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Abstract—We give a polynomial-time algorithm for ONLINE-
SETCOVER with a competitive ratio of O(logmn) when the
elements are revealed in random order, matching the best
possible offline bound of O(log n) when the number of sets m

is polynomial in the number of elements n, and circumventing
the Ω(logm log n) lower bound known in adversarial order.
We also extend the result to solving pure covering IPs when
constraints arrive in random order.

The algorithm is a multiplicative-weights-based round-and-
solve approach we call LEARNORCOVER. We maintain a
coarse fractional solution that is neither feasible nor monotone
increasing, but can nevertheless be rounded online to achieve
the claimed guarantee (in the random order model). This
gives a new offline algorithm for SETCOVER that performs a
single pass through the elements, which may be of independent
interest.

I. INTRODUCTION

In the SETCOVER problem we are given a set system (U,S)
(where U is a ground set of size n and S is a collection

of subsets with |S| = m), along with a cost function c :
S → R

+. The goal is to select a minimum cost subcollection

S � ⊆ S such that the union of the sets in S � is U . Many

algorithms have been discovered for this problem that achieve

an approximation ratio of lnn (see e.g. [11], [24], [27], [33]),

and this is best possible unless P = NP [16], [14].

In the ONLINESETCOVER variant, we impose the additional

restriction that the algorithm does not know U initially, nor

the contents of each S ∈ S. Instead, an adversary reveals

the elements of U one-by-one in an arbitrary order. On the

arrival of every element, it is revealed which sets of S ∈ S
contain the element, and the algorithm must immediately

pick one such set S ∈ S to cover it. The goal is to minimize

the total cost of the sets chosen by the algorithm. In their

seminal work, [7] show that despite the lack of foresight, it

is possible to achieve a competitive ratio of O(logm log n)

Supported in part by NSF awards CCF-1907820, CCF1955785, and
CCF-2006953.

The full version of this paper [18] is available at
https://arxiv.org/abs/2111.06842.

for this version. This result has since been shown to be

tight unless NP ⊆ BPP [26], and has also been generalized

significantly (e.g. [6], [9], [21], [19]).

In this paper, we answer the question:

What is the best competitive ratio possible for ON-

LINESETCOVER when the adversary is constrained

to reveal the elements in uniformly random order

(RO)?

We call this version ROSETCOVER. Note that the element

set U is still adversarially chosen and unknown, and only

the arrival order is random.

A. Results

We show that with only this one additional assumption on

the element arrival order, there is an efficient algorithm for

ROSETCOVER with expected competitive ratio matching the

best-possible offline approximation guarantee (at least in the

regime where m = poly(n)).

Theorem I.1. LEARNORCOVER is a polynomial-time ran-

domized algorithm for ROSETCOVER achieving expected

competitive ratio O(log(mn)).

When run offline, our approach gives a new asymptotically

optimal algorithm for SETCOVER for m = poly(n), which

may be of independent interest. Indeed, given an estimate

for the optimal value of the set cover, our algorithm makes a

single pass over the elements (considered in random order),

updating a fractional solution using a multiplicative-weights

framework, and sampling sets as it goes. This simplicity, and

the fact that it uses only Õ(m) bits of memory, may make the

algorithm useful for some low-space streaming applications.

(Note that previous formulations of STREAMINGSETCOVER

[32], [13], [23], [15] only consider cases where sets arrive

in a stream.)

We show next that a suitable generalization of the same

algorithm achieves the same competitive ratio for the RO

Throughout this paper we consider the unknown-instance model for online
set cover (see Chapter 1 of [26]). The result of [7] was presented for the
known-instance model, but extends to the unknown setting as well. This
was made explicit in subsequent work [9].
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Covering Integer Program problem (ROCIP) (see Section IV

for a formal description).

Theorem I.2. LEARNORCOVERCIP is a polynomial-time

randomized algorithm for ROCIP achieving competitive ratio

O(log(mn)).

We complement our main theorem with some lower bounds.

For instance, we show that the algorithms of [7], [9] have a

performance of Θ(logm log n) even in RO, so a new algo-

rithm is indeed needed. Moreover, we observe an Ω(logn)
lower bound on fractional algorithms for ROSETCOVER.

This means we cannot pursue a two-phase strategy of

maintaining a good monotone fractional solution and then

randomly rounding it (as was done in prior works) without

losing Ω(log2 n). Interestingly, our algorithm does maintain a

(non-monotone) fractional solution while rounding it online,

but does so in a way that avoids extra losses. We hope

that our approach will be useful in other works for online

problems in RO settings. (We also give other lower bounds

for batched versions of the problem, and for the more general

submodular cover problem.)

B. Techniques and Overview

The core contribution of this work is demonstrating that one

can exploit randomness in the arrival order to learn about

the underlying set system. What is more, this learning can be

done fast enough (in terms of both sample and computational

complexity) to build an O(logmn)-competitive solution,

even while committing to covering incoming elements

immediately upon arrival. This seems like an idea with

applications to other sequential decision-making problems,

particularly in the RO setting.

We start in Section II with an exponential time algorithm for

the unit-cost setting. This algorithm maintains a portfolio of

all exponentially-many collections of cost c(OPT) that are

feasible for the elements observed so far. When an uncovered

element arrives, the algorithm takes a random collection from

the portfolio, and picks a random set from it covering the

element. It then prunes the portfolio to drop collections that

did not cover the incoming element. We show that either the

expected marginal coverage of the chosen set is large, or the

expected number of solutions removed from the portfolio is

large. I.e., we either make progress covering, or learning. We

show that within c(OPT) log(mn) rounds, the portfolio only

contains the true optimal feasible solutions, or all unseen

elements are covered. (One insight that comes from our result

is that a good measure of set quality is the number of times

an unseen and uncovered element appears in it.)

We then give a polynomial-time algorithm in Section III:

while it is quite different from the exponential scheme above,

it is also based on this insight, and the intuition that our

algorithm should make progress via learning or covering.

