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—— Abstract

We consider online scheduling to minimize weighted completion time on related machines, where
each job consists of several tasks that can be concurrently executed. A job gets completed when all
its component tasks finish. We obtain an O(K? log? K)-competitive algorithm in the non-clairvoyant
setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting
on a precedence-constrained LP relaxation that may be of independent interest.
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1 Introduction

Scheduling to minimize the weighted completion time is a fundamental problem in scheduling.
Many algorithms have been developed in both the online and offline settings, and for the
cases where machines are identical, related, or unrelated. Most of the work, however, focuses
on the setting where each job is a monolithic entity, and has to be processed in a sequential
manner.

In this work, we consider the online setting with multiple related machines, where each
job consists of several tasks. These tasks are independent of each other, and can be executed
concurrently on different machines. (Tasks can be preempted and migrated.) A job is
said to have completed when all its component tasks finish processing. We consider the
non-clairvoyant setting where the algorithm does not know the size of a task up-front, but
only when the task finishes processing. Such instances arise in operating system schedulers,
where a job and its tasks correspond to a process and its threads that can be executed in
parallel. This setting is sometimes called a “bag of tasks” (see e.g. [2, 10, 4]).

The bag-of-tasks model can be modeled using precedence constraints. Indeed, each job is
modeled as a star graph, where the tasks correspond to the leaves (and have zero weight),
and the root is an auxiliary task with zero processing requirement but having weight w;.
Hence the root can be processed only after all leaf tasks have completed processing. The goal
is to minimize total weighted completion time. Garg et al. [7] gave a constant-competitive
algorithm for this problem for identical machines, in a more general setting where tasks form
arbitrary precedence DAGs.
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We extend this result to the setting of related machines where machine i has speed s;.
By losing a constant factor, we assume that all speeds are powers of some constant C'. Let K
denote the number of distinct machine speeds. In §2, we show that this problem is strictly
more challenging than in the identical machines setting:

» Theorem 1 (Lower Bound). Any online non-clairvoyant algorithm has Q(K) competitive
ratio for bags-of-tasks on related machines.

The lower bound arises because we want to process larger tasks on fast machines, but we
have no idea about the sizes of the tasks, so we end up clogging the fast machines with small
tasks: this issue did not arise when machines were identical. Given the lower bound, we now
look for a non-clairvoyant scheduling algorithm with a competitive ratio that depends on K,
the number of distinct speeds. This number may be small in many settings, e.g., when we
use commodity hardware of a limited number of types (say, CPUs and GPUs). Our main
result is a positive answer to this question:

» Theorem 2 (Upper Bound). The online non-clairvoyant algorithm for bags-of-tasks on
related machines has a competitive ratio of §3 is O(min{K?®log? K, K + logn}).

Our algorithm uses a greedy strategy. Instead of explicitly building a schedule, it assigns
(processing) rates to tasks at each time ¢. Such a rate assignment is called feasible if for
every k, the rate assigned to any subset of k tasks is at most the total speed of the k fastest
machines. Using an argument based on Hall’s matching theorem, a schedule exists if and
only if such a rate assignment can be found. To assign these rates, each alive task gets a
“priority”, which is the ratio of the weight of the job containing it to the number of alive tasks
of this job. In other words, a task with low weight or with many tasks gets a low priority.
We assign feasible rates to alive tasks in a “fair manner”, i.e., we cannot increase the rate of
a high priority task by decreasing the rate of a lower priority task. To efficiently find such
feasible rates, we use a water-filling procedure.

The analysis proceeds using the popular dual-fitting approach, but we need new ideas:
(i) we adapt the precedence-constrained LP relaxation for completion time in [5] to our
setting. A naive relaxation would define the completion time of a task as the maximum of
the (fractional) completion times of each of the tasks, where the fractional completion time
of a task is the sum over times ¢ of the fraction of the task remaining at this time Instead,
we define Uj 4, for a job j and time ¢ as the maximum over all tasks v for j of the fraction of
v which remains to be completed at time ¢, the completion time of j as »_, Uj;. (See §4 for
details.) (ii) Although it is natural to divide the machines into classes based on their speeds,
we need a finer partitioning, which drives our setting of dual variables. Indeed, the usual
idea of dividing up the job’s weight equally among the tasks that are still alive only leads to
an O(logn)-competitiveness (see §5). To do better, we first preprocess the instance so that
distinct machine speeds differ by a constant factor, but the total processing capacity of a
slower speed class is far more than that of all faster machines. Now, at each time, we divide
the machines into blocks. A constant fraction of the blocks have the property that either
the average speed of the machines in the block is close to one of the speed classes, or the
total processing capacity of a block is close to that of all the machines of a speed class. It
turns out that our dual-fitting approach works for accounting the weight of jobs which get
processed by such blocks; proving this constitutes the bulk of technical part of the analysis.
Finally, we show that most jobs (in terms of weight) get processed by such blocks, and hence
we are able to bound the overall weighted completion time. We present the proofs in stages,
giving intuition for the new components in each of the sections.
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1.1 Related Work

Minimizing weighted completion time on parallel machines with precedence constraints has
O(1)-approximation in the offline setting: Li [9] improves on [8, 11] to give a 3.387 + e-
approximation. For related machines the precedence constraints make the problem harder:
there is an O(log m/loglog m)-approximation [9] improving on a prior O(log K) result [5],
and an w(1) hardness under certain complexity assumptions [3]. Here m denotes the number
of machines. These results are for offline and hence clairvoyant settings, and do not apply to
our setting of non-clairvoyant scheduling.

