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In the k-cut problem, we want to ond the lowest-weight set of edges whose deletion breaks a given

(multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughlyO (n2k )

time. However, lower bounds from conjectures about the k-clique problem imply that Ω(n(1−o (1))k ) time is

likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k-cut in n1.98k+O (1)

time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small

integer edge weights).

In this work, we resolve the problem for general graphs.We show that the Contraction Algorithm of Karger

outputs any oxed k-cut of weight αλk with probability Ωk (n
−αk ), where λk denotes the minimum k-cut

weight. This also gives an extremal bound ofOk (n
k ) on the number of minimum k-cuts and an algorithm to

compute λk with roughlynkpolylog(n) runtime. Both are tight up to lower-order factors, with the algorithmic

lower bound assuming hardness of max-weight k-clique.

The orst main ingredient in our result is an extremal bound on the number of cuts of weight less than 2λk/k ,

using the Sunnower lemma. The second ingredient is a one-grained analysis of how the graph shrinks—and

how the average degree evolves—in the Karger process.
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1 INTRODUCTION

We consider the k-Cut problem: Given an edge-weighted graph G = (V ,E,w ) and an integer k ,
we want to delete a minimum-weight set of edges so that G has at least k connected components.
We let λk denote the resulting weight of the deleted edges. This generalizes the global min-cut
problem, where the goal is to break the graph into k = 2 pieces.
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It was unclear that the problem admitted a polynomial-time algorithm for oxed k , until Gold-

schmidt and Hochbaum gave a deterministic algorithm with nO (k2 ) runtime [4]. The algorithm

of Karger [11], based on random edge contractions, can also solve k-Cut in Õ (mn2k−1) time; this

was later improved to Õ (n2k−2) runtime by Karger and Stein [12]. There have been a number of
improved deterministic algorithms [2, 5, 10, 15]: notably, the tree-packing result of Thorup [15]
was sped up by Chekuri et al. [2] to O (mn2k−3) runtime. Thus, until recently, randomized and

deterministic algorithms with very diferent approaches have achieved n(2−o (1))k runtime for the
problem. (Here and subsequently, the o(1) in the exponent indicates a quantity that goes to zero
as k increases.)
As for hardness, there is a reduction from Max-Weight (k − 1)-Cliqe to k-Cut. It is conjec-

tured that solving Max-Weight k-Cliqe requires Ω(n(1−o (1))k ) time when weights are integers

in the range [1,Ω(nk )], and Ω(n(ω/3−o (1))k ) time for unit weights, where ω is the matrix multipli-

cation constant. Extending these bounds to k-Cut suggests that n(1−o (1))k may be a lower bound
for general weighted k-cut instances.
There has been recent progress on this problem, showing the following results:

(1) Gupta, Lee, and Li gave an n(1.98+o (1))k -time algorithm for general k-Cut [7]. This was based
on showing an extremal bound for the number of <small= 2-cuts in the graph. A bounded-
depth search is then used to guess the small 2-cuts within a minimum k-cut and make

progress. This proof-of-concept result showed that n(2−o (1))k was not the right bound, but
the approach did not seem to extend to exponents considerably below 2k .

(2) For polynomially bounded edge-weights, Gupta, Lee, and Li gave an algorithm with roughly

kO (k ) n(2ω/3+o (1))k runtime [6]. For unweighted graphs, Li obtained kO (k )n(1+o (1))k run-
time [14]. These algorithms are both based on onding a spanning tree that crosses a small
number of edges of a minimum k-cut. The former relies on matrix multiplication ideas, and
the latter on the Kawarabayashi-Thorup graph decomposition [13], which are both intrinsi-
cally tied to graphs with small edge-weights.

In this article, we show that the <right= algorithm, the original Contraction Algorithm of
Karger [11], achieves the <right= bound for general graphs. We recall the algorithm below; here, τ
(the onal desired graph size) is a parameter we will adjust in our specioc constructions.

ALGORITHM 1: Contraction Algorithm

1: while |V | > τ do

2: Choose an edge e ∈ E at random from G, with probability proportional to its weight.
3: Contract the two vertices in e and remove self-loops.
4: end while

5: Return a k-cut of G chosen uniformly at random.

Setting τ = k , as in Karger’s original algorithm, would seem most natural, but we will require a
larger value in our analysis. Our main result is the following.

Theorem 1.1 (Main). For any integer k ≥ 2 and real number α ≥ 1, the Contraction Algorithm

outputs each k-cut of weight αλk with probability at least n−αkk−O (αk2 ) for appropriate choice of

τ = poly(α ,k ).

Since anyminimum-weightk-cut (corresponding toα = 1) is outputwith probabilityn−kk−O (k2 ) ,
this immediately implies the following corollary.
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Corollary 1.2 (Number of Minimum k-cuts). For any k ≥ 2, the number of minimum-weight

k-cuts in a graph is at most nkkO (k2 ) .

This improves on the previous best bound of n(1.98+o (1))k [7]. It is almost tight, because the cycle

on n vertices has
(

n
k

)

minimum k-cuts.

Also, while the direct implementation of Algorithm 1 incurs an extra O (n2) in the runtime, the
Recursive Contraction Algorithm of Karger and Stein [12] can be used to get an almost-matching
running time to enumerate all minimum k-cuts.

Theorem 1.3 (Faster Algorithm to Find aMinimum k-cut). There is an algorithm to enumer-

ate all minimum k-cuts in time nk (logn)O (k2 ) with probability at least 1 − 1/poly(n).

This improves the runtime n(1.98+o (1))k from Reference [7] and even beats the runtime n(1+o (1))k

for the unweighted case [14]. It is almost optimal under the hypothesis that Max-Weight k-

Cliqe requires n(1−o (1))k time. Achieving anO (nck )-time algorithm for unit-weighted graphs for
any constant c < 1 still remains an open problem.
See Section 7 for the formal statements of the above theorems.

1.1 Our Techniques

Althoughwe have stated the generalk-Cut problem for aweighted graph, wewill assume through-
out that G = (V ,E) is an unweighted multigraph with n vertices andm edges. The viewpoint in
terms of weighted graphs is equivalent via replicating edges; note that, in this case, m may be
exponentially large compared to n. Our computational and combinatorial bounds will depend on
n and not directly onm.

In the spirit of Reference [7], our proof has two main parts: (i) a bound on the extremal number
of <medium= cuts in a graph, and (ii) a new algorithmic analysis for the Contraction Algorithm. To

begin, let us orst state a crude version of our extremal result. Deone λk := λk/k , which we think
of as the average contribution of the k components of a minimum k-cut, and let <medium= cuts

denote 2-cuts whose weight is in [λk , 2λk ).
1 The graph may contain a negligible number of <small=

2-cuts of weight less than λk . Loosely speaking, the extremal bound says the following:

(�) For oxed k , the graph has at most O (n) many medium cuts.

