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Abstract—We give a polynomial-time algorithm for ONLINE-
SETCOVER with a competitive ratio of O(log mn) when the
elements are revealed in random order, matching the best
possible offline bound of O(log n) when the number of sets m
is polynomial in the number of elements n, and circumventing
the Q(logmlogn) lower bound known in adversarial order.
We also extend the result to solving pure covering IPs when
constraints arrive in random order.

The algorithm is a multiplicative-weights-based round-and-
solve approach we call LEARNORCOVER. We maintain a
coarse fractional solution that is neither feasible nor monotone
increasing, but can nevertheless be rounded online to achieve
the claimed guarantee (in the random order model). This
gives a new offline algorithm for SETCOVER that performs a
single pass through the elements, which may be of independent
interest.

[. INTRODUCTION

In the SETCOVER problem we are given a set system (U, S)
(where U is a ground set of size n and S is a collection
of subsets with |S| = m), along with a cost function c :
S — R™. The goal is to select a minimum cost subcollection
S’ C S such that the union of the sets in S’ is U. Many
algorithms have been discovered for this problem that achieve
an approximation ratio of Inn (see e.g. [11], [24], [27], [33]),
and this is best possible unless P = NP [16], [14].

In the ONLINESETCOVER variant, we impose the additional
restriction that the algorithm does not know U initially, nor
the contents of each S € S. Instead, an adversary reveals
the elements of U one-by-one in an arbitrary order. On the
arrival of every element, it is revealed which sets of S € S
contain the element, and the algorithm must immediately
pick one such set S € S to cover it. The goal is to minimize
the total cost of the sets chosen by the algorithm. In their
seminal work, [7] show that despite the lack of foresight, it
is possible to achieve a competitive ratio of O(logm logn)
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for this version. This result has since been shown to be
tight unless NP C BPP [26], and has also been generalized
significantly (e.g. [6], [9], [21], [19]).

In this paper, we answer the question:

What is the best competitive ratio possible for ON-
LINESETCOVER when the adversary is constrained
to reveal the elements in uniformly random order
(RO)?

We call this version ROSETCOVER. Note that the element
set U is still adversarially chosen and unknown, and only
the arrival order is random.

A. Results

We show that with only this one additional assumption on
the element arrival order, there is an efficient algorithm for
ROSETCOVER with expected competitive ratio matching the
best-possible offline approximation guarantee (at least in the
regime where m = poly(n)).

Theorem I.1. LEARNORCOVER is a polynomial-time ran-
domized algorithm for ROSETCOVER achieving expected
competitive ratio O(log(mn)).

When run offline, our approach gives a new asymptotically
optimal algorithm for SETCOVER for m = poly(n), which
may be of independent interest. Indeed, given an estimate
for the optimal value of the set cover, our algorithm makes a
single pass over the elements (considered in random order),
updating a fractional solution using a multiplicative-weights
framework, and sampling sets as it goes. This simplicity, and
the fact that it uses only O(m) bits of memory, may make the
algorithm useful for some low-space streaming applications.
(Note that previous formulations of STREAMINGSETCOVER
[32], [13], [23], [15] only consider cases where sets arrive
in a stream.)

We show next that a suitable generalization of the same
algorithm achieves the same competitive ratio for the RO

Throughout this paper we consider the unknown-instance model for online
set cover (see Chapter 1 of [26]). The result of [7] was presented for the
known-instance model, but extends to the unknown setting as well. This
was made explicit in subsequent work [9].
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Covering Integer Program problem (ROCIP) (see Section IV
for a formal description).

Theorem I.2. LEARNORCOVERCIP is a polynomial-time
randomized algorithm for ROCIP achieving competitive ratio

O(log(mn)).

We complement our main theorem with some lower bounds.
For instance, we show that the algorithms of [7], [9] have a
performance of O(logmlogn) even in RO, so a new algo-
rithm is indeed needed. Moreover, we observe an 2(logn)
lower bound on fractional algorithms for ROSETCOVER.
This means we cannot pursue a two-phase strategy of
maintaining a good monotone fractional solution and then
randomly rounding it (as was done in prior works) without
losing Q(log2 n). Interestingly, our algorithm does maintain a
(non-monotone) fractional solution while rounding it online,
but does so in a way that avoids extra losses. We hope
that our approach will be useful in other works for online
problems in RO settings. (We also give other lower bounds
for batched versions of the problem, and for the more general
submodular cover problem.)

B. Techniques and Overview

The core contribution of this work is demonstrating that one
can exploit randomness in the arrival order to learn about
the underlying set system. What is more, this learning can be
done fast enough (in terms of both sample and computational
complexity) to build an O(logmn)-competitive solution,
even while committing to covering incoming elements
immediately upon arrival. This seems like an idea with
applications to other sequential decision-making problems,
particularly in the RO setting.

We start in Section II with an exponential time algorithm for
the unit-cost setting. This algorithm maintains a portfolio of
all exponentially-many collections of cost ¢(OPT) that are
feasible for the elements observed so far. When an uncovered
element arrives, the algorithm takes a random collection from
the portfolio, and picks a random set from it covering the
element. It then prunes the portfolio to drop collections that
did not cover the incoming element. We show that either the
expected marginal coverage of the chosen set is large, or the
expected number of solutions removed from the portfolio is
large. L.e., we either make progress covering, or learning. We
show that within ¢(OPT) log(mn) rounds, the portfolio only
contains the true optimal feasible solutions, or all unseen
elements are covered. (One insight that comes from our result
is that a good measure of set quality is the number of times
an unseen and uncovered element appears in it.)

