
Bag-Of-Tasks Scheduling on Related Machines

Anupam Gupta �

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Amit Kumar �

Computer Science and Engineering Department, Indian Institute of Technology, Delhi, India

Sahil Singla �

Department of Computer Science, Princeton University, NJ, USA

Abstract

We consider online scheduling to minimize weighted completion time on related machines, where

each job consists of several tasks that can be concurrently executed. A job gets completed when all

its component tasks finish. We obtain an O(K3 log2
K)-competitive algorithm in the non-clairvoyant

setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting

on a precedence-constrained LP relaxation that may be of independent interest.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-

tion → Scheduling algorithms

Keywords and phrases approximation algorithms, scheduling, bag-of-tasks, related machines

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.3

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2107.06216

Funding Anupam Gupta: Supported in part by NSF awards CCF-1907820, CCF1955785, and

CCF-2006953.

1 Introduction

Scheduling to minimize the weighted completion time is a fundamental problem in scheduling.

Many algorithms have been developed in both the online and offline settings, and for the

cases where machines are identical, related, or unrelated. Most of the work, however, focuses

on the setting where each job is a monolithic entity, and has to be processed in a sequential

manner.

In this work, we consider the online setting with multiple related machines, where each

job consists of several tasks. These tasks are independent of each other, and can be executed

concurrently on different machines. (Tasks can be preempted and migrated.) A job is

said to have completed when all its component tasks finish processing. We consider the

non-clairvoyant setting where the algorithm does not know the size of a task up-front, but

only when the task finishes processing. Such instances arise in operating system schedulers,

where a job and its tasks correspond to a process and its threads that can be executed in

parallel. This setting is sometimes called a “bag of tasks” (see e.g. [2, 10, 4]).

The bag-of-tasks model can be modeled using precedence constraints. Indeed, each job is

modeled as a star graph, where the tasks correspond to the leaves (and have zero weight),

and the root is an auxiliary task with zero processing requirement but having weight wj .

Hence the root can be processed only after all leaf tasks have completed processing. The goal

is to minimize total weighted completion time. Garg et al. [7] gave a constant-competitive

algorithm for this problem for identical machines, in a more general setting where tasks form

arbitrary precedence DAGs.

© Anupam Gupta, Amit Kumar, and Sahil Singla;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
mailto:amitk@cse.iitd.ac.in
mailto:singla@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.3
https://arxiv.org/abs/2107.06216
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Bag-Of-Tasks Scheduling on Related Machines

We extend this result to the setting of related machines where machine i has speed si.

By losing a constant factor, we assume that all speeds are powers of some constant C. Let K

denote the number of distinct machine speeds. In §2, we show that this problem is strictly

more challenging than in the identical machines setting:

▶ Theorem 1 (Lower Bound). Any online non-clairvoyant algorithm has Ω(K) competitive

ratio for bags-of-tasks on related machines.

The lower bound arises because we want to process larger tasks on fast machines, but we

have no idea about the sizes of the tasks, so we end up clogging the fast machines with small

tasks: this issue did not arise when machines were identical. Given the lower bound, we now

look for a non-clairvoyant scheduling algorithm with a competitive ratio that depends on K,

the number of distinct speeds. This number may be small in many settings, e.g., when we

use commodity hardware of a limited number of types (say, CPUs and GPUs). Our main

result is a positive answer to this question:

▶ Theorem 2 (Upper Bound). The online non-clairvoyant algorithm for bags-of-tasks on

related machines has a competitive ratio of §3 is O(min{K3 log2 K, K + log n}).

Our algorithm uses a greedy strategy. Instead of explicitly building a schedule, it assigns

(processing) rates to tasks at each time t. Such a rate assignment is called feasible if for

every k, the rate assigned to any subset of k tasks is at most the total speed of the k fastest

machines. Using an argument based on Hall’s matching theorem, a schedule exists if and

only if such a rate assignment can be found. To assign these rates, each alive task gets a

“priority”, which is the ratio of the weight of the job containing it to the number of alive tasks

of this job. In other words, a task with low weight or with many tasks gets a low priority.

We assign feasible rates to alive tasks in a “fair manner”, i.e., we cannot increase the rate of

a high priority task by decreasing the rate of a lower priority task. To efficiently find such

feasible rates, we use a water-filling procedure.

The analysis proceeds using the popular dual-fitting approach, but we need new ideas:

(i) we adapt the precedence-constrained LP relaxation for completion time in [5] to our

setting. A naive relaxation would define the completion time of a task as the maximum of

the (fractional) completion times of each of the tasks, where the fractional completion time

of a task is the sum over times t of the fraction of the task remaining at this time Instead,

we define Uj,t, for a job j and time t as the maximum over all tasks v for j of the fraction of

v which remains to be completed at time t, the completion time of j as
�

t Ujt. (See §4 for

details.) (ii) Although it is natural to divide the machines into classes based on their speeds,

we need a finer partitioning, which drives our setting of dual variables. Indeed, the usual

idea of dividing up the job’s weight equally among the tasks that are still alive only leads to

an O(log n)-competitiveness (see §5). To do better, we first preprocess the instance so that

distinct machine speeds differ by a constant factor, but the total processing capacity of a

slower speed class is far more than that of all faster machines. Now, at each time, we divide

the machines into blocks. A constant fraction of the blocks have the property that either

the average speed of the machines in the block is close to one of the speed classes, or the

total processing capacity of a block is close to that of all the machines of a speed class. It

turns out that our dual-fitting approach works for accounting the weight of jobs which get

processed by such blocks; proving this constitutes the bulk of technical part of the analysis.

Finally, we show that most jobs (in terms of weight) get processed by such blocks, and hence

we are able to bound the overall weighted completion time. We present the proofs in stages,

giving intuition for the new components in each of the sections.

A. Gupta, A. Kumar, and S. Singla 3:3

1.1 Related Work

Minimizing weighted completion time on parallel machines with precedence constraints has

O(1)-approximation in the offline setting: Li [9] improves on [8, 11] to give a 3.387 + ε-

approximation. For related machines the precedence constraints make the problem harder:

there is an O(log m/ log log m)-approximation [9] improving on a prior O(log K) result [5],

and an É(1) hardness under certain complexity assumptions [3]. Here m denotes the number

of machines. These results are for offline and hence clairvoyant settings, and do not apply to

our setting of non-clairvoyant scheduling.