To develop some intuition for this claim, it is instructive to consider the cycle and clique graphs.
These are two opposite ends of the spectrum in the context of graph cut. In the cycle, we have

λk = 1, and there are no 2-cuts with weight less than 2λk , hence (�) holds. However, the
(

n
2

)

minimum 2-cuts have size equal to 2λk = 2. In the clique, the minimum k-cut chops of k − 1

singleton vertices, so λk =
(

k−1
2

)

+ (k − 1) (n − k + 1), which gives λk ≈
k−1
k
n for n " k . There are

n minimum 2-cuts, which have weight n − 1 < 2λk (the singletons), so again (�) holds. And again,

there are
(

n
2

)

2-cuts of weight approximately 2λk (the doubletons).

Therefore, in both the cycle and the clique, the bound 2λk is almost the best possible. Moreover,
the O (n) bound for the number of medium cuts is also optimal in the clique.

1.1.1 Analysis of Contraction Algorithm. When we begin the Contraction Algorithm in the
graph G, our extremal bound ensures that there are at most Ok (n) medium cuts of size between

λk and 2λk , plus a negligible number of small 2-cuts of size less than λk . Let us next sketch how
these bounds give rise to the improved bound for k-cuts. To provide intuition, let us suppose that

1In the actual analysis, we use the interval [ k
k−1 λk , 2λk ).
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in fact there are n medium cuts and no smaller 2-cuts (the precise factors are not important for the
overall analysis).
Each vertex during the Contraction Algorithm corresponds to a 2-cut of the original graph,

and we are assuming that G has no small 2-cuts, so the number of edges in each iteration i of

the Contraction Algorithm is lower-bounded by iλk/2. Again, to provide intuition, let us suppose
there are precisely this many edges. Then each medium cut gets an edge selected in iteration i ,

and is thereby removed from the graph, with probability at least λk

iλk /2
=

2
i
. So after n/2 iterations,

the number of surviving medium cuts is close to

n

n
∏

i=n/2

(

1 −
2

i

)

≈ n/4.

Thus, in the resulting subgraph with i = n/2 vertices, at most n/4 of the vertices (corresponding

to the surviving medium cuts) have degree λk . The remainder have degree at least 2λk . Continuing
this process, the graph becomes more and more enriched with high-degree vertices. After (1− ε )n
iterations (for some small constant ε), almost all of the medium cuts have been eliminated, and

each graph on i ≤ εn vertices has close to iλk edges.
Now consider an arbitraryminimumk-cutK . It survives the orst (1−ε )n iterationswith constant

probability. In each iteration i of the ContractionAlgorithmwhen the resulting subgraph has i ≤ εn

vertices, K is selected with probability roughly λk

iλk
=

k
i
. Over the entire run of the Contraction

Algorithm, down to the onal graph with τ = poly(k ) vertices, K survives with probability roughly

constant ·

εn
∏

i=τ

(

1 −
k

i

)

≈ Θ(n−k ).

To show this formally, we need to track the number of medium cuts remaining in the residual
graphs produced by the Contraction Algorithm. There are two main obstructions to turning the
analysis we have sketched above into a rigorous proof. First, many of our bounds made unwar-
ranted assumptions about the parameter sizes; for example, we only know lower bounds on the
edge counts, and we should not assume that these hold with equality in each iteration. Second, the
Contraction Algorithm is a stochastic process; we cannot assume that relevant quantities (such as
the number of medium cuts) equal their expectations.
To overcome these challenges, we adopt a proof strategy of Reference [9]. First, using a number

of heuristic worst-case assumptions, and relaxing the discrete stochastic process to a continuous-
time system of diferential equations, wemake a guess as to the correct dynamics of the Contraction
Algorithm. This gives us a formula for the probability that K is selected, given that the process has
reached some iteration i and currently has some given number of residual medium cuts. Next, we
use induction to prove that this formula holds in the worst case. For this, we take advantage of the
fact that our guessed formula has nice convexity and monotonicity properties.
Let us contrast our proof strategy with the analysis in a preliminary version of this article [8]. In

this work, we analyze the Contraction Algorithm as edges are contracted one at a time. In contrast,
the authors of Reference [8] considered an alternate viewpoint where each edge is independently
contracted with some given probability, which is equivalent to executing many steps of the Con-
traction Algorithm. (The alternate viewpoint is only taken for the purposes of analysis; the actual
algorithm remains the same.)
In some ways, the alternate viewpoint is simpler, since it preserves many independencies

among edges and since a number of relevant parameters are concentrated. However, a drawback
is that it lacks one control of precisely how many edges to contract. When the number of vertices
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Fig. 1. Lev: To illustrate, suppose k = 8 and all
(

n
2

)

2-cuts of the cycle have weight less than 2λk . Then, we

select � = 4 such 2-cuts as shown. Their Venn diagram has 2� = 8 nonempty atoms and form an 8-cut with

cost less than � · 2λk = 8λk = λk . Right: A k-sunflower with core and petals consisting of single vertices.

Here c has degree a ≥ k
k−1

λk and each bolded edge has weight r = a/k =
λk
k−1

. A k-cut generated by k − 1

of the vertices pi then has weight less than λk .

in the graph becomes small, the independent-contractions viewpoint introduces larger errors
compared to our one-at-a-time approach. For example, the preliminary version showed a bound

of nkkO (k2 (log logn)2 ) on the number of k-cuts; compare this to the tighter bound of nkkO (k2 ) from
Theorem 1.1.

1.1.2 Extremal Result. Recall our target extremal statement (�): There areOk (n) manymedium

cuts in the graph, i.e., 2-cuts of weight less than 2λk . To show this, we consider two diferent cases.
In the orst case, suppose the medium cuts all correspond to small vertex sets. Our key observa-

tion is that the k-cut structure of the graph forbids certain types of sunnowers in the set family
corresponding to the medium cuts; however, estimates from the Sunnower Lemma would ensure
that if there are many medium cuts, then such a sunnower would be forced to exist.

For, consider ak-sunnower of medium cuts S1, S2, . . . , Sk , in which the coreC is a 2-cut of weight

at least k
k−1λk . (Handling cases where the core is empty or corresponds to a smaller 2-cut are details

we defer to the actual proof.) Suppose we contract C as well as each petal Pi = Si \ C to single
vertices c and pi , respectively. To provide intuition, let us suppose that there are the same number

of edges r between the core and each petal, and let a ≥ k
k−1λk denote the degree of c itself; clearly

r ≤ a/k . See Figure 1 right.

Since each set Si is a medium cut, there are less than 2λk edges from {c,pi } to V \ {c,pi }. So

deg(pi ) < 2λk − a + 2r for all i and consequently, the k-cut {p1, . . . ,pk−1,V \ {p1, . . . ,pk−1}} has

weight at most
∑k−1

i=1 deg(pi ) < (k − 1) · (2λk −a + 2r ) ≤ (k − 1) (2λk −a + 2a/k ). Due to our bound

on a, this is at most kλk = λk ; this is a contradiction, since λk is the minimum k-cut value.
In the second case, suppose there is a medium cut S where both halves involve many vertices.