We then give a polynomial-time algorithm in Section III:
while it is quite different from the exponential scheme above,
it is also based on this insight, and the intuition that our
algorithm should make progress via learning or covering.

Specifically, we maintain a distribution {zs}ses on sets: for
each arriving uncovered element, we first sample from this
distribution z, then update z via a multiplicative weights
rule. If the element remains uncovered, we buy the cheapest
set covering it. For the analysis, we introduce a potential
function which simultaneously measures the convergence
of this distribution to the optimal fractional solution, and
the progress towards covering the universe. Crucially, this
progress is measured in expectation over the random order,
thereby circumventing lower bounds for the adversarial-order
setting [26]. In Section IV we extend our method to the more
general ROCIP problem: the intuitions and general proof
outlines are similar, but we need to extend the algorithm to
handle elements being partially covered.

Finally, we present lower bounds in Section V. Our
information-theoretic lower bounds for ROSETCOVER follow
from elementary combinatorial arguments. We also show
a lower bound for a batched version of ROSETCOVER,
following the hardness proof of [26]; we use it in turn to
derive lower bounds for ROSUBMODULARCOVER. See the
full version for the proofs of this section.

C. Other Related Work

There has been much recent interest in algorithms for random
order online problems. Starting from the secretary problem,
the RO model has been extended to include metric facility
location [28], network design [29], and solving packing LPs
[2], [31], [25], [20], [1], [5], load-balancing [20], [30] and
scheduling [3], [4]. See [22] for a recent survey.

Our work is closely related to [17], who give an O(log mn)-
competitive algorithm a related stochastic model, where
the elements are chosen i.i.d. from a known distribution
over the elements. [12] generalize the result of [17] to the
prophet version, in which elements are drawn from known but
distinct distributions. Our work is a substantial strengthening,
since the RO model captures the unknown i.i.d. setting as
a special case. Moreover, the learning is an important and
interesting part of our technical contribution. On the flip side,
the algorithm of [17] satisfies universality (see their work
for a definition), which our algorithm does not. We point
out that [17] claim (in a note, without proof) that it is not
possible to circumvent the 2(log mlogn) lower bound of
[26] even in RO; our results show this claim is incorrect.
See the full version for a discussion.

Regret bounds for online learning are also proven via the KL
divergence (see, e.g., [8]). However, no reductions are known
from our problem to the classic MW setting, and it is unclear
how random order would play a role in the analysis: this is
necessary to bypass the adversarial order lower bounds.

Finally, [26] gives an algorithm with competitive ratio
k log(m/k)—hence total cost k2 log(m/k)—for unweighted
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ONLINESETCOVER where k = |OPT|. The algorithm is the
same as our exponential time algorithm in Section II for
the special case of k& = 1; however, we outperform it for
non-constant k, and generalize it to get polynomial-time
algorithms as well.

D. Preliminaries

All logarithms in this paper are taken to be base e. In the
following definitions, let -,y € R} be vectors. The standard

dot product between z and y is denoted (z,y) = > 1 | @;y;.

We use a weighted generalization of KL divergence. Given
a weight function c, define

KL.(z || y) := Zci |:£E7 log (Z) —x; +yi] . (@D

i=1 v

II. WARMUP: AN EXPONENTIAL TIME ALGORITHM FOR
UNIT COSTS

We begin with an exponential-time algorithm which we call
SIMPLELEARNORCOVER to demonstrate some core ideas
of our result. In what follows we assume that we know a
number k € [¢(OPT), 2 - ¢(OPT)]. This assumption is easily
removed by a standard guess and double procedure, at the
cost of an additional factor of 2.

The algorithm is as follows. Maintain a list T C (3) of

candidate k-tuples of sets. When an uncovered element v
arrives, choose a k-tuple 7 = (T4,...,T) uniformly at

random from ¥, and buy a uniformly random 7" from 7.

Also buy an arbitrary set containing v. Finally, discard from
T any k-tuples that do not cover v.

Theorem II.1. SIMPLELEARNORCOVER is a randomized
algorithm for unit-cost ROSETCOVER with expected cost
O(k - log(mn)).

Proof of Theorem I1.1: Consider any time step ¢ in which a
random element arrives that is uncovered on arrival. Let Ut
be the set of elements that remain uncovered at the end of
time step ¢. Before the algorithm takes action, there are two
cases:

Case 1: At least half the tuples in T cover at least |[U'~1|/2
of the |U*~!| as-of-yet-uncovered elements. In this case we
say the algorithm performs a Cover Step in round t.

Case 2: At least half the tuples in T cover strictly less than
|U=1|/2 of the uncovered elements; we say the algorithm
performs a Learning Step in round ¢.

Define 91(c) to be the number of uncovered elements
remaining after ¢ Cover Steps. Define 21(¢) to be the value
of || after ¢/ Learning Steps. We will show that after
10k(logm + logn) rounds, either the number of elements
remaining is less than 91(10klogn) or the number of tuples

remaining is less than 9(10k logm). In particular, we argue
that both E[91(10k log n)] and E[901(10k log m)] are less than
1.

