) = ³+ ³´. We have the same number of clients
in each set. We get the following potential di�erences:

∆Φco = 1 + ³´ − ³− ³´ g 1− ³

∆Φc1 = ³+ (2 + ³)´ − ³− ³´ = 2´(Note 2 f ³ implies (2 + ³) f ³2.)

∆Φc2 = ³+ (2 + ³)´ − ³− ³´ = 2´

∆Φc3 = 0

The sum over all clients yields

�

c∈C
∆Φc g p

�
k + r

2

�

(1− ³) + 2(pk/2− p2)(2´)

g pk

2
(1− ³+ 4´)− pr

2
(³− 1)− 2p2(2´)

g pk

2
(ε′)− pr

2
(³− 1)− 2p2(2´) g 0(³ f 1 + 4´ − ε′)

The last inequality holds for any ε′ g pr(³−1)+8p2´
pk = O(1/k). Hence, this example shows a locality gap of

³− o(1) g 2− o(1) when 2 f ³ f 1 + 4´ and ´ g 1/2.

B Motivating our Swaps

In this section we present examples that motivate our choice of potential function and our swaps. In particular
they show that the swap structures de�ned in previous works are not powerful enough to prove our results.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C Useful Inequalities

In this section, we prove the inequalities in Table 2. We also give some more inequalities in Table 3; these will be
used in �D.

Bound Coundition
d2 g (1/Ä) d1 − (1 + 1/Ä) d∗ (C.1) ¸1(f

∗) = f1
d2 f d∗ + (1/Ä)(d1 + d∗) (C.2) ¸1(f

∗) = f1
d(c, ¸2(f

∗)) f d∗ + 1/Ä(d∗ + d1) (C.3) ¸1(f
∗) = f1

d2 f d∗ + Ä(d1 + d∗) (C.4) ¸1(f
∗) ̸= f1

d(c, ¸1(f
∗)) f d∗ + Ä(d∗ + d1) f 2d∗ + d1 (C.5) ¸1(f

∗) ̸= f1
d(c, ¸2(f

∗)) f 2d∗ + d1 (C.6) ¸1(f
∗) ̸= f1

d(c, Ã(f2)) f 2d2 + d∗ (C.7) ¸1(f
∗) ̸= f1

T a b l e 3: Mo r e u s e f u l i n e qu a l i t i e s

For clients c with ¸1(f
∗) = f1:

d2 g d(f∗, ¸2)− d∗ = 1
Äd(f

∗, ¸1)− d∗ g (1/Ä) d1 − (1 + 1/Ä) d∗, (proving (C.1))

d2 f d∗ + d(f∗, ¸2) = d∗ + 1
Äd(f

∗, ¸1) f d∗ + 1
Ä (d1 + d∗). (proving (C.2))

d(c, ¸2) f d(c, f∗) + d(f∗, ¸2) = d∗ + (1/Ä)d(f∗, f1) f d∗ + 1/Ä(d∗ + d1). (proving (C.3))

Else when ¸1(f
∗) ̸= f1:

d(c, ¸1) f d(c, f∗) + d(f∗, ¸1) = d(c, f∗) + Ä d(f∗, ¸2) f d∗ + Ä(d∗ + d1) (proving (C.5))

d(c, ¸2) f d(c, f∗) + d(f∗, ¸2) f d∗ + (d∗ + d1). (proving (C.6))

d2 f d(c, ¸1)
(C.5)

f d∗ + Ä(d1 + d∗), (proving (C.4) and (6.7))

Combining (C.5) and (C.6) gives (6.9).

Recalling that Ã(f) is the closest optimal facility to f , we get for any client c,

d(c, Ã(f1)) f d(c, f1) + d(f1, Ã(f1)) f d1 + d(f1, f
∗) f 2d1 + d∗ (proving (6.8))

d(c, Ã(f2)) f d(c, f2) + d(f2, Ã(f2)) f d2 + d(f2, f
∗) f 2d2 + d∗. (proving (C.7))

To prove (6.10), we use that for any a, b g 0 and ´ f 1, the expression min(a, b)+´ max(a, b) = min(a+´b, b+´a)
is smaller than any convex combination (1−¼)(a+´b)+¼(b+´a) with ¼ ∈ [0, 1]. Setting ¼ = ´

1−´ and simplifying

gives (1− ´)a+ 2´b. Using a = d∗ and b = d1 completes the proof.

D Proof of Lemma 6.2

We now present the proof of Lemma 6.2, giving bounds for all the client types other than type E. The idea is the
same for each one: First we �x a client c of some type. We partition the amenable event into some sub-events,
and look on some sub-event E . We consider a generic swap set P generated under that event, and give an upper
bound for the maximum potential change for client c due to these swaps. Combining over all sub-events (with
the correct probability values) gives the expected potential change. The largest such change for each client type
is then shown to be the one recorded in Lemma 6.2.

When we prove upper bounds for the potential change caused by a swap set P, we assume that both ïï¬f1ðð
and ïï¬f2ðð exist in P (if f is heavy ïï¬fðð does not exist). As we mentioned in Section 6.2, our bounds also
hold in cases where either of them does not exist, because our upper bounds for ¶ïï¬fðð is non-negative as long as
ïïf∗ðð ̸= ïï¬fðð for any f ∈ {f1, f2}.
In the rest of this section, we prove each inequality from Lemma 6.2.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma 6.2. For any far client c of type A or B, we have

∆A(c) f 2.47 d∗(c)− 1.13 d1(c) +O(ε)(d∗ + d1)(6.17)

For any close client ci of type i ∈ {A,B,C,D}, we have

∆A(cA) f 2.375 d∗(cA)− 0.9 d1(cA) +O(ε)(d∗ + d1)(6.18)

∆A(cB) f 2.4 d∗(cB)− 0.9 d1(cB) +O(ε)(d∗ + d1)(6.19)

∆A(cC) f 2.2 d∗(cC)− 0.8888 d1(cC) +O(ε)(d∗ + d1)(6.20)

∆A(cD) f 2.5203 d∗(cD)− 0.8888 d1(cD) +O(ε)(d∗ + d1)(6.21)

D.1 Proof of (6.17): Far Clients of Type A and B In this section, we show that for any far case client c
of type A or B, we have

∆A(c) f 2.467 d∗(c)− 1.13085 d1(c) +O(ε)(d∗ + d1).

We give di�erent analysis depending on whether f∗ points to ¸1 or ¸2; this is di�erent from our type E analysis,
where our bounds are the same in both cases. Formally, we partition the amenable event A as the union of S1∩A,
S2 ∩ A, T1 ∩ A, and T2 ∩ A. We upper-bound ∆A(c) by

∆A(c) f Pr[S1 ∩ A]¶S1∩A(c) + Pr[S2 ∩ A]¶S2∩A(c) + Pr[T1 ∩ A]¶T1∩A(c) + Pr[T2 ∩ A]¶T2∩A(c)

f Pr[S1]¶S1∩A(c) + Pr[S2]¶S2∩A(c) + Pr[T1]¶T1∩A(c) + Pr[T2]¶T2∩A(c) +O(ε)(d∗ + d1).(D.8)

The probabilities Pr[S1],Pr[S2],Pr[T1],Pr[T2] are given in Table 1. We proceed by showing upper-bounds for the
¶ values, the potential changes of client c on the worst-case swap set P, for far clients of type A and B in the
following subsections.

D.1.1 Far clients of type A: f1 = ¸1

Simple swaps with Ä(f∗) = ¸1 Type A clients have f1 = ¸1, which is the same as Ä(f∗), so we have
ïïf∗ðð = ïï¬f1ðð in P by implication (ii) of amenability. On that swap, the client can be served by f∗. Therefore,

¶S1∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 .(¶ïïf∗,¬f1ðð)

Simple swaps with Ä(f∗) = ¸2 Since Ä(f∗) = ¸2 ̸= f1, we know ïïf∗ðð ≠ ïï¬f1ðð by implication (Siv) of
amenability. On swap ïïf∗ðð, c can be served by both f∗ and f1. On swap ïï¬f1ðð, c can be served by ¸2 (by
implication (Siii) of amenability). Note that d(c, ¸2) f d∗ + 1/Ä · (d∗ + d1) by (C.3). Therefore,

¶S2∩A(c) f d1 + ´ d∗ − (1 + ³´) d1(¶ïïf∗ðð)

+ (1 + ³´)(d∗ + 1/Ä · (d∗ + d1))− (1 + ³´) d1(¶ïï¬f1ðð)

= ((1 + 1/Ä)(1 + ³´) + ´) d∗ − ((1− 1/Ä)(1 + ³´) + ³´) d1 .

Tree swaps with Ä(f∗) = ¸1 We have ïïf∗ðð = ïï¬f1ðð by implication (ii) of amenability. On that swap, the
client can be served by ïïf∗ðð. Therefore,

¶T1∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 .(¶ïïf∗,¬f1ðð)

Tree swaps with Ä(f∗) = ¸2 If ïïf∗ðð = ïï¬f1ðð, then we have the same bound as above:
�

(P,Q)∈P
¶(P,Q)(c) f (1 + ³´) d∗ − (1 + ³´) d1.(D.9)

If ïïf∗ðð ≠ ïï¬f1ðð, then on swap ïï¬f1ðð, c can be served by ¸2 and Ã(f1), by implications (ii) and (Tii) of
amenability. We already showed d(c, ¸2) f d∗ + 1/Ä · (d∗ + d1). We also have d(c, Ã(f1)) f 2d1 + d∗ by (6.8).
Therefore,

�

(P,Q)∈P
¶(P,Q)(c) f d1 + ´ d∗ − (1 + ³´) d1(¶ïïf∗ðð)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+ (d∗ + 1/Ä · (d∗ + d1)) + ´(2d1 + d∗)− (1 + ³´) d1(¶ïï¬f1ðð)

= (1 + 1/Ä + 2´) d∗ − (1 + 2³´ − 2´ − 1/Ä) d1.(D.10)

For our choice of ³, ´, (D.10) is larger than (D.9), so we have

¶T2∩A(c) f (1 + 1/Ä + 2´) d∗ − (1 + 2³´ − 2´ − 1/Ä) d1 .

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − (1 + ³´) d1 = 1.6 d∗ − 1.6 d1

¶S2∩A(c) f((1 + 1/Ä)(1 + ³´) + ´) d∗ − ((1− 1/Ä)(1 + ³´) + ³´) d1

= (1.8 + 1.6/Ä) d∗ − (2.2− 1.6/Ä) d1

¶T1∩A(c) f(1 + ³´) d∗ − (1 + ³´) d1 = 1.6 d∗ − 1.6 d1

¶T2∩A(c) f(1 + 1/Ä + 2´) d∗ − (1 + 2³´ − 2´ − 1/Ä) d1 = (1.4 + 1/Ä) d∗ − (1.8− 1/Ä) d1

We now combine these inequalities using (D.8). If Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2 and
Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f 1.6 d∗ − 1.6 d1 +O(ε)(d∗ + d1).

If 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = 1/4,Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 3/4 · (1.6 d∗ − 1.6 d1) + 1/4 · ((1.4 + 3/2)d∗ − (1.8− 3/2)d1) +O(ε)(d∗ + d1)

= 1.925 d∗ − 1.275 d1 +O(ε)(d∗ + d1).

If Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (3 + 0.2Ä− 0.95/Ä) d∗ − (0.6Ä+ 0.95/Ä− 0.4) d1 +O(ε)(d∗ + d1)

f (3 + 0.2− 0.95) d∗ − (0.6 + 0.95− 0.4) d1 +O(ε)(d∗ + d1)

= 2.25 d∗ − 1.15 d1 +O(ε)(d∗ + d1).

D.1.2 Far clients of type B: f1 = ¸2 When c is a far client of type B, we have ïïf∗ðð = ïï¬f1ðð on S2 ∩A and
T2 ∩A. This is exactly the situation for type A clients on S1 ∩A and T1 ∩A. Therefore, we have the same bound
for all of these cases:

¶S2∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 ,(¶ïïf∗,¬f1ðð)

¶T2∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 .(¶ïïf∗,¬f1ðð)

We continue to bound ¶S1∩A(c) and ¶T1∩A(c).

Simple swaps with Ä(f∗) = ¸1 By implication (Siv) of amenability, we have ïïf∗ðð ̸= ïï¬f1ðð. On swap ïïf∗ðð,
the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be served by ¸1 (by implication (Siii) of
amenability). Also, d(c, ¸1) f d∗ + Ä(d∗ + d1) by (C.5). Therefore,

¶S1∩A(c) f d1 + ´ d∗ − (1 + ³´) d1(¶ïïf∗ðð)

+ (1 + ³´)(d∗ + Ä(d∗ + d1))− (1 + ³´) d1(¶ïï¬f1ðð)

= ((1 + Ä)(1 + ³´) + ´) d∗ − ((1− Ä)(1 + ³´) + ³´) d1 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Tree swaps with Ä(f∗) = ¸1 If ïïf∗ðð = ïï¬f1ðð, then we have

�

(P,Q)∈P
¶(P,Q)(c) f (1 + ³´) d∗ − (1 + ³´) d1.(D.11)

If ïïf∗ðð ≠ ïï¬f1ðð, then on swap ïï¬f1ðð, c can be served by ¸1 and Ã(f1) by implications (ii) and (Tii) of
amenability. We showed d(c, ¸1) f d∗ + Ä(d∗ + d1). We also have d(c, Ã(f1)) f 2d1 + d∗ by (6.8). Therefore,

�

(P,Q)∈P
¶(P,Q)(c) f d1 + ´ d∗ − (1 + ³´) d1(¶ïïf∗ðð)

+ (d∗ + Ä(d∗ + d1)) + ´(2d1 + d∗)− (1 + ³´) d1(¶ïï¬f1ðð)

= (1 + Ä+ 2´) d∗ − (1 + 2³´ − 2´ − Ä) d1.(D.12)

Taking the maximum of (D.11) and (D.12) using ³ = 3, ´ = 0.2, we have

¶T1∩A(c) f (1.4 + max{Ä, 0.2}) d∗ − (1.8−max{Ä, 0.2}) d1 .