Then consider a maximal sequence of medium cuts S1, . . . , S� starting with S1 = S , such that the
Venn diagram of S1, . . . , S� has at least 2� regions. See Figure 1 (left). From this, we can form two
subgraphs where every atom of the Venn diagram of S1, . . . , S� in each half of S gets contracted
to a single vertex. It can be shown that every medium cut of the original graph is preserved in at
least one of the two graphs. Also, the fact that both halves of S have many vertices ensures that
the contracted graphs are strictly smaller than the original graph. We get our desired bound by
induction on n.
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1.2 Outline

In Section 2, we discuss the Sunnower Lemma. For our result, we need a slightly strengthened
version of this lemma, which involves showing the existence of multiple sunnowers and ensuring
their cores are nonempty.
In Section 3, we record some elementary bounds and deonitions of cuts and k-cuts in the graph.

In Section 4, we use these for our main extremal bound on the number of medium cuts.
In Section 5, we provide an overview of the Contraction Algorithm and some simple bounds on

the probability that cuts survive it. In Section 6, we carry out the more involved analysis of how
the number of medium cuts evolves during the Contraction Algorithm.
In Section 7, we conclude with our main results on the behavior of the Contraction Algorithm

and the Recursive Contraction Algorithm.

2 SUNFLOWER LEMMA AND EXTENSIONS

In a set system F over a universeU , an r -sunnower is a collection of r sets F1, . . . , Fr ∈ F that all
share the same pairwise intersection. That is, there is a coreC ⊆ U such that Fi ∩ Fj = C for all i, j,
and hence

⋂

i Fi = C . Let sf (d, r ) be the smallest number such that any set system with more than
sf (d, r ) sets of cardinality at most d must have an r -sunnower. The classical bound of Erdős and
Rado [3] shows that sf (d, r ) ≤ d!(r − 1)d . A recent breakthrough by Alweiss et al. [1] shows that

sf (d, r ) ≤ (logd )d (r · log logd )O (d ) . (1)

While we use this improved bound, it only changes lower-order terms: the older Erdős-Rado bound
would give the same asymptotics for our applications.

For our applications for cuts, we want multiple sunnowers with distinct nonempty cores. (The
cores may intersect, even though they are distinct.) The bound must then depend on the universe
size N , since the system consisting of N singleton sets has no sunnowers with nonempty core. The
following results show that we can guarantee a nonempty core by multiplying the bound by N .

Proposition 2.1. Let F be a family of nonempty sets over a universe of N elements, where every

set has size at most d . If |F | > sf (d, r ) · N , then F contains an r -sunnower with nonempty core.

Proof. For each elementv of the universe, consider the set system Fv := {F ∈ F : F � v}. Since
every set in F is included in some Fv , there must be some elementv with |Fv | ≥ |F |/N > sf (d, r ).
Thus, there is an r -sunnower in Fv and hence F . The core is nonempty, since it contains v . �

Lemma 2.2. Let F be a family of nonempty sets over a universe of N elements, where every set

has size at most d . If |F | > sf (d, r ) · sN , then F contains s many r -sunnowers, each with a distinct,

nonempty core.

Proof. We show this by induction on s . The base case s = 0 is vacuous. For the induction step
with s ≥ 1, consider a maximal nonempty set C such that F contains an r -sunnower with core C;
this exists by Proposition 2.1, since |F | > sf (d, r ) · sN ≥ sf (d, r )N .
We claim that the set system FC := {F ∈ F : F ⊇ C} has size at most sf (d, r ) · N . For, if not,

then applying Proposition 2.1 to the set system {F \C : F ∈ FC } (which has the same cardinality
as FC ) would give an r -sunnower S1, . . . , Sr with nonempty coreC ". The sets S1 ∪C, . . . , Sr ∪C in
F then form an r -sunnower with core C ∪C ", contradicting maximality of C .
Now consider the set system F " = F \ FC . It has size |F | − |FC | > sf (d, r ) · sN − sf (d, r ) · N =

sf (d, r ) ·(s−1)N . By the induction hypothesis, it has s−1many r -sunnowerswith distinct nonempty
cores. These cores are all distinct fromC , since no sets containingC remain in F ". Combining them
with the r -sunnower of core C gives s many r -sunnowers with distinct, nonempty cores. �
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Fig. 2. The Venn diagram above has eight atoms.

3 SIMPLE BOUNDS AND DEFINITIONS FOR CUTS

We assume throughout we have a oxed value k ≥ 3. A k-cut K is a partition ofV into k nonempty
sets, and we let ∂K denote the set of edges crossing diferent parts of K . The weight of K is the

cardinality of the edge set ∂K . We let λk be the minimum weight of any k-cut, and λk := λk/k .
A 2-cut {C,V \C} will often simply be called a cut, and we often denote it merely byC . The shore

of the cut is whichever of the setsC orV \C is smaller. (If they are the same size, then choose one
arbitrarily), and the shoresize is the cardinality of the shore.

For vertex sets A,B we let E (A,B) denote the set of edges crossing from A to B. We also write
∂S = E (S,V \ S ) for a set S ⊆ V .
We deone a small cut to be a cut C with

|∂C | <
k

k − 1
λk ,

and we deone a medium cut to be a cut C such that

k

k − 1
λk ≤ |∂C | < 2λk .

Given vertex sets F1, . . . , Ft , we denote theirVenn diagram by Venn(F1, . . . , Ft ). An atom denotes
a nonempty region of the diagram, i.e., a nonempty set that can be expressed asG1∩· · ·∩Gt , where
each set Gi is either Fi , or its complement V \ Fi . See Figure 2.
We say that F1, . . . , Ft generate the �-cut K = {A1, . . . ,A� } where A1, . . . ,A� are the atoms of

Venn(F1, . . . , Ft ). Observe that the weight of K is at most |∂F1 | + · · · + |∂Ft |.
We begin with a few straightforward bounds.

Proposition 3.1. If n ≥ k , thenm ≥ nk
2(k−1)λk .

Proof. Sort the vertices in ascending order of degree, so deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn ).
The k-cut generated by the singleton sets {v1}, . . . , {vk−1} has weight at most deg(v1) + · · · +
deg(vk−1); since λk is the minimum k-cut, we thus have deg(v1) + · · · + deg(vk−1) ≥ λk . Also,

because of the sorted vertex ordering, we have deg(vi ) ≥ deg(vk−1) ≥
deg(v1 )+· · ·+deg(vk−1 )

k−1 ≥
λk
k−1

for all i ≥ k .
Summing vertex degrees, the total number of edgesm is given by

2m =
(

deg(v1) + · · · + deg(vk−1)
)

+

(

deg(vk ) + · · · + deg(vn )
)

≥ λk + (n − k + 1) · λk/(k − 1) = nλk/(k − 1) = nkλk/(k − 1). �

Lemma 3.2. There are fewer than 2k−2 small cuts.