In the setting of parallel machines, there has been recent work on minimizing weighted
completion time in DAG scheduling, where each job consists of a set of tasks with precedence
constraints between them given by a DAG [13, 1]. [7] generalized this to the non-clairvoyant
setting and gave an O(1)-competitive algorithm. Our algorithm for the related case is based
on a similar water-filling rate assignment idea. Since the machines have different speeds, a set
of rates assigned to tasks need to satisfy a more involved feasibility condition. Consequently,
its analysis becomes much harder; this forms the main technical contribution of the paper.
Indeed, even for the special case considered in this paper where every DAG is a star, we
can show a lower bound of Q(K) on the competitive ratio of any non-clairvoyant algorithm.
In the full version, we show that any non-clairvoyant algorithm for related machines DAG
scheduling must have Q(log’i o )-competitive ratio.

Our problem also has similarities to open shop scheduling. In open shop scheduling, each
jobs consists of several tasks, where each task v (for job j) needs to be processed on a distinct
machine for p,; amount of time. However, unlike our setting, two tasks for a job cannot

be processed simultaneously on different machines. [12] considered open shop scheduling in
the offline setting for related machines and gave a (2 + ¢)-approximation. [6] considered a
further generalization of our problem to unrelated machines, where the tasks corresponding
to distinct jobs need not be disjoint. They gave a constant-factor approximation algorithm,
again offline.

1.2 Paper Organization

In this extended abstract, we first give the algorithm in §3, and the linear program in §4. A
simpler proof of O(K + logn)-competitiveness is in §5. We show poly(K)-competitiveness
for the case of a single job (which corresponds to makespan minimization) in §6, and then
give the complete proof for the general case in §7.

2 Problem Statement and the Q2(K) Hardness

Each job j has a weight w; and consists of tasks T'(j) = {(j,1),(4,2),...,(j, k;)} for some
kj. Each task v = (j,¢) has an associated processing requirement/size p, = p(; ). The job j
completes when all its associated tasks finish processing. We use letters j, j’, etc. to denote
jobs, and v,v’, etc. to denote tasks (3, £).

There are m machines with speeds s; > sy > ... > s,,. The goal is to minimize the
weighted completion time of the jobs. We allow task preemption and migration, and different
tasks of a job can be processed concurrently on different machines. However, a task itself
can be processed on at most one machine at any time. In this extended abstract we consider
the special case when all release dates are 0, but our results also extend to the more general
setting of arbitrary release dates (details in the full version). Let Sg := s1+. ..+ s, denote the
total speed of the fastest k£ machines. Since we care about the number of distinct speeds, we
assume there are K speed classes, with speeds o1 > 02 > ... > ox. There are m; machines
having speed o;, where ). m; = m.

3:3
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» Assumption 3 (Increasing Capacity Assumption). For parameter v > 1:

(1) (Falling Speeds.) For each ¢, we have o;/c;11 > 64.

(2) (Increasing Capacity.) For each ¢, the total processing capacity of speed class ¢ is at least
twice that of the previous (faster) speed classes. ILe., myop > 2(myo1 + ... +my_100-1).

(3) (Speed-up.) The algorithm uses machines that are ~y times faster than the adversary’s
machines.

» Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3
by losing a factor O(vK) in the competitive ratio.

Proof. (Sketch) For the first part, we round down the speed of each machine to a power
of 64. This changes the completion time by at most a factor of 64. The second increasing
capacity assumption is not without loss of generality — we greedily find a subset of speed
classes by losing O(K) factor in competitive ratio (see details in Appendix A). Finally, the
~v-speedup can only change the competitive ratio by v factor. |

Next we show that any online algorithm has to be Q(K)-competitive even for a single job
with the machines satisfying increasing capacity Assumption 3.

» Proposition 5. Any online algorithm is Q(K)-competitive even for a single job under
increasing capacity Assumption 3.

Proof. (Sketch) Consider a single job j with m tasks, where m is the number of machines.
For every speed class ¢, there are my tasks of size o, — call these tasks Ty(j). Since there is
only one job, the objective is to minimize the makespan. The offline (clairvoyant) objective
is 1, since all tasks can be assigned to machines with matching speeds. However, any
online algorithm incurs a makespan of Q(K). Here is an informal argument, which can be
proved even for randomized algorithms against oblivious adversaries: since there is no way
to distinguish between the tasks, the algorithm can at best run all the alive tasks at the
same speed. The tasks in Tk (j) will be the first to finish by time f”(% > 1 where the
14

£0¢
inequality follows from the increasing capacity assumption. At this time, the processing on
tasks from Ty(j) for £ < K has been very small, and so tasks in Tx_1(j) will require about
1/2 more units of time to finish, and so on. <

3 The Scheduling Algorithm

The scheduling algorithm assigns, at each time ¢, a rate L to each unfinished task v. The
following lemma (whose proof is deferred to the appendix) characterizes rates that correspond
to schedules:

» Lemma 6. A schedule S is feasible if for every time t and every value of k:
(%) the total rate assigned to any subset of k tasks is at most y - S.

