Optimal Bounds for the k-cut Problem

ANUPAM GUPTA, Carnegie Mellon University, USA
DAVID G. HARRIS, University of Maryland, College Park
EUIWOONG LEE, University of Michigan, USA

JASON LI, Carnegie Mellon University, USA

In the k-cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given

(multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O(n?k)
1-0(1)kY time is
1.98k+0(1)

time. However, lower bounds from conjectures about the k-clique problem imply that Q(n(
likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k-cut in n
time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small
integer edge weights).

In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger
outputs any fixed k-cut of weight aA; with probability Q k(n_ak), where A; denotes the minimum k-cut
weight. This also gives an extremal bound of Oy (n¥) on the number of minimum k-cuts and an algorithm to
compute A with roughly nk polylog(n) runtime. Both are tight up to lower-order factors, with the algorithmic
lower bound assuming hardness of max-weight k-clique.

The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 24y /k,
using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and
how the average degree evolves—in the Karger process.

CCS Concepts: » Theory of computation — Graph algorithms analysis;
Additional Key Words and Phrases: k-cut, contraction algorithm

ACM Reference format:

Anupam Gupta, David G. Harris, Euiwoong Lee, and Jason Li. 2021. Optimal Bounds for the k-cut Problem. J.
ACM 69, 1, Article 2 (November 2021), 18 pages.

https://doi.org/10.1145/3478018

1 INTRODUCTION

We consider the k-Cut problem: Given an edge-weighted graph G = (V, E, w) and an integer k,
we want to delete a minimum-weight set of edges so that G has at least k connected components.
We let A denote the resulting weight of the deleted edges. This generalizes the global min-cut
problem, where the goal is to break the graph into k = 2 pieces.

Authors’ addresses: A. Gupta and J. Li, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 USA; emails:
{anupamg, jmli}@cs.cmu.edu; D. G. Harris, University of Maryland, College Park, 8125 Paint Branch Drive, College Park,
MD 20742 USA; email: davidgharris29@gmail.com; E. Lee, University of Michigan, Ann Arbor, 2260 Hayward Street, Ann
Arbor, MI 48109 USA; email: euiwoong@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2021/11-ART2 $15.00

https://doi.org/10.1145/3478018

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:2 A. Gupta et al.

It was unclear that the problem admitted a polynomial-time algorithm for fixed k, until Gold-
schmidt and Hochbaum gave a deterministic algorithm with n**) runtime [4]. The algorithm
of Karger [11], based on random edge contractions, can also solve k-CuT in O(mn?*~!) time; this
was later improved to O(n**=2) runtime by Karger and Stein [12]. There have been a number of
improved deterministic algorithms [2, 5, 10, 15]: notably, the tree-packing result of Thorup [15]
was sped up by Chekuri et al. [2] to O(mn?**~3) runtime. Thus, until recently, randomized and
deterministic algorithms with very different approaches have achieved n>=°* runtime for the
problem. (Here and subsequently, the o(1) in the exponent indicates a quantity that goes to zero
as k increases.)

As for hardness, there is a reduction from Max-WEIGHT (k — 1)-CLIQUE to k-CuT. It is conjec-
tured that solving MAX-WEIGHT k-CL1QUE requires Q(n('=°))k) time when weights are integers
in the range [1, Q(rn¥)], and Q(n(@/3=°M)k) time for unit weights, where is the matrix multipli-
cation constant. Extending these bounds to k-CuT suggests that n!=°)* may be a lower bound
for general weighted k-cut instances.

There has been recent progress on this problem, showing the following results:

(1) Gupta, Lee, and Li gave an n!***°()*_time algorithm for general k-CuT [7]. This was based
on showing an extremal bound for the number of “small” 2-cuts in the graph. A bounded-
depth search is then used to guess the small 2-cuts within a minimum k-cut and make
progress. This proof-of-concept result showed that n>=°M)k was not the right bound, but
the approach did not seem to extend to exponents considerably below 2k.