In the setting of parallel machines, there has been recent work on minimizing weighted

completion time in DAG scheduling, where each job consists of a set of tasks with precedence

constraints between them given by a DAG [13, 1]. [7] generalized this to the non-clairvoyant

setting and gave an O(1)-competitive algorithm. Our algorithm for the related case is based

on a similar water-filling rate assignment idea. Since the machines have different speeds, a set

of rates assigned to tasks need to satisfy a more involved feasibility condition. Consequently,

its analysis becomes much harder; this forms the main technical contribution of the paper.

Indeed, even for the special case considered in this paper where every DAG is a star, we

can show a lower bound of Ω(K) on the competitive ratio of any non-clairvoyant algorithm.

In the full version, we show that any non-clairvoyant algorithm for related machines DAG

scheduling must have Ω
�

log m
log log m

�
-competitive ratio.

Our problem also has similarities to open shop scheduling. In open shop scheduling, each

jobs consists of several tasks, where each task v (for job j) needs to be processed on a distinct

machine for pvj amount of time. However, unlike our setting, two tasks for a job cannot

be processed simultaneously on different machines. [12] considered open shop scheduling in

the offline setting for related machines and gave a (2 + ε)-approximation. [6] considered a

further generalization of our problem to unrelated machines, where the tasks corresponding

to distinct jobs need not be disjoint. They gave a constant-factor approximation algorithm,

again offline.

1.2 Paper Organization

In this extended abstract, we first give the algorithm in §3, and the linear program in §4. A

simpler proof of O(K + log n)-competitiveness is in §5. We show poly(K)-competitiveness

for the case of a single job (which corresponds to makespan minimization) in §6, and then

give the complete proof for the general case in §7.

2 Problem Statement and the Ω(K) Hardness

Each job j has a weight wj and consists of tasks T (j) = {(j, 1), (j, 2), . . . , (j, kj)} for some

kj . Each task v = (j, ℓ) has an associated processing requirement/size pv = p(j,ℓ). The job j

completes when all its associated tasks finish processing. We use letters j, j′, etc. to denote

jobs, and v, v′, etc. to denote tasks (j, ℓ).

There are m machines with speeds s1 g s2 g . . . g sm. The goal is to minimize the

weighted completion time of the jobs. We allow task preemption and migration, and different

tasks of a job can be processed concurrently on different machines. However, a task itself

can be processed on at most one machine at any time. In this extended abstract we consider

the special case when all release dates are 0, but our results also extend to the more general

setting of arbitrary release dates (details in the full version). Let Sk := s1 + . . .+sk denote the

total speed of the fastest k machines. Since we care about the number of distinct speeds, we

assume there are K speed classes, with speeds Ã1 > Ã2 > . . . > ÃK . There are mi machines

having speed Ãi, where
�

i mi = m.

APPROX/RANDOM 2021

3:4 Bag-Of-Tasks Scheduling on Related Machines

▶ Assumption 3 (Increasing Capacity Assumption). For parameter µ g 1:

(1) (Falling Speeds.) For each ℓ, we have Ãi/Ãi+1 g 64.

(2) (Increasing Capacity.) For each ℓ, the total processing capacity of speed class ℓ is at least

twice that of the previous (faster) speed classes. I.e., mℓÃℓ g 2(m1Ã1 + . . . + mℓ−1Ãℓ−1).

(3) (Speed-up.) The algorithm uses machines that are µ times faster than the adversary’s

machines.

▶ Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3

by losing a factor O(µK) in the competitive ratio.

Proof. (Sketch) For the first part, we round down the speed of each machine to a power

of 64. This changes the completion time by at most a factor of 64. The second increasing

capacity assumption is not without loss of generality – we greedily find a subset of speed

classes by losing O(K) factor in competitive ratio (see details in Appendix A). Finally, the

µ-speedup can only change the competitive ratio by µ factor. ◀

Next we show that any online algorithm has to be Ω(K)-competitive even for a single job

with the machines satisfying increasing capacity Assumption 3.

▶ Proposition 5. Any online algorithm is Ω(K)-competitive even for a single job under

increasing capacity Assumption 3.

Proof. (Sketch) Consider a single job j with m tasks, where m is the number of machines.

For every speed class ℓ, there are mℓ tasks of size Ãℓ – call these tasks Tℓ(j). Since there is

only one job, the objective is to minimize the makespan. The offline (clairvoyant) objective

is 1, since all tasks can be assigned to machines with matching speeds. However, any

online algorithm incurs a makespan of Ω(K). Here is an informal argument, which can be

proved even for randomized algorithms against oblivious adversaries: since there is no way

to distinguish between the tasks, the algorithm can at best run all the alive tasks at the

same speed. The tasks in TK(j) will be the first to finish by time mKÃK�
ℓ

mℓÃℓ

g 1
2 , where the

inequality follows from the increasing capacity assumption. At this time, the processing on

tasks from Tℓ(j) for ℓ < K has been very small, and so tasks in TK−1(j) will require about

1/2 more units of time to finish, and so on. ◀

3 The Scheduling Algorithm

The scheduling algorithm assigns, at each time t, a rate Lt
v to each unfinished task v. The

following lemma (whose proof is deferred to the appendix) characterizes rates that correspond

to schedules:

▶ Lemma 6. A schedule S is feasible if for every time t and every value of k:

(⋆) the total rate assigned to any subset of k tasks is at most µ · Sk.

For each time t, we now specify the rates Lt
v assigned to each unfinished task v. For

job j, let T t(j) be the set of tasks in T (j) which are alive at time t. Initially all tasks are

unfrozen. We raise a parameter Ä , starting at zero, at a uniform speed. The values taken by

Ä will be referred to as moments. For each job j and each task v ∈ T t(j) that is unfrozen,

define a tentative rate at Ä to be

Lt
v :=

wj

|T t(j)|
· Ä . (1)

A. Gupta, A. Kumar, and S. Singla 3:5

Hence the tentative rates of these unfrozen tasks increase linearly, as long as condition (⋆) is

satisfied. However, if (⋆) becomes tight for some subset V of alive tasks, i.e.,
�

v∈V Lt
v =

µ · S|V |, pick a maximal set of such tasks and freeze them, fixing their rates at their current

tentative values. (Observe the factor of µ appears on the right side because we assume the

machines in the algorithm to have a speedup of µ.) Now continue the algorithm this way,

raising Ä and the Lt
v values of remaining unfrozen tasks v until another subset gets tight,

etc., stopping when all jobs are frozen. This defines the Lt
v rates for each task v for time t.