Claim IL2. ED(c+1) | N(c) = N] < (1 — &) N.

Proof: If round ¢ is a Cover Step, then at least half of the
T € < cover at least half of U™!, so E[|[(UT) N U] >
|Ut=1|/4. Since T is drawn uniformly at random from the k
sets in the uniformly random 7, we have E HT NnUt—1 H >
|UtY| /4k. -

Claim IL3. E[(¢ + 1) | M(¢) = M] < 3M.

Proof: Upon the arrival of v in a Learning Step, at least
half the tuples have probability at least 1/2 of being removed
from %, so the expected number of tuples removed from T
is at least M /4. [ |

To conclude, by induction

E[M(10klogn)] <n (1 — &) " <1
and
3 10k logm
E[9%(10k log m)] < mF (4) <1.

Note that if there are N remaining uncovered ele-
ments and M remaining tuples to choose from, the
algorithm will pay at most min(k - M, N) before all
elements are covered. Thus the total expected cost
of the algorithm is bounded by 10k(logm + logn) +
E[min(k - M(10klogm), N(10klogn))] = O(klogmn).

|

Apart from the obvious challenge of modifying SIMPLE-
LEARNORCOVER to run in polynomial time, it is unclear how
to generalize it to handle non-unit costs. Still, the intuition
from this algorithm will be useful for the next sections.

III. A POLYNOMIAL-TIME ALGORITHM FOR GENERAL
CosTS

We build on our intuition from Section II that we can either
make progress in covering or in learning about the optimal
solution. To get an efficient algorithm, we directly maintain
a probability distribution over sets, which we update via
a multiplicative weights rule. We use a potential function
that simultaneously measures progress towards learning the
optimal solution, and towards covering the unseen elements.
Before we present the formal details and the pseudocode,
here are the main pieces of the algorithm.

1) We maintain a fractional vector x which is a (not
necessarily feasible) guess for the LP solution of cost
[ to the set cover instance.

2) Every round ¢ in which an uncovered element vt arrives,
we
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a) sample every set S with probability proportional
to its current LP value xg,
increase the value xg of all sets S > v
plicatively and renormalize,
buy a cheapest set to cover v' if it remains

uncovered.

t

b) multi-

)

Formally, by a guess-and-double approach, we assume we
know a bound $ such that LPopr < 8 < 2 - LPgpr; here
LPgpr is the cost of the optimal LP solution to the final

unknown instance. Define
Ky :=min{cg | S 2 v} (IIL.1)

as the cost of the cheapest set covering v.

Algorithm 1 LEARNORCOVER

Let us start by defining notation. Let 2* to be the optimal
LP solution to the final, unknown set cover instance. Next
let X7 := >, %, the fractional coverage provided to v
by xt. Let U! be the elements remaining uncovered at the
end of round t (where U® = U is the entire ground set of
the set system). Define the quantity

pli= Z K-

ueU?t

(II1.2)

With this, we are ready to define our potential function
which is the central player in our analysis. Recalling that 3
is our guess for the value of LPqpr, and the definition of
KL divergence (I.1), define

t
®(t) == Cy - KL, (2 || a') + Cs - B log (2) (I11.3)

1: Let m' < |{S: ¢(S) < B}.

2: Initialize 2% + 2 - 1{c(S) < B}, and C° « 0.

3: fort=1,2...,n do

4: vt < tt" element in the random order, and let Rt «
0.

5: if v not already covered then

6: for each set S, with probability

7: min(k,e - 2% 1 /B, 1) add R* + Rt U {S}.

8: Update C* + C*~1 U R

9: if Yoo, 5 ' < 1 then

10: For every set .S, update

1 xgewg_l-exp{]l{Savt}-%}.

12: Let Z' = {c,z')/B and normalize

13: AR VAN

14: else

15: ‘ xt L

16: Let S,¢ be the cheapest set containing v¢. Add

Cl 4+ CtU{Sy}.

The algorithm is somewhat simpler for unit costs: the xg
values are multiplied by either 1 or e, and moreover we
can sample a single set for R? (see the appendix of the
full version for pseudocode). Because of the non-uniform
set costs, we have to carefully calibrate both the learning
and sampling rates. Our algorithm dynamically scales the
learning and sampling rates in round ¢ depending on k,:, the
cost of the cheapest set covering v'. Intuitively, this ensures
that all three of (a) the change in potential, (b) the cost of
the sampling, and (c) the cost of the backup set, are at the
same scale. Before we begin, observe that Line 13 ensures
the following invariant:

Invariant 1. For all time steps t, it holds that {c,z') = 3.

Theorem IIL.1 (Main Theorem). LEARNORCOVER is a
polynomial-time randomized algorithm for ROSETCOVER
with expected cost O(8 - log(mn)).
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where C'; and (', are constants to be specified later.

Lemma IIL2 (Initial Potential). The initial potential is
bounded as ®(0) = O( - log(mn)).

We write the proof in general language in order to reuse
it for covering IPs in the following section. Recall that
sets correspond to columns in the canonical formulation
of SETCOVER as an integer program.

Proof: We require the following fact which we prove in the
appendix.