(2) For polynomially bounded edge-weights, Gupta, Lee, and Li gave an algorithm with roughly
kOW) p2e/3+o()k ryuntime [6]. For unweighted graphs, Li obtained kO p(+e(k ryn.
time [14]. These algorithms are both based on finding a spanning tree that crosses a small
number of edges of a minimum k-cut. The former relies on matrix multiplication ideas, and
the latter on the Kawarabayashi-Thorup graph decomposition [13], which are both intrinsi-
cally tied to graphs with small edge-weights.

In this article, we show that the “right” algorithm, the original Contraction Algorithm of
Karger [11], achieves the “right” bound for general graphs. We recall the algorithm below; here, 7
(the final desired graph size) is a parameter we will adjust in our specific constructions.

ALGORITHM 1: Contraction Algorithm

1: while |[V| > 7 do

2 Choose an edge e € E at random from G, with probability proportional to its weight.
3 Contract the two vertices in e and remove self-loops.
4
5

: end while
: Return a k-cut of G chosen uniformly at random.

Setting 7 = k, as in Karger’s original algorithm, would seem most natural, but we will require a
larger value in our analysis. Our main result is the following.

THEOREM 1.1 (MAIN). For any integer k > 2 and real number a > 1, the Contraction Algorithm
outputs each k-cut of weight ady with probability at least n~ak=O(ak?) for appropriate choice of
7 = poly(a, k).

Since any minimum-weight k-cut (corresponding to @ = 1) is output with probability nkg=0Gk*),
this immediately implies the following corollary.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:3

COROLLARY 1.2 (NUMBER OF MINIMUM k-cuUTs). For any k > 2, the number of minimum-weight
k-cuts in a graph is at most nkO**),

This improves on the previous best bound of n!-%3*°(1))k [7] 1t is almost tight, because the cycle
on n vertices has (z) minimum k-cuts.

Also, while the direct implementation of Algorithm 1 incurs an extra O(n?) in the runtime, the
Recursive Contraction Algorithm of Karger and Stein [12] can be used to get an almost-matching
running time to enumerate all minimum k-cuts.

THEOREM 1.3 (FASTER ALGORITHM TO FIND A MINIMUM k-cuUT). There is an algorithm to enumer-
ate all minimum k-cuts in time n* (log n)O®) with probability at least 1 — 1/poly(n).

This improves the runtime n(-*3+°())k from Reference [7] and even beats the runtime n(+°(1)k
for the unweighted case [14]. It is almost optimal under the hypothesis that MAX-WEIGHT k-
Cr1QuE requires n1=°M)K time. Achieving an O(n°*)-time algorithm for unit-weighted graphs for
any constant ¢ < 1 still remains an open problem.

See Section 7 for the formal statements of the above theorems.

1.1 Our Techniques

Although we have stated the general k-CuT problem for a weighted graph, we will assume through-
out that G = (V,E) is an unweighted multigraph with n vertices and m edges. The viewpoint in
terms of weighted graphs is equivalent via replicating edges; note that, in this case, m may be
exponentially large compared to n. Our computational and combinatorial bounds will depend on
n and not directly on m.

In the spirit of Reference [7], our proof has two main parts: (i) a bound on the extremal number
of “medium” cuts in a graph, and (ii) a new algorithmic analysis for the Contraction Algorithm. To
begin, let us first state a crude version of our extremal result. Define Xk := Ax/k, which we think
of as the average contribution of the k components of a minimum k-cut, and let “medium” cuts
denote 2-cuts whose weight is in [A»2A%).! The graph may contain a negligible number of “small”
2-cuts of weight less than ;. Loosely speaking, the extremal bound says the following:

(%) For fixed k, the graph has at most O(n) many medium cuts.

To develop some intuition for this claim, it is instructive to consider the cycle and clique graphs.
These are two opposite ends of the spectrum in the context of graph cut. In the cycle, we have

Ac = 1, and there are no 2-cuts with weight less than 2y, hence (%) holds. However, the ('2’)

minimum 2-cuts have size equal to 2A; = 2. In the clique, the minimum k-cut chops off k — 1
singleton vertices, so Ay = (kgl) + (k—1)(n—k + 1), which gives A = %n for n > k. There are
n minimum 2-cuts, which have weight n — 1 < 22k (the singletons), so again (%) holds. And again,

there are () 2-cuts of weight approximately 24 (the doubletons).

n
2

Therefore, in both the cycle and the clique, the bound 2/_1k is almost the best possible. Moreover,
the O(n) bound for the number of medium cuts is also optimal in the clique.