By construction, these rates satisfy (⋆).

3.1 Properties of the Rate Assignment

The following claim shows that all alive tasks corresponding to a job get frozen simultaneously.

▶ Lemma 7 (Uniform Rates). For any time t and any job j, all its alive tasks (i.e., those in

T t(j)) freeze at the same moment Ä , and hence get the same rate.

Proof. For the sake of contradiction, consider the first moment Ä where a maximal set V of

tasks contains v but not v′, for some job j with v, v′ ∈ T (j). Both v, v′ have been treated

identically until now, so Lt
v = Lt

v′ . Also, by the choice of Ä ,
�

u∈V :u ̸=v Lt
u + Lt

v = µS|V |.

Since we maintain feasibility at all moments,

�
u∈V :u ̸=v Lt

u + Lt
v + Lt

v′ f µS|V |+1 and
�

u∈V :u ̸=v Lt
u f µS|V |−1 .

This implies Lt
v g µs|V | and Lt

v′ f µs|V |+1. Since Lt
v = Lt

v′ and s|V | g s|V |+1, all of these

must be equal. In that case, by the maximality of set V , the algorithm should have picked

V ∪ {v′} instead of V . ◀

For a task v ∈ T t(j), define "wt(v) := wj/|T t(j)| to be task v’s “share” of the weight of

job j at time t. So if task v freezes at moment Ä , then its rate is Lt
v = "wt(v) · Ä . Let us relate

this share for v to certain averages of the weight. (Proof in Appendix B)

▶ Corollary 8. Fix a time t. Let V be the set of tasks frozen by some moment Ä . For a task

v ∈ V ,

(i) if V ′ ¦ V is any subset of tasks which freeze either at the same moment as v, or after

it, then "wt(v)
s|V |

g w(V ′)
S|V |

.

(ii) if V ′′ ¦ V is any subset of tasks which freeze either at the same moment as v, or before

it, then "wt(v)
Lt

v
f "wt(V ′′)�

v′∈V ′′ Lt

v′

.

3.2 Defining the Blocks

The rates for tasks alive at any time t are defined by a sequence of freezing steps, where

some group of tasks are frozen: we call these groups blocks. By Lemma 7, all tasks in T t(j)

belong to the same block. The weight w(B) of block B is the total weight of jobs whose

tasks belong to B. Let Bt
1, Bt

2, . . . be the blocks at time t in the order they were frozen, and

Ä t
1, Ä t

2, . . . be the moments at which they froze. Letting bt
r := |Bt

1 ∪ . . . ∪ Bt
r|, we get that any

task v ∈ Bt
r satisfies Ä t

v · w(Bt
r) = µ(Sbt

r+1
− Sbt

r
).

Each block Bt
r has an associated set of machines, namely the machines on which the

tasks in this block are processed – i.e., the machines indexed bt
r−1 + 1, . . . , bt

r. We use m(B)

to denote the set of machines associated with a block B. Since |B| = |m(B)| and the jobs in

B are processed on m(B) in a pre-emptive manner at time t, the rate assigned to any job is

at least the slowest speed (and at most the fastest speed) of the machines in m(B).

APPROX/RANDOM 2021

3:6 Bag-Of-Tasks Scheduling on Related Machines

4 The Analysis and Intuition

We prove the competitiveness by a dual-fitting analysis: we give a primal-dual pair of LPs,

use the algorithm above to give a feasible primal, and then exhibit a feasible dual with value

within a small factor of the primal cost.

In the primal LP, we have variables xivt for each task v, machine i, and time t denoting

the extent of processing done on task v at machine i during the interval [t, t + 1]. Here Uj,t

denotes fraction of job j finished at or after time t, and Cj denotes the completion time of

job j.

min
�

j wjCj +
�

j,t wjUj,t

Uj,t g
�

t′gt

�
i

xivt′

pv
∀j, ∀v ∈ T (j), ∀t (2)

Cj g
�

t

�
i

xivt

si
∀j, ∀v ∈ T (j) (3)

�
i

�
t

xivt

pv
g 1 ∀j, ∀v ∈ T (j) (4)

�
v

xivt

si
f 1 ∀i, ∀t (5)

The constraint (2) is based on precedence-constrained LP relaxations for completion time.

Indeed, each job can be thought of as a star graph with a zero size task at the root preceded

by all the actual tasks at the leaf. In our LP, for each time t, we define Uj,t ∈ [0, 1] to be the

maximum over all tasks v ∈ T (j) of the fraction of v that remains (the RHS of (2)), and the

completion time of j is at least the total sum over times t of Uj,t values. Since we do not

explicitly enforce that a task cannot be processed simultaneously on many machines, the

first term
�

j wjCj is added to avoid a large integrality gap. We show feasibility of this LP

relaxation (up to factor 2) in §C.

▷ Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at

most 2 cost(S).

The linear programming dual has variables ³j,v, ¶j,v, ¶j,v,t corresponding to constraints

(4),(3),(2) for every job j and task v ∈ T (j), and ´i,t corresponding to constraints (5) for

every machine i and time t:

max .
�

j,v ³j,v −
�

i,t ´i,t

³j,v

pv
f

´i,t

si
+

�
t′ft

¶j,v,t

pv
+

¶j,v

si
∀j, ∀i, ∀t, ∀v ∈ T (j) (6)

�
v∈T (j) ¶j,v f wj ∀j (7)

�
v∈T (j) ¶j,v,t f wj ∀j, t (8)

We now give some intuition about these dual variables. The quantity ¶j,v,t should be

thought of the contribution (at time t) towards the weighted flow-time of j. Similarly, ¶j,v is

global contribution of v towards the flow-time of v. (In the integral case, ¶j,v would be wj

for the task which finishes last. If there are several such tasks, ¶j,v would be non-zero only

for such tasks only and would add up to wj). The quantity ³j,v can be thought of as v’s

contribution towards the total weighted flow-time, and ´i,t is roughly the queue size at time

t on machine i. Constraint (6) upper bounds ³j,v in terms of the other dual variables. More

intuition about these variables can be found in §4.2.