Fact IIL.3. Every pure covering LP of the form
ming>o{{c,z) : Az > 1} for ¢ > 0 and a;; € [0, 1] with
optimal value less than (8 has an optimal solution x* which
is supported only on columns j such that c; < .

We assume WLOG that x* is such a solution, and we
first bound the KL term of ®(0). Since support(z*) C
support(z”) by Fact 111.3, we have

KL, (.’L‘* [l xo)

Z cj - x;log <x;‘
J
< B(log(m) + 1),
where we used that (c¢,z*) < /8 and that m’ < m is the
number of columns with cost less than (3.

G

> + ch(xg — k)

.m/
B

For the second term,
Blog(p’/B) = Blog( D ki/B)
i€yo
< Blog(|U?))
— Blogn,
since for all 7, the cheapest cover for i costs less than /3, and

therefore ,,/8 < 1. The claim follows so long as Cy and
C5 are constants. ]
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The rest of the proof relates the expected decrease of potential
® to the algorithm’s cost in each round. Define the event
Yt := {v' € U'"'} that the element v’ is uncovered on

arrival. Note Line 5 ensures that if event YT? does not hold,

the algorithm takes no action and the potential does not

change. So we focus on the case that event T* does occur.

We first analyze the change in KL divergence. Recall that

t . i
Xv *ZSBUxS'

Lemma IIL4 (Change in KL). For rounds t in which Y
holds, the expected change in the weighted KL divergence is

KL (z* || 2*) t—1 prt—1 ~nt
virt| = KL (2% || 271 |7 U1
< E [(e—1)-k,min(XI7H 1) — k).

’L)NUt71

We emphasize that the expected change in relative entropy in
the statement above depends only on the randomness of the
arriving uncovered element v®, not on the randomly chosen
sets RE.

Proof: We break the proof into cases. If Xﬁ_l > 1,in Line 15
we set the vector ' = 2*~!, so the change in KL divergence
is 0. This means that

KL, (z* || 2") t—1 prt=1 yt xi-1
7 >
vt,Rt| =KL (2% || #'71) T L Xy 21
< vEﬂ[(e — 1)+ kymin (X7 1) =k, | X7 > 1]

(IIL4)

trivially. Henceforth we focus on the case Xf;l < 1. Recall
that the expected change in relative entropy depends only on
the arriving uncovered element v*. Expanding definitions,

B KLC (.T* || xt) It_l,Ut_l,
vie | —KLe (z* | 271 | ! X}j:l <1
:W[IJEt ) ch g - log X7t < 1]
- E (c,z™) - IOth Xt-1 -1
vt | _ZSSU cs - xS log em;/cs v
(T
Blog S t—1
< UNIIBEtfl +27S Xy <1y,
SZEv
L — ZSBU Ko - '%.g

(I1L.5)

where in the last step (II.5) we expanded the definition of
Z*, and used {(c,z*) < B. Since z* is a feasible set cover,
which means that ZSSU x§ > 1, we can further bound (I11.5)

by
i ZCS.It 1 o=
lo S3v _
< E, Flog +> Salt Xt <1
SZEv
__K;U
i Z(’sxt 1
lo _
I 3 L () e IR
S3v
__’iv
(I11.6)

where we use the approximation e¥ < 1+ (e — 1) - y for
y € [0, 1] (note that «, is the cheapest set covering v, so for
any S > v we have k,/cg < 1). Finally, using Invariant 1,
along with the approximation log(1 + y) < y, we bound
(II1.6) by

< E [le=1)- k- X' —ko | XU <]
v~Ut—1

< E [(e—1)-wmin(XIH1) -k, | X < 1]
v~ Ut—1

IL7)

The lemma statement follows by combining (I11.4) and (II1.7)
using the law of total expectation. [ ]

Next we bound the expected change in log p! provided by
the sampling R* ~ k,:2'~!//3 upon the arrival of uncovered
v! (where each S € R! independently with probability
mvtxts’l/ ). Recall that U*? denotes the elements uncovered
at the end of round t; therefore element u is contained in
U=t \ U! if and only if it is marginally covered by R! in
this round.

Lemma IIL5 (Change in log p'). For rounds when v is
uncovered on arrival, the expected change in log p' is

E [logpt _ 10gpt71 | xt717Ut717Tt}

vt Rt
1—et
< —
B

[fn - min(X. 7, 1)].

u~Ut—1

Proof: Recall the definition of p* from (I11.2). Conditioned
on v! = v for any fixed element v, the expected change in
log p* depends only on R*. Recall R! is formed by sampling
each set S with probability x,z% /3.