Proof. Suppose not; in this case, we will construct a k-cut of weight less than λk , which con-
tradicts the deonition of λk .
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For i = 1, . . . ,k − 1, let us choose an arbitrary small cut Si such that |Venn(S1, . . . , Si ) | ≥ i + 1.
We claim that we can always ond such an Si . For, if |Venn(S1, . . . , Si−1) | ≥ i + 1, then Si can be
chosen arbitrarily. Otherwise, suppose that Venn(S1, . . . , Si−1) has precisely i atoms A1, . . . ,Ai .
The only small cut T such that |Venn(S1, . . . , Si−1,T ) | = i = |Venn(S1, . . . , Si−1) | would have the
form T =

⋃

j ∈I Aj for some subset I ⊆ {1, . . . i}. There are at most 2i−1 − 1 such cuts (keeping in
mind that I and its complement determine the same cut). Since by assumption there are at least
2k−2 small cuts, there exists a small cut Si with Venn(S1, . . . , Si−1, Si ) > i as desired.
At the end, we have |Venn(S1, . . . , Sk−1) | ≥ k . So the small cuts S1, . . . , Sk−1 generate a t-cut for

t ≥ k whose weight is less than (k − 1) · k
k−1λk = λk . This is our desired contradiction. �

Proposition 3.3. Let T1, . . . ,Tr be medium cuts where r = �k/2�. Then either

|Venn(T1, . . . ,Tr−1) | < 2(r − 1) or |Venn(T1, . . . ,Tr ) | < 2r (or both).

Proof. Let us orst consider the case where k is even and r = k/2. Suppose for contradiction
that |Venn(T1, . . . ,Tr ) | = t ≥ k . Then T1, . . . ,Tr generate a t-cut K . Since T1, . . . ,Tr are medium

cuts, the weight of K is less than r · 2λk = λk ; this contradicts that λk is the minimum k-cut value.
Next consider the case where k is odd and r = (k + 1)/2. Suppose for contradiction that
|Venn(T1, . . . ,Tr ) | = t ≥ k + 1 and |Venn(T1, . . . ,Tr−1) | = t " ≥ k − 1. The setsT1, . . . ,Tr−1 generate

a t "-cut K "; since T1, . . . ,Tr−1 are medium cuts, the weight of K " is less than (r − 1) · 2λk =
k−1
k
λk .

If t " ≥ k , then this contradicts that λk is the minimum k-cut value. So it must be that t " = k − 1
exactly.
Let A1, . . . ,Aj be the atoms of Venn(T1, . . . ,Tr−1) cut by Tr ; since t ≥ k + 1 and t " = k − 1 we

must have j ≥ 2. The edge sets E (Tr ,Ai \ Tr ) are all disjoint and Tr is a medium cut, so at least

one atom Ai must satisfy |E (Tr ,Ai \Tr ) | ≤ |∂Tr |/j ≤ |∂Tr |/2 ≤ λk . The sets T1, . . . ,Tr−1,Ai then

generate a k-cutK "" of weight less than (r−1) ·2λk +λk = λk , contradicting that λk is the minimum
k-cut value. �

4 BOUNDING THE NUMBER OF MEDIUM CUTS

We now analyze the combinatorial structure of the medium cuts to show the following key bound:

Theorem 4.1. There are kO (k )n many medium cuts.

We prove this in two stages. First, using the Sunnower Lemma, we show it for the special case
when all the medium cuts ofG have shoresize at most k . We then extend to the general case by an
induction on the graph size.

Lemma 4.2. Suppose the medium cuts all have shoresize at most k . Then there are at most kO (k )n

medium cuts.

Proof. Let F be the set family consisting of the shores of the medium cuts. We claim that F
cannot have 2k many k-sunnowers with distinct nonempty cores. For, suppose for contradiction
that it does so. Then, by Lemma 3.2, at least one of the sunnowers has a nonempty core C with

|∂C | ≥ k
k−1 λ̄k . Let the sets in this sunnower be S1, . . . , Sk ∈ F where Si ∩ S j = C for i � j.

Let Pi := Si \C be the petal for each Si , and let Li = E (Pi ,C ) denote the set of edges between Pi
andC . By inclusion-exclusion, we have |∂Pi | = |∂Si | − |∂C | + 2|Li |. Since each Si is a medium cut,

it satisoes |∂Si | < 2λk , so

|∂Pi | < 2λk − |∂C | + 2|Li |.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.



Optimal Bounds for the k-cut Problem 2:9

Suppose the petals are sorted in ascending order of |Li |, so that |Li | ≤ |Li+1 | for i = 1, . . . ,k − 1.
Consider the k-cut K generated by the disjoint sets P1, . . . , Pk−1. We can bound its weight |∂K | by

|∂K | ≤

k−1
∑

i=1

|∂Pi | <

k−1
∑

i=1

(2λk − |∂C | + 2|Li |) = 2(k − 1)λk − (k − 1) |∂C | + 2

k−1
∑

i=1

|Li |.

Because the sets Li are pairwise disjoint subsets of ∂C in sorted order of size, we have

k−1
∑

i=1

|Li | ≤
k − 1

k

k
∑

i=1

|Li | ≤
k − 1

k
|∂C |,

and so

|∂K | < 2(k − 1)λk − (k − 1) |∂C | + 2 · k−1
k
|∂C | = 2(k − 1)λk −

(k−1)(k−2)
k

|∂C |.

Finally, using the bound |∂C | ≥ k
k−1λk , we get

|∂K | < 2(k − 1)λk −
(k−1)(k−2)

k
· k
k−1λk = kλk = λk .

This contradicts the deonition of λk as the minimum k-cut. Thus F cannot have 2k many k-
sunnowers with distinct, nonempty cores. By our hypothesis, the sets in F have size at most k .
Thus, by Lemma 2.2 (with parameters d = r = k and N = n and s = 2k ) and Equation (1), this
means

|F | ≤ sf (d, r ) · sN ≤ (logd )d (r · log logd )O (d ) · 2kn ≤ kO (k )n. �

We will next remove the restriction on the shoresize, completing the proof.

Proof of Theorem 4.1. Wewill show by induction onn that forn > k there are at most ck (n−k )
medium cuts in any graph G, for some constant ck = k

O (k ) .
If every medium cut has shoresize at most k , then we have already shown this in Lemma 4.2 for

appropriate choice of ck . (This covers the base case of the induction n = k + 1.) We thus consider
a medium cut S with shoresize larger than k , i.e., k < |S | < n − k .

Starting with S1 = S , let us form a maximal sequence of medium cuts S1, S2, . . . , S� with the
property that |Venn(S1, . . . , St ) | ≥ 2t for all t = 1, . . . , �; here � ≥ 1, since |Venn(S ) | = 2. Let
the atoms of Venn(S1, . . . , S� ) inside S (respectively, outside S) be A1, . . . ,Ai and B1, . . . ,Bj . So
A1 ∪ · · · ∪Ai = S and B1 ∪ · · · ∪ Bj = V \ S .