Specifically, we maintain a distribution {xS}S∈S on sets: for

each arriving uncovered element, we first sample from this

distribution x, then update x via a multiplicative weights

rule. If the element remains uncovered, we buy the cheapest

set covering it. For the analysis, we introduce a potential

function which simultaneously measures the convergence

of this distribution to the optimal fractional solution, and

the progress towards covering the universe. Crucially, this

progress is measured in expectation over the random order,

thereby circumventing lower bounds for the adversarial-order

setting [26]. In Section IV we extend our method to the more

general ROCIP problem: the intuitions and general proof

outlines are similar, but we need to extend the algorithm to

handle elements being partially covered.

Finally, we present lower bounds in Section V. Our

information-theoretic lower bounds for ROSETCOVER follow

from elementary combinatorial arguments. We also show

a lower bound for a batched version of ROSETCOVER,

following the hardness proof of [26]; we use it in turn to

derive lower bounds for ROSUBMODULARCOVER. See the

full version for the proofs of this section.

C. Other Related Work

There has been much recent interest in algorithms for random

order online problems. Starting from the secretary problem,

the RO model has been extended to include metric facility

location [28], network design [29], and solving packing LPs

[2], [31], [25], [20], [1], [5], load-balancing [20], [30] and

scheduling [3], [4]. See [22] for a recent survey.

Our work is closely related to [17], who give an O(logmn)-
competitive algorithm a related stochastic model, where

the elements are chosen i.i.d. from a known distribution

over the elements. [12] generalize the result of [17] to the

prophet version, in which elements are drawn from known but

distinct distributions. Our work is a substantial strengthening,

since the RO model captures the unknown i.i.d. setting as

a special case. Moreover, the learning is an important and

interesting part of our technical contribution. On the flip side,

the algorithm of [17] satisfies universality (see their work

for a definition), which our algorithm does not. We point

out that [17] claim (in a note, without proof) that it is not

possible to circumvent the Ω(logm log n) lower bound of

[26] even in RO; our results show this claim is incorrect.

See the full version for a discussion.

Regret bounds for online learning are also proven via the KL

divergence (see, e.g., [8]). However, no reductions are known

from our problem to the classic MW setting, and it is unclear

how random order would play a role in the analysis: this is

necessary to bypass the adversarial order lower bounds.

Finally, [26] gives an algorithm with competitive ratio

k log(m/k)—hence total cost k2 log(m/k)—for unweighted

1254

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 20,2022 at 11:51:48 UTC from IEEE Xplore.  Restrictions apply. 



ONLINESETCOVER where k = |OPT|. The algorithm is the

same as our exponential time algorithm in Section II for

the special case of k = 1; however, we outperform it for

non-constant k, and generalize it to get polynomial-time

algorithms as well.

D. Preliminaries

All logarithms in this paper are taken to be base e. In the

following definitions, let x, y ∈ R
n
+ be vectors. The standard

dot product between x and y is denoted �x, y� =�n
i=1 xiyi.

We use a weighted generalization of KL divergence. Given

a weight function c, define

KLc (x || y) :=
n�

i=1

ci

�
xi log

�
xi

yi

�
− xi + yi

�
. (I.1)

II. WARMUP: AN EXPONENTIAL TIME ALGORITHM FOR

UNIT COSTS

We begin with an exponential-time algorithm which we call

SIMPLELEARNORCOVER to demonstrate some core ideas

of our result. In what follows we assume that we know a

number k ∈ [c(OPT), 2 · c(OPT)]. This assumption is easily

removed by a standard guess and double procedure, at the

cost of an additional factor of 2.

The algorithm is as follows. Maintain a list T ⊆
�
S
k

�
of

candidate k-tuples of sets. When an uncovered element v
arrives, choose a k-tuple T = (T1, . . . , Tk) uniformly at

random from T, and buy a uniformly random T from T .

Also buy an arbitrary set containing v. Finally, discard from

T any k-tuples that do not cover v.

Theorem II.1. SIMPLELEARNORCOVER is a randomized

algorithm for unit-cost ROSETCOVER with expected cost

O(k · log(mn)).

Proof of Theorem II.1: Consider any time step t in which a

random element arrives that is uncovered on arrival. Let U t

be the set of elements that remain uncovered at the end of

time step t. Before the algorithm takes action, there are two

cases:

Case 1: At least half the tuples in T cover at least |U t−1|/2
of the |U t−1| as-of-yet-uncovered elements. In this case we

say the algorithm performs a Cover Step in round t.

Case 2: At least half the tuples in T cover strictly less than

|U t−1|/2 of the uncovered elements; we say the algorithm

performs a Learning Step in round t.

Define N(c) to be the number of uncovered elements

remaining after c Cover Steps. Define M(�) to be the value

of |T| after � Learning Steps. We will show that after

10k(logm + log n) rounds, either the number of elements

remaining is less than N(10k log n) or the number of tuples

remaining is less than M(10k logm). In particular, we argue

that both E[N(10k log n)] and E[M(10k logm)] are less than

1.

Claim II.2. E[N(c+ 1) | N(c) = N ] ≤
�
1− 1

4k

�
N .

Proof: If round t is a Cover Step, then at least half of the

T ∈ T cover at least half of U t−1, so E
���(
� T ) ∩ U t−1

��" ≥
|U t−1|/4. Since T is drawn uniformly at random from the k
sets in the uniformly random T , we have E

���T ∩ U t−1
��" ≥

|U t−1|/4k.

Claim II.3. E[M(�+ 1) | M(�) = M ] ≤ 3
4M .

Proof: Upon the arrival of v in a Learning Step, at least

half the tuples have probability at least 1/2 of being removed

from T, so the expected number of tuples removed from T

is at least M/4.

To conclude, by induction

E[N(10k log n)] ≤ n
�
1− 1

4k

�10k logn ≤ 1

and

E[M(10k logm)] ≤ mk

�
3

4

�10k logm

≤ 1.

Note that if there are N remaining uncovered ele-

ments and M remaining tuples to choose from, the

algorithm will pay at most min(k · M,N) before all

elements are covered. Thus the total expected cost

of the algorithm is bounded by 10k(logm + log n) +
E[min(k ·M(10k logm),N(10k log n))] = O(k logmn).