1.1.1 Analysis of Contraction Algorithm. When we begin the Contraction Algorithm in the
graph G, our extremal bound ensures that there are at most Oy (n) medium cuts of size between
A and 21, plus a negligible number of small 2-cuts of size less than ;. Let us next sketch how
these bounds give rise to the improved bound for k-cuts. To provide intuition, let us suppose that

Tn the actual analysis, we use the interval [%Ik, sz).

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:4 A. Gupta et al.

in fact there are n medium cuts and no smaller 2-cuts (the precise factors are not important for the
overall analysis).

Each vertex during the Contraction Algorithm corresponds to a 2-cut of the original graph,
and we are assuming that G has no small 2-cuts, so the number of edges in each iteration i of
the Contraction Algorithm is lower-bounded by idx /2. Again, to provide intuition, let us suppose
there are precisely this many edges. Then each medium cut gets an edge selected in iteration i,
Ak

and is thereby removed from the graph, with probability at least WP
1293

= % So after n/2 iterations,
the number of surviving medium cuts is close to
n

nﬂ(l—%)zn/z}.

i=n/2

Thus, in the resulting subgraph with i = n/2 vertices, at most n/4 of the vertices (corresponding
to the surviving medium cuts) have degree k. The remainder have degree at least 2). Continuing
this process, the graph becomes more and more enriched with high-degree vertices. After (1 —¢)n
iterations (for some small constant ¢), almost all of the medium cuts have been eliminated, and
each graph on i < en vertices has close to il edges.

Now consider an arbitrary minimum k-cut K. It survives the first (1—¢)n iterations with constant
probability. In each iteration i of the Contraction Algorithm when the resulting subgraph hasi < en

k

vertices, K is selected with probability roughly %—k = 7. Over the entire run of the Contraction
ik

Algorithm, down to the final graph with 7 = poly(k) vertices, K survives with probability roughly
£n k
constant - (1 - —.) ~0(n7").
[](-3

To show this formally, we need to track the number of medium cuts remaining in the residual
graphs produced by the Contraction Algorithm. There are two main obstructions to turning the
analysis we have sketched above into a rigorous proof. First, many of our bounds made unwar-
ranted assumptions about the parameter sizes; for example, we only know lower bounds on the
edge counts, and we should not assume that these hold with equality in each iteration. Second, the
Contraction Algorithm is a stochastic process; we cannot assume that relevant quantities (such as
the number of medium cuts) equal their expectations.

To overcome these challenges, we adopt a proof strategy of Reference [9]. First, using a number
of heuristic worst-case assumptions, and relaxing the discrete stochastic process to a continuous-
time system of differential equations, we make a guess as to the correct dynamics of the Contraction
Algorithm. This gives us a formula for the probability that K is selected, given that the process has
reached some iteration i and currently has some given number of residual medium cuts. Next, we
use induction to prove that this formula holds in the worst case. For this, we take advantage of the
fact that our guessed formula has nice convexity and monotonicity properties.

Let us contrast our proof strategy with the analysis in a preliminary version of this article [8]. In
this work, we analyze the Contraction Algorithm as edges are contracted one at a time. In contrast,
the authors of Reference [8] considered an alternate viewpoint where each edge is independently
contracted with some given probability, which is equivalent to executing many steps of the Con-
traction Algorithm. (The alternate viewpoint is only taken for the purposes of analysis; the actual
algorithm remains the same.)

In some ways, the alternate viewpoint is simpler, since it preserves many independencies
among edges and since a number of relevant parameters are concentrated. However, a drawback
is that it lacks fine control of precisely how many edges to contract. When the number of vertices

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:5

Fig. 1. Left: To illustrate, suppose k = 8 and all (;’) 2-cuts of the cycle have weight less than 2A;. Then, we
select £ = 4 such 2-cuts as shown. Their Venn diagram has 2¢ = 8 nonempty atoms and form an 8-cut with
cost less than £ - 24 = 84 = A. Right: A k-sunflower with core and petals consisting of single vertices.
Here c has degree a > ﬁik and each bolded edge has weight r = a/k = % A k-cut generated by k — 1
of the vertices p; then has weight less than A.

in the graph becomes small, the independent-contractions viewpoint introduces larger errors
compared to our one-at-a-time approach. For example, the preliminary version showed a bound
of nkkO(Kk*(oglogm?®) o1 the number of k-cuts; compare this to the tighter bound of nk KOk
Theorem 1.1.