For each time ¢, we now specify the rates L! assigned to each unfinished task v. For
job 7, let T%(j) be the set of tasks in T'(j) which are alive at time ¢. Initially all tasks are
unfrozen. We raise a parameter 7, starting at zero, at a uniform speed. The values taken by
7 will be referred to as moments. For each job j and each task v € T*(j) that is unfrozen,
define a tentative rate at T to be

T (1)

Wi
Lf} = J
1T (5)]
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Hence the tentative rates of these unfrozen tasks increase linearly, as long as condition (x) is
satisfied. However, if (x) becomes tight for some subset V' of alive tasks, i.e., > o Li =
v - Sjv|, pick a maximal set of such tasks and freeze them, fixing their rates at their current
tentative values. (Observe the factor of v appears on the right side because we assume the
machines in the algorithm to have a speedup of 7.) Now continue the algorithm this way,
raising 7 and the Lf values of remaining unfrozen tasks v until another subset gets tight,

etc., stopping when all jobs are frozen. This defines the Lf rates for each task v for time ¢.

By construction, these rates satisfy ().

3.1 Properties of the Rate Assignment

The following claim shows that all alive tasks corresponding to a job get frozen simultaneously.

» Lemma 7 (Uniform Rates). For any time t and any job j, all its alive tasks (i.e., those in
Tt(§)) freeze at the same moment T, and hence get the same rate.

Proof. For the sake of contradiction, consider the first moment 7 where a maximal set V' of
tasks contains v but not v’, for some job j with v,v" € T'(j). Both v,v" have been treated
identically until now, so L{, = L{,. Also, by the choice of 7, 3=, .z, Li, + Lj, = 7Sy
Since we maintain feasibility at all moments,

ZuEV:u#v LZ + L1t) + Lf}’ < rYS|VH‘1 and Zuev:u;év LL < ’YS|V‘_1 :

This implies L}, > vs)y| and L!, < sy |41. Since L! = LI, and s)y/| > sjy|11, all of these
must be equal. In that case, by the maximality of set V', the algorithm should have picked
V U {v'} instead of V. <

For a task v € T"(j), define w'(v) := w;/|T*(j)| to be task v’s “share” of the weight of
job j at time ¢. So if task v freezes at moment 7, then its rate is L!, = w'(v) - 7. Let us relate
this share for v to certain averages of the weight. (Proof in Appendix B)

» Corollary 8. Fix a time t. Let V be the set of tasks frozen by some moment 7. For a task
veV,

(i) if V' CV is any subset of tasks which freeze either at the same moment as v, or after
it, then 2o > w(V')
’ syl = Sy
(ii) if V"' CV is any subset of tasks which freeze either at the same moment as v, or before

i t ~t v
it, then wL(;) < ),

wlev! L{)/

3.2 Defining the Blocks

The rates for tasks alive at any time t are defined by a sequence of freezing steps, where
some group of tasks are frozen: we call these groups blocks. By Lemma 7, all tasks in T%(j)
belong to the same block. The weight w(B) of block B is the total weight of jobs whose
tasks belong to B. Let B, B, ... be the blocks at time ¢ in the order they were frozen, and
7i, 78, ... be the moments at which they froze. Letting b := |Bf U...U BL|, we get that any
task v € By, satisfies 7, - w(B}) = v(Syr | — Sir).-

Each block B! has an associated set of machines, namely the machines on which the
tasks in this block are processed — i.e., the machines indexed b._; + 1,...,b.. We use m(B)
to denote the set of machines associated with a block B. Since |B| = |[m(B)| and the jobs in
B are processed on m(B) in a pre-emptive manner at time ¢, the rate assigned to any job is
at least the slowest speed (and at most the fastest speed) of the machines in m(B).

3:5

APPROX/RANDOM 2021



3:6

Bag-Of-Tasks Scheduling on Related Machines

4 The Analysis and Intuition

We prove the competitiveness by a dual-fitting analysis: we give a primal-dual pair of LPs,
use the algorithm above to give a feasible primal, and then exhibit a feasible dual with value
within a small factor of the primal cost.

In the primal LP, we have variables x;,; for each task v, machine 7, and time ¢ denoting
the extent of processing done on task v at machine ¢ during the interval [t,t + 1]. Here U, ;
denotes fraction of job j finished at or after time ¢, and C; denotes the completion time of
job 7.

min } . w;Cs + 32, w;ilje

Ujt = 2pse 20 5t V4, Yo € T(4),Vt (2)

Cj =02 % Vi, Vv € T(j) 3)

2idu =1 Vi, Vv € T(j) (4)
P | Vi, Vit (5)

The constraint (2) is based on precedence-constrained LP relaxations for completion time.
Indeed, each job can be thought of as a star graph with a zero size task at the root preceded
by all the actual tasks at the leaf. In our LP, for each time ¢, we define U;, € [0, 1] to be the
maximum over all tasks v € T'(j) of the fraction of v that remains (the RHS of (2)), and the
completion time of j is at least the total sum over times ¢ of U;; values. Since we do not
explicitly enforce that a task cannot be processed simultaneously on many machines, the
first term y w;C; is added to avoid a large integrality gap. We show feasibility of this LP
relaxation (up to factor 2) in §C.

> Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at
most 2 cost(S).