A. Gupta, A. Kumar, and S. Singla 3:7

4.1 Simplifying the dual LP

Before interpreting the dual variables, we rewrite the dual LP and add some additional

constraints. Define additional variables ³j,v,t for each job j and task v ∈ T (j) and time t,

such that variable ³j,v =
�

t ³j,v,t. We add a new constraint:

�
v∈T (j) ³j,v,t f wj . (9)

This condition is not a requirement in the dual LP, but we will set ³j,v,t to satisfy it.

Assuming this, we set ¶j,v,t := ³j,v,t for all jobs j, tasks v ∈ T (j) and times t; feasibility

of (9) implies that of (8). Moreover, (6) simplifies to

�
t′gt

³j,v,t′

pv
f

´i,t

si
+

¶j,v

si
.

Observe that we can write pv as the sum of the rates, and hence as pv =
�

t′ Lt′

v . Since this

is at least
�

t′gt Lt′

v for any t, we can substitute above, and infer that it suffices to verify the

following condition for all tasks v ∈ T (j), time t, and time t′ g t:

³j,v,t′ f
´i,t·Lt′

v

si
+

¶j,v·Lt′

v

si
. (10)

Henceforth, we ensure that our duals (including ³j,v,t) satisfy (9),(10) and (7).

4.2 Interpreting the Duals and the High-Level Proof Idea

We give some intuition about the dual variables, which will be useful for understanding the

subsequent analysis. We set dual variables ³j,v such that for any job j, the sum
�

v∈T (j) ³j,v

is (approximately) the weighted completion of job j. This ensures that
�

j,v ³j,v is the total

weighted completion of the jobs. One way of achieving this is as follows: for every time t

and task-job pair (j, v) we define ³j,v,t variables such that they add up to be wj if job j is

unfinished at time t (i.e., (9) is satisfied with equality). If ³j,v is set to
�

t ³j,v,t, then these

³j,v variables would add up to the weighted completion time of j.

The natural way of defining ³j,v,t is to evenly distribute the weight of j among all the

alive tasks at time t, i.e., to set ³j,v,t =
wj

T t(j) . This idea works if we only want to show that

the algorithm is O(log n)-competitive, but does not seem to generalize if we want to show

O(K)-competitiveness. The reason for this will be clearer shortly, when we discuss the ¶j,v

variables.

Now we discuss ´i,t dual variables. We set these variables so that
�

t ´i,t is a constant

(less than 1) times the total weighted completion time. This ensures that the objective value

of the dual LP is also a constant times the total weighted completion time. A natural idea

(ignoring constant factors for now) is to set ´i,t = w(At)
Kmℓ

, where At is the set of alive jobs

at time t and ℓ is the speed class of machine i. Since we have put an Ω(K) term in the

denominator of ´i,t (and no such term in the definition of ³j,v), ensuring the feasibility of (6)

would require a speed augmentation of Ω(K).

Finally, consider the ¶j,v dual variables. As (7) suggests, setting ¶j,v is the same as

deciding how to distribute the weight wj among the tasks in T (j). Notice, however, that

this distribution cannot depend on time (unlike ³j,v,t where we were distributing wj among

all the alive tasks at time t). In the ideal scenario, tasks finishing later should get high ¶j,v

values. Since we are in the non-clairvoyant setting, we may want to set ¶j,v =
wj

|T (j)| . We

now argue this can lead to a problem in satisfying (10).

Consider the setting of a single unit-weight job j initially having n tasks, and so we

set ¶j,v = 1
n for all v. Say that n = mℓ for a large value of ℓ: by the increasing capacity

assumption, mℓ ≈ m1 + . . . + mℓ. Now consider a later point in time t when only n′ tasks

APPROX/RANDOM 2021

3:8 Bag-Of-Tasks Scheduling on Related Machines

remain, where n′ = mℓ′ for some speed class ℓ′ j ℓ. At this time t, each of the n′ surviving

tasks have ³j,v,t = 1
n′ . But look at the RHS of (10), with machine i of speed class ℓ. The

rate Lt
v will be very close to Ãℓ′ (again, by the increasing capacity assumption), and so both

the terms would be about Ãℓ′

mℓÃℓ
. However, mℓÃℓ could be much larger than mℓ′Ãℓ′ , and so

this constraint will not be satisfied. In fact, we can hope to satisfy (10) at some time t only if

n′ is close to n, say at least n/2. When the number of alive tasks drops below n/2, we need

to redistribute the weight of j among these tasks, i.e., we need to increase the ¶j,v value for

these tasks, to about 1
n/2 . Since these halving can happen for log n steps, we see that (3) is

violated by a factor of log n. These ideas can be extended to give an O(log n+K)-competitive

algorithm for arbitrary inputs; see §5 for details. To get a better bound, we need a more

careful setting of the dual variables, which we talk about in §6 and §7.

5 Analysis I: A Weaker O(K + log n) Guarantee

We start with a simpler analysis which yields an O(K +log n)-competitiveness. This argument

will not use the increasing capacity assumption from Assumption 3; however, the result

gives a competitiveness of O(max(K, log n)) which is logarithmic when K is small, whereas

our eventual result will be O(min(KO(1), K + log n)), which can be much smaller when

K j log n.

▶ Theorem 10. The scheduling algorithm in §3 is O(K + log n)-competitive.

Proof. For each job j, we arrange the tasks in T (j) in descending order of their processing

requirements. (This is the opposite of the order in which they finish, since all alive tasks of a

job are processed at the same rate.) Say the sequence of the tasks for a job j is v1, . . . , vr. We

partition these tasks into groups with exponentially increasing cardinalities: T1(j) := {v1},

T2(j) := {v2, v3}, and Th(j) := {v2h−1 , . . . , v2h−1} has 2h−1 tasks. (Assume w.l.o.g. that

r + 1 is a power of 2 by adding zero-sized tasks to T (j)). Now we define the dual variables.

Dual Variables. Define µ := 2 max{K, log2 n}.