Summarizing, we have

¶S1∩A(c) f ((1 + Ä)(1 + ³´) + ´) d∗ − ((1− Ä)(1 + ³´) + ³´) d1

= (1.8 + 1.6Ä) d∗ − (2.2− 1.6Ä) d1

¶S2∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 = 1.6 d∗ − 1.6 d1

¶T1∩A(c) f (1.4 + max{Ä, 0.2}) d∗ − (1.8−max{Ä, 0.2}) d1
¶T2∩A(c) f (1 + ³´) d∗ − (1 + ³´) d1 = 1.6 d∗ − 1.6 d1

We now combine these inequalities using (D.8). If Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2 and
Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f 1/2 · ((1.8 + 1.6× 2/3)d∗ − (2.2− 1.6× 2/3)d1)

+ 1/2 · ((1.4 + 2/3)d∗ − (1.8− 2/3)d1)

+O(ε)(d∗ + d1)

f 2.46667d∗ − 1.13333d1 +O(ε)(d∗ + d1).

If 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = 1/4,Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1/2 · ((1.8 + 1.6× 3/4)d∗ − (2.2− 1.6× 3/4)d1)

+ 1/4 · ((1.4 + 3/4)d∗ − (1.8− 3/4)d1)

+ 1/4 · (1.6d∗ − 1.6d1)

+O(ε)(d∗ + d1)

= 2.4375d∗ − 1.1625d1 +O(ε)(d∗ + d1).

If Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (1.8 + 2.05Ä− 1.6Ä2)d∗ − (2.4− 2.85Ä+ 1.6Ä2)d1 +O(ε)(d∗ + d1)

f (1.8 + 2.05 · 3/4− 1.6 · (3/4)2)d∗ − (2.4− 2.85 · 2.85/3.2 + 1.6 · (2.85/3.2)2)d1 +O(ε)(d∗ + d1)

f 2.4375d∗ − 1.13085d1 +O(ε)(d∗ + d1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

D.2 Proof of (6.18): Close Clients of Type A In this section, we show that for any close case client c with
type A, we have

∆A(c) f 2.375 d∗(c)− 0.9 d1(c).

D.2.1 Clients with Ä(f∗) f 2/3 We �rst consider the case where Ä(f∗) f 2/3. Our analysis for this case is
very simple: we directly use ∆A(c) f Pr[A]¶A(c) f ¶A(c) +O(ε)(d∗ + d1) without considering sub-events of A.
Let us �x a generic swap set P generated on the amenable event A. Ä(f∗) f 2/3 implies that Ä(f∗) always equals
to ¸1 = f1. By implication (ii) of amenability, we have ïïf∗ðð = ïï¬f1ðð in P. Therefore,

¶A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ (1 + ³´) d1 − d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2.

Note that this bound also holds when ïï¬f2ðð = ïïf∗,¬f1ðð, because our bound for ïïf∗,¬f1ðð does not require f2
to remain open after the swap and ¶ïï¬f2ðð is non-negative.

If d1 f d∗, then we have

¶A(c) f (1 + ³´ + ´) d∗ − (1− ³´ + ´) d1 − 2´ d2(d1 f d∗)

f (1 + ³´ + ´) d∗ − (1− ³´ + 3´) d1(d2 g d1)

= 1.8 d∗ − d1 .

If d1 g d∗, we have

¶A(c) f (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2

f (1 + ³´) d∗ − (1− ³´) d1 − 2´

�
1 + 1/Ä

2
d1 −

1 + 1/Ä

2
d∗
�

(averaging (C.1) with d2 g d1)

f (1 + ³´) d∗ − (1− ³´) d1 − 2´

�
5

4
d1 −

5

4
d∗
�

(Ä f 2/3 and d∗ f d1)

= (1 + ³´ + 2.5´) d∗ − (1− ³´ + 2.5´) d1

= 2.1 d∗ − 0.9 d1 .

D.2.2 Clients with Ä(f∗) > 2/3 Now we turn to close clients of type A with Ä(f∗) > 2/3. Our analysis for
simple swaps adopts the usual strategy:

∆S∩A(c) f Pr[S1 ∩ A]¶S1∩A(c) + Pr[S2 ∩ A]¶S2∩A(c)

f Pr[S1]¶S1∩A(c) + Pr[S2]¶S2∩A(c) +O(ε)(d∗ + d1).

However, we will be a little more careful in our tree swaps analysis. We further partition the tree events T1 and
T2 as T1 = T11 ∪ T12 and T2 = T21 ∪ T22 in the following way. T11 is de�ned as the intersection of T1 and the
event that ïïf∗ðð is the only swap closing any facility in {f1, f2}. T21 is de�ned as the intersection of T2 and the
event that there is a swap which closes both f1 and f2 but does not open the original copy of f∗. T12 and T22 are
de�ned accordingly: T12 = T1\T11 and T22 = T2\T21.
Recall that Ä(f∗) > 2/3 implies Pr[T1] = Pr[T2] = 1/4. The naive way to bound ∆T ∩A(c) is by the following:

∆T ∩A(c) f Pr[T1]¶T1∩A(c) + Pr[T2]¶T2∩A(c) +O(ε)(d∗ + d1)

= 1/4 ·max{¶T11∩A(c), ¶T12∩A(c)}+ 1/4 ·max{¶T21∩A(c), ¶T22∩A(c)}+O(ε)(d∗ + d1).

If we ignore the O(ε)(d∗ + d1) term, the above bound is equal to 1/4 times the maximum of all four sums:
¶T11∩A(c) + ¶T21∩A(c), ¶T11∩A(c) + ¶T22∩A(c), ¶T12∩A(c) + ¶T21∩A(c), ¶T12∩A(c) + ¶T22∩A(c). However, by relating
the probabilities of T11 and T21, we have the following lemma (proved in Appendix E.4), which gives an improved
bound by not taking ¶T12∩A(c) + ¶T21∩A(c) into the maximum.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma D.1. (Type A averaging) For a close client of type A with Ä(f∗) > 2/3, we have

∆T ∩A(c) f 1/4 ·max{¶T11∩A + ¶T21∩A, ¶T11∩A + ¶T22∩A, ¶T12∩A + ¶T22∩A}+O(ε)(d∗ + d1).

We now proceed to show upper bounds for the worst-case potential change on each event.

Simple swaps with Ä(f∗) = ¸1 We have ïïf∗ðð = ïï¬f1ðð ̸= ïï¬f2ðð by implications (ii) and (Siv) of amenability.
On swap ïïf∗ðð, the client can be served by f∗, and on ïï¬f2ðð, the client can be served by f1 (at distance d1) and
¸2 (at distance f d∗ + 1/Ä · (d∗ + d1)), by implication (Siii) of amenability. Therefore,

¶S1∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(d∗ + 1/Ä · (d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´ + ´/Ä) d∗ − (1− ´/Ä) d1 − 2´ d2 .

Simple swaps with Ä(f∗) = ¸2 By implications (Siii) and (Siv) of amenability, the three swaps ïïf∗ðð,ïï¬f1ðð,
ïï¬f2ðð are all di�erent. On swap ïïf∗ðð, the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be
served by f2 and ¸2. On swap ïï¬f2ðð, the client can be served by f1 and ¸2. Therefore,

¶S2∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ d2 + ´(d∗ + 1/Ä · (d∗ + d1))− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(d∗ + 1/Ä · (d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + 2´ + 2´/Ä) d∗ − (2− ´ − 2´/Ä) d1 + (1− 3´) d2 .

Tree swaps with Ä(f∗) = ¸1 On T11 ∩A, ïïf∗ðð is the only swap closing any facility in {f1, f2} by the de�nition
of T11. In other words, both ïï¬f1ðð and ïï¬f2ðð coincide with ïïf∗ðð as long as they exist. Therefore,

¶T11∩A(c) f (1 + ³´) d∗ − d1 − ´ d2 .(¶ïïf∗,¬f1,¬f2ðð)

On T12 ∩ A, we have ïïf∗ðð = ïï¬f1ðð ̸= ïï¬f2ðð by implication (ii) of amenability. On swap ïïf∗ðð, the client can
be served by f∗. On swap ïï¬f2ðð, the client can be served by f1 and Ã(f2) by implication (Tii) of amenability.
We have d(c, Ã(f2)) f 2d2 + d∗ by (C.7). Therefore,

¶T12∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(2 d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´) d∗ − d1 .

Tree swaps with Ä(f∗) = ¸2 On T21 ∩ A, we have ïï¬f1ðð = ïï¬f2ðð ̸= ïïf∗ðð. On swap ïïf∗ðð, the client can be
served by f∗ and f1. On swap ïï¬f1,¬f2ðð, the client can be served by ¸2 and Ã(f1) by implications (ii) and (Tii)
of amenability. We have d(c, ¸2) f d∗ + 1/Ä · (d∗ + d1) and d(c, Ã(f1)) f 2d1 + d∗. Therefore,

¶T21∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ (d∗ + 1/Ä(d∗ + d1)) + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1,¬f2ðð)

= (2 + ´ + 1/Ä) d∗ − (2− 3´ − 1/Ä) d1 − 2´ d2 .

On T22∩A, we �rst consider the case where all three swaps ïïf∗ðð, ïï¬f1ðð, ïï¬f2ðð are di�erent. On swap ïïf∗ðð, the
client can be served by f∗. On swap ïï¬f1ðð, the client can be served by f2 and Ã(f1) (at distance f 2d1 + d∗), by
implication (Tii) of amenability. On swap ïï¬f2ðð, the client can be served by f1 and Ã(f2) (at distance f 2d2+d∗),
again by implication (Tii) of amenability. Therefore,

¶T22∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗ðð)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+ d2 + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(2d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

f (1 + ³´ + 2´) d∗ − (2− 2´) d1 + (1− ´) d2 .

Since our bound for ¶ïïf∗ðð(c) doesn't require either f1 or f2 to remain open after the swap, and both ¶ïï¬f1ðð and
¶ïï¬f2ðð are non-negative, the above bound also holds when ïï¬f1ðð and/or ïï¬f2ðð coincides with ïïf∗ðð.
Summarizing, we have

¶S1∩A(c) f(1 + ³´ + ´ + ´/Ä) d∗ − (1− ´/Ä) d1 − 2´ d2

= (1.8 + 0.2/Ä) d∗ − (1− 0.2/Ä) d1 − 0.4 d2

¶S2∩A(c) f(1 + 2´ + 2´/Ä) d∗ − (2− ´ − 2´/Ä) d1 + (1− 3´) d2

= (1.4 + 0.4/Ä) d∗ − (1.8− 0.4/Ä) d1 + 0.4 d2

¶T11∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T12∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

¶T21∩A(c) f(2 + ´ + 1/Ä) d∗ − (2− 3´ − 1/Ä) d1 − 2´ d2

= (2.2 + 1/Ä) d∗ − (1.4− 1/Ä) d1 − 0.4 d2

¶T22∩A(c) f(1 + ³´ + 2´) d∗ − (2− 2´) d1 + (1− ´) d2

= 2 d∗ − 1.6 d1 + 0.8 d2

We now combine these bounds to show an upper bound for ∆A(c) using Lemma D.1. Note that our bound for
¶T11∩A(c) is smaller than our bound for ¶T12∩A(c), so we only need to consider cases where the maximum in
Lemma D.1 is attained at either ¶T11∩A(c) + ¶T21∩A(c) or ¶T12∩A(c) + ¶T22∩A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2 and Pr[S2] = 0. Therefore, if the maximum in Lemma D.1 is
attained at ¶T11∩A(c) + ¶T21∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · (¶T11∩A(c) + ¶T21∩A(c)) +O(ε)(d∗ + d1)

f (1.85 + 0.35/Ä)d∗ − (1.1− 0.35/Ä)d1 − 0.35d2 +O(ε)(d∗ + d1)

f (1.85 + 0.35× 3/2)d∗ − (1.45− 0.35× 3/2)d1 +O(ε)(d∗ + d1)(d2 g d1)

= 2.375d∗ − 0.925d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.1 is attained at ¶T12∩A(c) + ¶T22∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · (¶T12∩A(c) + ¶T22∩A(c)) +O(ε)(d∗ + d1)

f (1.85 + 0.1/Ä)d∗ − (1.15− 0.1/Ä)d1 +O(ε)(d∗ + d1)

f (1.85 + 0.1× 3/2)d∗ − (1.15− 0.1× 3/2)d1 +O(ε)(d∗ + d1)

= 2 d∗ − d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4 − Ä and Pr[S2] = Ä − 3/4. Therefore, if the maximum in Lemma D.1 is
attained at ¶T11∩A(c) + ¶T21∩A(c), we have

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · (¶T11∩A(c) + ¶T21∩A(c)) +O(ε)(d∗ + d1)

f (2.35 + 0.2/Ä− 0.4Ä)d∗ − (0.3− 0.2/Ä+ 0.8Ä)d1 − (0.95− 0.8Ä)d2 +O(ε)(d∗ + d1)

f (2.35 + 0.2/Ä− 0.4Ä)d∗ − (1.25− 0.2/Ä)d1 +O(ε)(d∗ + d1)(d2 g d1)

f (2.35 + 0.2× 4/3− 0.4× 3/4)d∗ − (1.25− 0.2× 4/3)d1 +O(ε)(d∗ + d1)

f 2.31667 d∗ − 0.98333 d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.1 is attained at ¶T12∩A(c) + ¶T22∩A(c), we have

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · (¶T12∩A(c) + ¶T22∩A(c)) +O(ε)(d∗ + d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

f (2.35− 0.05/Ä− 0.4Ä)d∗ − (0.35 + 0.05/Ä+ 0.8Ä)d1 + (0.8Ä− 0.6)d2 +O(ε)(d∗ + d1)

f (2.55− 0.65/Ä+ 0.4Ä)d∗ − (0.65/Ä+ 0.8Ä− 0.45)d1 +O(ε)(d∗ + d1)
(d2 f d∗ + 1/Ä · (d∗ + d1))

f (2.55− 0.65 + 0.4)d∗ − (0.65 · 4/√13 + 0.8 ·
√
13/4− 0.45)d1 +O(ε)(d∗ + d1)

f 2.3 d∗ − 0.99222 d1 +O(ε)(d∗ + d1).