¢ t—1 | t—1 prt—1 ~t .t _
%[logp—logp |75, U, T —U]

t—1 _ t
= E{log <1_ptlp> Utlﬂ)tzv]
Rt pi=
1 — —
<— Bl oAU =] au)

Above, (I11.8) follows from the approximation log(1 — y) <
—y. Expanding the definition of p' from (I11.2), (II1.8) is
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bounded by

1
:_pt—l g‘t

t—1
u—,

’Ut:U

S ke HueU' ™\ U}

weUt—1

ptl_l Z Ku'}g;(ugUt|U€Ut_l,Ut:’U)

ueUt—1
1—e! 1 . _
S pr >k min(XE1 1) (IL9)
ueUt—1
1—e! |1

E [r,min(X.7",1)].

u~Ut—1

= /B Hv . pt71
(I11.10)
Step (I11.9) is due to the fact that each set S € R! is sampled
independently with probability min(nvxg_l /B,1), so the
probability any given element u € U1 is covered is

t—1
1-T1 <1—min(””? 1))
> 1—exp{—min (%}Xi_l,1>}

(1—eY) min <’;’le, 1)

Above, (xx) follows from convexity of the exponential. Step
(1I1.10) follows since x,/B < 1. Taking the expectation
of (II.10) over v ~ U!"!, and using the fact that
Eypi-1[ky] = pt=1/|UY|, the expected change in log p’
becomes

ﬁ
IV %
x

E f [logpt _ log pt—l | xt—17 Ut_l, 'rt}

vt R
1—e! oyt—1
< - 5 u~ll§t71 [fy - min(X." 1)],
as desired. [ |

Proof of Theorem III.1:

In every round ¢ for which Y* holds, the expected cost of the

sampled sets R is Kyt - (¢, 2'71) /B = Kk, (by Invariant 1).

The algorithm pays an additional k,: in Line 16, and hence
the total expected cost per round is at most 2 - Kt.

Combining Lemmas I1I.4 and III.5, and setting the constants
C1 =2 and Cy = 2¢, we have

E [(I)(t) —o(t—1)
t Rt

v k)

vl,...,vf_l,
1 t—1 ~t
RY,...,RULY

o ( KL, (z* || 951)4 > ol il
= tE t _KLC (ligl)'tx ) Rl""’Rt_17
v R t
' +Cs - _ T
2 B <_10gpt 1
<— E [2-k |0 0T RE L RISL Y,
vt R

which cancels the expected change in the algorithm’s cost.

Since neither the potential ® nor the cost paid by the

algorithm change during rounds in which Y* does not hold,
we have the inequality

O(t) — (t — 1) ! -1
E | +c(ALG(1)) v
VR _e(ALG(t — 1))

Let ¢* be the last time step for which ®(¢*) > 0. By applying
Lemma A.1 and the bound on the starting potential from
Lemma II1.2, we have that E[c(ALG(¢*))] < O(8-log(mn)).

It remains to bound the expected cost paid by the algorithm
after time ¢*. Since KL divergence is a nonnegative quantity,
® is negative only when p* < 3. The algorithm pays O (k¢ )
in expectation during rounds ¢ where v* € U*~! and 0 during
rounds where v* ¢ U1, and hence the expected cost paid
by the algorithm after time ¢* is at most ) |, /e« Ky = ot =

o(B). m

IV. COVERING INTEGER PROGRAMS

We show how to generalize our algorithm from Section III to
solve pure covering IPs when the constraints are revealed in
random order, which significantly generalizes ROSETCOVER.
Formally, the random order covering IP problem (ROCIP)
is to solve

min, {c,z)
s.t. Az >1 (Iv.1)
z €L,

when the rows of A are revealed in random order. Further-
more the solution z can only be incremented monotonically
and must always be feasible for the subset of constraints
revealed so far. (Note that we do not consider box constraints,
namely upper-bound constraints of the form z; < d;.) We
may assume without loss of generality that the entries of A
are a;; € [0,1].

We describe an algorithm which guarantees that every row
is covered to extent 1 — 7, meaning it outputs a solution z
with Az > 1 — ~ (this relaxation is convenient in the proof
for technical reasons). With foresight, we set v = (e — 1)~
It is straightforward to wrap this algorithm in one that buys
[(1 —~)~1] = 3 copies of every column and truly satisfy
the constraints, which only incurs an additional factor of 3
in the cost.

Once again, by a guess-and-double approach, we assume we
know a bound (8 such that LPopr < 8 < 2 - LPopr; here
LPgopr is the cost of the optimal solution to the LP relaxation
of (IV.1). Let z* be the integer solution held by the algorithm
at the end of round ¢. Define A! := max(0,1 — (a;, 2")) to
be the extent to which ¢ remains uncovered at the end of
round ¢. This time we redefine nf = Af_l - ming ¢k /aik,
which becomes the minimum fractional cost of covering
the current deficit for ¢. Finally, for a vector y, denote the
fractional remainder by y :=y — |y].
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The algorithm once again maintains a fractional vector x
which is a guess for the (potentially infeasible) LP solution
of cost A to (IV.1). This time, when the i*"* row arrives
at time ¢ and A!™! > ~ (meaning this row is not already
covered to extent 1 — «), we (a) buy a random number of
copies of every column j with probability proportional to its
LP value z;, (b) increase the value x; multiplicatively and
renormalize, and finally (c) buy a minimum cost cover for
row 1 if necessary.

Algorithm 2 LEARNORCOVERCIP

m/ {5 G < B}
2: Initialize :c —

-1{¢; < B}, and 2° + 0.

cj cj-m’
3: fort =1, 2 ,n do
4: 74— tth constraint in the random order.
s: | if Al7! > 5 then
6: Let y = f<a xt_l/ﬁ. for each column j, add
z — z 1y ly;] + Ber(g;).
7: if (az, t= 1) < A" then
8: For every 7 update
9: x <—xt ! - exp n ac‘]’
10: Let Zt = <c,ac )/B and normalize
11: AR Y VA
12: else
13: |2t atl
14: Let k* = argmin, ~*. Add
15: Zk* — Zk* + [ik* —‘

Note that once again, Line 11 ensures Invariant 1 holds. The
main theorem of this section is:

Theorem IV.1. LEARNORCOVERCIP is a polynomial-time
randomized algorithm for ROCIP which outputs a solution
z with expected cost O(f3 -log(mn)) such that 3z is feasible.