For a time t and machine i of speed class ℓ, let At denote the set of active (unfinished)

jobs at time t, and define ´i,t :=
w(At)

mℓ · µ
.

For job j and a task v ∈ Th(j) in the h-th group, define ¶j,v :=
wj

2h−1 · µ
.

In order to define ³j,v, we first define quantities ³j,v,t for every time t, and then set

³j,v :=
�

t ³j,v,t. At time t, recall that T t(j) is the set of alive tasks of job j, and define

³j,v,t :=
wj

|T t(j)|
· 1(v alive at time t) =

wj

|T t(j)|
· 1(v∈T t(j)) .

This “spreads” the weight of j equally among its alive tasks.

Having defined the dual variables, we first argue that they are feasible.

▶ Lemma 11 (Dual feasibility). The dual variables defined above always satisfy the con-

straints (9), (7) and(10) for a speed-up factor µ g 2 max{K, log2 n}.

Proof. To check feasibility of (7), consider a job j and observe that

�
v∈T (j) ¶j,v =

�
h

�
v∈Th(j) ¶j,v =

�
h

�
v∈Th(j)

wj

2h−1·µ
=

�
h

wj

µ f wj ,

because |Th(j)| = 2h−1 and there are at most log2 n f µ distinct groups. Feasibility of (9)

also follows easily. It remains to check (10) for a job j, task v, machine i and times t′ f t.

A. Gupta, A. Kumar, and S. Singla 3:9

If v is not alive at time t′, then ³j,v,t′ is 0, and (10) follows trivially. Else, v ∈ T t′

(j),

and suppose v ∈ Th(j). This means the jobs in T1(j), . . . , Th−1(j) are also alive at time

t′, so |T t′

(j)| g 1 + 2 + . . . + 2h−2 + 1 = 2h−1. Furthermore, suppose the tasks in T t′

(j)

belong to block B (defined in §3.1), and let ℓ⋆ be the speed class with the slowest machines

among the associated machines m(B). Let ℓ denote the speed class of machine i (considered

in (10)). Two cases arise: the first is when ℓ g ℓ⋆, where Lt′

v g µÃℓ⋆ g µÃℓ = µsi, so (10)

holds because

³j,v,t′ =
wj

|T t′ (j)|
f

wj

2h−1 = µ · ¶j,v f
¶j,v·Lt′

v

si
.

The second case is ℓ < ℓ⋆: Let V ¦ At′

be the set of jobs which are frozen by the moment

v freezes. In other words, V contains tasks in block B and the blocks before it. Applying

the second statement in Corollary 8 with V ′′ = V ,

wj

|T t′ (v)|Lt′
v

f "wt(V)�
v′∈V

Lt′

v′

f w(V)�
v′∈V

Lt′

v′

f w(At′
)

µ·mℓÃℓ
,

where the last inequality uses the fact that all machines of speed class ℓ are busy processing

jobs in V . Therefore,

³j,v,t′ =
wj

|T t′ (j)|
f

w(At′
)·Lt′

v

µ·mℓÃℓ
f

´i,t·Lt′

v

si
,

the last inequality useing the definition of ´i,t and that w(At) g w(At′

). ◀

Finally, we show that the dual objective value for this setting of dual variables is close to

the primal value. It is easy to check that
�

j ³j =
�

t w(At), which is the total weighted

completion time of the jobs. Moreover,

�
i,t ´i,t =

�
t

�
ℓ

�
i:si=Ãℓ

w(At)
mℓ µ = K

µ ·
�

t w(At) .

Since we chose speedup µ = 2 max{K, log2 n}, we have K f µ/2 and the dual objective value�
j,v ³j,v −

�
i,t ´i,t is at least half of the total weighted completion time (primal value).

This completes the proof of Theorem 10. ◀

6 Analysis II: An Improved Guarantee for a Single Job

We want to show that the competitiveness of our algorithm just depends on K, the number

of speed classes. To warm up, in this section we consider the special case of a single job;

in §7 we consider the general case. As was shown in Proposition 5, any algorithm has

competitive ratio Ω(K) even in the case of a single job. We give a matching upper bound

using dual fitting for an instance with a single job j, say of weight 1, when the machines

satisfy Assumption 3.

▶ Theorem 12. If the machines satisfy Assumption 3, the scheduling algorithm in §3 is

O(K2)-competitive for a single job.

6.1 The Intuition Behind the Improvement

The analysis in §5 incurred Ω(log n)-competitive ratio because we divided the execution of

the tasks of each job into O(log n) epochs, where each epoch ended when the number of tasks

halved. In each such epoch, we set the ¶j,v variables by distributing the job’s weight evenly

among all tasks alive at the beginning of the epoch. A different way to define epochs would

APPROX/RANDOM 2021

3:10 Bag-Of-Tasks Scheduling on Related Machines

be to let them correspond to the time periods when the number of alive tasks falls in the

range (mℓ, mℓ+1). This would give us only K epochs. There is a problem with this definition:

as the number of tasks vary in the range (mℓ, mℓ+1), the rate assigned to tasks varies from

Ãℓ to Ãℓ+1. Indeed, there is a transition point "mℓ in (mℓ, mℓ+1) such that the rate assigned

to the tasks stays close to Ãℓ+1 as long as the number of tasks lie in the range ("mℓ, Ãℓ+1);

but if the number of tasks lie in the range (mℓ, "mℓ), the assigned rate may not stay close to

any fixed value. However, in this range, the total processing rate assigned to all the tasks

stays close to mℓÃℓ.

It turns out that our argument for an epoch (with minor modifications) works as long as

one of these two facts hold during an epoch: (i) the total rate assigned to the tasks stays

close to mℓÃℓ for some speed class ℓ (even though the number of tasks is much larger than

mℓ), or (ii) the actual rate assigned to the tasks stays close to Ãℓ. Thus we can divide the

execution of the job into 2K epochs, and get an O(K)-competitive algorithm. In this section,

we prove this for a single job; we extend to the case of multiple jobs in §7 (with a slightly

worse competitiveness).