Apart from the obvious challenge of modifying SIMPLE-

LEARNORCOVER to run in polynomial time, it is unclear how

to generalize it to handle non-unit costs. Still, the intuition

from this algorithm will be useful for the next sections.

III. A POLYNOMIAL-TIME ALGORITHM FOR GENERAL

COSTS

We build on our intuition from Section II that we can either

make progress in covering or in learning about the optimal

solution. To get an efficient algorithm, we directly maintain

a probability distribution over sets, which we update via

a multiplicative weights rule. We use a potential function

that simultaneously measures progress towards learning the

optimal solution, and towards covering the unseen elements.

Before we present the formal details and the pseudocode,

here are the main pieces of the algorithm.

1) We maintain a fractional vector x which is a (not

necessarily feasible) guess for the LP solution of cost

β to the set cover instance.

2) Every round t in which an uncovered element vt arrives,

we
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a) sample every set S with probability proportional

to its current LP value xS ,

b) increase the value xS of all sets S � vt multi-

plicatively and renormalize,

c) buy a cheapest set to cover vt if it remains

uncovered.

Formally, by a guess-and-double approach, we assume we

know a bound β such that LPOPT ≤ β ≤ 2 · LPOPT; here

LPOPT is the cost of the optimal LP solution to the final

unknown instance. Define

κv := min{cS | S � v} (III.1)

as the cost of the cheapest set covering v.

Algorithm 1 LEARNORCOVER

1: Let m� ← |{S : c(S) ≤ β}|.
2: Initialize x0

S ← β
cS ·m�

· �{c(S) ≤ β}, and C0 ← ∅.

3: for t = 1, 2 . . . , n do

4: vt ← tth element in the random order, and let Rt ←
∅.

5: if vt not already covered then

6: for each set S, with probability

7: min(κvt · xt−1
S /β, 1) add Rt ← Rt ∪ {S}.

8: Update Ct ← Ct−1 ∪Rt.

9: if
�

S"vt x
t−1
S < 1 then

10: For every set S, update

11: xt
S ← xt−1

S · exp
�
�{S � vt} · κvt

cS

�
.

12: Let Zt = �c, xt�/β and normalize

13: xt ← xt/Zt.

14: else

15: xt ← xt−1.

16: Let Svt be the cheapest set containing vt. Add

Ct ← Ct ∪ {Svt}.

The algorithm is somewhat simpler for unit costs: the xS

values are multiplied by either 1 or e, and moreover we

can sample a single set for Rt (see the appendix of the

full version for pseudocode). Because of the non-uniform

set costs, we have to carefully calibrate both the learning

and sampling rates. Our algorithm dynamically scales the

learning and sampling rates in round t depending on κvt , the

cost of the cheapest set covering vt. Intuitively, this ensures

that all three of (a) the change in potential, (b) the cost of

the sampling, and (c) the cost of the backup set, are at the

same scale. Before we begin, observe that Line 13 ensures

the following invariant:

Invariant 1. For all time steps t, it holds that �c, xt� = β.

Theorem III.1 (Main Theorem). LEARNORCOVER is a

polynomial-time randomized algorithm for ROSETCOVER

with expected cost O(β · log(mn)).

Let us start by defining notation. Let x∗ to be the optimal

LP solution to the final, unknown set cover instance. Next

let Xt
v :=

�
S"v x

t
S , the fractional coverage provided to v

by xt. Let U t be the elements remaining uncovered at the

end of round t (where U0 = U is the entire ground set of

the set system). Define the quantity

ρt :=
�

u∈Ut

κu. (III.2)

With this, we are ready to define our potential function

which is the central player in our analysis. Recalling that β
is our guess for the value of LPOPT, and the definition of

KL divergence (I.1), define

Φ(t) := C1 · KLc

�
x∗ || xt

�
+ C2 · β · log

�
ρt

β

�
(III.3)

where C1 and C2 are constants to be specified later.

Lemma III.2 (Initial Potential). The initial potential is

bounded as Φ(0) = O(β · log(mn)).

We write the proof in general language in order to reuse

it for covering IPs in the following section. Recall that

sets correspond to columns in the canonical formulation

of SETCOVER as an integer program.

Proof: We require the following fact which we prove in the

appendix.

Fact III.3. Every pure covering LP of the form

minx≥0{�c, x� : Ax ≥ 1} for c ≥ 0 and aij ∈ [0, 1] with

optimal value less than β has an optimal solution x∗ which

is supported only on columns j such that cj ≤ β.

We assume WLOG that x∗ is such a solution, and we

first bound the KL term of Φ(0). Since support(x∗) ⊆
support(x0) by Fact III.3, we have

KLc

�
x∗ || x0

�

=
�

j

cj · x∗
j log

�
x∗
j

cj ·m�

β

�
+
�

j

cj(x
0
j − x∗

j )

≤ β(log(m) + 1),

where we used that �c, x∗� ≤ β and that m� < m is the

number of columns with cost less than β.

For the second term,

β log(ρ0/β) = β log(
�

i∈U0

κi/β)

≤ β log(|U0|)
= β log n,

since for all i, the cheapest cover for i costs less than β, and

therefore κu/β ≤ 1. The claim follows so long as C1 and

C2 are constants.
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The rest of the proof relates the expected decrease of potential

Φ to the algorithm’s cost in each round. Define the event

Υt := {vt ∈ U t−1} that the element vt is uncovered on

arrival. Note Line 5 ensures that if event Υt does not hold,

the algorithm takes no action and the potential does not

change. So we focus on the case that event Υt does occur.

We first analyze the change in KL divergence. Recall that

Xt
v :=

�
S"v x

t
S .

Lemma III.4 (Change in KL). For rounds t in which Υt

holds, the expected change in the weighted KL divergence is

E
vt,Rt

�
KLc (x

∗ || xt)
− KLc

�
x∗ || xt−1

�
���� x

t−1, U t−1,Υt

�

≤ E
v∼Ut−1

[(e− 1) · κv min(Xt−1
v , 1)− κv].