Theorem 1.2 follows as a corollary, since given any interme-
diate solution z*, we can buy the scaled solution 3z*.

We generalize the proof of Theorem III.1. Redefine z* to
be the optimal LP solution to the final, unknown instance
(IV.1), and U? := {i | Al > ~} be the elements which are
not covered to extent 1 — y at the end of round ¢. With these
new versions of U? and «!, the definitions of both p* and the
potential ® remain the same as in (II1.2) and (II1.3) (except
we pick the constants C; and CY differently).

Once again, we start with a bound on the initial potential.

Lemma IV.2 (Initial Potential). The initial potential is
bounded as ®(0) = O(8 - log(mn)).

The proof is identical verbatim to that of Lemma III.2.

It remains to relate the expected decrease in ® to the
algorithm’s cost in every round. For convenience, let X! :=

(a;, zt) be the amount that z¢ fractionally covers 4. Define
Y* to be the event that for constraint ;¢ arriving in round ¢
we have Ag‘l > ~. The check at Line 5 ensures that if Y*
does not hold, then neither the cost paid by the algorithm
nor the potential will change. We focus on the case that Y*
occurs, and once again start with the KL divergence.

Lemma IV.3 (Change in KL). For rounds in which Yt holds,
the expected change in weighted KL divergence is

KL (z* | xt) t—1 prt—1 ~nt
Z—t%t —KLC (x* H .’L’til) r ’U 7T
< E 1[(e -1)- /sf min(Xit*l, Aﬁfl) — l{ﬂ
iUt~

Proof: We break the proof into cases. By the check on Line 7,
if Xft_l > Aft_ 1, then the vector z! is not updated in round
t, so the change in KL divergence is 0. This means that

:L.tfl
KL, (z* || ?) Ut

it R _KLc (:E* || xt_l) Ttv

Xt—l > At—l

=
S E (6 : 1)’%1; min(XfilaAzil) ’ X;ffl Z A§71
i~Ut=1 | — Ry
(IV2)

holds trivially, since in this case min(Xit*l, Aﬁfl)
Af’l >~ = (e—1)"! and x! > 0. Henceforth we focus on
the case Xff1 < Afl.

The change in relative entropy depends only on the arriving
uncovered constraint 4%, not on the randomly chosen columns
Rt. Expanding definitions,

L1
KL. (z* || 2*) Uttt
iRt | —KLe (2* [[2*7h) | T, (V-3
Xt < Al
i -1
= iN(IJE);f1 ch -z} - log | X7t < Attt
J i
—IE_ Z(’J;kl()ng Xt1<At1
_,L‘NUt—l | Z - x;k-/i%a“
< iN[IJELl B-log Z" — Kkt - Zaijxj Xit_1 < Af_l
J

(IV.4)

where we used that (¢, z*) < . Expanding the definition of
Z' and applying the fact that x* is a feasible solution i.e.
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(ai,x*) > 1, we continue to bound (IV.4) as

t @ij
1 t—1 K t—1
< g |Blos|Fd il || X
— i~Ut-1 7 < Az
t
L —Hi _
t =1 t—1
< E Blog aij; X; .
i~nUt—1 j <Ai
t
—k}
(Iv.s)

(IV.5) is derived by applying the approximation e¥ < 1 +
(e — 1)y for y € [0,1] and the fact that {(c,z'~1) = 8 by
Invariant 1; the exponent lies in [0, 1] because by definition
Kkt aij/e; = AT (aii/c;) - ming(eg/ag) < 1 since
A'~! € [0,1]. Finally, using the fact that log(1+y) < y, we
have that (IV.5) is at most

=1 _ ot
E:CLZJ Ky

(e — 1)kl - min (Xzt 1,A§ 1)

t
—K;

Xt

< A1

Xt

N ]
IV.6)

< E (e— 1k

i~Ut—1

inUt1

< B

The lemma statement follows by combining (IV.2) and (IV.6)
using the law of total expectation. ]

We move to bounding the expected change in log p* provided
by updating the solution z on Line 6 on the arrival of the
random row i. Recall that U? = {i | Al > ~} are the unseen
elements which are at most half covered by z.

We will make use of the following lemma, which we prove
in the appendix:

Fact IV.4. Given probabilities p; and coefficients b; € [0, 1],
let W := Z b; Ber(p;) be the sum of independent welghted
Bernoulli random variables. Let A > v = (e—1)"1 be some
constant. Then

E[min (W, A)] > a - min (E[W], A),
for a fixed constant o independent of the p; and b;.

We are ready to bound the expected change in log p.