6.2 Defining the New Epochs

Before defining the dual variables, we begin with a definition. For each speed class ℓ, define

the threshold "mℓ to be the following:

"mℓ := 1
Ãℓ+1

(Ã1m1 + · · · + Ãℓmℓ) . (11)

The parameter "mℓ is such that the processing capacity of "mℓ machines of class ℓ + 1 equals

the combined processing capacity of machines of class at most ℓ. The increasing capacity

assumption implies mℓ < "mℓ < mℓ+1, as formalized below:

▷ Claim 13. Define Mℓ := m1 + . . . + mℓ and �Mℓ := Mℓ + "mℓ. Under the increasing capacity

Assumption 3 and » = 2, for any speed class ℓ, we have

(a) 2 "mℓ f mℓ+1 and so, �Mℓ f Mℓ+1,

(b) �Mℓ g 2Mℓ,

(c) mℓÃℓ g 1
2 "mℓÃℓ+1, and

(d) "mℓ g 2mℓ.

Proof. Fact (a) follows from the increasing capacity assumption and the definition of the

threshold, since 2 "mℓÃℓ+1 f Ãℓ+1mℓ+1. This implies �Mℓ = Mℓ + "mℓ f Mℓ + mℓ+1 f Mℓ+1.

Proving (b) is equivalent to showing "mℓ g Mℓ, which follows from the definition of "mℓ and

the fact that Ãℓ+1 < Ãi for all i f ℓ. The last two statements also follow from the increasing

capacity assumption. ◁

We identify a set of 2K break-points as follows: for each speed class ℓ, let tℓ denote the

first time when Mℓ alive tasks remain. Similarly, let "tℓ be the first time when exactly �Mℓ

alive tasks remain. Note that tℓ+1 < "tℓ < tℓ. Let "Fℓ be the tasks which finish during [tℓ+1, "tℓ],

and Fℓ be those which finish during ["tℓ, tℓ]. Let "fℓ and fℓ denote the cardinality of "Fℓ and

Fℓ respectively. Note that "fℓ = Mℓ+1 − �Mℓ = mℓ+1 − "mℓ, fℓ = �Mℓ − Mℓ = "mℓ.

▷ Claim 14. For any speed class ℓ, we have fℓ f "fℓ f fℓ+1.

Proof. The first statement requires that "mℓ f mℓ+1 − "mℓ. This is the same as 2 "mℓ f mℓ+1,

which follows from Claim 13 (a). The second statement requires that mℓ+1 − "mℓ f "mℓ+1,

i.e., mℓ+1 f "mℓ + "mℓ+1. But mℓ+1 f "mℓ+1 (by Claim 13 (d)), hence the proof. ◁

3:12 Bag-Of-Tasks Scheduling on Related Machines

ℓ⋆ g ℓ: Since at least Mℓ⋆ tasks are alive at this time, the total speed assigned to all the

alive tasks at time t′ is at least µ · Ãℓ⋆mℓ⋆ . Therefore, Lt′

v g µ·mℓ⋆ Ãℓ⋆

nt′
. Now using µ g 2K,

we get

Lt′

v

2K · mℓÃℓ
g

mℓ⋆Ãℓ⋆

mℓÃℓ
·

1

nt′

g
1

nt′

,

where the last inequality follows from the increasing capacity assumption.

ℓ⋆ f ℓ − 1: The quantity Lt′

v nt′ is the total speed of the machines which are busy at time

t′, which is at least µ(m1Ã1 + . . . + mℓ⋆Ãℓ⋆) = µ · "mℓ⋆Ãℓ⋆+1. Again, using µ g 2K, we get

Lt′

v · nt′

2K · fℓ⋆Ãℓ
g

"mℓ⋆Ãℓ⋆+1

fℓ⋆Ãℓ
g 1

because Ãℓ⋆+1 g Ãℓ and "mℓ⋆ = fℓ⋆ .

Thus, (12) is satisfied in both the above subcases.

Next we consider the case when there is a speed class ℓ⋆ such that �Mℓ⋆ < nt′ f Mℓ⋆+1.

We can assume that v ∈ Fℓ⋆ , otherwise ³j,v,t′ is 0; this means ¶v,j = 1
2K·fℓ⋆

. Since

³j,v,t′ = 1
fℓ

= 1

"mℓ⋆
, and Lt′

v g µ · Ãℓ⋆+1, the expression (10) follows from showing

1

"mℓ⋆

f
µ

Ãℓ
·

�
1

2K · mℓ
+

1

2K · fℓ⋆

�
· Ãℓ⋆+1 . (13)

Since µ g 2K, we can drop those terms. Again, two cases arise:

ℓ⋆ g ℓ: By definition, Ãℓ⋆+1 · "mℓ⋆ g Ãℓ⋆mℓ⋆ g Ãℓmℓ (by the increasing capacity assump-

tion).

ℓ⋆ f ℓ − 1: Since fℓ⋆ = "mℓ⋆ and Ãℓ f Ãℓ⋆+1, this case also follows easily. ◀

Proof of Theorem 12. Having checked dual feasibility in Lemma 15, consider now the

objective function. For any time t when at least one task is alive,
�

v ³j,v,t = 1. Therefore,�
v ³j,v is the makespan. Also,

�
i ´i,t = 1/2 as long as there are unfinished tasks, so�

i,t ´i,t is half the makespan, and the objective function
�

v ³j,v −
�

i,t ´it also equals

half the makespan. Since we had assumed µ = O(K)-speedup, the algorithm is O(K)-

competitive. ◀

7 Analysis III: Proof for Õ(K
3) Guarantee

We now extend the ideas from the single job case to the general case. We only discuss the

proof outline here, and refer the readers to the full version for details. For time t, let At be

the set of alive jobs at time t. Unlike the single job case where we had only one block, we can

now have multiple blocks. While defining ³j,v,t in the single job case, we had considered two

cases: (i) the rate assigned to each task stayed close to Ãℓ for some class ℓ (this corresponded

to nt ∈ [�Mℓ−1, Mℓ)), and (ii) the total rate assigned to each task was close to mℓÃℓ for speed

class ℓ (this corresponded to nt ∈ [Mℓ, �Mℓ)). We extend these notions to blocks as follows:

Simple blocks: A block B is said to be simple w.r.t. to a speed class ℓ if the average rate

assigned to the tasks in B is close to Ãℓ. Similarly a job j is said to be simple w.r.t. a speed

class ℓ if all the alive tasks in it are assigned rates close to Ãℓ (recall that all alive tasks in

a job are processed at the same rate). All the jobs in a simple block B may not be simple

(w.r.t. the same speed class ℓ), but we show that a large fraction of jobs (in terms of weight)

in B will be simple. Thus, it is enough to account for the weight of simple jobs in B. This is

analogous to case (i) mentioned above (when there is only one job and tasks in it receive rate

A. Gupta, A. Kumar, and S. Singla 3:13

close to Ãℓ). In §6, we had defined ³j,v,t for such time t as follows: we consider only those

tasks which survive in Fℓ, and then evenly distribute wj among these tasks. The analogous

definition here would be as follows: let Äℓ,j be the last time when j is simple w.r.t. the speed

class ℓ. We define ³j,v,t by evenly distributing wj among those tasks in v which are alive at

Äℓ,j . We give details in the full version.