Now form a graphH1 by contracting each of the atomsA1, . . . ,Ai and likewise form a graphH2

by contracting each of the atoms B1, . . . ,Bj . Since A1, . . . ,Ai partition S and B1, . . . ,Bj partition
V \ S , these graphs have n1 = (n − |S |) + i and n2 = |S | + j vertices, respectively. See Figure 3 for
an example.
We claim that i + j < 2(� + 1) and � < k/2. For, if i + j ≥ 2(� + 1), then consider choosing S�+1 to

be an arbitrary medium cut; we would have |Venn(S1, . . . , S�+1) | ≥ i + j ≥ 2(� + 1), contradicting
maximality of �. Likewise, if � ≥ k/2, then we would have |Venn(S1, . . . , Sr−1) | ≥ 2(r − 1) and
|Venn(S1, . . . , Sr ) | ≥ 2r where r = �k/2�; this would contradict Proposition 3.3.
From these two bounds, we conclude that i + j ≤ 2� + 1 ≤ k . Since k < |S | < n − k , both n1 and

n2 are strictly larger than k and strictly smaller than n. Hence, from the induction hypothesis, the
number of medium cuts in H1 and H2 is at most ck (n1 − k ) and ck (n2 − k ), respectively.

We now claim that every medium cut of the original graph G survives in either H1 or H2 (or
both). For, suppose there is some medium cutT where an edge e " ∈ ∂T lies inside an atom Ai" and
an edge e "" ∈ ∂T lies inside an atom Bj" . Then the atoms Ai" and Bj" would both split into two new
atoms in Venn(S1, . . . , S�,T ), giving |Venn(S1, . . . , S�,T ) | ≥ i + j + 2. This contradicts maximality
of �.
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Fig. 3. Construction of graphsH1 (right) andH2 (middle) given medium cuts S1, S2, S3, S4 (lev). Each colored

set represents a medium cut surviving in either H1 or H2. The red and blue cuts survive in H2, and the green

cut survives in H1. The purple cut survives in both H1 and H2.

Consequently, the number of medium cuts in G is at most

ck (n1 − k ) + ck (n2 − k ) = ck ((n − |S | + i ) + ( |S | + j ) − 2k ) = ck (n + i + j − 2k ).

Now, i + j ≤ k so this is at most ck (n − k ), completing the induction. �

5 THE CONTRACTION PROCESS

Our next goal will be to lower-bound the probability that a given k-cut K is preserved during
the Contraction Algorithm. More generally, for an edge set J ⊆ E (G ), we say that J survives the
Contraction Algorithm if no edge of J ever gets selected during any iteration. Following [9], we
deone the Contraction Process up to stage i for J as follows:

Starting with the graph Gn = G, in stage j we select an edge ej from the resulting
(random) subgraphG j uniformly at random excluding the edges in J itself, and contract
ej to get the graph G j−1. We stop when we reach Gi .

It is possible, and allowed, for some edges of J to become self-loops and be removed from the
graph. When considering a subgraph G j during the Contraction Process for J , bear in mind that
we may have J � E (G j ).

For the Contraction Process for J , we deone the key statistic

Ri =

n
∑

j=i+1

λk

|E (G j ) |
. (2)

Here, Ri serves as a linearized approximation to the probability of avoiding J in the Contraction
Algorithm. Speciocally, we show the following result, which is a slight reformulation of Reference
[9]:

Proposition 5.1. Let J be an edge set and let α = |J |/λk . Suppose we run the Contraction Algo-

rithm up to stage i ≥ max{4αk,k }. The probability that J survives is at least e−αkE[Ri ]−αk , where the
expectation is taken over the Contraction Process for J up to stage i .
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Proof. For i ≤ j ≤ n let us deone

x j =
|J |

|E (G j ) |
=

αkλk

|E (G j ) |
,

whereG j is the subgraph obtained at stage j of the Contraction Process for J starting atG. We also
deone the corresponding random variable

LG =

n
∏

j=i+1

(1 − x j ).

Note that, by the property of iterated expectations, we calculate the expected value of LG as

E[LG ] =
1

|E (G ) \ J |

∑

e ∈E (G )\J

E[LG | en = e] =
1

|E (G ) \ J |

∑

e ∈E (G )\J

E[(1 − xn )LG/e ]

= (1 − xn )
∑

e ∈E (G )\J

E[LG/e ]

|E (G ) \ J |
,

where G/e denotes the graph obtained by contracting edge e in G; note that Gn−1 = G/en during
the Contraction Process.
We orst claim that if we run the Contraction Algorithm on G, then J survives to stage i with

probability at least E[LG ]. We show this by induction on n. The case n = i holds vacuously, since
then LG = 1 with probability one and J survives with probability one.
For the induction step, let n > i . The Contraction Algorithm chooses edge en uniformly at

random from E (G ) and then continues on G/en . Edge set J survives to stage i if and only if the
following events occur: (i) en ∈ E (G ) \ J and (ii) conditional on oxed choice of en = e , the edge
set J survives the Contraction Algorithm inG/e to stage i . By the induction hypothesis, the latter
event has probability at least E[LG/e ], and so

Pr(J survives starting from G ) ≥
1

|E (G ) |

∑

e ∈E (G )\J

E[LG/e ] =
|E (G ) \ J |

|E (G ) |

∑

e ∈E (G )\J

E[LG/e ]

|E (G ) \ J |
.

Note now that
|E (G ) \ J |

|E (G ) |
≥
|E (G ) | − |J |

|E (G ) |
= 1 − xn ,

so this is at least

(1 − xn )
∑

e ∈E (G )\J

E[LG/e ]

|E (G ) \ J |
= E[LG ],

which concludes the induction.
So J survives the Contraction Algorithm with probability at least E[LG ]. We need to bound LG .

Consider some stage j ≥ i of the Contraction Process for J . By Proposition 3.1, since i ≥ k , we

have |E (G j ) | ≥
jk

2(k−1)λk so x j ≤ 2α (k − 1)/j . Since j ≥ i ≥ 4αk this implies x j ≤ 1/2. We use the

elementary identity 1 − x ≥ e−x−x
2
for x ∈ [0, 1/2] to get:

LG =

n
∏

j=i+1

(1 − x j ) ≥

n
∏

j=i+1

e−x j−x
2
j ≥

n
∏

j=i+1

e−αkλk / |E (G j ) |−(2α (k−1)/j )
2

= e−αkRi−4α
2 (k−1)2

∑n
j=i+1 1/j

2

≥ e−αkRi−4α
2 (k−1)2/i .

Since i ≥ 4αk , we thus have LG ≥ e−αkRi−αk . Taking expectations and using Jensen’s inequality,
we have E [LG ] ≥ E[e−αkRi−αk ] ≥ e−αk−αkE[Ri ]. �
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Using this, we can recover Karger and Stein’s original success probability of n−2α (k−1) . Although
it is muchweaker than the bound ofn−αk wewant, this is useful for a few edge cases in the analysis.