D.3 Proof of (6.19): Close Clients of Type B In this section, we show that for any close case client c with
type B, we have

∆A(c) f 2.4 d∗(c)− 0.9 d1(c).

In our type A analysis, we further partitioned the tree events T1 and T2 as T1 = T11 ∪T12 and T2 = T21 ∪T22. We
require this partitioning also in our type B analysis, with the roles of ¸1 and ¸2 �ipped. Speci�cally, we de�ne
T11 as the intersection of T1 and the event that there is a swap which closes both f1 and f2 but does not open the
original copy of f∗. We de�ne T21 as the intersection of T2 and the event that ïïf∗ðð is the only swap closing any
facility in {f1, f2}. We de�ne T12 and T22 accordingly as T12 = T1\T11 and T22 = T2\T21. Similar to Lemma D.1,
we have the following lemma for type B:

Lemma D.2. (Type B averaging) For a close client of type B with Ä(f∗) > 2/3, we have

∆T ∩A(c) f 1/4 ·max{¶T11∩A + ¶T21∩A, ¶T12∩A + ¶T21∩A, ¶T12∩A + ¶T22∩A}+O(ε)(d∗ + d1).

We now proceed to bound the worst-case potential changes in di�erent events.

Simple swaps with Ä(f∗) = ¸1 By implications (Siii) and (Siv), all three swaps ïïf∗ðð, ïï¬f1ðð, ïï¬f2ðð are
di�erent. On swap ïïf∗ðð, the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be served by
f2 and ¸1 by implication (Siii) of amenability. On swap ïï¬f2ðð, the client can be served by f1 and ¸1, again by
implication (Siii) of amenability. Note that d(c, ¸1) f d∗ + Ä(d∗ + d1) by (C.5). Therefore,

¶S1∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ d2 + ´(d∗ + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(d∗ + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + 2´ + 2Ä´) d∗ − (2− ´ − 2Ä´) d1 + (1− 3´) d2 .

Simple swaps with Ä(f∗) = ¸2 By implications (ii) and (Siv), we have ïïf∗ðð = ïï¬f1ðð ≠ ïï¬f2ðð. On swap
ïïf∗ðð, the client can be served by f∗. On swap ïï¬f2ðð, the client can be served by f1 and ¸1, by implication (Siii)
of amenability. Therefore,

¶S2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(d∗ + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´ + Ä´) d∗ − (1− Ä´) d1 − 2´ d2 .

Tree swaps with Ä(f∗) = ¸1 On T11 ∩ A, we have ïï¬f1ðð = ïï¬f2ðð ̸= ïïf∗ðð. On swap ïïf∗ðð, the client can be
served by f∗ and f1. On swap ïï¬f1,¬f2ðð, the client can be served by ¸1 and Ã(f1) by implication (ii) and (Tii)
of amenability. We have d(c, ¸1) f d∗ + Ä(d∗ + d1) and d(c, Ã(f1)) f 2d1 + d∗ by (6.8). Therefore,

¶T11∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ (d∗ + Ä(d∗ + d1)) + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1,¬f2ðð)

f (2 + ´ + Ä) d∗ − (2− 3´ − Ä) d1 − 2´ d2 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

On T12∩A, we �rst consider the case where all three swaps ïïf∗ðð, ïï¬f1ðð, ïï¬f2ðð are di�erent. On swap ïïf∗ðð, the
client can be served by f∗. On swap ïï¬f1ðð, the client can be served by f2 and ¸1. On swap ïï¬f2ðð, the client can
be served by f1 and ¸1. After both ïï¬f1ðð and ïï¬f2ðð, ¸1 is open by implication (ii) of amenability. Therefore,

¶T12∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ d2 + ´(d∗ + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f1ðð)

+ d1 + ´(d∗ + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

f (1 + ³´ + 2´ + 2Ä´) d∗ − (2− 2Ä´) d1 + (1− 3´) d2 .

Since our bound for ¶ïïf∗ðð(c) doesn't require either f1 or f2 to remain open after the swap, the above bound also
holds when ïï¬f1ðð and/or ïï¬f2ðð coincides with ïïf∗ðð.

Tree swaps with Ä(f∗) = ¸2 On T21 ∩A, ïïf∗ðð is the only swap closing any facility in {f1, f2} by the de�nition
of T21. In other words, both ïï¬f1ðð and ïï¬f2ðð coincide with ïïf∗ðð as long as they exist. Therefore,

(¶ïïf∗,¬f1,¬f2ðð) ¶T21∩A(c) f (1 + ³´) d∗ − d1 − ´ d2 .

On T22 ∩ A, we have ïïf∗ðð = ïï¬f1ðð ̸= ïï¬f2ðð by implication (ii) of amenability. On swap ïïf∗ðð, the client can
be served by f∗. On swap ïï¬f2ðð, the client can be served by f1 and Ã(f2). Therefore,

¶T22∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(2d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´) d∗ − d1 .

Summarizing, we have

¶S1∩A(c) f(1 + 2´ + 2Ä´) d∗ − (2− ´ − 2Ä´) d1 + (1− 3´) d2

= (1.4 + 0.4Ä) d∗ − (1.8− 0.4Ä) d1 + 0.4 d2

¶S2∩A(c) f(1 + ³´ + ´ + Ä´) d∗ − (1− Ä´) d1 − 2´ d2 = (1.8 + 0.2Ä) d∗ − (1− 0.2Ä) d1 − 0.4 d2

¶T11∩A(c) f(2 + ´ + Ä) d∗ − (2− 3´ − Ä) d1 − 2´ d2 = (2.2 + Ä) d∗ − (1.4− Ä) d1 − 0.4 d2

¶T12∩A(c) f(1 + ³´ + 2´ + 2Ä´) d∗ − (2− 2Ä´) d1 + (1− 3´) d2

= (2 + 0.4Ä) d∗ − (2− 0.4Ä) d1 + 0.4 d2

¶T21∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T22∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

Now we combine these inequalities to get an upper bound for ∆A(c). When Ä(f∗) f 2/3, we have Pr[S1] =
Pr[T1] = 1/2 and Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 ·max{¶T11∩A(c), ¶T12∩A(c)}+O(ε)(d∗ + d1).

If the maximum is attained at ¶T11∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T11∩A(c) +O(ε)(d∗ + d1)

f (1.8 + 0.7Ä)d∗ − (1.6− 0.7Ä)d1 +O(ε)(d∗ + d1)

f (1.8 + 0.7× 2/3)d∗ − (1.6− 0.7× 2/3)d1 +O(ε)(d∗ + d1)

= 2.26667d∗ − 1.13333d1 +O(ε)(d∗ + d1).

If the maximum is attained at ¶T12∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T12∩A(c) +O(ε)(d∗ + d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

f (1.7 + 0.4Ä)d∗ − (1.9− 0.4Ä)d1 + 0.4d2 +O(ε)(d∗ + d1)

f (1.9 + 0.6Ä)d∗ − (1.3− 0.6Ä)d1 +O(ε)(d∗ + d1)(d2 f 1/2 · (d∗ + Ä(d∗ + d1)) + 1/2 · ³d1)
f (1.9 + 0.6× 2/3)d∗ − (1.3− 0.6× 2/3)d1 +O(ε)(d∗ + d1)

= 2.3 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 2/3, we apply Lemma D.2 to combine the inequalities. Note that our bound for ¶T21∩A(c) is smaller
than our bound for ¶T22∩A(c), so we only need to consider cases where the maximum in Lemma D.2 is attained
at either ¶T11∩A(c) + ¶T21∩A(c) or ¶T12∩A(c) + ¶T22∩A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. If the maximum in Lemma D.2
is attained at ¶T11∩A(c) + ¶T21∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · (¶T11∩A(c) + ¶T21∩A(c)) +O(ε)(d∗ + d1)

f (1.65 + 0.45Ä) d∗ − (1.5− 0.45Ä) d1 + 0.05 d2 +O(ε)(d∗ + d1)

f (1.65 + 0.45Ä) d∗ − (1.35− 0.45Ä) d1 +O(ε)(d∗ + d1)(d2 f ³d1)

f (1.65 + 0.45× 3/4)d∗ − (1.35− 0.45× 3/4)d1 +O(ε)(d∗ + d1)

= 1.9875d∗ − 1.0125d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.2 is attained at ¶T12∩A(c) + ¶T22∩A(c), we have

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · (¶T12∩A(c) + ¶T22∩A(c)) +O(ε)(d∗ + d1)

f (1.65 + 0.3Ä) d∗ − (1.65− 0.3Ä) d1 + 0.3 d2 +O(ε)(d∗ + d1)

f (1.95 + 0.6Ä) d∗ − (1.65− 0.6Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.95 + 0.6× 3/4)d∗ − (1.65− 0.6× 3/4)d1 +O(ε)(d∗ + d1)

= 2.4d∗ − 1.2d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4−Ä,Pr[S2] = Ä−3/4,Pr[T1] = Pr[T2] = 1/4. If the maximum in Lemma D.2
is attained at ¶T11∩A(c) + ¶T21∩A(c), we have

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · (¶T11∩A(c) + ¶T21∩A(c)) +O(ε)(d∗ + d1)

f (1.35 + Ä− 0.2Ä2) d∗ − (2.1− 1.4Ä+ 0.2Ä2) d1 + (0.65− 0.8Ä) d2 +O(ε)(d∗ + d1).

When Ä < 0.8125 = 0.65/0.8, we use d2 f ³d1:

∆A(c) f (1.35 + Ä− 0.2Ä2) d∗ − (0.15 + Ä+ 0.2Ä2) d1 +O(ε)(d∗ + d1)

f (1.35 + 0.8125− 0.2× 0.81252)d∗ − (0.15 + 3/4 + 0.2× (3/4)2)d1 +O(ε)(d∗ + d1)

= 2.03047d∗ − 1.0125d1 +O(ε)(d∗ + d1).

When Ä g 0.8125, we use d2 g d1:

∆A(c) f (1.35 + Ä− 0.2Ä2) d∗ − (1.45− 0.6Ä+ 0.2Ä2) d1 +O(ε)(d∗ + d1)

f (1.35 + 1− 0.2)d∗ − (1.45− 0.6 + 0.2)d1 +O(ε)(d∗ + d1)

= 2.15 d∗ − 1.05 d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.2 is attained at ¶T12∩A(c) + ¶T22∩A(c), we have

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · (¶T12∩A(c) + ¶T22∩A(c)) +O(ε)(d∗ + d1)

f (1.35 + 0.85Ä− 0.2Ä2) d∗ − (2.25− 1.25Ä+ 0.2Ä2) d1 + (0.9− 0.8Ä) d2 +O(ε)(d∗ + d1)

f (2.25 + 0.95Ä− Ä2) d∗ − (2.25− 2.15Ä+ Ä2) d1 +O(ε)(d∗ + d1)

(d2 f d∗ + Ä(d∗ + d1))

f (2.25 + 0.95× 3/4− (3/4)2)d∗ − (2.25− 2.15 + 1)d1 +O(ε)(d∗ + d1)

= 2.4d∗ − 1.1d1 +O(ε)(d∗ + d1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

D.4 Proof of (6.20): Clients of Type C In this section, we show that for any client c with type C, we have

∆A(c) f 2.2 d∗(c)− 0.8888 d1(c).

If the client c satis�es Ä(f∗) f 2/3, we have the same bound as in the type A case in Appendix D.2.1, where our
analysis was independent of whether f2 = ¸2 or not. That is

∆A(c) f 2.1 d∗(c)− 0.9 d1(c) +O(ε)(d∗ + d1).