Lemma IV.5 (Change in log p). For rounds in which Y*
holds, the expected change in log p* is

E [logpt —logp!=t |27 UL, Tt]
it,Rt

<-2. E [&

3 o B[Ry min (X7 AGT)]

where « is a fixed constant.
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Proof: Conditioned on i’ = 4, the expected change in log p
depends only on R*.

it].];zt [logpt _ 10g pt—l ‘ l‘t_l, Ut_l, Tt,it — Z}

pl | Ut =] av.7)

Above, follows from the approximation log(l — y) < —y.
Expanding definitions again, and using the fact that

Ht/ - KZE/ = mkin(ck/ai/k) - (A:fl — Af,)
> rp (AFT = AD),
we further bound (IV.7) by
1
<———E| Y kb —Aﬁ,)]
PR
eyt—1
1 t—1 t
= _pt71 Z fﬁ: :r A A’L,]
1 EUf 1
1 t L
T Z Kjr - min EX” JALTT L (IV.8)
ieyUt-1

To understand this last step (IV.8), note that
AT Al
(A i’
= min(z ayjly;] + Z a;; Ber(y), AL,
J J

By the deﬁn1t10n of y, the first term inside the minimum has
expectation - X/~ !, and since Y* holds we have Al sy,
Therefore applymg Fact IV.4 gives (IV.8) (where « is the
constant given by the lemma). Since /ﬁﬁ /B8 < 1, we bound
(IV.8) with

S,g.ﬁg Z Kl mlnthAt 1)

g Pt LG

a Ut . _ _
=G S B i (X AG)).

(IV.9)

Taking the expectation of (IV.9) over i ~ U*~!, and using
the fact that Eijopi-1[kl] = pt =1 /U1, the expected change
in log p* becomes

E [lOg pt _ logpt—l | .Z’t_l, Ut_l,Tt]

it Rt
o ¢ . t—1 At—1
<=0 B [ebomin (XA,
1~
as desired. [ |

We may now combine the two previous lemmas as before.
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Proof of Theorem 1V.1:

In the round irtl which constraint 7 arrives, the expected cost of
sampling is 7 (c, x'™1) = k! (by Invariant 1). The algorithm
pays an addmonal

Cl* ’7
t

in Line 16, where this upper bound holds because ci*

1
2 et 1/2, since A™! >~ >1/2 and a;,- < 1. Hence the
total expected cost per round is at most 3 - st

t

W_C’“* VZ

Cl*

t—1
A
Q>

—‘§2/<c§

Combining Lemma V.3 and Lemma IV.5 and choosing C =
3 and Cy = 3(e — 1)/, we have

iIEﬁ[cI)(t) —®(t—1) i, LR LR Y
KL, (z* || %) > . 4
Cl( * — 7. 7Zt 17
=L V2 (ligl)'txt V) R R
i" R . t
+C2 - 8 (_logpt—l T
<— E [3-wk |4, R, RN T,
it R )

which cancels the expected change in the algorithm’s cost.
Hence we have the inequality

() o(t-1)

+e(ALG(H))
—¢(ALG(t — 1))

E
it R

Let t* be the last time step for which ®(t*) > 0. By
applying Lemma A.l and the bound on the starting potential,
®(0) = O(B - log(mn)), we have that E[c(ALG(t*))] <
O(8 - log(mn)).

To bound the expected cost of the algorithm after time ¢*, note
that as before that KL divergence is a nonnegative quantity,
and ® is negative only when p' < 3. The algorithm pays
O(k!) in expectation during rounds ¢ where i € U'~! and 0
during rounds where ¢ ¢ U*~!, and hence the expected cost
pald by the algorithm after tlme t* is at most ) ;e

= 0(B).

t
Ky

V. LOWER BOUNDS

We turn to showing lower bounds for SETCOVER and
related problems in the random order model. The lower
bounds for ROSETCOVER are proven via basic probabilistic
and combinatorial arguments. We also show hardness for a
batched version of ROSETCOVER, which has implications
for related problems. We only state the theorems here; see
the full version for the complete proofs.
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A. Lower Bounds for ROSETCOVER

We start with information theoretic lower bounds for the RO
setting.

Theorem V.1. The competitive ratio of any randomized frac-
tional or integral algorithm for ROSETCOVER is Q(logn).

We emphasize that the set system in the construction for
Theorem V.1 has a VC dimension of 2, which rules out
improved algorithms for set systems of small VC dimension
in this setting.

Theorem V.2. The competitive ratio of any randomized

algorithm for ROSETCOVER is ) (lolgoi?m
m > n.

) even when
Claim V.3. There are instances on which [9] is
Q(log mlog n)-competitive in RO.

B. Lower Bounds for Extensions

We study lower bounds for several extensions of ROSET-
COVER. Our starting point is a lower bound for the batched
version of the problem. Here the input is specified by a set
system (U, S) as before, along with a partition of U into
batches By, Ba, ... By. For simplicity, we assume all batches
have the same size s. The batches are revealed one-by-one
in their entirety to the algorithm, in uniform random order.
After the arrival of a batch, the algorithm must select sets to
buy to cover all the elements of the batch.

Using this lower bound, we derive as a corollary a lower
bound for the random order version of SUBMODULAR-
COVER defined in [19]. It is tempting to use the method
of Theorem III.1 to improve their competitive ratio of
O(lognlog(t - f(N)/fmin)) in RO (we refer the reader to
[19] for the definitions of these parameters). We show that
removing a log from the bound is not possible in general.