The linear programming dual has variables «; 4,0, 4,05+ corresponding to constraints
(4),(3),(2) for every job j and task v € T(j), and 5, ; corresponding to constraints (5) for
every machine ¢ and time ¢:

max.y ., o=, Pit

Go < Bt 5 Bt g Sy v VE YL € T(j) (6)
Yver(j) div S W; \Z] (7)
2ver(j) Gt S wj Vj,t (8)

We now give some intuition about these dual variables. The quantity ¢; ., should be
thought of the contribution (at time t) towards the weighted flow-time of j. Similarly, d,, is
global contribution of v towards the flow-time of v. (In the integral case, d;, would be w;
for the task which finishes last. If there are several such tasks, d;, would be non-zero only
for such tasks only and would add up to w;). The quantity «;, can be thought of as v’s
contribution towards the total weighted flow-time, and f; ; is roughly the queue size at time
t on machine i. Constraint (6) upper bounds «; , in terms of the other dual variables. More
intuition about these variables can be found in §4.2.
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4.1 Simplifying the dual LP

Before interpreting the dual variables, we rewrite the dual LP and add some additional
constraints. Define additional variables o, for each job j and task v € T'(j) and time ¢,
such that variable o, = >, j ¢+ We add a new constraint:

Z’UGT(j) aj,l),t S wj (9)

This condition is not a requirement in the dual LP, but we will set «; . to satisfy it.

Assuming this, we set d;,+ := ;¢ for all jobs j, tasks v € T'(j) and times t; feasibility
of (9) implies that of (8). Moreover, (6) simplifies to

Ot/ Bi, 90
Yz g SIS
Observe that we can write p, as the sum of the rates, and hence as p, =, Lf},. Since this
is at least 3,5, L% for any ¢, we can substitute above, and infer that it suffices to verify the
following condition for all tasks v € T'(j), time ¢, and time ¢’ > ¢:
ST A P
e (10)

Si

Henceforth, we ensure that our duals (including «; . +) satisfy (9),(10) and (7).

4.2 Interpreting the Duals and the High-Level Proof Idea

We give some intuition about the dual variables, which will be useful for understanding the
subsequent analysis. We set dual variables o, such that for any job j, the sum > eT(j) Yiw
is (approximately) the weighted completion of job j. This ensures that > 0 Qv 1s the total
weighted completion of the jobs. One way of achieving this is as follows: for every time ¢
and task-job pair (j,v) we define «; , ¢ variables such that they add up to be w; if job j is
unfinished at time ¢ (i.e., (9) is satisfied with equality). If o, is set to D, aj . ¢, then these
o variables would add up to the weighted completion time of j.

The natural way of defining «; . ; is to evenly distribute the weight of j among all the
alive tasks at time ¢, i.e., to set o = TT—(J]) This idea works if we only want to show that
the algorithm is O(logn)-competitive, but does not seem to generalize if we want to show
O(K)-competitiveness. The reason for this will be clearer shortly, when we discuss the 4; ,
variables.

Now we discuss 3; ; dual variables. We set these variables so that Zt Bi+ is a constant
(less than 1) times the total weighted completion time. This ensures that the objective value
of the dual LP is also a constant times the total weighted completion time. A natural idea
(ignoring constant factors for now) is to set 5, = 1%2?, where A is the set of alive jobs
at time ¢t and ¢ is the speed class of machine i. Since we have put an Q(K) term in the
denominator of f;; (and no such term in the definition of ), ensuring the feasibility of (6)
would require a speed augmentation of Q(K).

Finally, consider the ¢;, dual variables. As (7) suggests, setting ¢;, is the same as
deciding how to distribute the weight w; among the tasks in T'(j). Notice, however, that
this distribution cannot depend on time (unlike «;, ; where we were distributing w; among
all the alive tasks at time ¢). In the ideal scenario, tasks finishing later should get high 4, ,
values. Since we are in the non-clairvoyant setting, we may want to set d;, = K;”'Z—;)‘ We

now argue this can lead to a problem in satisfying (10).

Consider the setting of a single unit-weight job j initially having n tasks, and so we
set 0, = % for all v. Say that n = my for a large value of £: by the increasing capacity
assumption, my &~ m1 + ...+ my. Now consider a later point in time ¢ when only n’ tasks

3:7
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remain, where n’ = my for some speed class £/ < £. At this time ¢, each of the n’ surviving
tasks have aj,; = —. But look at the RHS of (10), with machine i of speed class ¢. The

rate L will be very close to oy (again, by the increasing capacity assumption), and so both
0'[/
myoy

this constraint will not be satisfied. In fact, we can hope to satisfy (10) at some time ¢ only if
n' is close to n, say at least n/2. When the number of alive tasks drops below n/2, we need
to redistribute the weight of j among these tasks, i.e., we need to increase the ¢, , value for
these tasks, to about ﬁ Since these halving can happen for logn steps, we see that (3) is
violated by a factor of logn. These ideas can be extended to give an O(logn+ K )-competitive
algorithm for arbitrary inputs; see §5 for details. To get a better bound, we need a more
careful setting of the dual variables, which we talk about in §6 and §7.

the terms would be about . However, myo, could be much larger than my oy, and so

5 Analysis I: A Weaker O(K + logn) Guarantee

We start with a simpler analysis which yields an O(K +log n)-competitiveness. This argument
will not use the increasing capacity assumption from Assumption 3; however, the result
gives a competitiveness of O(max(K,logn)) which is logarithmic when K is small, whereas
our eventual result will be O(min(K°™"), K + logn)), which can be much smaller when
K < logn.

» Theorem 10. The scheduling algorithm in §3 is O(K + logn)-competitive.

Proof. For each job j, we arrange the tasks in 7'(j) in descending order of their processing
requirements. (This is the opposite of the order in which they finish, since all alive tasks of a
job are processed at the same rate.) Say the sequence of the tasks for a job j is v1,...,v,. We
partition these tasks into groups with exponentially increasing cardinalities: T} (j) := {v1},
Ty(j) := {va,v3}, and Ty(5) := {von-1,...,von_1} has 277! tasks. (Assume w.l.o.g. that
r 4 1 is a power of 2 by adding zero-sized tasks to T'(j)). Now we define the dual variables.