Long blocks: The total speed of the machines in this block stays close to mℓÃℓ for some

speed class ℓ. Again, inspired by the definitions in §6, we assign ³j,v,t for tasks v ∈ B by

distributing w(B) to these tasks (in proportion to the rate assigned to them). From the

perspective of a job j which belongs to a long block B w.r.t. a speed class Ãℓ at a time t,

the feasibility of (6) works out provided for all subsequent times t′ when j again belongs

to such a block B′, we have w(B′) and w(B) remain close to each other. If w(B′) exceeds

(say) 2w(B), we need to reassign a new set of ¶j,v values for v. To get around this problem

we require that long blocks (at a time t) also have weight at least w(At)/(10K). With this

requirement, the doubling step mentioned above can only happen O(log K) times (and so

we incur an additional O(log K) in the competitive ratio). The details are given in the full

version. Blocks which were cheaper than w(At)/(10K) do not create any issue because there

can be at most K of them, and so their total weight is small in comparison to w(At).

Short blocks: Such blocks B straddle two speed classes, say ℓ and ℓ + 1, but do not contain

too many machines of either class (otherwise they will fall into one of the two categories

above). We show in the full version that the total weight of such blocks is small compared

to w(At). The intuitive reason is as follows: for any two consecutive short blocks B1 and

B2, there must be blocks in between them whose span is much longer than B2. Since these

blocks freeze before B2, their total weight would be large compared to w(B2).

In the overall analysis, we charge short blocks to simple and long blocks, and use dual

fitting as indicated above to handle simple and long blocks.

8 Discussion

Several interesting problems remain open. (i) Can we close the gap between lower bound of

Ω(K) and upper bound of O(K3 log2 K)? (ii) Can we prove an analogous result for weighted

flow-time (with speed augmentation)? (iii) Can we generalize this result to the unrelated

machines setting? (iv) Our lower bound of Ω(K)-competitive ratio relies on non-clairvoyance;

can we prove a better bound if the processing times of tasks are known at their arrival

times?

References

1 Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs online

to minimize average flow time. In Proceedings of SODA, pages 176–189, 2016.

2 C. Anglano and M. Canonico. Scheduling algorithms for multiple bag-of-task applications

on desktop grids: A knowledge-free approach. In 2008 IEEE International Symposium on

Parallel and Distributed Processing, pages 1–8, 2008.

3 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling problems.

In Proceedings of ESA, pages 118–129, 2015.

4 Anne Benoit, Loris Marchal, Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Schedul-

ing concurrent bag-of-tasks applications on heterogeneous platforms. IEEE Trans. Computers,

59(2):202–217, 2010.

5 Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-constrained

scheduling problems on parallel machines that run at different speeds. J. Algorithms, 30(2):323–

343, 1999.

APPROX/RANDOM 2021

3:14 Bag-Of-Tasks Scheduling on Related Machines

6 José R. Correa, Martin Skutella, and José Verschae. The power of preemption on unrelated

machines and applications to scheduling orders. In Proceedings of APPROX/RANDOM, pages

84–97, 2009.

7 Naveen Garg, Anupam Gupta, Amit Kumar, and Sahil Singla. Non-clairvoyant precedence

constrained scheduling. In Proceedings of ICALP, pages 63:1–63:14, 2019.

8 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize

average completion time: off-line and on-line approximation algorithms. Math. Oper. Res.,

22(3):513–544, 1997.

9 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear

programming relaxations. In Proceedings of FOCS, pages 283–294. 2017.

10 Ioannis A. Moschakis and Helen D. Karatza. Multi-criteria scheduling of bag-of-tasks applica-

tions on heterogeneous interlinked clouds with simulated annealing. J. Syst. Softw., 101:1–14,

2015.

11 Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds for a general

class of precedence constrained parallel machine scheduling problems. In Proceedings of IPCO,

volume 1412, pages 367–382. 1998.

12 Maurice Queyranne and Maxim Sviridenko. A (2+epsilon)-approximation algorithm for

generalized preemptive open shop problem with minsum objective. In Proceedings of IPCO,

volume 2081, pages 361–369, 2001.

13 Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.

In Proceedings of SODA, pages 491–500, 2008.

A Missing Proofs of Section 2

▶ Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3

by losing a factor O(µK) in the competitive ratio.

Proof. We show how to transform the instance so that it satisfies the increasing capacity

assumption, while losing only O(K)-factor in the competitive ratio. For sake of brevity, let »

denote the constant 64.

For a speed class ℓ, let Cℓ denote mℓÃℓ, i.e., the total processing capacity of the machines

in this speed class. Starting from speed class 1, we construct a subset X of speed classes as

follows: if ℓ denotes the last speed class added to X, then let ℓ′ > ℓ be the smallest class

such that Cℓ′ g 2»Cℓ. We add ℓ′ to X and continue this process till we have exhausted all

the speed classes.

Consider the instance I ′ in which the set of jobs is the same as those in I, but there

are Kmℓ machines of speed class ℓ for each ℓ ∈ X. For a speed class ℓ ∈ X, let C ′
ℓ denote

2»KmℓÃℓ, which is at most the total capacity of the speed class ℓ machines in I ′. Let us now

consider the optimal solutions of the two instances. We first observe that opt(I ′) f opt(I).