We emphasize that the expected change in relative entropy in

the statement above depends only on the randomness of the

arriving uncovered element vt, not on the randomly chosen

sets Rt.

Proof: We break the proof into cases. If Xt−1
v ≥ 1, in Line 15

we set the vector xt = xt−1, so the change in KL divergence

is 0. This means that

E
vt,Rt

�
KLc (x

∗ || xt)
−KLc

�
x∗ || xt−1

�
���� x

t−1, U t−1,Υt, Xt−1
vt ≥ 1

�

≤ E
v∼Ut

[(e− 1) · κv min
�
Xt−1

v , 1
�
− κv | Xt−1

v ≥ 1]

(III.4)

trivially. Henceforth we focus on the case Xt−1
vt < 1. Recall

that the expected change in relative entropy depends only on

the arriving uncovered element vt. Expanding definitions,

E
vt,Rt

�
KLc (x

∗ || xt)
−KLc

�
x∗ || xt−1

�
����

xt−1, U t−1,
Υt, Xt−1

vt < 1

�

= E
v∼Ut−1

�
�

S

cS · x∗
S · log xt−1

S

xt
S

����� X
t−1
v < 1

�

= E
v∼Ut−1

�
�c, x∗� · logZt

−�S"v cS · x∗
S · log eκv/cS

���� X
t−1
v < 1

�

≤ E
v∼Ut−1

£
¤¤¤¤¥

β log

»
¼¼½

�

S"v

cS
β xt−1

S e
κv
cS

+
�

S �"v

cS
β xt−1

S

¾
¿¿À

−�S"v κv · x∗
S

����������

Xt−1
v < 1

§
¨̈
¨̈
©
,

(III.5)

where in the last step (III.5) we expanded the definition of

Zt, and used �c, x∗� ≤ β. Since x∗ is a feasible set cover,

which means that
�

S"v x
∗
S ≥ 1, we can further bound (III.5)

by

≤ E
v∼Ut−1

£
¤¤¤¤¥
β log

»
¼¼½

�

S"v

cS
β xt−1

S e
κv
cS

+
�

S �"v

cS
β xt−1

S

¾
¿¿À

−κv

����������

Xt−1
v < 1

§
¨̈
¨̈
©

≤ E
v∼Ut−1

£
¤¤¤¤¥
β log

»
¼¼½

�

S

cS
β xt−1

S +

(e− 1)
�

S"v

κv

β xt−1
S

¾
¿¿À

−κv

����������

Xt−1
v < 1

§
¨̈
¨̈
©

(III.6)

where we use the approximation ey ≤ 1 + (e − 1) · y for

y ∈ [0, 1] (note that κv is the cheapest set covering v, so for

any S � v we have κv/cS ≤ 1). Finally, using Invariant 1,

along with the approximation log(1 + y) ≤ y, we bound

(III.6) by

≤ E
v∼Ut−1

�
(e− 1) · κv ·Xt−1

v − κv

�� Xt−1
v < 1

"

≤ E
v∼Ut−1

[(e− 1) · κv min(Xt−1
v , 1)− κv | Xt−1

v < 1].

(III.7)

The lemma statement follows by combining (III.4) and (III.7)

using the law of total expectation.

Next we bound the expected change in log ρt provided by

the sampling Rt ∼ κvtxt−1/β upon the arrival of uncovered

vt (where each S ∈ Rt independently with probability

κvtxt−1
S /β). Recall that U t denotes the elements uncovered

at the end of round t; therefore element u is contained in

U t−1 \ U t if and only if it is marginally covered by Rt in

this round.

Lemma III.5 (Change in log ρt). For rounds when v is

uncovered on arrival, the expected change in log ρt is

E
vt,Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt

"

≤ −1− e−1

β
· E
u∼Ut−1

�
κu ·min(Xt−1

u , 1)
"
.

Proof: Recall the definition of ρt from (III.2). Conditioned

on vt = v for any fixed element v, the expected change in

log ρt depends only on Rt. Recall Rt is formed by sampling

each set S with probability κvx
t−1
S /β.

E
Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt, vt = v

"

= E
Rt

�
log

�
1− ρt−1 − ρt

ρt−1

� ���� U
t−1, vt = v

�

≤ − 1

ρt−1
· E
Rt

�
ρt−1 − ρt

�� U t−1, vt = v
"

(III.8)

Above, (III.8) follows from the approximation log(1− y) ≤
−y. Expanding the definition of ρt from (III.2), (III.8) is
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bounded by

= − 1

ρt−1
E
Rt

�
�

u∈Ut−1

κu · �{u ∈ U t−1 \ U t}
�����
U t−1,
vt = v

�

= − 1

ρt−1

�

u∈Ut−1

κu · P
Rt

�
u �∈ U t | u ∈ U t−1, vt = v

�

≤ −1− e−1

β
· κv ·

1

ρt−1

�

u∈Ut−1

κu ·min(Xt−1
u , 1) (III.9)

= −1− e−1

β
· κv ·

|U t−1|
ρt−1

· E
u∼Ut−1

�
κu min(Xt−1

u , 1)
"
.

(III.10)

Step (III.9) is due to the fact that each set S ∈ Rt is sampled

independently with probability min(κvx
t−1
S /β, 1), so the

probability any given element u ∈ U t−1 is covered is

1−
�

S"u

�
1−min

�
κvx

t−1
S

β
, 1

��

≥ 1− exp

�
−min

�
κv

β
Xt−1

u , 1

��

(∗∗)

≥ (1− e−1) ·min

�
κv

β
Xt−1

u , 1

�

Above, (∗∗) follows from convexity of the exponential. Step

(III.10) follows since κv/β ≤ 1. Taking the expectation

of (III.10) over vt ∼ U t−1, and using the fact that

Ev∼Ut−1 [κv] = ρt−1/|U t−1|, the expected change in log ρt

becomes

E
vt,Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt

"

≤ −1− e−1

β
· E
u∼Ut−1

�
κu ·min(Xt−1

u , 1)
"
,

as desired.