Dual Variables. Define v := 2max{K,log, n}.
For a time ¢ and machine i of speed class £, let A® denote the set of active (unfinished)

At
jobs at time ¢, and define f3; ; := w(d’) .
me -7y W
For job j and a task v € Tj,(j) in the h-th group, define §;,, := ﬁ )
Y

In order to define «;,, we first define quantities o, for every time ¢, and then set
Qjy =Y, . At time ¢, recall that T(j) is the set of alive tasks of job j, and define

w; — W

Aj ot = 7 L(waliv im v» “Lwert(y)) -

K |Tt(j)| (v alive at time t) |Tt(])‘ (veTt(5))

This “spreads” the weight of j equally among its alive tasks.

Having defined the dual variables, we first argue that they are feasible.

» Lemma 11 (Dual feasibility). The dual variables defined above always satisfy the con-
straints (9), (7) and(10) for a speed-up factor v > 2max{K,log,n}.

Proof. To check feasibility of (7), consider a job j and observe that
ZvGT(j) Sjo = D Z’UGTh,(j) Sjw = 2 ZUGTh(j) 2;57317 = 2 % < wj,

because |T},(j)| = 2"~! and there are at most log, n < 7 distinct groups. Feasibility of (9)
also follows easily. It remains to check (10) for a job j, task v, machine 7 and times ¢’ < ¢.
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If v is not alive at time #', then ;. is 0, and (10) follows trivially. Else, v € T (5),
and suppose v € Tj(j). This means the jobs in T1(j),...,Th_1(j) are also alive at time
', so [TV ()| > 142+ ...+ 2"2 4+ 1 = 2", Furthermore, suppose the tasks in T (§)
belong to block B (defined in §3.1), and let £* be the speed class with the slowest machines
among the associated machines m(B). Let ¢ denote the speed class of machine ¢ (considered
n (10)). Two cases arise: the first is when ¢ > ¢*, where LY > ~vop > ~yoy = 74, so (10)
holds because

t/

— w; wj o _ 9j.0Ly

Qjoy = oo oy = -8, < Yl
ot 7@l = 2 T = T

The second case is ¢ < £*: Let V C At be the set of jobs which are frozen by the moment
v freezes. In other words, V' contains tasks in block B and the blocks before it. Applying
the second statement in Corollary 8 with V' =V,

w' (V) wlV) o wa?)

_ Y J < _r )
t/ — t/ — . ’
g s LY, § ,_ LY, Y meoe
v'ev v v/'ev v

where the last inequality uses the fact that all machines of speed class ¢ are busy processing
jobs in V. Therefore,

w4 <
T ()L =

w; w(Atl)-ij/ Bi, -Lf)/
Qjv,t! |Tt,J(j)\ < Yoy = ;1 ?
the last inequality useing the definition of §;, and that w(A*) > w(A"). <

Finally, we show that the dual objective value for this setting of dual variables is close to
the primal value. It is easy to check that 3°, a; = 37, w(A"), which is the total weighted
completion time of the jobs. Moreover,

w(At
SiiBit = T N, A = K5 w(AY)

Since we chose speedup v = 2max{ K, log, n}, we have K < /2 and the dual objective value
D jw % — 2y B is at least half of the total weighted completion time (primal value).
This completes the proof of Theorem 10. <

6 Analysis II: An Improved Guarantee for a Single Job

We want to show that the competitiveness of our algorithm just depends on K, the number
of speed classes. To warm up, in this section we consider the special case of a single job;
in §7 we consider the general case. As was shown in Proposition 5, any algorithm has
competitive ratio Q(K) even in the case of a single job. We give a matching upper bound
using dual fitting for an instance with a single job j, say of weight 1, when the machines
satisfy Assumption 3.

» Theorem 12. [f the machines satisfy Assumption 3, the scheduling algorithm in §3 is
O(K?)-competitive for a single job.

6.1 The Intuition Behind the Improvement

The analysis in §5 incurred Q(logn)-competitive ratio because we divided the execution of
the tasks of each job into O(logn) epochs, where each epoch ended when the number of tasks
halved. In each such epoch, we set the ¢;, variables by distributing the job’s weight evenly
among all tasks alive at the beginning of the epoch. A different way to define epochs would
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be to let them correspond to the time periods when the number of alive tasks falls in the
range (mg, mey1). This would give us only K epochs. There is a problem with this definition:
as the number of tasks vary in the range (mg, me41), the rate assigned to tasks varies from
0¢ to op41. Indeed, there is a transition point my in (mg, mey1) such that the rate assigned
to the tasks stays close to oy41 as long as the number of tasks lie in the range (Mg, 0p11);
but if the number of tasks lie in the range (my, my), the assigned rate may not stay close to
any fixed value. However, in this range, the total processing rate assigned to all the tasks
stays close to myoy.

It turns out that our argument for an epoch (with minor modifications) works as long as
one of these two facts hold during an epoch: (i) the total rate assigned to the tasks stays
close to myoy for some speed class ¢ (even though the number of tasks is much larger than
my), or (ii) the actual rate assigned to the tasks stays close to oy. Thus we can divide the
execution of the job into 2K epochs, and get an O(K)-competitive algorithm. In this section,
we prove this for a single job; we extend to the case of multiple jobs in §7 (with a slightly
worse competitiveness).