) from

1.1.2 Extremal Result. Recall our target extremal statement (x): There are Oy (n) many medium
cuts in the graph, i.e., 2-cuts of weight less than sz. To show this, we consider two different cases.

In the first case, suppose the medium cuts all correspond to small vertex sets. Our key observa-
tion is that the k-cut structure of the graph forbids certain types of sunflowers in the set family
corresponding to the medium cuts; however, estimates from the Sunflower Lemma would ensure
that if there are many medium cuts, then such a sunflower would be forced to exist.

For, consider a k-sunflower of medium cuts Sy, S,, . . ., Sk, in which the core C is a 2-cut of weight
atleast %Zk (Handling cases where the core is empty or corresponds to a smaller 2-cut are details
we defer to the actual proof.) Suppose we contract C as well as each petal P; = S; \ C to single
vertices ¢ and p;, respectively. To provide intuition, let us suppose that there are the same number
of edges r between the core and each petal, and let a > %/_11(denote the degree of ¢ itself; clearly
r < a/k. See Figure 1 right.

Since each set S; is a medium cut, there are less than 21 edges from {c,p;} to V \ {c,p;}. So
deg(p;i) < sz — a + 2r for all i and consequently, the k-cut {p1,...,px-1,V \ {p1,....pr-1}} has
weight at most Zi:ll deg(p;) < (k—-1)- (245 —a+2r) < (k—1)(2Ax — a + 2a/k). Due to our bound
on a, this is at most kzk = Ag; this is a contradiction, since Ay is the minimum k-cut value.

In the second case, suppose there is a medium cut S where both halves involve many vertices.

Then consider a maximal sequence of medium cuts Sy, . .., S¢ starting with S; = S, such that the
Venn diagram of Sy, . .., S¢ has at least 2¢ regions. See Figure 1 (left). From this, we can form two
subgraphs where every atom of the Venn diagram of Sy, ...,S¢ in each half of S gets contracted

to a single vertex. It can be shown that every medium cut of the original graph is preserved in at
least one of the two graphs. Also, the fact that both halves of S have many vertices ensures that
the contracted graphs are strictly smaller than the original graph. We get our desired bound by
induction on n.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:6 A. Gupta et al.

1.2 Outline

In Section 2, we discuss the Sunflower Lemma. For our result, we need a slightly strengthened
version of this lemma, which involves showing the existence of multiple sunflowers and ensuring
their cores are nonempty:.

In Section 3, we record some elementary bounds and definitions of cuts and k-cuts in the graph.
In Section 4, we use these for our main extremal bound on the number of medium cuts.

In Section 5, we provide an overview of the Contraction Algorithm and some simple bounds on
the probability that cuts survive it. In Section 6, we carry out the more involved analysis of how
the number of medium cuts evolves during the Contraction Algorithm.

In Section 7, we conclude with our main results on the behavior of the Contraction Algorithm
and the Recursive Contraction Algorithm.

2 SUNFLOWER LEMMA AND EXTENSIONS

In a set system ¥ over a universe U, an r-sunflower is a collection of r sets Fy, ..., F, € ¥ thatall
share the same pairwise intersection. That is, there is a core C € U such that F; N F; = C for all i, j,
and hence (); F; = C. Let sf(d, r) be the smallest number such that any set system with more than
sf(d, r) sets of cardinality at most d must have an r-sunflower. The classical bound of Erdés and
Rado [3] shows that sf(d,7) < d!(r — 1)%. A recent breakthrough by Alweiss et al. [1] shows that

sf(d,r) < (logd)?(r - loglog d)°@. (1)

While we use this improved bound, it only changes lower-order terms: the older Erdés-Rado bound
would give the same asymptotics for our applications.