Proof of Theorem III.1:

In every round t for which Υt holds, the expected cost of the

sampled sets Rt is κvt · �c, xt−1�/β = κvt (by Invariant 1).

The algorithm pays an additional κvt in Line 16, and hence

the total expected cost per round is at most 2 · κvt .

Combining Lemmas III.4 and III.5, and setting the constants

C1 = 2 and C2 = 2e, we have

E
vt,Rt

�
Φ(t)− Φ(t− 1)

����
v1, . . . , vt−1,
R1, . . . ,Rt−1,Υt

�

= E
vt,Rt

£
¤¤¥
C1

�
KLc (x

∗ || xt)
−KLc

�
x∗ || xt−1

�
�

+C2 · β
�

log ρt

− log ρt−1

�

��������

v1, . . . , vt−1,
R1, . . . ,Rt−1,
Υt

§
¨̈
©

≤ − E
vt,Rt

�
2 · κvt

�� v1, . . . , vt−1,R1, . . . ,Rt−1,Υt
"
,

which cancels the expected change in the algorithm’s cost.

Since neither the potential Φ nor the cost paid by the

algorithm change during rounds in which Υt does not hold,

we have the inequality

E
vt,Rt

£
¥

Φ(t)− Φ(t− 1)
+c(ALG(t))
−c(ALG(t− 1))

������
v1, . . . , vt−1,
R1, . . . ,Rt−1

§
© ≤ 0.

Let t∗ be the last time step for which Φ(t∗) ≥ 0. By applying

Lemma A.1 and the bound on the starting potential from

Lemma III.2, we have that E[c(ALG(t∗))] ≤ O(β · log(mn)).

It remains to bound the expected cost paid by the algorithm

after time t∗. Since KL divergence is a nonnegative quantity,

Φ is negative only when ρt ≤ β. The algorithm pays O(κvt)
in expectation during rounds t where vt ∈ U t−1 and 0 during

rounds where vt �∈ U t−1, and hence the expected cost paid

by the algorithm after time t∗ is at most
�

u∈Ut∗ κu = ρt
∗

=
O(β).

IV. COVERING INTEGER PROGRAMS

We show how to generalize our algorithm from Section III to

solve pure covering IPs when the constraints are revealed in

random order, which significantly generalizes ROSETCOVER.

Formally, the random order covering IP problem (ROCIP)

is to solve

minz �c, z�
s.t. Az ≥ 1

z ∈ Z
m
+ ,

(IV.1)

when the rows of A are revealed in random order. Further-

more the solution z can only be incremented monotonically

and must always be feasible for the subset of constraints

revealed so far. (Note that we do not consider box constraints,

namely upper-bound constraints of the form zj ≤ dj .) We

may assume without loss of generality that the entries of A
are aij ∈ [0, 1].

We describe an algorithm which guarantees that every row

is covered to extent 1− γ, meaning it outputs a solution z
with Az ≥ 1− γ (this relaxation is convenient in the proof

for technical reasons). With foresight, we set γ = (e− 1)−1.

It is straightforward to wrap this algorithm in one that buys

�(1 − γ)−1� = 3 copies of every column and truly satisfy

the constraints, which only incurs an additional factor of 3
in the cost.

Once again, by a guess-and-double approach, we assume we

know a bound β such that LPOPT ≤ β ≤ 2 · LPOPT; here

LPOPT is the cost of the optimal solution to the LP relaxation

of (IV.1). Let zt be the integer solution held by the algorithm

at the end of round t. Define ∆t
i := max(0, 1− �ai, zt�) to

be the extent to which i remains uncovered at the end of

round t. This time we redefine κt
i := ∆t−1

i · mink ck/aik,

which becomes the minimum fractional cost of covering

the current deficit for i. Finally, for a vector y, denote the

fractional remainder by �y := y − �y�.
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The algorithm once again maintains a fractional vector x
which is a guess for the (potentially infeasible) LP solution

of cost β to (IV.1). This time, when the ith row arrives

at time t and ∆t−1
i > γ (meaning this row is not already

covered to extent 1− γ), we (a) buy a random number of

copies of every column j with probability proportional to its

LP value xj , (b) increase the value xj multiplicatively and

renormalize, and finally (c) buy a minimum cost cover for

row i if necessary.

Algorithm 2 LEARNORCOVERCIP

1: m� ← |{j : cj ≤ β}|.
2: Initialize x0

j ← β
cj ·m�

· �{cj ≤ β}, and z0 ← �0.

3: for t = 1, 2 . . . , n do

4: i ← tth constraint in the random order.

5: if ∆t−1
i > γ then

6: Let y := κt
i · xt−1/β. for each column j, add

ztj ← zt−1
j + �yj�+ Ber(ỹj).

7: if �ai, xt−1� < ∆t−1
i then

8: For every j, update

9: xt
j ← xt−1

j · exp
�
κt
i · aij

cj

�
.

10: Let Zt = �c, xt�/β and normalize

11: xt ← xt/Zt.

12: else

13: xt ← xt−1

14: Let k∗ = argmink
ck
aik

. Add

15: ztk∗ ← ztk∗ +
�
∆t−1

i

aik∗

�
.

Note that once again, Line 11 ensures Invariant 1 holds. The

main theorem of this section is:

Theorem IV.1. LEARNORCOVERCIP is a polynomial-time

randomized algorithm for ROCIP which outputs a solution

z with expected cost O(β · log(mn)) such that 3z is feasible.

Theorem I.2 follows as a corollary, since given any interme-

diate solution zt, we can buy the scaled solution 3zt.

We generalize the proof of Theorem III.1. Redefine x∗ to

be the optimal LP solution to the final, unknown instance

(IV.1), and U t := {i | ∆t
i > γ} be the elements which are

not covered to extent 1− γ at the end of round t. With these

new versions of U t and κt, the definitions of both ρt and the

potential Φ remain the same as in (III.2) and (III.3) (except

we pick the constants C1 and C2 differently).

Once again, we start with a bound on the initial potential.

Lemma IV.2 (Initial Potential). The initial potential is

bounded as Φ(0) = O(β · log(mn)).