6.2 Defining the New Epochs

Before defining the dual variables, we begin with a definition. For each speed class ¢, define
the threshold my to be the following:

771[ = Uzl+1 (01m1 —+ 4 ngg) . (11)

The parameter my is such that the processing capacity of m, machines of class £ 4+ 1 equals
the combined processing capacity of machines of class at most £. The increasing capacity
assumption implies my < my < my41, as formalized below:

> Claim 13. Define My := my+...+my and Mg := My +my. Under the increasing capacity
Assumption 3 and k = 2, for any speed class £, we have

(a) 2my < myyq and so, M, < Myyq,

(b) M > 2M,,

(c) myoe > %ﬁuw“, and

(d) me > 2my.

Proof. Fact (a) follows from the increasing capacity assumption and the definition of the
threshold, since 2771@0’@+1 < o¢41mye41. This implies Mg =M;+my < My + mey1 < Myiq.
Proving (b) is equivalent to showing m, > My, which follows from the definition of m, and
the fact that op41 < o; for all ¢ < £. The last two statements also follow from the increasing
capacity assumption. <

We identify a set of 2K break-points as follows: for each speed class ¥, let t, denote the
first time when M, alive tasks remain. Similarly, let to be the first time when exactly ]\Z
alive tasks remain. Note that t;4; < ivg < ty. Let E be the tasks which finish during [t4+1,ivg],
and Fy be those which finish during [Eg, te]. Let ﬁ and f; denote the cardinality of ﬁe and
Fy respectively. Note that ﬁ =M1 — ]\Z = Mmyy1 — My, fo = J,\\/.ﬂ — M, = my.

> Claim 14. For any speed class ¢, we have f; < fz < foi1-

Proof. The first statement requires that my < my11 — my. This is the same as 2my < myyq,
which follows from Claim 13 (a). The second statement requires that my; — my < Mmysq,
e, mer1 < My + Meyr. But mypq < myoq (by Claim 13 (d)), hence the proof. <
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M, M, My .
L 1 machines
7711{ me41 — ﬁlﬂ
My tasks alive here M[ tasks ... M, tasks ...
» time
T J T L
tot1 te te
E: tasks that finish here Fy: tasks that finish here
= |Fy| = Mepr — My = mgsq — i Jei= |Fil = My = Mg = e

Figure 1 Defining breakpoints.

Next we set the duals. Although it is possible to directly argue that the delay incurred
by the job in each epoch is at most (a constant times) the optimal objective value, the dual
fitting proof generalizes to the arbitrary set of jobs.

6.3 Setting the Duals

Define the speed-up v > > 2K. We set the duals as:

oT@ if veFy
Define §;,, := { 1{ foekF
2K fe ¢

For machine i of class ¢, define 3;; := 5 K i7" L(not all tasks finished) -
Finally, as in §5, we define a;, ¢ for each task v of job j, and then set o, 1= >, vt
To define «; , ¢, we consider two cases (we use n; to denote the number of alive tasks at
time ¢):

1. n, € [My, My) for some £: Then oo := (1/74) - 1(y alive at time ¢)-

2. ng € [My, Myyq) for some £: Then ;v = (1/f0) - Lwer,)-
Note the asymmetry in the definition. It arises because in the first case, the total speed
of machines processing a task is (up to a constant) msoy, whereas in the second case the

average speed of such machines is about oy1.

» Lemma 15 (Dual feasibility). The dual variables defined above always satisfy the con-
straints (7) and (9), and satisfy constraint (10) for speed-up v > 2K.

Proof. It is easy to check from the definition of ;, and ¢, that the dual constraints (7)
and (9) are satisfied. It remains to verify constraint (10) (re-written below) for any task v,
machine 4, times ¢t and ¢’ > t.
LY
Qjypr < S—v “(Bit +650) - ((10) repeated)
K3
As in the definition of a4, there are two cases depending on where ny lies. First assume
that there is class £* such that My« < ny < M. Assume that v is alive at time ¢’ (otherwise
iy 18 0), 80 gy = ni, where ny is the number of alive tasks at time ¢’. Being alive at
t,

this time ¢/, we know that v will eventually belong to some Fy with £ < £*, or in some F,
with £ < £*. So by Claim 14, 8;,, > gr=7—. Moreover, let i be a machine of some class ¢, so
s; = 0¢. Hence, it is enough to verify the following in order to satisfy (10):

1 Lt 1 1
_ < 2. . 12
ngy 0Oy <2K-mg+2K~f£*> ( )

Two subcases arise, depending on how ¢ and £* relate — in each we show that just one of the
terms on the right is larger than the left.
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£* > £: Since at least My« tasks are alive at this time, the total speed assigned to all the
alive tasks at time ¢’ is at least -y - op«my«. Therefore, Ltvl > YMergex - Now using 7y > 2K,

Ny

we get

’

Lt MMy~ T p* 1 1
L > 8L >

2K -myoy Mmeoy Ny Ny

)

where the last inequality follows from the increasing capacity assumption.
0¥ < ¢ —1: The quantity ij ny is the total speed of the machines which are busy at time
t', which is at least y(myo1 + ...+ mypx0ope) =y - Myps0ps 1. Again, using v > 2K, we get

/7 ~
Lf} s Ny Myx0gx41
2K - forop T feroq

because g« y1 > oy and Mg« = fyx.
Thus, (12) is satisfied in both the above subcases.
Next we consider the case when there is a speed class ¢* such that My« < ny < My«yq.