We thus focus on clients with Ä(f∗) > 2/3. Compared to our analysis for other client types, our analysis for type C

involves a larger neighborhood of the client. In particular, the optimal facility g∗ := Ã(f1) and the local facilities
close to it play a crucial role in our analysis. This makes it important to consider �ner-grained events. Recall
that we used S1,S2, T1, T2 to denote simple/tree events restricted to f∗ pointing to ¸1 or ¸2. We now also de�ne
events S ′1,S ′2, T ′

1 , T ′
2 similarly, except that they depend on where g∗ points to, rather than f∗. We classify clients

into subtypes according to the characteristics of the swap sets generated on these events:

Claim D.1. (Subtypes within type C) For a client c of type C, one of the following is true:

(a) f1 is heavy.

(b) f2 is heavy.

(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h ̸= f2 is open after swap
ïï¬f1ðð at distance d(c, h) f 3d1 + 2d∗ on S ∩ A.

(d) g∗ ̸= f∗, Ä(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility h ̸= f2 is open

after swap ïï¬f1ðð at distance d(c, h) f
�

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T2 ∩ A, ïïf∗ðð closes both f1 and f2.

(f) g∗ ̸= f∗, Ä(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on T ′
b ∩ A, ïïf∗ðð

closes both f1 and f2.

We prove this claim in Appendix E.5. Below we present our bounds for each of these subtypes.

D.4.1 When f1 is a heavy facility f1 being heavy implies that the swap ïï¬f1ðð doesn't exist. We thus focus
on ïïf∗ðð and ïï¬f2ðð.

Simple swaps with Ä(f∗) = ¸1 By implication (Siv) of amenability, we have ïïf∗ðð ̸= ïï¬f2ðð. On swap ïïf∗ðð,
the client can be served by f∗, and on swap ïï¬f2ðð, the client can be served by f1. Therefore,

¶S1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ (1 + ³´)d1 − d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´)d∗ − (1− ³´)d1 − 2´d2 .

Tree swaps with Ä(f∗) = ¸1 Let us �rst assume ïïf∗ðð ≠ ïï¬f2ðð. On swap ïïf∗ðð, the client can be served by
f∗, and on swap ïï¬f2ðð, the client can be served by f1 and Ã(f2) by implication (Tii) of amenability. Note that
d(c, Ã(f2)) f 2d2 + d∗ by (C.7). Therefore,

¶T1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ d1 + ´(2d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´)d∗ − d1 .

The inequality also holds when ïïf∗ðð = ïï¬f2ðð since our bound for ¶ïïf∗ðð does not require f2 to remain open after
the swap.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Simple & tree swaps with Ä(f∗) = ¸2 We have ïïf∗ðð = ïï¬f2ðð by implication (ii) of amenability. On that
swap, the client can be served by f∗. Therefore,

¶S2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 ,(¶ïïf∗,¬f2ðð)

¶T2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 .(¶ïïf∗,¬f2ðð)

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − (1− ³´)d1 − 2´ d2 = 1.6 d∗ − 0.4d1 − 0.4 d2

¶S2∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T1∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

¶T2∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.7 d1 − 0.25 d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).(d2 g d1)

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − (0.6Ä+ 0.25) d1 − (0.4− 0.2Ä) d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − (0.4Ä+ 0.65) d1 +O(ε)(d∗ + d1)(d2 g d1)

f 1.65 d∗ − (0.4× 3/4 + 0.65) d1 +O(ε)(d∗ + d1)

= 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

D.4.2 When f2 is a heavy facility f2 being heavy implies that ïï¬f2ðð does not exist. We thus focus on
ïïf∗ðð and ïï¬f1ðð.

Simple & tree swaps with Ä(f∗) = ¸1 We have ïïf∗ðð = ïï¬f1ðð by implication (ii) of amenability. On that
swap, the client can be served by f∗. Therefore,

¶S1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 ,(¶ïïf∗,¬f1ðð)

¶T1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 .(¶ïïf∗,¬f1ðð)

Simple swaps with Ä(f∗) = ¸2 Implication (Siv) of amenability implies that ïïf∗ðð ≠ ïï¬f1ðð. On swap ïïf∗ðð,
the client can be served by f∗. On swap ïï¬f1ðð, the client can be served by f2. Therefore,

¶S2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ (1 + ³´)d2 − d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´)d∗ − 2 d1 + (1 + ³´ − 2´)d2 .(D.13)

Tree swaps with Ä(f∗) = ¸2 We �rst assume that ïïf∗ðð ̸= ïï¬f1ðð. On swap ïïf∗ðð, the client can be served by
f∗. On swap ïï¬f1ðð, the client can be served by f2 and Ã(f1), by implication (Tii) of amenability. Note that
d(c, Ã(f1)) f d1 + d(f1, Ã(f1)) f 2d1 + d∗. Therefore,

¶T2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+ d2 + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´ + ´)d∗ − (2− 2´) d1 + (1− 2´)d2 .

The above inequality also holds when ïïf∗ðð = ïï¬f1ðð because our bound for ¶ïïf∗ðð does not require f1 to remain
open after the swap. and ¶ïï¬f1ðð is non-negative.

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶S2∩A(c) f(1 + ³´) d∗ − 2 d1 + (1 + ³´ − 2´) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

¶T1∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T2∩A(c) f(1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − 1.15 d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − (Ä+ 0.4) d1 + (1.4Ä− 1.05) d2 +O(ε)(d∗ + d1)

f (2 + 1.4Ä− 1.05/Ä) d∗ − (Ä+ 1.05/Ä− 1) d1 +O(ε)(d∗ + d1)
(Ä > 3/4 and d2 f d∗ + 1/Ä(d∗ + d1))

f (2 + 1.4− 1.05) d∗ − (1 + 1.05− 1) d1 +O(ε)(d∗ + d1)

= 2.35 d∗ − 1.05 d1 +O(ε)(d∗ + d1).

D.4.3 There exists h such that d(c, h) f 3d1 + 2d∗ in simple swaps

Simple swaps with Ä(f∗) = ¸1 By implications (ii) and (Siv) of amenablity, we know ïïf∗ðð = ïï¬f1ðð ̸= ïï¬f2ðð.
On swap ïïf∗,¬f1ðð, the client can be served by f∗. On swap ïï¬f2ðð, the client can be served by f1. Therefore,

¶S1∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ (1 + ³´) d1 − d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 .

Simple swaps with Ä(f∗) = ¸2 By implications (ii) and (Siv) of amenablity, we know ïïf∗ðð = ïï¬f2ðð ̸= ïï¬f1ðð.
On swap ïïf∗,¬f2ðð, the client can be served by f∗. On swap ïï¬f1ðð, the client can be served by f2 and h.
Therefore,

¶S2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ d2 + ´(3d1 + 2d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´ + 2´) d∗ − (2− 3´) d1 + (1− 2´) d2 .

Tree swaps with Ä(f∗) = ¸1 By implication (ii) of amenability, we know ïïf∗ðð = ïï¬f1ðð. Let us �rst assume
that ïï¬f2ðð ≠ ïïf∗,¬f1ðð. On swap ïïf∗,¬f1ðð, the client can be served by f∗. On swap ïï¬f2ðð, the client can be
served by f1 and Ã(f2) by implication (Tii) of amenability. We have d(c, Ã(f2)) f 2d2 + d∗ by (C.7). Therefore,

¶T1∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+ d1 + ´(2d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´) d∗ − d1 .

This inequality also holds when ïï¬f2ðð = ïïf∗,¬f1ðð, because our bound for ¶ïïf∗,¬f1ðð does not require f2 to
remain open after the swap and ¶ïï¬f2ðð is non-negative.

Tree swaps with Ä(f∗) = ¸2 By implication (ii) of amenability, we know ïïf∗ðð = ïï¬f2ðð. Again, let us �rst
assume that ïï¬f1ðð ̸= ïïf∗,¬f2ðð. On swap ïïf∗,¬f2ðð, the client can be served by f∗. On swap ïï¬f1ðð, the
client can be served by f2 and Ã(f1) by implication (ii) of amenability. We have d(c, Ã(f1)) f 2d1 + d∗ by (6.8).
Therefore,

¶T2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ d2 + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 .

This inequality also holds when ïï¬f1ðð = ïïf∗,¬f2ðð, because our bound for ¶ïïf∗,¬f2ðð does not require f1 to
remain open after the swap and ¶ïï¬f1ðð is non-negative.

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶S2∩A(c) f(1 + ³´ + 2´) d∗ − (2− 3´) d1 + (1− 2´) d2 = 2d∗ − 1.4 d1 + 0.6 d2

¶T1∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

¶T2∩A(c) f(1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.7 d∗ − 0.85 d1 − 0.05 d2 +O(ε)(d∗ + d1)

f 1.7 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(d2 g d1)

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (1.4 + 0.4Ä) d∗ − (0.1 + Ä) d1 + (Ä− 0.8) d2 +O(ε)(d∗ + d1).

When Ä f 0.8, we use d2 g d1:

∆A(c) f (1.4 + 0.4Ä) d∗ − 0.9 d1 +O(ε)(d∗ + d1)

f 1.72 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

When Ä > 0.8, we use d2 f d∗ + d(f∗, d2) f d∗ + 1/Ä · (d∗ + d1):

∆A(c) f (1.6 + 1.4Ä− 0.8/Ä) d∗ − (Ä+ 0.8/Ä− 0.9) d1 +O(ε)(d∗ + d1)

f (1.6 + 1.4− 0.8) d∗ − (2
√
0.8− 0.9) d1 +O(ε)(d∗ + d1)

f 2.2 d∗ − 0.88885 d1 +O(ε)(d∗ + d1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

D.4.4 d(c, h) f 2d1 + d∗ or d(c, h) f 2d1 + d∗ + 4/3(d∗ + d1) in simple swaps We have the same bound for
∆A(c) in this case as the previous case. Indeed, our previous bounds for ¶S1∩A(c), ¶T1∩A(c) and ¶T2∩A(c) remain
valid. We replace our bound for ¶S2∩A(c) by a bound for

(D.14) ¶′S2∩A(c) := Pr[S ′1|S2]¶S′

1
∩S2∩A(c) + Pr[S ′2|S2]¶S′

2
∩S2∩A(c).

We show that we can upper-bound ¶′S2∩A(c) by the same expression as in (D.13). Our previous bound for ¶S2∩A(c)
is linear in d(c, h) with a non-negative coe�cient: ¶S2∩A(c) f A · d(c, h) +B with A g 0, so

¶S′

1
∩S2∩A(c) f A · (2d1 + d∗) +B

¶S′

2
∩S2∩A(c) f A · (2d1 + d∗ + 4/3(d∗ + d1)) +B.

Plugging them into (D.14), we have

¶′S2∩A(c) f A · (Pr[S ′1|S2] · (2d1 + d∗) + Pr[S ′2|S2] · (2d1 + d∗ + 4/3(d∗ + d1))) +B

f A · (1/2 · (2d1 + d∗) + 1/2 · (2d1 + d∗ + 4/3(d∗ + d1))) +B

f A · (3d1 + 2d∗) +B.

D.4.5 ïïf∗ðð closes f1 and f2 on T2 ∩ A If Ä(f∗) = ¸1, we get the same bounds as before:

¶S1∩A(c) f (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 ,

¶T1∩A(c) f (1 + ³´ + ´) d∗ − d1 .

We continue to bound ¶S2∩A(c) and ¶T2∩A(c).

Simple swaps with Ä(f∗) = ¸2 By implications (ii) and (Siv), we have ïïf∗ðð = ïï¬f2ðð ≠ ïï¬f1ðð. On swap
ïïf∗,¬f2ðð, the client can be served by f∗. On swap ïï¬f1ðð, the client can be served by f2. Therefore,

¶S2∩A(c) f(1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ (1 + ³´) d2 − d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´) d∗ − 2 d1 + (1 + ³´ − 2´) d2 .

Tree swaps with Ä(f∗) = ¸2 On T2 ∩ A, we know ïïf∗ðð closes both f1 and f2. Therefore,

¶T2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2 .(¶ïïf∗,¬f1,¬f2ðð)

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶S2∩A(c) f(1 + ³´) d∗ − 2 d1 + (1 + ³´ − 2´) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

¶T1∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

¶T2∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.7 d1 − 0.25 d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).(d2 g d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − (1.6Ä− 0.5) d1 + (1.6Ä− 1.45) d2 +O(ε)(d∗ + d1).

When Ä f 1.45/1.6, we use d2 g d1:

∆A(c) f 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

When Ä > 1.45/1.6, we use d2 f d∗ + 1/Ä · (d∗ + d1):

∆A(c) f (1.8 + 1.6Ä− 1.45/Ä) d∗ − (1.6Ä+ 1.45/Ä− 2.1) d1 +O(ε)(d∗ + d1)

f (1.8 + 1.6− 1.45) d∗ − (2
√
1.6× 1.45− 2.1) d1 +O(ε)(d∗ + d1)

f 1.95 d∗ − 0.94630 d1 +O(ε)(d∗ + d1).

D.4.6 ïïf∗ðð closes f1 and f2 on T ′
b ∩ A for some b ∈ {1, 2} Bounds for simple swaps remain the same as

before:

¶S1∩A(c) f (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 ,

¶S2∩A(c) f (1 + ³´) d∗ − 2 d1 + (1 + ³´ − 2´) d2 .