The proof is identical verbatim to that of Lemma III.2.

It remains to relate the expected decrease in Φ to the

algorithm’s cost in every round. For convenience, let Xt
i :=

�ai, xt� be the amount that xt fractionally covers i. Define

Υt to be the event that for constraint it arriving in round t
we have ∆t−1

i > γ. The check at Line 5 ensures that if Υt

does not hold, then neither the cost paid by the algorithm

nor the potential will change. We focus on the case that Υt

occurs, and once again start with the KL divergence.

Lemma IV.3 (Change in KL). For rounds in which Υt holds,

the expected change in weighted KL divergence is

E
it,Rt

�
KLc (x

∗ || xt)
−KLc

�
x∗ || xt−1

�
���� x

t−1, U t−1,Υt

�

≤ E
i∼Ut−1

[(e− 1) · κt
i min(Xt−1

i ,∆t−1
i )− κt

i].

Proof: We break the proof into cases. By the check on Line 7,

if Xt−1
it ≥ ∆t−1

it , then the vector xt is not updated in round

t, so the change in KL divergence is 0. This means that

E
it,Rt

£
¤¤¥

KLc (x
∗ || xt)

−KLc

�
x∗ || xt−1

�

��������

xt−1,
U t−1,
Υt,
Xt−1

it ≥ ∆t−1
it

§
¨̈
©

≤ E
i∼Ut−1

�
(e− 1)κt

i min(Xt−1
i ,∆t−1

i )
−κt

i

���� X
t−1
i ≥ ∆t−1

i

�

(IV.2)

holds trivially, since in this case min(Xt−1
i ,∆t−1

i ) =
∆t−1

i > γ = (e− 1)−1 and κt
i ≥ 0. Henceforth we focus on

the case Xt−1
i < ∆t−1

i .

The change in relative entropy depends only on the arriving

uncovered constraint it, not on the randomly chosen columns

Rt. Expanding definitions,

E
it,Rt

£
¤¤¥

KLc (x
∗ || xt)

−KLc

�
x∗ || xt−1

�

��������

xt−1,
U t−1,
Υt,
Xt−1

it < ∆t−1
it

§
¨̈
© (IV.3)

= E
i∼Ut−1

£
¥
�

j

cj · x∗
j · log

xt−1
j

xt
j

������
Xt−1

i < ∆t−1
i

§
©

= E
i∼Ut−1

� �
j cj · x∗

j · logZt

−�j cj · x∗
j · κt

i · aij

cj

���� X
t−1
i < ∆t−1

i

�

≤ E
i∼Ut−1

£
¥β · logZt − κt

i ·
�

j

aijx
∗
j

������
Xt−1

i < ∆t−1
i

§
©

(IV.4)

where we used that �c, x∗� ≤ β. Expanding the definition of

Zt and applying the fact that x∗ is a feasible solution i.e.
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�ai, x∗� ≥ 1, we continue to bound (IV.4) as

≤ E
i∼Ut−1

£
¤¤¥
β log

»
½ 1

β

�

j

cjx
t−1
j e

κt
i·

aij
cj

¾
À

−κt
i

��������

Xt−1
i

< ∆t−1
i

§
¨̈
©

≤ E
i∼Ut−1

£
¤¤¥
β log

»
½1 + e−1

β κt
i

�

j

aijx
t−1
j

¾
À

−κt
i

��������

Xt−1
i

< ∆t−1
i

§
¨̈
©.

(IV.5)

(IV.5) is derived by applying the approximation ey ≤ 1 +
(e − 1)y for y ∈ [0, 1] and the fact that �c, xt−1� = β by

Invariant 1; the exponent lies in [0, 1] because by definition

κt
i · aij/cj = ∆t−1

i · (aij/cj) · mink(ck/aik) ≤ 1 since

∆t−1
i ∈ [0, 1]. Finally, using the fact that log(1+ y) ≤ y, we

have that (IV.5) is at most

≤ E
i∼Ut−1

£
¥(e− 1)κt

i

�

j

aijx
t−1
j − κt

i

������
Xt−1

i

< ∆t−1
i

§
©

≤ E
i∼Ut−1

�
(e− 1)κt

i ·min
�
Xt−1

i ,∆t−1
i

�

−κt
i

����
Xt−1

i

< ∆t−1
i

�
.

(IV.6)

The lemma statement follows by combining (IV.2) and (IV.6)

using the law of total expectation.

We move to bounding the expected change in log ρt provided

by updating the solution z on Line 6 on the arrival of the

random row i. Recall that U t = {i | ∆t
i > γ} are the unseen

elements which are at most half covered by z.

We will make use of the following lemma, which we prove

in the appendix:

Fact IV.4. Given probabilities pj and coefficients bj ∈ [0, 1],
let W :=

�
j bj Ber(pj) be the sum of independent weighted

Bernoulli random variables. Let ∆ ≥ γ = (e−1)−1 be some

constant. Then

E[min (W,∆)] ≥ α ·min (E[W ],∆) ,

for a fixed constant α independent of the pj and bj .

We are ready to bound the expected change in log ρt.

Lemma IV.5 (Change in log ρt). For rounds in which Υt

holds, the expected change in log ρt is

E
it,Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt

"

≤ −α

β
· E
i�∼Ut−1

�
κt
i� ·min

�
Xt−1

i� ,∆t−1
i�

�"

where α is a fixed constant.

Proof: Conditioned on it = i, the expected change in log ρt

depends only on Rt.

E
it,Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt, it = i

"

= E
Rt

�
log

�
1− ρt−1 − ρt

ρt−1

� ���� U
t−1, it = i

�

≤ − 1

ρt−1
E
Rt

�
ρt−1 − ρt

�� U t−1, it = i
"
. (IV.7)

Above, follows from the approximation log(1 − y) ≤ −y.