Theorem V4. The competitive ratio of any polynomial-time
randomized algorithm on batched ROSETCOVER with b
batches of size s is Q(logblog s) unless NP C BPP.

Corollary V.5. The competitive ratio of any polynomial-time
randomized algorithm against ROSUBMODULARCOVER is
Q(logn - 1og(f(N)/ fmin)) unless NP C BPP.

Proof: Batched ROSETCOVER is a special case of online
SUBMODULARCOVER in which f; is the coverage function
of block 4. In this case the parameter f(N)/ fmin = S, so the
statement follows by applying Theorem V.4 with b = s = \/n.

|

VI. CONCLUSION

In this work we introduce LEARNORCOVER as a method for
solving ROSETCOVER and ROCIP with competitive ratio
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nearly matching the best possible offline bounds. On the
other hand we prove nearly tight information theoretic lower
bounds in the RO setting. We also show lower bounds and
separations for several generalizations of ROSETCOVER. We
leave as an interesting open question whether it is possible to
extend the technique to covering IPs with box constraints. We
hope our method finds uses elsewhere in online algorithms
for RO settings.
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APPENDIX

In this paper we use several potential function arguments,
and the following simple lemma.

Lemma A.1 (Expected Potential Change Lemma). Let ALG
be a randomized algorithm for ROSETCOVER and let ® be
a potential which is a function of the state of the algorithm
at time t. Let ¢(ALG(t)) be the cost paid by the algorithm
up to and including time t. Let R and v* respectively be the
random variables that are the random decisions made by the
algorithm in time t, and the random element that arrives in
time t. Suppose that for all rounds t in which the algorithm
has not covered the entire ground set at the beginning of the
round, the inequality

() —e(t—1) 1 -1
E | +c(ALG(1)) p A
VSR _e(ALG(t — 1)) "

holds. Let t* be the last time time step such that ®(t*) > 0.
Then the expected cost of the algorithm, ¢(ALG(t*)) can be
bounded by

E[c(ALG(t"))] < ©(0).

Proof: Let T be the set of rounds for which & > 0 at the
beginning of the round.

Define the stochastic process:

Xt {(I)(t)+c(ALG(t)) ifteT,

X1 otherwise.
By assumption, this is a supermartingale with respect to
((v*,RY))s; that is,

t]ERt[Xt“ o', TR LR < X!
v,

for all ¢. By induction we have that for all £ > 0
E [X'<X°

o
S0 in particular,
E[®(t*)] + E[c(ALG(t"))] < ©(0).
The claim follows since the leftmost term is nonnegative by
assumption. |

Fact 1IIL3. Every pure covering LP of the form
ming>o{{c,z) : Az > 1} for ¢ > 0 and a;; € [0, 1] with
optimal value less than (8 has an optimal solution x* which
is supported only on columns j such that c; < f.

Proof: Suppose otherwise and let x* be an optimal LP
solution. Let j' be a coordinate for which ¢;; > ( and
%, > 0. Then define the vector 2’ by

, 0 if j =7
xT. = /.*f .
7 1]—7, otherwise,
—Zj
First of all, note that :c;, < 1 since x;,cj/ < Zj cjx;f <

B < ¢jr, and so ' > 0. To see that 2’ is feasible for each
constraint {a;,x) > 1,

(ag, %) = (1 — 2} ) (ai, 2") + aijrxj > 1
$0

(az,z") >

- (1 — aij/x;,) > 1,
L —a3

since a;;» € [0, 1]. Finally, observe that z’ costs strictly less
than x*, since

(c,x™) —atiey

no—
(o0 = S
_ (e, ™) — % (c,x™)
11—z
J
= (¢, z7)
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This contradicts the optimality of x*, and so the claim holds.
|

Fact IV.4. Given probabilities p; and coefficients b; € [0, 1],
let W := 3", bj Ber(p;) be the sum of independent weighted
Bernoulli random variables. Let A > v = (e—1)"! be some
constant. Then

E[min (W, A)] > « - min (E[W], A),
for a fixed constant o independent of the p; and b;.

Proof: We first consider the case when E[W] > A/3. By the
Paley-Zygmund inequality, noting that E[W] =}, b;p; and
so 0% =33, pj(1—p;)b; < E[W], we have

P(W = 8/6) = B(W > E[W)/2)

S 1 _EWP
T4 KW+ o2
1 E[W]
> .t 1
=1 1+EW]
Lo

4 1443
> 1/28,
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since A >~ > 1/2 by assumption. This implies the claim
because in this case

Efmin (W, 4)] > 2 B (W > 470
A
>
- 1(158
> 168 -min(E[W], A).

Otherwise E[IV] < 4/3. Let R denote the random subset of j
for which Ber(p;) = 1 in a given realization of TV, and let XC
be the random subset of the j which is output by the (1/3,1/3)-
contention resolution scheme for knapsack constraints when
given R as input, as defined in [10, Lemma 4.15]. The
set /C has the properties that (1) (over the randomness in
R) every j appears in K with probability at least p; /3, (2)
Zje,c a;; < A, and (3) K C R. Hence in this case

Ef[min (W, A)] > E > ag

jex
E 1
> % =3 -min(E[W], A).
Therefore the claim holds with o = 1/16s. [ |
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