For tree swaps, we partition T ∩ A as the union of T1 ∩ T ′
3−b ∩ A, T2 ∩ T ′

3−b ∩ A and T ′
b ∩ A. On the �rst two

events, our bounds are the same as in Appendix D.4.3:

¶T1∩T ′

3−b
∩A(c) f (1 + ³´ + ´) d∗ − d1 ,

¶T2∩T ′

3−b
∩A(c) f (1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 .

On T ′
b ∩ A, we have ïïf∗ðð closes both f1 and f2. Therefore,

¶T ′

b
∩A(c) f (1 + ³´) d∗ − d1 − ´ d2 .(¶ïïf∗,¬f1,¬f2ðð)

Summarizing, we have

¶S1∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶S2∩A(c) f(1 + ³´) d∗ − 2 d1 + (1 + ³´ − 2´) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

¶T1∩T ′

3−b
∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

¶T2∩T ′

3−b
∩A(c) f(1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

¶T ′

b
∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1 ∩ T ′
3−b] = Pr[T2 ∩ T ′

3−b] = 1/8,Pr[T ′
b] = 1/4.

Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/8 · ¶T1∩T ′

3−b
∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c) + 1/4 · ¶T ′

b
∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.775 d1 − 0.175 d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).(d2 g d1)

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4 − Ä,Pr[S2] = Ä − 3/4,Pr[T1 ∩ T ′
3−b] = Pr[T2 ∩ T ′

3−b] = 1/8,Pr[T ′
b] = 1/4.

Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/8 · ¶T1∩T ′

3−b
∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+ 1/4 · ¶T ′

b
∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − (1.6Ä− 0.425) d1 + (1.6Ä− 1.375) d2 +O(ε)(d∗ + d1).

When Ä f 1.375/1.6, we use d2 g d1:

∆A(c) f 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

When Ä > 1.375/1.6, we use d2 f d∗ + 1/Ä(d∗ + d1):

∆A(c) f (1.875 + 1.6Ä− 1.375/Ä) d∗ − (1.6Ä+ 1.375/Ä− 2.025) d1 +O(ε)(d∗ + d1)

f (1.875 + 1.6− 1.375) d∗ − (2
√
1.6× 1.375− 2.025) d1 +O(ε)(d∗ + d1)

f 2.1 d∗ − 0.94147 d1 +O(ε)(d∗ + d1).

D.5 Proof of (6.21): Clients of Type D In this section, we show that for any client c with type D, we have

∆A(c) f 2.5203 d∗(c)− 0.8888 d1(c).

Similar to Claim D.1 for type C clients, we also have the following claim classifying type D clients into subtypes.
The only change is in item (e), where we replace T2 by T1 because the roles of ¸1 and ¸2 are now swapped.

Claim D.2. (Type D subcases) For a client c of type D, one of the following is true:

(a) f1 is heavy.

(b) f2 is heavy.

(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h ̸= f2 is open after swap
ïï¬f1ðð at distance d(c, h) f 3d1 + 2d∗ on S ∩ A.

(d) g∗ ̸= f∗, Ä(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility h ̸= f2 is open

after swap ïï¬f1ðð at distance d(c, h) f
�

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T1 ∩ A, ïïf∗ðð closes both f1 and f2;

(f) g∗ ̸= f∗, Ä(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on T ′
b ∩ A, ïïf∗ðð

closes both f1 and f2.

D.5.1 When f1 is a heavy facility f1 being heavy implies that ïï¬f1ðð doesn't exist. We thus focus on ïïf∗ðð
and ïï¬f2ðð.

Simple & tree swaps with Ä(f∗) = ¸1 We have ïïf∗ðð = ïï¬f2ðð by implication (ii) of amenability. Therefore,

¶S1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 ,(¶ïïf∗,¬f2ðð)

¶T1∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 .(¶ïïf∗,¬f2ðð)

Simple swaps with Ä(f∗) = ¸2 By implication (Siv) of amenability, we have ïïf∗ðð ≠ ïï¬f2ðð. On swap ïïf∗ðð
the client can be served by f∗. On swap ïï¬f2ðð, the client can be served by f1. Therefore,

¶S2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ (1 + ³´)d1 − d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´)d∗ − (1− ³´) d1 − 2´ d2

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Tree swaps with Ä(f∗) = ¸2 Let us �rst assume that ïïf∗ðð ≠ ïï¬f2ðð. On swap ïïf∗ðð, the client can be served
by f∗. On swap ïï¬f2ðð, the client can be served by f1 and Ã(f2), by implication (Tii) of amenability. We have
d(c, Ã(f2)) ff 2d2 + d∗ by (C.7). Therefore,

¶T2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2(¶ïïf∗ðð)

+ d1 + ´(2d2 + d∗)− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + ´)d∗ − d1

This inequality also holds when ïï¬f2ðð = ïïf∗ðð, because our bound for ¶ïïf∗ðð does not require f2 to remain open
after the swap and ¶ïï¬f2ðð is non-negative.

¶S1∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶S2∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶T1∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T2∩A(c) f(1 + ³´ + ´) d∗ − d1 = 1.8 d∗ − d1

We now combine these inequalities to get an upper bound for ∆A(c).

When Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f 1.6 d∗ − 1.2 d1 +O(ε)(d∗ + d1).(d1 f d2)

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − d1 − 0.15 d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − 1.15 d1 +O(ε)(d∗ + d1).(d1 f d2)

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.65 d∗ − (1.45− 0.6Ä) d1 − (0.2Ä) d2 +O(ε)(d∗ + d1)

f 1.65 d∗ − (1.45− 0.4Ä) d1 +O(ε)(d∗ + d1)(d1 f d2)

f 1.65 d∗ − 1.05 d1 +O(ε)(d∗ + d1)

D.5.2 When f2 is a heavy facility f2 being heavy implies that the swap ïï¬f2ðð doesn't exist. We thus focus
on ïïf∗ðð and ïï¬f1ðð.

Simple swaps with Ä(f∗) = ¸1 We have ïïf∗ðð ̸= ïï¬f1ðð by implication (Siv) of amenability. On swap ïïf∗ðð,
the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be served by f2. Therefore,

¶S1∩A(c) f d∗ + ´d1 − d1 − ´ d2(¶ïïf∗ðð)

+ (1 + ³´)d2 − d1 − ´ d2(¶ïï¬f1ðð)

= d∗ − (2− ´) d1 + (1 + ³´ − 2´)d2 .

We can also use (1− ´)d∗ + 2´ d1 to upper-bound ¶ïïf∗ðð (by (6.10)) and get

¶S1∩A(c) f (1− ´) d∗ − (2− 2´) d1 + (1 + ³´ − 2´)d2 .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Tree swaps with Ä(f∗) = ¸1 Let us �rst assume that ïïf∗ðð ≠ ïï¬f1ðð. On swap ïïf∗ðð, the client can be served
by f∗ and f1. On swap ïï¬f1ðð, the client can be served by f2 and Ã(f1) by implication (Tii) of amenability. We
have d(c, Ã(f1)) f 2d1 + d∗ by (6.8). Therefore,

¶T1∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗ðð)

+ d2 + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ´)d∗ − (2− 3´)d1 + (1− 2´) d2 .

If ïï¬f1ðð = ïïf∗ðð, we still have the same bound:

¶T1∩A(c) f d∗ + ´ d2 − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ (1− 2´)(d2 − d1) + ´ d∗ + ´ d1(non-negative terms)

= (1 + ´)d∗ − (2− 3´)d1 + (1− 2´) d2.

Simple & tree swaps with Ä(f∗) = ¸2 We have ïïf∗ðð = ïï¬f1ðð by implication (ii) of amenability. Therefore,

¶S2∩A(c) f (1 + ³´)d∗ − d1 − ´ d2 ,(¶ïïf∗,¬f1ðð)

¶T2∩A(c) f d∗ + ´d2 − d1 − ´ d2(¶ïïf∗,¬f1ðð)

= d∗ − d1 .

Summarizing, we have

¶S1∩A(c) fd∗ − (2− ´) d1 + (1 + ³´ − 2´) d2 = d∗ − 1.8 d1 + 1.2 d2

¶S1∩A(c) f(1− ´) d∗ − (2− 2´) d1 + (1 + ³´ − 2´)d2 = 0.8 d∗ − 1.6 d1 + 1.2 d2

¶S2∩A(c) f(1 + ³´)d∗ − d1 − ´d2 = 1.6 d∗ − d1 − 0.2 d2

¶T1∩A(c) f(1 + ´)d∗ − (2− 3´)d1 + (1− 2´)d2 = 1.2 d∗ − 1.4 d1 + 0.6 d2

¶T2∩A(c) fd∗ − d1 = d∗ − d1

We now combine these inequalities to get an upper bound for ∆A(c).

When Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. In this case we use the second inequality
for ¶S1∩A(c). Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f d∗ − 1.5 d1 + 0.9 d2 +O(ε)(d∗ + d1)

f (1.9 + 0.9Ä) d∗ − (1.5− 0.9Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.9 + 0.9 · 2/3)d∗ − (1.5− 0.9 · 2/3) d1 +O(ε)(d∗ + d1)

f 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. In this case we use the �rst
inequality for ¶S1∩A(c). Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f 1.05 d∗ − 1.5 d1 + 0.75 d2 +O(ε)(d∗ + d1)

f (1.8 + 0.75Ä) d∗ − (1.5− 0.75Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.8 + 0.75 · 3/4)− (1.5− 0.75 · 3/4) d1 +O(ε)(d∗ + d1)

f 2.3625 d∗ − 0.9375 d1 +O(ε)(d∗ + d1).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4 − Ä,Pr[S2] = Ä − 3/4,Pr[T1] = Pr[T2] = 1/4. In this case we use the �rst
inequality for ¶S1∩A(c). Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (0.6 + 0.6Ä) d∗ − (2.1− 0.8Ä) d1 + (1.8− 1.4Ä) d2 +O(ε)(d∗ + d1)

f (2.4 + Ä− 1.4Ä2) d∗ − (2.1− 2.6Ä+ 1.4Ä2) d1 +O(ε)(d∗ + d1)

(d2 f d∗ + Ä(d∗ + d1))

f (2.4 + 3/4− 1.4(3/4)2) d∗ − (2.1− 2.6 · 13/14 + 1.4(13/14)2) d1 +O(ε)(d∗ + d1)

f 2.3625 d∗ − 0.8928 d1 +O(ε)(d∗ + d1).

D.5.3 There exists a facility h such that d(c, h) f 3d1 + 2d∗ in simple swaps

Simple swaps with Ä(f∗) = ¸1 Implications (ii) and (Siv) of amenability imply ïïf∗ðð = ïï¬f2ðð ̸= ïï¬f1ðð. On
swap ïïf∗,¬f2ðð, the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be served by f2 and h.
Therefore,

¶S1∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ d2 + ´(3d1 + 2d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + 2´) d∗ − (2− 4´) d1 + (1− 2´) d2 .

In ¶ïïf∗,¬f2ðð, we can use 0.776(1 + ³´)d∗ + 0.224(d∗ + ´ d1) instead of d∗ + ´ d1. This gives

¶S1∩A(c) f (1 + 2´ + 0.776³´) d∗ − (2− 3.224´) d1 + (1− 2´) d2 .

Simple swaps with Ä(f∗) = ¸2 Implications (ii) and (Siv) of amenability imply ïïf∗ðð = ïï¬f1ðð ̸= ïï¬f2ðð. On
swap ïïf∗,¬f1ðð, the client can be served by f∗. On swap ïï¬f2ðð, the client can be served by f1. Therefore,

¶S2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ (1 + ³´) d1 − d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 .

Tree swaps with Ä(f∗) = ¸1 We have ïïf∗ðð = ïï¬f2ðð by implication (ii) of amenability. Let us �rst assume
that ïï¬f1ðð ≠ ïïf∗,¬f2ðð. On swap ïïf∗,¬f2ðð, the client can be served by f∗. On swap ïï¬f1ðð, the client can be
served by f2 and Ã(f1) by implication (Tii) of amenability. Note that d(c, Ã(f1)) f 2d1 + d∗ by (6.8). Therefore,

¶T1∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ d2 + ´(2d1 + d∗)− d1 − ´ d2(¶ïï¬f1ðð)

= (1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 .

This inequality also holds when ïï¬f1ðð = ïïf∗,¬f2ðð, because our bound for ¶ïïf∗,¬f2ðð does not require f1 to
remain open after the swap and ¶ïï¬f1ðð is non-negative.

In ¶ïïf∗,¬f2ðð, we can use d∗ + ´ d1 instead of (1 + ³´) d∗. This gives

¶T1∩A(c) f (1 + ´) d∗ − (2− 3´) d1 + (1− 2´) d2 .

This bound also holds when ïï¬f1ðð = ïïf∗,¬f2ðð because in this case we have

¶T1∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗,¬f2,¬f1ðð)

+ (1− ´)(d2 − d1) + ´d1 + ´d∗(non-negative terms)

= (1 + ´) d∗ − (2− 3´) d1 + (1− 2´) d2.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Tree swaps with Ä(f∗) = ¸2 We have ïïf∗ðð = ïï¬f1ðð by implication (ii) of amenability. Let us �rst assume that
ïï¬f2ðð ̸= ïïf∗,¬f1ðð. On swap ïïf∗,¬f1ðð, the client can be served by f∗. On swap ïï¬f2ðð, the client can be served
by f1 and Ã(f2) by implication (Tii) of amenability. Note that d(c, Ã(f2)) f d2 + d(f2, Ã(f2)) f d2 + d(f2, f

∗) f
d2 + Äd(f1, f

∗) f d2 + Ä(d1 + d∗). Therefore,

¶T2∩A(c) f (1 + ³´) d∗ − d1 − ´ d2(¶ïïf∗,¬f1ðð)

+ d1 + ´(d2 + Ä(d∗ + d1))− d1 − ´ d2(¶ïï¬f2ðð)

= (1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 .