Consider two consecutive speed classes ℓ1 < ℓ2 in X. From the definition of X, we see that

C ′
ℓ1

g
�ℓ2−1

l=ℓ1
Cl. Therefore all the processing done by a solution to I on machines of speed

class [ℓ1, ℓ2) during a timeslot [t, t + 1] can be performed on machines of speed class ℓ1 in I ′

during the same timeslot. Therefore, opt(I ′) f opt(I).

For the converse statement, it is easy to see that if we give 2»K speedup to each machine

in I, then the processing capacity of each speed class in I is at least that in I ′. Therefore,

opt(I) f 2»Kopt(I ′). Therefore, replacing I by I ′ will result in O(»K) loss in competitive

ratio. It is also easy to check that I ′ satisfies increasing capacity assumption.

Observe that the conversion from I to I ′ can be easily done at the beginning – we just

need to identify the index set X, and use only these for processing. The factor K loss

in competitive ratio is also tight for the instance I where all speed classes have the same

capacity. ◀

A. Gupta, A. Kumar, and S. Singla 3:15

B Missing proofs of Section 3

▶ Lemma 6. A schedule S is feasible if for every time t and every value of k:

(⋆) the total rate assigned to any subset of k tasks is at most µ · Sk.

Proof. The rates assigned to tasks change only when one of these events happen: (i) a new

job j arrives, (ii) an existing task finishes. Assuming that the job sizes, release dates are

integers, we can find a suitable ¶ > 0 (which will also depend on the speeds of the machines)

such that all the above events happen at integral multiples of ¶.

Consider an interval [t, t + ¶), where t is an integral multiple of ¶. We need to show that

if Lt
v’s satisfy the condition (⋆), then we can build a feasible schedule during [t, t + ¶). By

feasibility, we mean that each task v can be processed to an extent of p̄v := Lt
v · ¶ extent and

at any point of time, it gets processed on at most one machine.

We follow a greedy strategy to build the schedule. Suppose we have built the schedule

till time t′ ∈ [t, t + ¶). At time t′, we order the tasks in descending order of the remaining

processing requirement for this slot (at time t, each task v has processing requirement of p̄v).

Let the ordered tasks at time t′ be v1, . . . , vn. We schedule vi on machine i.

Suppose for the sake of contradiction, a task v⋆ is not able to complete p̄v⋆ amount of

processing. We first make the following observation:

▷ Claim 16. Let v and v′ be two tasks such that at some time t′ ∈ [t, t + ¶), we prefer v to

v′ in the ordering at time t′. Then if v′ does not complete p̄v′ amount of processing during

[t, t + ¶), then neither does v.

Proof. Since we prefer v at time t′, v has more remaining processing time. If we never prefer

v′ to v after time t′, then v always has more remaining processing requirement than v′ during

this interval. If we prefer v′ to v at some point of time during (t′, t + ¶), then it is easy to

check that the remaining processing requirements for both v and v′ will remain the same.

The result follows easily from this observation. ◁

Starting from {v⋆}, we build a set S of tasks which has the following property: if v ∈ S,

then we add to S all the tasks v′ such that v′ was preferred over v at some point of time

during [t, t + ¶). Repeating application of Claim 16 shows that none of these tasks v complete

p̄v amount of processing during [t, t + ¶). Let m̄ denote |S|. We note that only tasks in S

would have been processed on the first m̄ machines during [t, t + ¶) – otherwise, we can add

more tasks to S. Since none of these tasks finish their desired amount of processing during

this interval, it follows that

�

v∈S

p̄v g µ¶ · Sm̄ .

Since p̄v = ¶Lt
v, we see that the set of tasks in S violates (⋆). This is a contradiction, and so

such a task v⋆ cannot exist. ◀

▶ Corollary 8. Fix a time t. Let V be the set of tasks frozen by some moment Ä . For a task

v ∈ V ,

(i) if V ′ ¦ V is any subset of tasks which freeze either at the same moment as v, or after

it, then "wt(v)
s|V |

g w(V ′)
S|V |

.

(ii) if V ′′ ¦ V is any subset of tasks which freeze either at the same moment as v, or before

it, then "wt(v)
Lt

v
f "wt(V ′′)�

v′∈V ′′ Lt

v′

.

APPROX/RANDOM 2021

3:16 Bag-Of-Tasks Scheduling on Related Machines

Proof. For any task v′, let Äv′ be the value of Ä at which v′ freezes. We know that

�

v′∈V

"wt(v′) · Äv′ = µS|V | . (14)

Since
�

v′∈V \{v} "wt(v′) · Äv′ f µS|V |−1 by feasibility, it follows that

"wt(v) · Äv g µs|V | . (15)

Now for all v′ ∈ V ′, we have Äv′ g Äv, so

"wt(V ′) · Äv =
�

v′∈V ′

"wt(v′) · Äv f
�

v′∈V ′

"wt(v′) · Äv′ f
�

v′∈V

"wt(v′) · Äv′
(14)
= µS|V | .

Hence, the first claim follows:

"wt(v)

s|V |

(15)

g
µ

Äv
g

"wt(V ′)

S|V |
.

For the second claim,

�

v′∈V ′′

Lt
v′ =

�

v′∈V ′′

"wt
v′ · Äv′ f "wt(V ′′) · Äv .

The claim now follows by the definition Lt
v = "wt(v) · Äv. ◀

C Missing Proofs of Section 4

▷ Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at

most 2 cost(S).

Proof. Consider a schedule S, and let xivt be the extent of processing done on a task v

(belonging to job j) during [t, t + 1] on machine i. More formally, if the task is processed for

ε units of time on machine i during this time slot, then we set xivt to ε · si. Constraint (4)

states that every task v needs to be processed to an extent of pv, whereas (5) requires that

we cannot do more than si unit of processing in a unit time slot on machine i. Now we verify

verify (3). Consider a task job j and a task v belonging to it. The total processing time of v

is

�

i,t

xivt

si
. (16)

The completion time Fj of j is at least the processing time of each of the tasks in it. Finally,

we check (2). Define Fj,t to be 1 if j is alive at time t. The RHS of this constraint is the

fraction of v which is done after time t; and so if this is non-zero, then Fj,t is 1. This shows

the validity of this constraint.

In the objective function, the first term is the total weighted completion time of all the

jobs. The second term is also the same quantity, because Fj is equal to
�

tgrj
Fj,t. ◁