For our applications for cuts, we want multiple sunflowers with distinct nonempty cores. (The
cores may intersect, even though they are distinct.) The bound must then depend on the universe
size N, since the system consisting of N singleton sets has no sunflowers with nonempty core. The
following results show that we can guarantee a nonempty core by multiplying the bound by N.

PRrRoPOSITION 2.1. Let F be a family of nonempty sets over a universe of N elements, where every
set has size at most d. If |F'| > sf(d,r) - N, then F contains an r-sunflower with nonempty core.

Proor. For each element v of the universe, consider the set system 7, := {F € ¥ : F 3 v}. Since
every setin ¥ isincluded in some 7, there must be some element v with |7, | > |F|/N > sf(d, r).
Thus, there is an r-sunflower in ¥, and hence 7. The core is nonempty, since it contains v. O

LEMMA 2.2. Let ¥ be a family of nonempty sets over a universe of N elements, where every set
has size at most d. If || > sf(d,r) - sN, then ¥ contains s many r-sunflowers, each with a distinct,
nonempty core.

Proor. We show this by induction on s. The base case s = 0 is vacuous. For the induction step
with s > 1, consider a maximal nonempty set C such that ¥ contains an r-sunflower with core C;
this exists by Proposition 2.1, since |¥ | > sf(d,r) - sN > sf(d,r)N.

We claim that the set system ¢ := {F € ¥ : F 2 C} has size at most sf(d, r) - N. For, if not,
then applying Proposition 2.1 to the set system {F \ C : F € F¢} (which has the same cardinality
as F¢) would give an r-sunflower Sy, . .., S, with nonempty core C’". The sets S; UC,...,S, UCin
¥ then form an r-sunflower with core C U C’, contradicting maximality of C.

Now consider the set system ¥’ = F \ F¢. It has size |F | — |F¢| > sf(d,r) - sN —sf(d,r) - N =
sf(d, r)-(s—1)N. By the induction hypothesis, it has s—1 many r-sunflowers with distinct nonempty
cores. These cores are all distinct from C, since no sets containing C remain in . Combining them
with the r-sunflower of core C gives s many r-sunflowers with distinct, nonempty cores.]

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:7

DO

Fig. 2. The Venn diagram above has eight atoms.

3 SIMPLE BOUNDS AND DEFINITIONS FOR CUTS

We assume throughout we have a fixed value k > 3. A k-cut K is a partition of V into k nonempty
sets, and we let 0K denote the set of edges crossing different parts of K. The weight of K is the
cardinality of the edge set K. We let A; be the minimum weight of any k-cut, and A := A /k.

A 2-cut {C, V'\ C} will often simply be called a cut, and we often denote it merely by C. The shore
of the cut is whichever of the sets C or V' \ C is smaller. (If they are the same size, then choose one
arbitrarily), and the shoresize is the cardinality of the shore.

For vertex sets A, B we let E(A, B) denote the set of edges crossing from A to B. We also write
0S =E(S,V\S)forasetSCV.

We define a small cut to be a cut C with

k —
oC| < — Ay,
10C] < =72
and we define a medium cut to be a cut C such that
Kk — _
— Ak £|0C| < 2.
ok = 10C1 <22

Given vertex sets Fy, . . ., F;, we denote their Venn diagramby Venn(Fy, . . ., F;). An atom denotes
anonempty region of the diagram, i.e., a nonempty set that can be expressed as G;N- - -NG;, where
each set G; is either F;, or its complement V' \ F;. See Figure 2.

We say that Fy,. .., F; generate the {-cut K = {Ay,..., A} where Ay,..., A, are the atoms of
Venn(Fy, ..., F;). Observe that the weight of K is at most |0F| + - - - + |0F;].