This inequality also holds when ïï¬f2ðð = ïïf∗,¬f1ðð, because our bound for ¶ïïf∗,¬f1ðð does not require f2 to
remain open after the swap and ¶ïï¬f2ðð is non-negative.

Summarizing, we have

¶S1∩A(c) f(1 + 2´) d∗ − (2− 4´) d1 + (1− 2´) d2 = 1.4 d∗ − 1.2 d1 + 0.6 d2

¶S1∩A(c) f(1 + 2´ + 0.776³´) d∗ − (2− 3.224´) d1 + (1− 2´) d2 = 1.8656 d∗ − 1.3552 d1 + 0.6 d2

¶S2∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶T1∩A(c) f(1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

¶T1∩A(c) f(1 + ´) d∗ − (2− 3´) d1 + (1− 2´) d2 = 1.2 d∗ − 1.4 d1 + 0.6 d2

¶T2∩A(c) f(1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 = (1.6 + 0.2Ä) d∗ − (1− 0.2Ä) d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. We use the �rst bound for ¶S1∩A(c) and
the second bound for ¶T1∩A(c). Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f 1.3 d∗ − 1.3 d1 + 0.6 d2 +O(ε)(d∗ + d1)

f (1.9 + 0.6Ä) d∗ − (1.3− 0.6Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.9 + 0.6 · 2/3) d∗ − (1.3− 0.6 · 2/3) d1 +O(ε)(d∗ + d1)

f 2.3 d∗ − 0.9 d1 +O(ε)(d∗ + d1)

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. We use the �rst bound for both
¶S1∩A(c) and ¶T1∩A(c). Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (1.55 + 0.05Ä) d∗ − (1.25− 0.05Ä) d1 + 0.4 d2 +O(ε)(d∗ + d1)

f (1.95 + 0.45Ä) d∗ − (1.25− 0.45Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.95 + 0.45 · 3/4) d∗ − (1.35− 0.45 · 3/4) d1 +O(ε)(d∗ + d1)

= 2.2875 d∗ − 0.9125 d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. We use the second bound for
¶S1∩A(c) and the �rst bound for ¶T1∩A(c). Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

f (1.982− 0.2156Ä) d∗ − (2.044− 1.0052Ä) d1 + (1.15− Ä) d2 +O(ε)(d∗ + d1)

f (3.132− 0.0656Ä− Ä2) d∗ − (2.044− 2.1552Ä+ Ä2) d1 +O(ε)(d∗ + d1)

(d2 f d∗ + Ä(d∗ + d1))

f (3.132− 0.0656 · 3/4− 3/42) d∗ − (2.044− 2.1552 + 12) d1 +O(ε)(d∗ + d1)

f 2.5203 d∗ − 0.8888 d1 +O(ε)(d∗ + d1).

D.5.4 d(c, h) f 2d1 + d∗ or d(c, h) f 2d1 + d∗ + 4/3(d∗ + d1) in simple swaps Similarly to Appendix D.4.4,
our bound for ∆A(c) in the previous case remains valid in this case.

D.5.5 ïïf∗ðð closes f1 and f2 on T1 ∩ A If Ä(f∗) = ¸2, we get the same bounds as before:

¶S2∩A(c) f (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 ,

¶T2∩A(c) f (1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 .

We proceed to bound ¶S1∩A(c) and ¶T1∩A(c).

Simple swaps with Ä(f∗) = ¸1 Implications (ii) and (Siv) of amenability implies ïïf∗ðð = ïï¬f2ðð ̸= ïï¬f1ðð. On
swap ïïf∗,¬f2ðð, the client can be served by f∗ and f1. On swap ïï¬f1ðð, the client can be served by f2. Therefore,

¶S1∩A(c) f d∗ + ´ d1 − d1 − ´ d2(¶ïïf∗,¬f2ðð)

+ (1 + ³´) d2 − d1 − ´ d2(¶ïï¬f1ðð)

= d∗ − (2− ´) d1 + (1 + ³´ − 2´) d2 .

Tree swaps with Ä(f∗) = ¸1 On T1 ∩ A, we assumed that ïïf∗ðð closes f1 and f2. Therefore,

(¶ïïf∗,¬f1,¬f2ðð) ¶T1∩A(c) f (1 + ³´) d∗ − d1 − ´ d2 .

Summarizing, we have

¶S1∩A(c) fd∗ − (2− ´) d1 + (1 + ³´ − 2´) d2 = d∗ − 1.8 d1 + 1.2 d2

¶S2∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶T1∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

¶T2∩A(c) f(1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 = (1.6 + 0.2Ä) d∗ − (1− 0.2Ä) d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When Ä(f∗) f 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/2 · ¶T1∩A(c) +O(ε)(d∗ + d1)

f 1.3 d∗ − 1.4 d1 + 0.5 d2 +O(ε)(d∗ + d1)

f (1.8 + 0.5Ä) d∗ − (1.4− 0.5Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.8 + 0.5× 2/3) d∗ − (1.4− 0.5× 2/3) d1 +O(ε)(d∗ + d1)

f 2.13334 d∗ − 1.06666 d1 +O(ε)(d∗ + d1).

When 2/3 < Ä(f∗) f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (1.3 + 0.05Ä) d∗ − (1.4− 0.05Ä) d1 + 0.5 d2 +O(ε)(d∗ + d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

f (1.8 + 0.55Ä) d∗ − (1.4− 0.55Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (1.8 + 0.55× 3/4) d∗ − (1.4− 0.55× 3/4) d1 +O(ε)(d∗ + d1)

= 2.2125 d∗ − 0.9875 d1 +O(ε)(d∗ + d1).

When Ä(f∗) > 3/4, we have Pr[S1] = 5/4− Ä,Pr[S2] = Ä− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/4 · ¶T1∩A(c) + 1/4 · ¶T2∩A(c) +O(ε)(d∗ + d1)

f (0.85 + 0.65Ä) d∗ − (2.45− 1.45Ä) d1 + (1.7− 1.6Ä) d2 +O(ε)(d∗ + d1)

f (2.55 + 0.75Ä− 1.6Ä2) d∗ − (2.45− 3.15Ä+ 1.6Ä2) d1 +O(ε)(d∗ + d1)

(d2 f d∗ + Ä(d∗ + d1))

f (2.55 + 0.75× 3/4− 1.6× (3/4)2) d∗ − (2.45− 3.15× 3.15/3.2 + 1.6× (3.15/3.2)2) d1

+O(ε)(d∗ + d1)

f 2.2125 d∗ − 0.89960 d1 +O(ε)(d∗ + d1).

D.5.6 ïïf∗ðð closes f1 and f2 on T ′
b ∩ A Bounds for simple swaps remain the same as before:

¶S1∩A(c) f d∗ − (2− ´) d1 + (1 + ³´ − 2´) d2 ,

¶S2∩A(c) f (1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 .

For tree swaps, we partition T ∩ A as the union of T1 ∩ T ′
3−b ∩ A, T2 ∩ T ′

3−b ∩ A and T ′
b ∩ A. On the �rst two

events, our bounds are the same as in Appendix D.5.3:

¶T1∩T ′

3−b
∩A(c) f (1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2 ,

¶T2∩T ′

3−b
∩A(c) f (1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 .

On T ′
b ∩ A, we assumed that ïïf∗ðð closes f1 and f2. Therefore,

(¶ïïf∗,¬f1,¬f2ðð) ¶T ′

b
∩A f (1 + ³´) d∗ − d1 − ´ d2 .

Summarizing, we have

¶S1∩A(c) fd∗ − (2− ´) d1 + (1 + ³´ − 2´) d2 = d∗ − 1.8 d1 + 1.2 d2

¶S2∩A(c) f(1 + ³´) d∗ − (1− ³´) d1 − 2´ d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

¶T1∩T ′

3−b
∩A(c) f(1 + ³´ + ´) d∗ − (2− 2´) d1 + (1− 2´) d2

= 1.8 d∗ − 1.6 d1 + 0.6 d2

¶T2∩T ′

3−b
∩A(c) f(1 + ³´ + Ä´) d∗ − (1− Ä´) d1 − ´ d2 = (1.6 + 0.2Ä) d∗ − (1− 0.2Ä) d1 − 0.2 d2

¶T ′

b
∩A(c) f(1 + ³´) d∗ − d1 − ´ d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When Ä(f∗) f 2/3, we have Pr[S1] = 1/2,Pr[T1 ∩ T ′
3−b] = Pr[T ′

b] = 1/4,Pr[S2] = Pr[T2 ∩ T ′
3−b] = 0. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/4 · ¶T1∩T ′

3−b
∩A(c) + 1/4 · ¶T ′

b
∩A(c) +O(ε)(d∗ + d1)

f 1.35 d∗ − 1.55 d1 + 0.7 d2 +O(ε)(d∗ + d1)

f (2.05 + 0.7Ä) d∗ − (1.55− 0.7Ä) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (2.05 + 0.7× 2/3) d∗ − (1.55− 0.7× 2/3) d1 +O(ε)(d∗ + d1)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

f 2.51667 d∗ − 1.08333 d1 +O(ε)(d∗ + d1).

When 2/3 < Ä f 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1 ∩ T ′
3−b] = Pr[T2 ∩ T ′

3−b] = 1/8,Pr[T ′
b] = 1/4. Therefore,

∆A(c) f 1/2 · ¶S1∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c) + 1/4 · ¶T ′

b
∩A(c) +O(ε)(d∗ + d1)

f (1.325 + 0.025Ä) d∗ − (1.475− 0.025Ä) d1 + 0.6 d2 +O(ε)(d∗ + d1)

f (1.925 + 0.625Ä) d∗ − (1.475− 0.625Ä) d1 +O(ε)(d∗ + d1)
(d2 f d∗ + Ä(d∗ + d1))

f (1.925 + 0.625× 3/4) d∗ − (1.475− 0.625× 3/4) d1 +O(ε)(d∗ + d1)

= 2.39375 d∗ − 1.00625 d1 +O(ε)(d∗ + d1).

When Ä > 3/4, we have Pr[S1] = 5/4 − Ä,Pr[S2] = Ä − 3/4,Pr[T1 ∩ T ′
3−b] = Pr[T2 ∩ T ′

3−b] = 1/8,Pr[T ′
b] = 1/4.

Therefore,

∆A(c) f (5/4− Ä) · ¶S1∩A(c) + (Ä− 3/4) · ¶S2∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c) + 1/8 · ¶T2∩T ′

3−b
∩A(c)

+ 1/4 · ¶T ′

b
∩A(c) +O(ε)(d∗ + d1)

f (0.875 + 0.625Ä) d∗ − (2.525− 1.425Ä) d1 + (1.8− 1.6Ä) d2 +O(ε)(d∗ + d1)

f (2.675 + 0.825Ä− 1.6Ä2) d∗ − (2.525− 3.225Ä+ 1.6Ä2) d1 +O(ε)(d∗ + d1)(d2 f d∗ + Ä(d∗ + d1))

f (2.675 + 0.825× 3/4− 1.6× (3/4)2) d∗ − (2.525− 3.225 + 1.6) d1 +O(ε)(d∗ + d1)

= 2.39375 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

E Omitted Proofs

E.1 Proof of Claim 3.1: There are enough local candidates

Claim 3.1. The number of local candidates is at least td/2 times the number of heavy local facilities.

Proof. Let Fh be the set of heavy local facilities, Fp ¦ F \ Fh be the set of local facilities pointed to by at least
one optimal facility with no heavy local neighbor, and Fc be the remaining local facilities, which are exactly the
local candidates. |Fh|+ |Fp|+ |Fc| = the number of local facilities, which in turn is at least the number of optimal
facilities. There are at least (td + 2)|Fh|/2 many optimal facilities having a heavy local neighbor because 1) a
heavy local facility is a neighbor of at least td + 2 optimal facilities, and 2) each optimal facility has at most 2
local neighbors. Finally, each local facility in Fp is pointed to by an optimal facility with no heavy local neighbor,
so the total number of optimal facilities is at least (td + 2)|Fh|/2 + |Fp|. In other words, |Fc| g td

2 |Fh|.

E.2 Proof of Claim 3.3: Balancing Procedure

Claim 3.3. (Balancing Procedure) Consider a universe U = R∪G of red points R and green points G, with
|G| = |R| + r. Let the collection of sets S1, . . . , SN partition U , and let |Si| f x for all i. Moreover, let H be a

graph on the vertices [N] with maximum degree at most ¹ f r. Lastly, r g Ω
!
x5¹3

ε

�
for some 0 f ε f 1. Then we

can merge these sets together into new sets T0, . . . , TM such that

(i) each Tj has size |Tj | f O(x2),
(ii) |Tj ∩R| f |Tj ∩G|,
(iii) if there is an edge {i, j} for i, j ∈ [N], then Si is not merged with Sj, and
(iv) for all i ̸= j, Si is merged with Sj with probability at most ε.