Corollary 5.2. For any parameter α ≥ 1 and any k-cut K with |∂K | ≤ αλk , the Contraction

Algorithm with parameter τ = �4αk� selects K with probability at least n−2α (k−1)k−O (αk ) .

Proof. Consider the Contraction Process for edge set J = ∂K . In each stage j, Proposition 3.1

shows that graph G j has at least
jk

2(k−1)λk edges. Hence, with probability one, there holds

Rτ ≤

n
∑

j=τ+1

2(k − 1)

kj
≤

2(k − 1)

k
log(n/τ ).

By Proposition 5.1, the probabilityK survives to stage τ is at least e−αkE[Rτ ]−αk , which is at least

n−2α (k−1) with our bound on Rτ . Next, suppose that K does survive to stage τ (this includes the
case where n ≤ τ ). The resulting graph has at most τ vertices and hence at most kτ diferent k-cuts.

Thus, K is selected from this graph with probability at least k−τ ≥ k−O (αk ) . Overall K is selected

with probability at least n−2α (k−1)k−O (αk ) . �

6 ANALYZING THE DYNAMICS OF THE CONTRACTION PROCESS

Our goal now is to analyze the Contraction Process for a given edge set J . Let α = |J |/λk . We ox
some parameter ε ∈ [0, 1/k ), and deone a good cut to be a medium cut C with

|∂C \ J | ≥ (1 − ε )
k

k − 1
λk ;

the role of ε will be explained later. We also deone two related parameters

δ :=
1 − εk

k − 1
, and β := k + 2αk/ε .

Note that δ > 0 and 1 + δ = (1 − ε )k/(k − 1). We begin with a lower bound on edge count in a
single iteration of the Contraction Algorithm.

Proposition 6.1. Let s be the number of good cuts inG. If n ≥ β , then

m ≥ s · k
k−1λk/2 + (n − s − β ) · λk .

Proof. Each vertex v of G corresponds to a cut Cv . At most k − 2 of these vertex cuts may be
small cuts. For, if there are k − 1 such vertices v1,v2, . . . ,vk−1, then the k-cut generated by the

{v1}, . . . , {vk−1} would have weight below (k − 1) · k
k−1λk = kλk = λk , a contradiction.

LetU denote the set of vertices v for which cutCv is medium but not good. For v ∈ U , we have

|∂Cv | ≥
k

k−1λk and hence |∂Cv ∩ J | ≥ ελk . Each edge appears in at most two vertex cuts, so

|J | ≥ 1
2

∑

v ∈U

|∂Cv ∩ J | ≥ |U |ελk/2;

since |J | = αkλk , this implies |U | ≤ 2αk/ε .
Summarizing, at most k − 2 vertices correspond to small cuts, and at most s + 2αk/ε vertices

correspond tomedium cuts. The remaining vertices (at leastn−s−2αk/ε−k+2 of them) correspond

to large cuts so their degree is at least 2λk . We thus have

2m ≥ (s + 2αk/ε ) · k
k−1λk + (n − s − 2αk/ε − k + 2) · 2λk ≥ s · k

k−1λk + (n − s − β ) · 2λk . �

For our purposes, we can combine Propositions 3.1 and 6.1 to get the following (somewhat crude)
estimate:
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Corollary 6.2. If G has s good cuts, thenm ≥ (n − β )λk −min{s, (n − β )}λk/2.

We are now ready derive the key bound on the random variable Ri as deoned in Equation (2).
For p ≥ j and s ≥ 0, deone the function

f (j, s,p) = log(p/j ) +
log
(

1 + (s/p) (1 + 1/δ ) (1 − (j/p)δ )

)

1 + δ
. (3)

We will prove a bound on E[Ri ] in terms of the function f by induction. The derivation of
the function f is itself rather opaque; we describe the (non-rigorous) analysis that leads to it in
Appendix A. We orst observe a few analytical properties of function f .

Proposition 6.3. For p ≥ j and s ≥ 0, we have the following:

(1) Function f (j, s,p) is a well-deoned, nonnegative, nondecreasing, concave-down function of s .

(2) The function y �→ y + f (j, se−(1+δ )y ,p) is an increasing function of y.

Proof. (1) The argument of the logarithm in function f is an aone function of s , with con-
stant term 1 and coeocient 1

p
(1 + 1/δ ) (1 − (j/p)δ ) ≥ 0.

(2) The derivative as a function of y is

δe (1+δ )y

δe (1+δ )y + (s/p) (1 + δ ) (1 − (j/p)δ )
,

which is positive. �

Lemma 6.4. Suppose that G has s good cuts and n vertices. Then, for the Contraction Process for J

up to some stage i with β ≤ i ≤ n, we have E[Ri ] ≤ f (i − β, s,n − β ).

Proof. We show this by induction on n. We will write p = n − β, j = i − β andm = |E (G ) |. The
case n = i is clear, since Ri = 0 = f (i − β, s, i − β ).
For the induction step with n > i , the Contraction Process orst selects an edge of E (G ) \ J ,

arriving at a new graph G " with n − 1 vertices. So

E[Ri ] =
λk

m
+ E[RG

"

i ],

where RG
"

i denotes the random variables deoned in Equation (2) for graph G ".
Let random variable S " denote the number of good cuts in G ". By the induction hypothesis

applied to G ", we have

E[Ri ] ≤ (λk/m) + E[f (j, S ",p − 1)]. (4)

Each good cut C is selected with probability at least |∂C\J |
|E (G )\J |

≥ k
k−1 (1 − ε )λk/m = (1 + δ )λk/m, so

E[S "] ≤ s (1 − (1 + δ )λk/m) ≤ se−(1+δ )λk /m .

By Proposition 6.3, Jensen’s inequality applies for the random variable S " in Equation (4), giving

E[Ri ] ≤ (λk/m) + f (j,E[S "],p − 1) ≤ (λk/m) + f (j, se−(1+δ )λk /m ,p − 1).

Next, by Corollary 6.2, we havem ≥ pλk −min{s,p}λk/2. So λk/m ≤ z, where we deone

z =
2

2p −min{s,p}
.

Since y + f (j, se−(1+δ )y ,p − 1) is an increasing function of y, we therefore have

E[Ri ] ≤ z + f (j, se−(1+δ )z ,p − 1).
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To onish the proof and complete the induction, it suoces to show z+ f (j, se−(1+δ )z ,p−1) ≤ f (j, s,p)

or, equivalently,

e (1+δ )(z+f (j,se
−(1+δ )z,p−1)) − e (1+δ )f (j,s,p ) ≤ 0. (5)

After substituting in the formula for f , this expands to
(

p−1
j

)1+δ
(

e (1+δ )z +
(

s
p−1

)

(1 + 1/δ )
(

1 −
(

j
p−1

)δ
))

−
(

p

j

)1+δ
(

1 +
(

s
p

)

(1 + 1/δ )
(

1 −
(

j
p

)δ
))

≤ 0.