Expanding definitions again, and using the fact that

κt−1
i� − κt

i� = min
k

(ck/ai�k) · (∆t−1
i� −∆t

i�)

≥ κt
i�(∆

t−1
i� −∆t

i�),

we further bound (IV.7) by

≤ − 1

ρt−1
E
Rt

�
�

i�∈Ut−1

κt
i� · (∆t−1

i� −∆t
i�)

�

= − 1

ρt−1

�

i�∈Ut−1

κt
i� · E

Rt
[∆t−1

i� −∆t
i� ]

= − 1

ρt−1

�

i�∈Ut−1

κt
i� · αmin

�
κt
i

β
Xt−1

i� ,∆t−1
i�

�
. (IV.8)

To understand this last step (IV.8), note that

∆t−1
i� −∆t

i�

= min(
�

j

ai�j�yj�+
�

j

ai�j Ber(�y), ∆t−1
i� ).

By the definition of y, the first term inside the minimum has

expectation
κt
i

β ·Xt−1
i� , and since Υt holds we have ∆t−1

i� > γ.

Therefore applying Fact IV.4 gives (IV.8) (where α is the

constant given by the lemma). Since κt
i/β ≤ 1, we bound

(IV.8) with

≤ −α

β
· κt

i ·
1

ρt−1

�

i�∈Ut−1

κt
i� ·min

�
Xt−1

i� ,∆t−1
i�

�

= −α

β
· κt

i ·
|U t−1|
ρt−1

· E
i�∼Ut−1

�
κt
i� ·min

�
Xt−1

i� ,∆t−1
i� )

�"
.

(IV.9)

Taking the expectation of (IV.9) over i ∼ U t−1, and using

the fact that Ei∼Ut−1 [κt
i] = ρt−1/U t−1, the expected change

in log ρt becomes

E
it,Rt

�
log ρt − log ρt−1 | xt−1, U t−1,Υt

"

≤ −α

β
· E
i�∼Ut−1

�
κt
i� ·min

�
Xt−1

i� ,∆t−1
i�

�"
,

as desired.

We may now combine the two previous lemmas as before.
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Proof of Theorem IV.1:

In the round in which constraint i arrives, the expected cost of

sampling is
κt
i

β �c, xt−1� = κt
i (by Invariant 1). The algorithm

pays an additional

ck∗

�
∆t−1

i

aik∗

�
= ck∗

�
κt
i

ck∗

�
≤ 2κt

i

in Line 16, where this upper bound holds because
κt
i

ck∗
=

∆t−1

i

aik∗
≥ 1/2, since ∆t−1

i ≥ γ ≥ 1/2 and aik∗ ≤ 1. Hence the

total expected cost per round is at most 3 · κt
i.

Combining Lemma IV.3 and Lemma IV.5 and choosing C1 =
3 and C2 = 3(e− 1)/α, we have

E
it,Rt

�
Φ(t)− Φ(t− 1)

�� i1, . . . , it−1,R1, . . . ,Rt−1,Υt
"

= E
it,Rt

£
¤¤¥

C1

�
KLc (x

∗ || xt)
−KLc

�
x∗ || xt−1

�
�

+C2 · β
�

log ρt

− log ρt−1

�

��������

i1, . . . , it−1,
R1, . . . ,Rt−1,
Υt

§
¨̈
©

≤ − E
it,Rt

�
3 · κt

it

�� i1, . . . , it−1,R1, . . . ,Rt−1,Υt
"
,

which cancels the expected change in the algorithm’s cost.

Hence we have the inequality

E
it,Rt

£
¥

Φ(t)− Φ(t− 1)
+c(ALG(t))
−c(ALG(t− 1))

������
i1, . . . , it−1,
R1, . . . ,Rt−1

§
© ≤ 0.

Let t∗ be the last time step for which Φ(t∗) ≥ 0. By

applying Lemma A.1 and the bound on the starting potential,

Φ(0) = O(β · log(mn)), we have that E[c(ALG(t∗))] ≤
O(β · log(mn)).

To bound the expected cost of the algorithm after time t∗, note

that as before that KL divergence is a nonnegative quantity,

and Φ is negative only when ρt ≤ β. The algorithm pays

O(κt
i) in expectation during rounds t where i ∈ U t−1 and 0

during rounds where i �∈ U t−1, and hence the expected cost

paid by the algorithm after time t∗ is at most
�

i∈Ut∗ κt∗

i =
ρt

∗

= O(β).

V. LOWER BOUNDS

We turn to showing lower bounds for SETCOVER and

related problems in the random order model. The lower

bounds for ROSETCOVER are proven via basic probabilistic

and combinatorial arguments. We also show hardness for a

batched version of ROSETCOVER, which has implications

for related problems. We only state the theorems here; see

the full version for the complete proofs.

A. Lower Bounds for ROSETCOVER

We start with information theoretic lower bounds for the RO

setting.

Theorem V.1. The competitive ratio of any randomized frac-

tional or integral algorithm for ROSETCOVER is Ω(logn).

We emphasize that the set system in the construction for

Theorem V.1 has a VC dimension of 2, which rules out

improved algorithms for set systems of small VC dimension

in this setting.

Theorem V.2. The competitive ratio of any randomized

algorithm for ROSETCOVER is Ω
�

logm
log logm

�
even when

m � n.

Claim V.3. There are instances on which [9] is

Ω(logm log n)-competitive in RO.

B. Lower Bounds for Extensions

We study lower bounds for several extensions of ROSET-

COVER. Our starting point is a lower bound for the batched

version of the problem. Here the input is specified by a set

system (U,S) as before, along with a partition of U into

batches B1, B2, . . . Bb. For simplicity, we assume all batches

have the same size s. The batches are revealed one-by-one

in their entirety to the algorithm, in uniform random order.

After the arrival of a batch, the algorithm must select sets to

buy to cover all the elements of the batch.

Using this lower bound, we derive as a corollary a lower

bound for the random order version of SUBMODULAR-

COVER defined in [19]. It is tempting to use the method

of Theorem III.1 to improve their competitive ratio of

O(log n log(t · f(N)/fmin)) in RO (we refer the reader to

[19] for the definitions of these parameters). We show that

removing a log from the bound is not possible in general.

Theorem V.4. The competitive ratio of any polynomial-time

randomized algorithm on batched ROSETCOVER with b
batches of size s is Ω(log b log s) unless NP ⊆ BPP.