We begin with a few straightforward bounds.

nk

ProrosITION 3.1. Ifn > k, thenm > mik.
PROOF. Sort the vertices in ascending order of degree, so deg(v;) < deg(v;) < --- < deg(vp).
The k-cut generated by the singleton sets {v1},...,{vr_1} has weight at most deg(v;) + --- +

deg(vg_1); since Ay is the minimum k-cut, we thus have deg(v;) + - -+ + deg(vg-1) > Ak. Also,

because of the sorted vertex ordering, we have deg(v;) > deg(vg-1) > deglon)ttdeglomn) 5 Ax

k-1 = k-1
foralli > k.
Summing vertex degrees, the total number of edges m is given by
2m = (deg(vl) + 4 deg(vk_l)) + (deg(vk) + 4+ deg(vn))
> M+ (n—k+1)-Ae/(k=1) = nAg/(k = 1) = nkAp/(k - 1). O

LEMMA 3.2. There are fewer than 2572 small cuts.

ProoF. Suppose not; in this case, we will construct a k-cut of weight less than A, which con-
tradicts the definition of A.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:8 A. Gupta et al.

Fori=1,...,k — 1, let us choose an arbitrary small cut S; such that [Venn(Sy,...,S;)| > i+ 1.
We claim that we can always find such an S;. For, if [Venn(Sy, ..., S;—1)| > i + 1, then S; can be
chosen arbitrarily. Otherwise, suppose that Venn(Sy, ..., S;—1) has precisely i atoms Ay, ..., A;.
The only small cut T such that |Venn(Sy,...,Si—1,T)| = i = [Venn(Sy, ..., S;—1)| would have the
form T = | Jje; A;j for some subset I C {1,...i}. There are at most 2171 — 1 such cuts (keeping in
mind that I and its complement determine the same cut). Since by assumption there are at least
252 small cuts, there exists a small cut S; with Venn(Sy,...,S;_1,S;) > i as desired.

At the end, we have |Venn(Sy, . . ., Sk—1)| = k. So the small cuts S, . . ., Sg_1 generate a t-cut for
t > k whose weight is less than (k — 1) - %Ik = Ak. This is our desired contradiction. O

ProrosiTioN 3.3. Let Ti,...,T, be medium cuts where r = [k/2]. Then either
[Venn(Ty, ..., T,-1)| < 2(r — 1) or [Venn(Ty, ..., T,)| < 2r (or both).

Proor. Let us first consider the case where k is even and r = k/2. Suppose for contradiction
that [Venn(Ty,...,T;)| =t > k. Then Ty, ..., T, generate a t-cut K. Since Ty, . .., T, are medium
cuts, the weight of K is less than r - 2% = Ay; this contradicts that A, is the minimum k-cut value.

Next consider the case where k is odd and r = (k + 1)/2. Suppose for contradiction that
[Venn(Ty,...,Ty)| =t > k+1and |Venn(Ty,...,T,—1)| =t > k—1.The sets Ty, ..., T,_; generate

at’-cut K’; since Ty, . . ., T,_; are medium cuts, the weight of K’ is less than (r — 1) - 2 = %Ak.
If t’ > k, then this contradicts that A is the minimum k-cut value. So it must be that ¢’ = k — 1
exactly.

Let Ay, ..., A; be the atoms of Venn(Ty,...,T,—1) cut by T;;since t > k+1and t’' = k — 1 we
must have j > 2. The edge sets E(T,, A; \ T,) are all disjoint and T, is a medium cut, so at least
one atom A; must satisfy |[E(T,, A; \ T,))| < |0T,|/j < |0T,]/2 < Ac. The sets Ty, ..., T,_1, A; then
generate a k-cut K" of weight less than (r—1) 2+ Ak = Ak contradicting that Ay is the minimum
k-cut value. O

4 BOUNDING THE NUMBER OF MEDIUM CUTS

We now analyze the combinatorial structure of the medium cuts to show the following key bound:

THEOREM 4.1. There are k°®n many medium cuts.

We prove this in two stages. First, using the Sunflower Lemma, we show it for the special case
when all the medium cuts of G have shoresize at most k. We then extend to the general case by an
induction on the graph size.

LEMMA 4.2. Suppose the medium cuts all have shoresize at most k. Then there are at most k®®)n
medium cuts.

Proor. Let F be the set family consisting of the shores of the medium cuts. We claim that &
cannot have 2F many k-sunflowers with distinct nonempty cores. For, suppose for contradiction
that it does so. Then, by Lemma 3.2, at least one of the sunflowers has a nonempty core C with
|0C| = %/Tk. Let the sets in this sunflower be Sy,...,S, € ¥ where S; N S; = C fori # j.