(6)
To simplify further, let us deone a number of terms:

r = s/p, q = j/p, θ = 1 − 1/p, t = 2 −min{r , 1}.

We thus have
p−1
j
= θ/q, s

p−1 = r/θ , and z = 2(1 − θ )/t . The inequality in Equation (6) becomes

(θ/q)1+δ
(

e2(1−θ )(1+δ )/t + (r/θ ) (1 + 1/δ ) (1 − (q/θ )δ )

)

− (1/q)1+δ
(

1 + r (1 + 1/δ ) (1 − qδ )
)

≤ 0.

Clearing out common factor q1+δ and multiplying the left term through by θ 1+δ , it is equivalent
to

(

θ 1+δe2(1−θ )(1+δ )/t + r (1 + 1/δ ) (θδ − qδ )
)

−
(

1 + r (1 + 1/δ ) (1 − qδ )
)

≤ 0.

Collecting terms, multiplying through by δ , and changing signs for convenience, Equation (5)
is thus equivalent to showing:

δ + r (1 + δ ) (1 − θδ ) − δθ 1+δe2(1−θ )(1+δ )/t ≥ 0. (7)

Note that parameter q no longer plays a role in Equation (7). Since r ≥ 2 − t , it suoces to show
that

δ + (2 − t ) (1 + δ ) (1 − θδ ) − δθ 1+δe2(1−θ )(1+δ )/t ≥ 0. (8)

To show Equation (8), let us deone a function

F (θ , t ) = δ + (2 − t ) (1 + δ ) (1 − θδ ) − δθ 1+δe2(1−θ )(1+δ )/t

for independent variables θ , t . We need to show that F (θ , t ) ≥ 0 for all θ ∈ [0, 1] and t ∈ [1, 2].
The second partial derivative of F with respect to t is given by

∂2F (θ , t )

∂t2
=

−4δ (1 + δ ) (1 − θ )θ 1+δe2(1+δ )(1−θ )/t ((1 + δ ) (1 − θ ) + t )

t4
,

which is clearly negative for δ ,θ , t in the given range. Thus, the minimum value of F (θ , t ) in the
region occurs at either t = 1 or t = 2. So, to show that F (θ , t ) ≥ 0, it suoces to show that F (θ , 1) ≥ 0
and F (θ , 2) ≥ 0.
At t = 2 we have F (θ , 2) = δ (1 − e (1+δ )(1−θ )θ 1+δ ). To show that F (θ , 2) ≥ 0, we thus need to

show that e (1+δ )(1−θ )θ (1+δ ) ≤ 1, or equivalently e1−θθ ≤ 1; this can be verioed by routine calculus.

At t = 1, we have F (θ , 1) = δ + (1 + δ ) (1 − θδ ) − δθ 1+δe2(1−θ )(1+δ ) . Note that F (1, 1) = 0. So, to
show that F (θ , 1) ≥ 0 for all θ ∈ [0, 1], it suoces to show that the derivative of F (θ , 1) with respect
to θ is negative for θ ∈ (0, 1). This derivative is given by

∂F (θ , 1)

∂θ
= −δ (1 + δ )e2(1+δ )(1−θ )θ−(1−δ )

(

e−2(1+δ )(1−θ ) − 2θ 2 + θ
)

.

To show this is negative, it suoces to show that e−2(1+δ )(1−θ ) − 2θ 2 + θ > 0. Since δ ≤ 1/2, it

suoces to show that e−3(1−θ ) − 2θ 2 +θ > 0, which can be verioed by routine calculus for θ ∈ (0, 1).

This shows that
∂F (θ,1)

∂θ
≤ 0, and so F (θ , t ) ≥ F (1, 1) = 0.

Thus, F (θ , t ) ≥ 0 for all θ ∈ [0, 1] and t ∈ [1, 2] and hence the inequality of Equation (8)
holds. �
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7 PUTTING IT TOGETHER: BOUNDS ON THE CONTRACTION ALGORITHM

We now onish by getting our main bound for the Contraction Algorithm.

Lemma 7.1. Suppose that J is an edge set with α = |J |/λk and n ≥ i ≥ 8αk2 + 2k . Then J survives

the Contraction Algorithm to stage i with probability at least (n/i )−αkk−O (αk2 ) .

Proof. Let us set ε = k+1
2k2 , and also deone β = k + 2αk/ε , and j = i − β,p = n − β and δ = 1

2k .

By Theorem 4.1, the number of medium cuts in G is at most an for a = kO (k ) , and so Lemma 6.4
gives:

E[Ri ] ≤ f (j,an,p) = log(p/j ) +
log
(

1 + an
p
(1 + 1/δ ) (1 − (j/p)δ )

)

1 + δ
.

Our condition on i ensures i ≥ 2β . So p ≥ n/2 and j ≥ i/2, and thus log(p/j ) ≤ log(n/i ) +O (1)
and an/p ≤ 2a. We therefore have

E[Ri ] ≤ log(n/i ) +
log
(

1 + 2a(1 + 1/δ )
)

1 + δ
+O (1) ≤ log(n/i ) + loga +O (1).

Note that i ≥ max{4αk,k } as required in Proposition 5.1. Thus, J survives with probability at least

(n/i )−αke−αk−αk (loga+logk+O (1)) . Since a = kO (k ) , this is at least (n/i )−αkk−O (αk2 ) . �

Theorem 7.2. Running the Contraction Algorithm with parameter τ = �20αk2� produces any

given k-cut K of weight at most αλk with probability at least n−αkk−O (αk2 ) .

Proof. If n ≥ τ , then Lemma 7.1 applied to J = ∂K (noting that necessarily α ≥ 1) shows

that K survives toGτ with probability at least (n/τ )−αkk−O (αk2 ) . Then K is selected fromGτ with

probability at least k−τ ≥ k−O (αk2 ) . Combining these probability bounds gives the stated result. If
n < τ , then the Contraction Algorithm simply selects a random k-cut, and so K is chosen with

probability at least k−n ≥ k−O (αk2 ) . �

Corollary 7.3. There are at most nαkkO (αk2 ) many k-cuts in G with weight at most αλk .

We could enumerate these k-cuts by repeatedly running the Contraction Algorithm, but each
iteration would cost O (n2) time giving an overall runtime of roughly O (nαk+2). The next result
shows how to remove this extraneous n2 factor using a recursive version of the Contraction Al-
gorithm from Reference [12]. Note that directly printing out the k-cuts could take Ω(nαk+1) time,
since each k-cut deones a partition of V . Hence, the algorithm necessarily produces the collec-
tion of k-cuts in a compressed data structure, which supports basic operations such as counting,
sampling, and so on. See Reference [12] or Reference [9] for a more in-depth discussion.