We can assume that v € Fj«, otherwise «;, ¢ is 0; this means d,; = ﬁ Since
Qjo = ﬁ = ﬁ, and LY >~ - 0441, the expression (10) follows from showing
1 v 1 1
Myx - oy <2K‘mg+2K'fg*> el ( )

Since v > 2K, we can drop those terms. Again, two cases arise:
¢ > 0: By definition, o«41 - Mgr > gy > opmy (by the increasing capacity assump-
tion).
£* < ¢ —1: Since fpr = mys and oy < opx11, this case also follows easily. <

Proof of Theorem 12. Having checked dual feasibility in Lemma 15, consider now the
objective function. For any time ¢ when at least one task is alive, ), ;. = 1. Therefore,
>, Qo is the makespan. Also, >, 8;: = 1/2 as long as there are unfinished tasks, so
> i+ it is half the makespan, and the objective function >, o, — >, , Bt also equals
half the makespan. Since we had assumed v = O(K)-speedup, the algorithm is O(K)-
competitive. <

7  Analysis lll: Proof for O(K?®) Guarantee

We now extend the ideas from the single job case to the general case. We only discuss the
proof outline here, and refer the readers to the full version for details. For time ¢, let A* be
the set of alive jobs at time ¢. Unlike the single job case where we had only one block, we can
now have multiple blocks. While defining «;,; in the single job case, we had considered two
cases: (i) the rate assigned to each task stayed close to oy for some class £ (this corresponded
to ng € []T/fg,l, My)), and (ii) the total rate assigned to each task was close to mgoy for speed
class ¢ (this corresponded to n; € [My, Mg)). We extend these notions to blocks as follows:
Simple blocks: A block B is said to be simple w.r.t. to a speed class /¢ if the average rate
assigned to the tasks in B is close to gy. Similarly a job j is said to be simple w.r.t. a speed
class £ if all the alive tasks in it are assigned rates close to o, (recall that all alive tasks in
a job are processed at the same rate). All the jobs in a simple block B may not be simple
(w.r.t. the same speed class £), but we show that a large fraction of jobs (in terms of weight)
in B will be simple. Thus, it is enough to account for the weight of simple jobs in B. This is
analogous to case (i) mentioned above (when there is only one job and tasks in it receive rate
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close to /). In §6, we had defined «; ,, ; for such time ¢ as follows: we consider only those
tasks which survive in Fy, and then evenly distribute w; among these tasks. The analogous
definition here would be as follows: let 7, ; be the last time when j is simple w.r.t. the speed
class £. We define o, ; by evenly distributing w; among those tasks in v which are alive at
T¢,5- We give details in the full version.
Long blocks: The total speed of the machines in this block stays close to myoy for some
speed class £. Again, inspired by the definitions in §6, we assign «; , + for tasks v € B by
distributing w(B) to these tasks (in proportion to the rate assigned to them). From the
perspective of a job j which belongs to a long block B w.r.t. a speed class oy at a time ¢,
the feasibility of (6) works out provided for all subsequent times ¢’ when j again belongs
to such a block B’, we have w(B’) and w(B) remain close to each other. If w(B’) exceeds
(say) 2w(B), we need to reassign a new set of ¢, , values for v. To get around this problem
we require that long blocks (at a time t) also have weight at least w(A")/(10K). With this
requirement, the doubling step mentioned above can only happen O(log K) times (and so
we incur an additional O(log K) in the competitive ratio). The details are given in the full
version. Blocks which were cheaper than w(A")/(10K) do not create any issue because there
can be at most K of them, and so their total weight is small in comparison to w(A?).
Short blocks: Such blocks B straddle two speed classes, say ¢ and ¢ + 1, but do not contain
too many machines of either class (otherwise they will fall into one of the two categories
above). We show in the full version that the total weight of such blocks is small compared
to w(A?). The intuitive reason is as follows: for any two consecutive short blocks B; and
B,, there must be blocks in between them whose span is much longer than Bs. Since these
blocks freeze before Ba, their total weight would be large compared to w(Bs).

In the overall analysis, we charge short blocks to simple and long blocks, and use dual
fitting as indicated above to handle simple and long blocks.

8 Discussion

Several interesting problems remain open. (i) Can we close the gap between lower bound of
Q(K) and upper bound of O(K?log? K)? (ii) Can we prove an analogous result for weighted
flow-time (with speed augmentation)? (iii) Can we generalize this result to the unrelated
machines setting? (iv) Our lower bound of Q(K')-competitive ratio relies on non-clairvoyance;
can we prove a better bound if the processing times of tasks are known at their arrival
times?
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A Missing Proofs of Section 2

» Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3
by losing a factor O(vK) in the competitive ratio.

Proof. We show how to transform the instance so that it satisfies the increasing capacity
assumption, while losing only O(K)-factor in the competitive ratio. For sake of brevity, let
denote the constant 64.

For a speed class ¢, let Cy denote myoy, i.e., the total processing capacity of the machines
in this speed class. Starting from speed class 1, we construct a subset X of speed classes as
follows: if £ denotes the last speed class added to X, then let £ > ¢ be the smallest class
such that Cy > 2kCy. We add ¢ to X and continue this process till we have exhausted all
the speed classes.