Proof. [Proof of Claim 3.3] Recall |G| = |R|+ r, where r g 16x5¹2(¹+1)
ε su�ces. For each integer s ∈ {−x, . . . , x}

let Ds be the sets S with discrepancy |S ∩G| − |S ∩ R|. Each set in D0 can be output immediately. If for some
i, j we have |Di| g j/ε and |D−j | g i/ε, and there is no edge in H, then we can choose some j sets uniformly at
random from Di, and i sets from D−j , and merge these together.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

However, since there are forbidden sets (a set S1 and S2 are forbidden if there is an edge between them in H), we
need one more ingredient. We claim that if some Di, D−j have g 8x2¹ sets, then we can �nd j sets from Di and
i sets from D−j that are not forbidden for each other. Indeed, pick a random collection of j sets from Di and i

sets from D−j . The probability that any one set has an edge to any of the other i+ j− 1 sets is f (i+j−1)¹
8x2¹ < 1

4x .
Hence, a union bound over all the i + j sets says that with probability at least a half, this collection does not
have any edges of H within it, and hence we can merge this collection together.

However, above procedure does not ensure two sets are combined with probability at most ε. To do so, if we �nd

some pair Di, D−j with g 8x2¹
ε sets, then we can randomly partition each of Di and D−j into 1/ε equal-sized

subgroups with 8x2¹ sets each. Now we can merge some j sets from any subgroup from Di with some i sets
from a randomly chosen subgroup of D−j to form a set with equal number of greens and reds, exactly as above.

Henceforth, we assume that for each Di, D−j , at least one has fewer than
8x2¹
ε sets.

Finally, since the greens outnumber the reds by r, we know there exists a value j > 0 such that |Dj | g r/x =

16x4¹2(¹ + 1)/ε. Thus, we know each Ds with s < 0 has at most 8x2¹
ε sets each. We randomly divide Dj into

16x3¹2

ε parts of of size x(¹ + 1) sets each. Note any two sets Sa and Sb fall in the same part with probability at
most ε

16x3¹2 f ε. From each part pick x sets that have no edge in H between themselves and call them a positive
group; this can be done because the maximum degree of H is at most ¹. Each such positive group has at least

x extra green points. On the other hand, there are at most x · 8x2¹
ε = 8x3¹

ε negative sets, i.e., in {Di}i<0. Each

negative set has edges to at most ¹ sets, so there are at most 8x3¹2

ε sets with an edge to some negative set. Since

there are 16x3¹2

ε positive groups, there are at least 8x3¹2

ε positive groups with no edge to any negative set, so we
can merge each negative set with a randomly-chosen such positive group. This ensures that each new set has
more green points than red, and two sets are combined with probability at most ε

8x3¹2 f ε. The newly-created
sets have of size at most O(x2). Finally, each remaining set can form a group by itself, because they have more
green points.

E.3 Proof of Claim 5.1: Crude Upper Bound of Potential Change

Claim 5.1. There is an absolute constant µ > 0 such that for any client c, and any swap set P that we generate,
we have

�

(P,Q)∈P ¶(P,Q)(c) f µ(d∗(c) + d1(c)).

Proof. Since every local facility is closed by at most 3 swaps in P, there are at most 6 swaps in P that closes any
facility in {f1, f2}. Thus, it su�ces to show that ¶(P,Q)(c) f O(d∗ + d1) for these 6 swaps (P,Q).

If f∗ has a heavy local neighbor h, the client can be served by h at distance f d∗ + 3/2(d∗ + d1). We assume
henceforth that f∗ has no heavy local neighbor, which means Ä(f∗) is not heavy and never closed as a local
surrogate.

When P is a simple swap set, the client can be served by either f∗ (at distance f d∗) or Ä(f∗) (at distance
f d∗ + 4/3(d∗ + d1)). When P is a tree swap set, we show that one of the following facilities must be open after
every swap in P:

f∗ at distance f d∗,

Ä(f∗) at distance f d∗ + 3/2(d∗ + d1),

Ã(Ä(f∗)) at distance f d∗ + 2 · 3/2(d∗ + d1).

It su�ces to show that any swap closing Ä(f∗) must open either f∗ or Ã(Ä(f∗)). If Ä(f∗) is closed as an
optimal surrogate, Ã(Ä(f∗)) must be open because edges on short cycles are not deleted in the edge deletion
step (Corollary 3.1). We thus focus on the swap closing the original copy of Ä(f∗) henceforth.

Consider the 1-forest G1 before edge deletion. The edges in G1 from f∗ to Ä(f∗) and from Ä(f∗) to Ã(Ä(f∗))
cannot both be deleted in the edge deletion step, because we always choose th as an even number and G1 is
bipartite (when self-loops are ignored). Therefore, either f∗ or Ã(Ä(f∗)) must be in the same swap with Ä(f∗),
as desired.

E.4 Proof of Lemma D.1: Combining Type A Inequalities

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma D.1. (Type A averaging) For a close client of type A with Ä(f∗) > 2/3, we have

∆T ∩A(c) f 1/4 ·max{¶T11∩A + ¶T21∩A, ¶T11∩A + ¶T22∩A, ¶T12∩A + ¶T22∩A}+O(ε)(d∗ + d1).

We �rst prove Lemma D.1 assuming the following lemma, which we prove later.

Lemma E.1. For a close client of type A with Ä(f∗) > 2/3, we have

Pr[T21] f Pr[T11] +O(ε).

Proof. [Proof of Lemma D.1] De�ne pij := Pr[Tij]. Note that Ä(f∗) > 2/3 implies that p11 + p12 = p21 + p22 = 1/4.
De�ne p∆ := p11−p21 = p22−p12. Lemma E.1 implies p∆ g −O(ε). De�ne ¶max := max{¶T11∩A+¶T21∩A, ¶T11∩A+
¶T22∩A, ¶T12∩A + ¶T22∩A}. Claim 5.1 implies ¶max f O(d∗ + d1). Lemma D.1 is proved by the following chain of
inequalities:

∆T ∩A(c) f Pr[T11 ∩ A]¶T11∩A(c) + Pr[T12 ∩ A]¶T12∩A(c)

+ Pr[T21 ∩ A]¶T21∩A(c) + Pr[T22 ∩ A]¶T22∩A(c)

f p11¶T11∩A(c) + p12¶T12∩A(c)

+ p21¶T21∩A(c) + p22¶T22∩A(c)

+O(ε)(d∗ + d1)(Claim 5.2 and ¶E(c) g −10d1)
= p21¶T11∩A(c) + p∆¶T11∩A(c) + p12¶T12∩A(c)

+ p21¶T21∩A(c) + p∆¶T22∩A(c) + p12¶T22∩A(c)

+O(ε)(d∗ + d1)

f p21¶max + p∆(¶T11∩A(c) + ¶T22∩A(c)) + p12¶max +O(ε)(d∗ + d1)

f p21¶max + p∆¶max + p12¶max +O(ε)(d∗ + d1)
(p∆ g −O(ε), ¶E(c) g −10d1 and ¶max f O(d∗ + d1))

= (p21 + p∆ + p12)¶max +O(ε)(d∗ + d1)

= 1/4 · ¶max +O(ε)(d∗ + d1).

We now turn to proving Lemma E.1. Before doing so, we need some deeper understandings of the edge deletion
procedure, which we establish in Appendix E.4.1. The proof of Lemma E.1 is presented in Appendix E.4.2.

E.4.1 Probability of Surviving Edge Deletion Let T be a 1-tree in the 1-forest G1 before the edge deletion
procedure. The edge deletion procedure splits T into several connected components by deleting some edges from
T . In this section, we prove upper and lower bounds on the probabilities that paths in T remain connected after
edge deletion.

Let ℓ > 0 denote the cycle length of T . Condition on the height threshold th being �xed. We prove the following
two lemmas:

Lemma E.2. (Upper bound) Suppose p is a directed simple path in T of length s. If ℓ g th, then the probability
that no edge in p is deleted is at most max{ th−s

th
, 0}(1 + th/ℓ). If ℓ f th, and we further assume that p doesn't

contain any cycle edge, then the probability is exactly max{ th−s
th

, 0}.

Proof. If s g th, the lemma is trivial because any path after edge deletion has length at most th − 1. We assume
s < th henceforth.

Suppose vertices on p are v0 ← v1 ← · · · ← vs. We �rst consider the case where ℓ g th. We prove that as long as
the (unique) simple path p∗ from v0 to r has length equal to −1,−2, · · · ,−s modulo th, some edge on path p is
deleted. Indeed, suppose p∗ has length −i modulo th. If p

∗ doesn't contain any vertex in {v1, · · · , vs}, then the
edge out of vi is deleted by Claim 3.5. Otherwise, r must be one of v1, v2, · · · , vs, in which case the edge out of r
is deleted.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Suppose ℓ = uth + w for u,w ∈ Z where 0 f w < th. There are at most (th − s)(u+ 1) choices of r such that p∗

has length not in {−1, · · · ,−s} modulo th. Therefore, when ℓ g th, the probability that no edge in p is deleted is
at most (th − s)(u+ 1)/ℓ = th−s

th
· (uthℓ + th

ℓ) f
th−s
th
· (1 + th/ℓ).

When ℓ f th and p doesn't contain a cycle edge, an edge on the path p is deleted if and only if p∗ has length
−1,−2, · · · ,−s modulo th by Claim 3.5. Since the cycle length is exactly th after dummy vertices are inserted on
it, the probability that no edge on p is deleted is exactly th−s

th
.

Lemma E.3. (Lower bound) Let v1, v2, v
∗ be vertices in T and p1, p2 be directed simple paths in T from v1 and

v2 to v∗, respectively. Suppose both p1 and p2 have lengths no greater than s. If ℓ g th, then the probability that
no edge on either path p1, p2 is deleted is at least max{ th−s

th
, 0}(1− 2th/ℓ). If ℓ f th, and we further assume that

v1 is on the cycle, then the probability is at least max{ th−s
th

, 0}.

Proof. Again, the lemma is trivial if s g th. Assume s < th henceforth.

Let us �rst consider the case where ℓ g th. Consider the vertices on the cycle that are di�erent from v∗ but have
paths to v∗ with length at most s. There are at most s such vertices, and they form a contiguous part of the
cycle. If r is not among these vertices, then the simple path p∗ from v∗ to r contains no vertex on p1 or p2 except
v∗ itself. If we further assume that p∗ has length not in −1,−2, · · · ,−s modulo th, then by Claim 3.5 no edge on
either path p1, p2 is deleted. Therefore, assuming ℓ− s = uth + w for u,w ∈ Z where 0 f w < th, the probability
that no edge on either path is deleted is at least u(th − s)/ℓ = th−s

th
· uthℓ = th−s

th
· (1− s+w

ℓ) g th−s
th
· (1− 2th/ℓ).

When ℓ f th and v1 is on the cycle, every edge on p1 must be on the cycle. Since no edge on the cycle is deleted
by our convention, the probability that no edge on either path is deleted is lower bounded by the probability that
no edge on the shortest path p′ from v2 to the cycle is deleted. p′ is a part of p2, so p′ has length at most s.
By the second part of the previous lemma, the probability that no edge on p′ is deleted is at least max{ th−s

th
, 0}.

E.4.2 Proof of Lemma E.1 We are now ready to prove Lemma E.1. De�ne D′ as the union of the de�ant
event D (De�nition 5.1) and the following events:

(i) P is a tree swap set, and, before edge deletion, the cycle in the 1-tree containing the original copy of f∗ has
length ℓ in the range (th, +1/ε, · th);

(ii) P is a tree swap set, and two connected components each containing a facility in {f1, f2} are combined in
the balancing procedure.

Event (i) happens with probability O(ε) because our height threshold th is chosen uniformly at random from
2+1/ε,, 2+1/ε,2, · · · , 2+1/ε,+1/ε,. Event (ii) happens with probability O(ε) as well due to Claims 3.3 and 3.4. By a
union bound with Claim 5.2, we have

Claim E.1. The event D′ happens with probability O(ε).

Proof. [Proof of Lemma E.1] If either f1 or f2 is heavy, then T21 never happens. Indeed, T21 assumes the existence
of a swap closing both f1 and f2, but heavy local facilities are never closed. Hence, we assume neither f1 nor f2
is heavy.

By Claim E.1 and the union bound, it su�ces to prove Pr[T21\D′] f (1 + O(ε)) Pr[T11 ∪ D′]. By law of total
probability, it su�ces to prove

(E.15) Pr[T21\D′|Ei] f (1 +O(ε)) Pr[T11 ∪ D′|Ei]

for a partition E1, E2, · · · , Et of the entire probability space.

If Ei = S, then both sides of (E.15) become zero. Let us condition on the tree event T henceforth. Conditioned
on T , the probabilities of Ä(f∗) = ¸1 and Ä(f∗) = ¸2 are both 1/2 since Ä(f∗) > 2/3. Note that the set of heavy
local/optimal facilities doesn't depend on the random function Ä . Therefore, if we condition on the Ä 's of all
optimal facilities except f∗, the out-edges of the original copies of all facilities in G1 except f∗ are determined,
where G1 is the 1-forest after degree reduction but before edge deletion. Let G∗

1 be G1 with the out-edge of the
original copy of f∗ removed. If we ignore the identity of the local and optimal surrogates, everything else in

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

G∗
1 is determined. Moreover, the conditioning we did is independent of Ä(f∗), so the conditional probabilities of

Ä(f∗) = ¸1 and Ä(f∗) = ¸2 are both still 1/2.