Corollary V.5. The competitive ratio of any polynomial-time

randomized algorithm against ROSUBMODULARCOVER is

Ω(log n · log(f(N)/fmin)) unless NP ⊆ BPP.

Proof: Batched ROSETCOVER is a special case of online

SUBMODULARCOVER in which fi is the coverage function

of block i. In this case the parameter f(N)/fmin = s, so the

statement follows by applying Theorem V.4 with b = s =
√
n.

VI. CONCLUSION

In this work we introduce LEARNORCOVER as a method for

solving ROSETCOVER and ROCIP with competitive ratio
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nearly matching the best possible offline bounds. On the

other hand we prove nearly tight information theoretic lower

bounds in the RO setting. We also show lower bounds and

separations for several generalizations of ROSETCOVER. We

leave as an interesting open question whether it is possible to

extend the technique to covering IPs with box constraints. We

hope our method finds uses elsewhere in online algorithms

for RO settings.
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APPENDIX

In this paper we use several potential function arguments,

and the following simple lemma.

Lemma A.1 (Expected Potential Change Lemma). Let ALG

be a randomized algorithm for ROSETCOVER and let Φ be

a potential which is a function of the state of the algorithm

at time t. Let c(ALG(t)) be the cost paid by the algorithm

up to and including time t. Let Rt and vt respectively be the

random variables that are the random decisions made by the

algorithm in time t, and the random element that arrives in

time t. Suppose that for all rounds t in which the algorithm

has not covered the entire ground set at the beginning of the

round, the inequality

E
vt,Rt

£
¥

Φ(t)− Φ(t− 1)
+c(ALG(t))
−c(ALG(t− 1))

������
v1, . . . , vt−1,
R1, . . . ,Rt−1

§
© ≤ 0.

holds. Let t∗ be the last time time step such that Φ(t∗) ≥ 0.

Then the expected cost of the algorithm, c(ALG(t∗)) can be

bounded by

E[c(ALG(t∗))] ≤ Φ(0).

Proof: Let T be the set of rounds for which Φ > 0 at the

beginning of the round.

Define the stochastic process:

Xt :=

�
Φ(t) + c(ALG(t)) if t ∈ T ,

Xt−1 otherwise.

By assumption, this is a supermartingale with respect to

((vt,Rt))t; that is,

E
vt,Rt

�
Xt+1

�� v1, . . . , vt−1,R1, . . . ,Rt−1
"
≤ Xt

for all t. By induction we have that for all t > 0

E
v1,...,vt

R1,...,Rt

[Xt] ≤ X0,

so in particular,

E[Φ(t∗)] + E[c(ALG(t∗))] ≤ Φ(0).

The claim follows since the leftmost term is nonnegative by

assumption.

Fact III.3. Every pure covering LP of the form

minx≥0{�c, x� : Ax ≥ 1} for c ≥ 0 and aij ∈ [0, 1] with

optimal value less than β has an optimal solution x∗ which

is supported only on columns j such that cj ≤ β.

Proof: Suppose otherwise and let x∗ be an optimal LP

solution. Let j� be a coordinate for which cj� > β and

x∗
j� > 0. Then define the vector x� by

x�
j =

�
0 if j = j�

x∗

j

1−x�∗

j

otherwise,

First of all, note that x∗
j� < 1 since x∗

j�cj� ≤ �
j cjx

∗
j ≤

β < cj� , and so x� ≥ 0. To see that x� is feasible for each

constraint �ai, x� ≥ 1,

�ai, x∗� = (1− x∗
j�)�ai, x��+ aij�x

∗
j� ≥ 1

so

�ai, x�� ≥ 1

1− x∗
j�
(1− aij�x

∗
j�) ≥ 1,

since aij� ∈ [0, 1]. Finally, observe that x� costs strictly less

than x∗, since

�c, x�� =
�c, x∗� − x∗

j�cj�

1− x∗
j�

<
�c, x∗� − x∗

j��c, x∗�
1− x∗

j�

= �c, x∗�.
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This contradicts the optimality of x∗, and so the claim holds.

Fact IV.4. Given probabilities pj and coefficients bj ∈ [0, 1],
let W :=

�
j bj Ber(pj) be the sum of independent weighted

Bernoulli random variables. Let ∆ ≥ γ = (e−1)−1 be some

constant. Then

E[min (W,∆)] ≥ α ·min (E[W ],∆) ,

for a fixed constant α independent of the pj and bj .

Proof: We first consider the case when E[W ] ≥ ∆/3. By the

Paley-Zygmund inequality, noting that E[W ] =
�

j bjpj and

so σ2 =
�

j pj(1− pj)b
2
j ≤ E[W ], we have

P (W ≥ ∆/6) ≥ P (W ≥ E[W ]/2)

≥ 1

4
· E[W ]

2

E[W ]
2
+ σ2

≥ 1

4
· E[W ]

1 + E[W ]

≥ 1

4
·

∆/3

1 + ∆/3

≥ 1/28,

since ∆ ≥ γ ≥ 1/2 by assumption. This implies the claim

because in this case

E[min (W,∆)] ≥ ∆

6
· P (W ≥ ∆/6)

≥ ∆

168

≥ 1

168
·min(E[W ],∆).

Otherwise E[W ] < ∆/3. Let R denote the random subset of j
for which Ber(pj) = 1 in a given realization of W , and let K
be the random subset of the j which is output by the (1/3, 1/3)-
contention resolution scheme for knapsack constraints when

given R as input, as defined in [10, Lemma 4.15]. The

set K has the properties that (1) (over the randomness in

R) every j appears in K with probability at least pj/3, (2)�
j∈K aij < ∆, and (3) K ⊆ R. Hence in this case

E[min (W,∆)] ≥ E
K

£
¥
�

j∈K

aij

§
©

≥ E[W ]

3
=

1

3
·min(E[W ],∆).

Therefore the claim holds with α = 1/168.

1264

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 20,2022 at 11:51:48 UTC from IEEE Xplore.  Restrictions apply. 