Theorem 7.4. For each k ≥ 3, there is an algorithm to enumerate all k-cuts of weight at most αλk
in time nαk (logn)O (αk2 ) with probability at least 1 − 1/poly(n).

Proof. First, if n ≤ 2k , then we directly use the Contraction Algorithm to stage τ = �4αk�. By

Corollary 5.2, this enumerates any given k-cut with probability at least n−2α (k−1)k−O (αk ) , so we

must run it for n2α (k−1)kO (αk ) · poly(α ,k, logn) trials to get them all. This gives overall runtime of

n2α (k−1)kO (αk ) · poly(α ,k, logn) ·O (n2), which is at most eO (αk2 ) by our assumption on n. We thus
assume for the remainder of the proof that n ≥ 2k .

We use a recursive algorithm, whose state is represented as a pair (H , �) where H is the current
graph and � = 0, . . . ,T is the current level in the recursion. The algorithm begins with the input
graph (G, 0) at level � = 0. Given input (G�, �) at level �, there are two cases. If � < T , then
the algorithm runs t� = �(n�/n�+1)

αk � independent trials of the Contraction Algorithm to n�+1
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vertices and recursively calls (H , � + 1) for each resulting contracted graph H . Otherwise, if � = T ,
then the algorithm outputs a randomly chosen k-cut. Here, the parameters ni are given by

ni =


max




n

(

2
αk

) i

, 20αk2






and the recursion depth T is the orst value with nT = �20αk
2�. Since log(20αk2) ≤ O (αk ) and

αk/2 ≥ 3/2, we have T ≤ O (
log logn
log(αk ) ).

To calculate the algorithm’s success probability, ox some k-cut K of G with |∂K | ≤ αλk , and
deone a state (G�, �) to be successful if no edge in K has been contracted so far from G0 = G to
G� . Clearly, (G0, 0) is successful. For each successful input (G�, �) with � < T , by Lemma 7.1 with

i = n�+1, the probability thatK survives on each trial is at least (n�/n�+1)
−αkψ whereψ = k−O (αk2 ) .

Over all t� trials, K survives at least once with probability

1 −
(

1 − (n�/n�+1)
−αkψ

)t�
≥ 1 − e−ψ .

Thus, given that some instance (G�, �) in the recursion tree is successful, the probability that at

least one instance (G�+1, � + 1) is successful is at least 1 − e
−ψ ≥ ψ/2. Over all the T = O (

log logn
log(αk ) )

levels of the recursion, the probability that there is some successful instance (GT ,T ) is at least

(ψ/2)T ≥ (logn)−O (αk2 ) . Finally the probability of selecting K from a successful instance (GT ,T )

is at leastk−nT ≥ k−O (αk2 ) . So, overall,K is selectedwith probability at least (logn)−O (αk2 ) ·k−O (αk2 ) .

Due to our assumption that n ≥ 2k , this is at least (logn)−O (αk2 ) .

We now bound the runtime. For each level � < T , there are
∏�−1

j=0 tj ≤
∏�−1

j=0 2(nj/nj+1)
αk
=

2� (n0/n� )
αk instances (G�, �). In each such instance, the algorithm runs t� trials of the Contraction

Algorithm, each takingO (n2
�
) time. The running time over all instances (G�, �) is therefore at most

2� (n0/n� )
αk · t� ·O (n2

�
) ≤ O

(

2T · (n0/n�+1)
αk · n2

�

)

,

which is at most O (2T (2n0)
αk ), since n�+1 ≥ n

2/(αk )
�

/2. Summed over all T recursion levels, the

total runtime is at most T ·O (2T (2n0)
αk ) ≤ (2n)αk · (logn)O (1) .

If we repeat the entire recursive algorithm from (G0, 0) a total of (logn)
Ω(αk2 ) times, then K is

selected with probability at least 1/2. There are kO (αk2 )nαk many such k-cuts, so we run a further
O (αk2 logk logn) many trials to enumerate them all with probability 1 − 1/poly(n). �

As one concrete application, we get the main result:

Theorem 7.5. There is an algorithm to compute λk in time nk (logn)O (k2 ) for any value k .

Proof. For k = 2, this is the standard Recursive Contraction Algorithm of Reference [12]. Oth-
erwise, apply Theorem 7.4 with α = 1. This gives a large collection of k-cuts, which includes all the
minimum k-cuts with high probability. We output the minimum weight of all k-cuts found. (The
operation of taking minimum weight can be performed on the corresponding data structure.) �

APPENDIX

A HEURISTIC BOUND ON Ri

Given a graph G with s medium cuts, consider running the Contraction Process for some edge
set J up to stage i . We will focus on the case where s � n; as it will later turn out, the resulting
formulas are also correct (although not optimized) when s is larger than n.
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In each stage j ≥ i , where the intermediate graphG j has j vertices andmj edges, each good cut

C gets selected with probability |∂C\J |
mj−| J |

≥ (1 − ε ) k
k−1λk/mj = (1 + δ )λk/mj . Letting Si denote the

number of surviving good cuts at stage i , we thus have

E[Si ] ≤ s

n
∏

j=i+1

(

1 −
(1 + δ )λk

mj

)

≤ se−
∑n
j=i+1 (1+δ )λk /mi

= se−(1+δ )Ri .

Since this is just a heuristic derivation, we blur the distinction between E[Si ] and Si , and we
suppose that Si itself also satisoes this bound, i.e., Si ≤ se−(1+δ )Ri .

We have Ri−1 =
λk
mi
+ Ri . By Proposition 6.1, we havemi ≥ Siλk/2 + (i − Si − β )λk , so

λ̄k

mi
≤

1

i − β − Si/2
. (9)

To carry out the induction proof later, we will need our bound on Ri to have a simple closed
form with nice concavity properties. To achieve this, we will need to use an upper bound on the

quantity λ̄k
mi

, which is a linear function of Si . As we have mentioned, in the relevant case, we have

s ≤ n, and in this case we will also have Si ≤ i . We can then upper-bound the RHS of Equation (9)
by its secant line from Si = 0 to Si = i − β , yielding

λk

mi
≤

1

i − β

(

1 +
Si

i − β

)

;

note that by Proposition 3.1, this upper bound will also be valid in the case where Si ≥ i − β .
Again ignoring any distinctions between random variables and their expectations, this implies

Ri−1 ≤ Ri +
1

i − β

(

1 +
se−(1+δ )Ri

i − β

)

.

If we deone д(x ) = Rx+β and p = n − β , then this can be relaxed to a diferential equation with
д"(i ) ≈ Ri+β − Ri−1+β deoned as follows:

д"(x ) =
−1

x

(

1 +
se−(1+δ )д (x )

x

)

, д(p) = 0.

The diferential equation has a closed-form solution:

д(x ) = log(p/x ) +
log
(

1 + (s/p) (1 + 1/δ ) (1 − (x/p)δ )
)

1 + δ
.

Note the similarity of function д to the function f from Equation (3) deoned in Section 6.
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