Let P; := S; \ C be the petal for each S;, and let L; = E(P;, C) denote the set of edges between P;
and C. By inclusion-exclusion, we have |0P;| = |0S;| — |0C| + 2|L;|. Since each S; is a medium cut,
it satisfies |0S;| < sz,)

|P;| < 24 — |8C| + 2|L;].

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:9

Suppose the petals are sorted in ascending order of |L;|, so that |L;| < |L;4q| fori=1,...,k—1.
Consider the k-cut K generated by the disjoint sets Py, . . ., Pr_;. We can bound its weight |0K| by

k-1 k-1 k-1
|0K]| < Z |0P;| < Z(zik —18C| + 2|Li]) = 2(k — DAy — (k — 1)|4C| + ZZ ILi].
i=1 i=1 i=1

Because the sets L; are pairwise disjoint subsets of dC in sorted order of size, we have

k-1 k
k-1 k-1
Li| £ — L;| £ ——laC|,
l;lll_ . i;lzl_ o 1oC]

and so
K| < 2(k — 1)2k — (k =)[OC| + 2 - &11aC| = 2(k — 1)2; — ELED 50,
Finally, using the bound [0C| > ﬁik, we get
0K < 2(k — 1)2; — $=0E2D) k30— 7, = Ay

This contradicts the definition of A; as the minimum k-cut. Thus ¥ cannot have 25 many k-
sunflowers with distinct, nonempty cores. By our hypothesis, the sets in ¥ have size at most k.
Thus, by Lemma 2.2 (with parameters d = r = k and N = n and s = 2¥) and Equation (1), this
means

|F| < sf(d,r) - sN < (logd)?(r - loglogd)®@ - 2kn < KO0y, o
We will next remove the restriction on the shoresize, completing the proof.

Proor oF THEOREM 4.1. We will show by induction on n that for n > k there are at most ¢x (n—k)
medium cuts in any graph G, for some constant ¢; = k%),

If every medium cut has shoresize at most k, then we have already shown this in Lemma 4.2 for
appropriate choice of ck. (This covers the base case of the induction n = k + 1.) We thus consider
a medium cut S with shoresize larger than k, i.e., k < |S| < n—k.

Starting with S; = S, let us form a maximal sequence of medium cuts 51, Sy, ..., S¢ with the
property that [Venn(Sy,...,S;)| > 2t forall t = 1,...,{; here £ > 1, since |Venn(S)| = 2. Let
the atoms of Venn(Sy, ..., S¢) inside S (respectively, outside S) be A;,...,A; and By, ...,B;. So
AjU---UA;=SandB,U---UB; =V \S.

Now form a graph H; by contracting each of the atoms A, . .., A; and likewise form a graph H,
by contracting each of the atoms By, ..., B;. Since Ay, ..., A; partition S and By, ..., B; partition
V '\ S, these graphs have n; = (n — |S|) + i and n, = |S| + j vertices, respectively. See Figure 3 for
an example.

We claim that i +j < 2(£+1) and ¢ < k/2. For, if i +j > 2({ + 1), then consider choosing S¢. to
be an arbitrary medium cut; we would have [Venn(Sy, . .., Se+1)| = i +j = 2(£ + 1), contradicting
maximality of £. Likewise, if £ > k/2, then we would have |[Venn(Sy,...,S,-1)| = 2(r — 1) and
|[Venn(Sy, ..., S;)| > 2r where r = [k/27; this would contradict Proposition 3.3.

From these two bounds, we conclude that i + j < 2+ 1 < k. Since k < |S| < n —k, both n; and
ny are strictly larger than k and strictly smaller than n. Hence, from the induction hypothesis, the
number of medium cuts in H; and H; is at most ci (n; — k) and ¢, (nz — k), respectively.

We now claim that every medium cut of the original graph G survives in either H; or H, (or
both). For, suppose there is some medium cut T where an edge ¢’ € 9T lies inside an atom A; and
an edge e’ € JT lies inside an atom Bj. Then the atoms A, and By would both split into two new
atoms in Venn(Sy, ..., S¢, T), giving |[Venn(Sy, . .., S¢, T)| = i + j + 2. This contradicts maximality
of €.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:10 A. Gupta et al.