Note that f∗ may be a heavy optimal facility, in which case f∗ has new copies in G1. We use f∗ to refer to only
the original copy. Ä(f∗) may also be a heavy local facility when Ä(f∗) = ¸2 (note that we assumed ¸1 = f1 is not
heavy), in which case f∗ points to itself in G1. If either f1 or f2 is chosen as a surrogate, then T21\D′ cannot
happen because D′ happens. We thus assume f1 and f2 only appear as their original copies in G1. Since f∗ is
the only vertex in G∗

1 that doesn't have an out-edge, f∗ is the root of a tree, and all other connected components
of G∗

1 are 1-trees.

We divide our proof into �ve cases depending on the structure of G∗
1:

1. f∗, f1, f2 are all in the di�erent connected components;
2. f∗, f1 are in the same tree, di�erent from f2;
3. f∗, f2 are in the same tree, di�erent from f1;
4. f1, f2 are in the same 1-tree (denoted by T), di�erent from f∗;
5. all three are in the same tree (denoted by T ∗).

Let E1 denote the event that f1 and f2 are in the same connected component in G2, where G2 is the graph after
the edge deletion procedure. Since D′ includes the case where the edge from f∗ to ¸1 = f1 is deleted in the edge
deletion step, we have E1 ∩ T1 ¦ T11 ∪ D′. Let E0 denote the event that f1 and f2 are in the same connected
component in G2 but di�erent from f∗. Since subtracting D′ rules out the possibility of f1 and f2 being combined
in the balancing step, we have T21\D′ ¦ E0 ¦ E1.
In case 1, T21\D′ never happens because E1 never happens. Indeed, f1, f2 must be in di�erent connected
components in G1 and thus must be in di�erent connected components in G2.

In cases 2&3, T21\D′ never happens either because E0 never happens. Indeed, the only way f1 can connect to f2
(by an undirected path in G1) is through f∗, and in the edge deletion procedure, there is no way to put f1, f2 in
the same connected component of G2 without also putting f∗ in it.

In case 4, f∗ is not on the cycle part of T , so the height threshold th and the choice of r ∈ T in the edge deletion
step are both independent of Ä(f∗). Once conditioned on th, r, whether or not f1 and f2 are in the same connected
component in G2 is determined. We assume that f1 and f2 are in the same connected component of G2 because
otherwise T21\D′ never happens. If Ä(f∗) = ¸1(= f1), then we know T11 ∪ D′ must happen, because E1 ∩ T1
happens. Moreover, T21\D′ happens only when Ä(f∗) = ¸2 simply because T21 ¦ T2. Therefore, if we let E be
the event summarizing all the conditioning we did so far, we have

Pr[T11 ∪ D′|E] =Pr[Ä(f∗) = ¸1|E] = 1/2,

Pr[T21\D′|E] fPr[Ä(f∗) = ¸2|E] = 1/2,

and thus (E.15) holds for Ei = E .
Case 5 is a little tricky since the cycle structure of T , the 1-tree in G1 containing all of f∗, f1, f2, may depend on
where f∗ points to. Condition on the height threshold th being �xed, and let E be the event summarizing all the
conditioning we did so far. Let fa be the least common ancestor of f1 and f2 in T ∗, and let s denote the path
length from fi to fa maximized over i = 1, 2.

Conditioned on Ä(f∗) = ¸1, or equivalently T1, the probability of T11 ∪ D′ is 1 if the cycle length ℓ of T is in the
range (th, +1/ε, · th), and if ℓ is not in the range, the conditional probability of T11 ∪D′ is at least the conditional
probability of E1, which is at least max{ th−s

th
, 0}(1 − O(ε)) by Lemma E.3 (Observe that f1 = ¸1 is on the cycle

of T because f∗ points to it on event T1). Therefore,

Pr[T11 ∪ D′|E] g Pr[Ä(f∗) = ¸1|E] ·max
� th − s

th
, 0
�

(1−O(ε))

= 1/2 ·max
� th − s

th
, 0
�

(1−O(ε)).(E.16)

On the other hand, T21\D′ happens only when Ä(f∗) = ¸2. Condition on Ä(f∗) = ¸2. If the cycle length ℓ is in the
range (th, +1/ε, · th), then T21\D′ never happens. If ℓ f th, and fa is on the cycle, then T21\D′ never happens either
because E0 never happens. Indeed, the only possible undirected path in T connecting f1 with f2 without passing

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

through f∗ intersects the cycle, so f1, f2 have to connect to the cycle after edge deletion to make E0 happen, but
the cycle contains f∗ and remains connected after edge deletion (because ℓ f th). Therefore, we assume either
ℓ g +1/ε, · th, or ℓ f th and fa is not on the cycle. In this case, the conditional probability of T21\D′ is at most

the conditional probability of E0, which is at most max
�

th−s
th

, 0
�

(1 +O(ε)) by Lemma E.2. Therefore,

Pr[T21\D′|E] f Pr[Ä(f∗) = ¸2|E] ·max
� th − s

th
, 0
�

(1 +O(ε))

= 1/2 ·max
� th − s

th
, 0
�

(1 +O(ε)).(E.17)

Combining (E.16) and (E.17), we know (E.15) holds for Ei = E .

E.5 Proof of Claim D.1: Subtypes within Type C

Claim D.1. (Subtypes within type C) For a client c of type C, one of the following is true:

(a) f1 is heavy.

(b) f2 is heavy.

(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h ̸= f2 is open after swap
ïï¬f1ðð at distance d(c, h) f 3d1 + 2d∗ on S ∩ A.

(d) g∗ ̸= f∗, Ä(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility h ̸= f2 is open

after swap ïï¬f1ðð at distance d(c, h) f
�

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T2 ∩ A, ïïf∗ðð closes both f1 and f2.

(f) g∗ ̸= f∗, Ä(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on T ′
b ∩ A, ïïf∗ðð

closes both f1 and f2.

Proof. Recall that g∗ is Ã(f1) and S ′b is the event that P is a simple swap and g∗ points to ¸b(g
∗). Similarly T ′

b

is the event that P is a tree swap and g∗ points to ¸b(g
∗).

If either f1 or f2 is heavy, then condition (a) or (b) holds. We assume neither f1 nor f2 is heavy henceforth. In
other words, the swaps ïï¬f1ðð and ïï¬f2ðð both exist.

Let g be the closest local facility to g∗ that is di�erent from f1 and f2. Intuitively, we show that either a client
is close to g or there is a tree that contains all f1, f2, and f∗.

If d(g, g∗) f d(f1, g
∗), then we have d(c, g) f d1+ d(f1, g

∗)+ d(g, g∗) f d1+2d(f1, g
∗) f 3d1+2d∗. Furthermore,

when we generate tree swaps, f1 points to g∗ = Ã(f1) in the 1-forest G1 after degree reduction. If f1 points to
a new copy of g∗, we know that f1 is not among the td closest local facilities to g∗ in Ã−1(g∗). Therefore, we
know d(g, g∗) f d(f1, g

∗). Note that g and f1 are not closed in the same simple swap by implication (Siii') of
amenability, so condition (c) holds in this case.

We can now assume that f1 points to the original copy of g∗ and d(g, g∗) > d(f1, g
∗). If g∗ = f∗, we know

condition (e) holds, because both edges f1 → f∗, f∗ → f2 remain after the edge deletion step by amenability. We
assume g∗ ̸= f∗ henceforth.

If Ä(g∗) f 2/3, we know Ä(g∗) = ¸1(g
∗) deterministically. Moreover, d(g, g∗) > d(f1, g

∗) implies that Ä(g∗) is either
f1 or f2. If ¸1(g

∗) = f1, then ïï¬f1ðð must open g∗ by implication (ii') of amenability, so condition (c) holds in
this case since d(c, g∗) f d1 + d(f1, g

∗) f 2d1 + d∗. Otherwise, ¸1(g∗) = f2, and then condition (e) holds, because
the edges f1 → g∗, g∗ → f2, f

∗ → f2 all survive edge deletion by amenability, so f1, f2, f
∗ must all be in the same

swap.

It remains to consider the case where Ä(g∗) > 2/3. If f2 = ¸b(g
∗) ∈ {¸1(g∗), ¸2(g∗)}, then condition (f) holds

because the edges f1 → g∗, g∗ → f2, f
∗ → Ä(f∗) ∈ {f1, f2} all survive edge deletion on T ′

b ∩A (see the left graph
in Figure E.13). Otherwise, f2 /∈ {¸1(g∗), ¸2(g∗)}, and in this case we know ¸1(g

∗) = f1 and ¸2(g
∗) = g because

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

d(g, g∗) > d(f1, g
∗). We show that condition (c) or (d) holds, depending on whether Ä(g∗) f 3/4. Indeed, on S ′1∩A,

we know ïï¬f1ðð opens g∗ at distance f 2d1+d∗ by implication (ii') of amenability, and on S ′2∩A, we know either
g∗ or g is open after swap ïï¬f1ðð, again by implication (ii') of amenability, and d(c, g) f 2d1+d∗+1/Ä(g∗) ·(d∗+d1)
(see the right graph in Figure E.13).

f∗ c f1 g∗ g

f2

d∗ d1 d∗ + d1 4/3 · (d∗ + d1)

f∗ c f1 g∗

f2

Figure E.13: In the �gure, dashed edges represent the random function Ä . In the left graph, whenever g∗ points to f2,
f1, f2, f

∗ are all in the same swap, so condition (f) holds. In the right graph, condition (d) holds.

Acknowledgments We thank Amit Kumar, Ola Svensson, and Justin Ward for fruitful initial discussions.
Special thanks to Guru Guruganesh, with whom we obtained some early results on this problem. AG and HO
are supported in part by NSF awards CCF-1907820, CCF1955785, and CCF-2006953. LH is supported by NSF
Award IIS-1908774 and a VMware fellowship. Moreover, this work was also partially funded by the grant ANR-
19-CE48-0016 from the French National Research Agency (ANR). Some of this work was conducted while LH
was an undergraduate at Tsinghua University visiting CMU and TTI-Chicago.

References

[ABS10] Pranjal Awasthi, Avrim Blum, and Or She�et. Stability yields a PTAS for k-median and k-means clustering. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 309�318, 2010.

[AFS13] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search based approximation algorithms for
mobile facility location problems. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1607�1621.
SIAM, 2013.

[AGK+01] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristic for k-median and facility location problems. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, STOC '01, page 21�29, New York, NY, USA, 2001. Association for Computing
Machinery.

[Ali94] Paola Alimonti. New local search approximation techniques for maximum generalized satis�ability problems. In
Algorithms and Complexity, Second Italian Conference, CIAC '94, Rome, Italy, February 23-25, 1994, Proceedings,
pages 40�53, 1994.

[ANSW17] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means and
Euclidean k-median by primal-dual algorithms. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 61�72, 2017.

[BPR+15] Jarosªaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved
approximation for k-median, and positive correlation in budgeted optimization. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '15, page 737�756, USA, 2015. Society for Industrial
and Applied Mathematics.

[CG99] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility location and k-median
problems. In 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New
York, NY, USA, pages 378�388, 1999.

[CGTS99] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation algorithm
for the k-median problem (extended abstract). In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, STOC '99, page 1�10, New York, NY, USA, 1999. Association for Computing Machinery.

[CL12] Moses Charikar and Shi Li. A dependent LP-rounding approach for the k-median problem. In Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part I, pages 194�205, 2012.

[FFSW17] Moran Feldman, Yuval Filmus, Roy Schwartz, and Justin Ward. A tight combinatorial algorithm for
submodular maximization subject to a matroid constraint. https://www.cs.toronto.edu/~yuvalf/NOLS.pdf,
January 2017.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[FW12] Yuval Filmus and Justin Ward. The power of local search: Maximum coverage over a matroid. In 29th Symposium
on Theoretical Aspects of Computer Science (STACS 2012), pages 601�612, 2012.

[FW14] Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-oblivious local search.
SIAM J. Comput., 43(2):514�542, 2014.

[GGK+18] Martin Groÿ, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie Schmidt, and José
Verschae. A local-search algorithm for steiner forest. In 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 31:1�31:17, 2018.

[GK99] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location algorithms. J. Algorithms,
31(1):228�248, 1999.

[GT08] Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR,
abs/0809.2554, 2008.

[JMM+03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani. Greedy facility
location algorithms analyzed using dual �tting with factor-revealing LP. J. ACM, 50(6):795�824, 2003.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location problems. In
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC '02, page 731�740, New
York, NY, USA, 2002. Association for Computing Machinery.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k -median problems
using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274�296, 2001.

[KMN+02] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. A local search approximation algorithm for k-means clustering. In Proceedings of the Eighteenth Annual
Symposium on Computational Geometry, SCG '02, page 10�18, New York, NY, USA, 2002. Association for Computing
Machinery.

[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani. On syntactic versus computational
views of approximability. SIAM J. Comput., 28(1):164�191, 1998.

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J. Comput., 45(2):530�547,
2016.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

2
 t

o
 7

4
.9

8
.2

0
1
.2

3
3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