Consider the instance Z’ in which the set of jobs is the same as those in Z, but there
are KXm, machines of speed class ¢ for each ¢ € X. For a speed class ¢ € X, let C} denote
2k Kmyop, which is at most the total capacity of the speed class £ machines in Z’. Let us now
consider the optimal solutions of the two instances. We first observe that opt(Z’) < opt(Z).
Consider two consecutive speed classes 1 < ¢5 in X. From the definition of X, we see that

él > Zfi;ll C). Therefore all the processing done by a solution to Z on machines of speed
class [(1,¢5) during a timeslot [t,t 4 1] can be performed on machines of speed class ¢; in Z'
during the same timeslot. Therefore, opt(Z’) < opt(Z).

For the converse statement, it is easy to see that if we give 2k K speedup to each machine
in Z, then the processing capacity of each speed class in 7 is at least that in Z’. Therefore,
opt(Z) < 2kKopt(Z'). Therefore, replacing Z by Z’ will result in O(kK) loss in competitive
ratio. It is also easy to check that Z’ satisfies increasing capacity assumption.

Observe that the conversion from Z to Z’ can be easily done at the beginning — we just
need to identify the index set X, and use only these for processing. The factor K loss
in competitive ratio is also tight for the instance Z where all speed classes have the same
capacity. <
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B Missing proofs of Section 3

» Lemma 6. A schedule S is feasible if for every time t and every value of k:
() the total rate assigned to any subset of k tasks is at most y - Sy.

Proof. The rates assigned to tasks change only when one of these events happen: (i) a new
job j arrives, (ii) an existing task finishes. Assuming that the job sizes, release dates are
integers, we can find a suitable § > 0 (which will also depend on the speeds of the machines)
such that all the above events happen at integral multiples of §.

Consider an interval [t,t 4 ), where ¢ is an integral multiple of 5. We need to show that
if L!’s satisfy the condition (x), then we can build a feasible schedule during [t,t + §). By
feasibility, we mean that each task v can be processed to an extent of p, := L! - § extent and
at any point of time, it gets processed on at most one machine.

We follow a greedy strategy to build the schedule. Suppose we have built the schedule
till time ¢ € [¢,¢ + §). At time ¢, we order the tasks in descending order of the remaining
processing requirement for this slot (at time ¢, each task v has processing requirement of p, ).
Let the ordered tasks at time t' be vy, ..., v,. We schedule v; on machine 3.

Suppose for the sake of contradiction, a task v* is not able to complete p,» amount of
processing. We first make the following observation:

> Claim 16. Let v and v’ be two tasks such that at some time t’ € [t,t + §), we prefer v to
v’ in the ordering at time ¢’. Then if v' does not complete p,» amount of processing during
[t,t + d), then neither does v.

Proof. Since we prefer v at time ', v has more remaining processing time. If we never prefer
v’ to v after time ¢’, then v always has more remaining processing requirement than v’ during
this interval. If we prefer v’ to v at some point of time during (¢',¢ + d), then it is easy to
check that the remaining processing requirements for both v and v’ will remain the same.
The result follows easily from this observation. <

Starting from {v*}, we build a set S of tasks which has the following property: if v € S,
then we add to S all the tasks v’ such that v’ was preferred over v at some point of time
during [¢,t+ ). Repeating application of Claim 16 shows that none of these tasks v complete
Py amount of processing during [¢,t + d). Let m denote |S|. We note that only tasks in S
would have been processed on the first m machines during [t, ¢ + 0) — otherwise, we can add
more tasks to S. Since none of these tasks finish their desired amount of processing during
this interval, it follows that

Y Do S .

veS

Since p, = 6L%, we see that the set of tasks in S violates (x). This is a contradiction, and so
such a task v* cannot exist. |

» Corollary 8. Fix a timet. Let V be the set of tasks frozen by some moment 7. For a task
vevV,
(i) if V! CV is any subset of tasks which freeze either at the same moment as v, or after

it then 2@ > w(V)
’ sivi = Sy
(ii) if V"' CV is any subset of tasks which freeze either at the same moment as v, or before
it, then w;(;) < wt (V') 1

wlev! L{)/
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Proof. For any task v’, let 7, be the value of 7 at which v’ freezes. We know that

Z @' (V) - T =S|y (14)

v'eV
Since 3, ey foy @' (V') - Tor < ¥Sjy1 by feasibility, it follows that
@' (V) - Ty = Y8y (15)

Now for all v' € V’, we have 7, > 7, so

@VYn o= 3w < Y @) < Y @) 2 sy
v’ eV’ v'ev’ v’ eV
Hence, the first claim follows:
W) W oy V)
S|v| To Siv|
For the second claim,
> Ly = Y @lm < @V m
v eV eV
The claim now follows by the definition L! = w*(v) - 7. <

C Missing Proofs of Section 4

> Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at
most 2 cost(S).

Proof. Consider a schedule S, and let z;,; be the extent of processing done on a task v
(belonging to job j) during [t,t + 1] on machine i. More formally, if the task is processed for
¢ units of time on machine ¢ during this time slot, then we set x;,; to € - s;. Constraint (4)
states that every task v needs to be processed to an extent of p,, whereas (5) requires that
we cannot do more than s; unit of processing in a unit time slot on machine i. Now we verify
verify (3). Consider a task job j and a task v belonging to it. The total processing time of v
is

3> x;f’t. (16)

: i
2,t

The completion time Fj of j is at least the processing time of each of the tasks in it. Finally,
we check (2). Define Fj; to be 1 if j is alive at time ¢t. The RHS of this constraint is the
fraction of v which is done after time ¢; and so if this is non-zero, then Fj, is 1. This shows
the validity of this constraint.

In the objective function, the first term is the total weighted completion time of all the
jobs. The second term is also the same quantity, because Fj is equal to EtZr]- Fjq. <