Fig. 3. Construction of graphs Hj (right) and Hy (middle) given medium cuts Sy, Sz, S3, S4 (left). Each colored
set represents a medium cut surviving in either H; or Hy. The red and blue cuts survive in Hy, and the green
cut survives in Hy. The purple cut survives in both H; and Hj.

Consequently, the number of medium cuts in G is at most
ck(ny — k) +c(ng —k) =cp((n—1S| + i) + (IS| +j) — 2k) = cp(n+ i+ j — 2k).
Now, i + j < k so this is at most cx(n — k), completing the induction. O

5 THE CONTRACTION PROCESS

Our next goal will be to lower-bound the probability that a given k-cut K is preserved during
the Contraction Algorithm. More generally, for an edge set] C E(G), we say that J survives the
Contraction Algorithm if no edge of J ever gets selected during any iteration. Following [9], we
define the Contraction Process up to stage i for J as follows:

Starting with the graph G, = G, in stage j we select an edge e; from the resulting
(random) subgraph G; uniformly at random excluding the edges in] itself, and contract
ej to get the graph G;_;. We stop when we reach G;.

It is possible, and allowed, for some edges of J to become self-loops and be removed from the
graph. When considering a subgraph G; during the Contraction Process for J, bear in mind that
we may have | € E(Gj).

For the Contraction Process for J, we define the key statistic

— . Zk
Ri= > EGT ()

Jj=i+1

Here, R; serves as a linearized approximation to the probability of avoiding J in the Contraction
Algorithm. Specifically, we show the following result, which is a slight reformulation of Reference

[9]:

PROPOSITION 5.1. Let] be an edge set and let & = |]|/A. Suppose we run the Contraction Algo-
rithm up to stage i > max{4ak, k}. The probability that] survives is at least e **EIRil=¢k "yyhere the
expectation is taken over the Contraction Process for | up to stage i.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:11

Proor. For i < j < nlet us define
o M akk
TTIEG) T IEGHI

where G; is the subgraph obtained at stage j of the Contraction Process for J starting at G. We also
define the corresponding random variable

n

Lg =]_[(1-x;).

Jj=i+1

Note that, by the property of iterated expectations, we calculate the expected value of L as

1 1
E[lLg]l = —— E[L n= = — E[(1-x,)Lg/e
) = T ee}%\] o len=el= moT oy [(1 = xn)Loy/e]
E[LG/e]
=(1-x,) —_
s SIEGV]

where G/e denotes the graph obtained by contracting edge e in G; note that G,—; = G/e,, during
the Contraction Process.

We first claim that if we run the Contraction Algorithm on G, then J survives to stage i with
probability at least E[Ls]. We show this by induction on n. The case n = i holds vacuously, since
then L = 1 with probability one and J survives with probability one.

For the induction step, let n > i. The Contraction Algorithm chooses edge e, uniformly at
random from E(G) and then continues on G/e,. Edge set J survives to stage i if and only if the
following events occur: (i) e, € E(G) \ J and (ii) conditional on fixed choice of e, = e, the edge
set J survives the Contraction Algorithm in G/e to stage i. By the induction hypothesis, the latter
event has probability at least E[Lg/.], and so

. . 1 [E(G) \ JI E[Lg/e]
P from G) > E[lg.] = —2 2 _—L2Gled
r(J survives starting from G) > EQ)] EE%)\] [(Lgyel EG)] eEE(zG:)\] EG) \J]
Note now that
|E(G) \ JI S IE@GI =T _ -y
[E(G) — |E(G)] "
so this is at least ElLo).]
1-x, —Glel _g[Lg],
(=) D, {5G)y g1 = FLke]

ecE(G)\J

which concludes the induction.
So J survives the Contraction Algorithm with probability at least E[Ls]. We need to bound L.
Consider some stage j > i of the Contraction Process for J. By Proposition 3.1, since i > k, we

have |E(Gj)| > 2(;—’;)1,(so x; < 2a(k —1)/j. Since j > i > 4ak this implies x; < 1/2. We use the
elementary identity 1 — x > e for x € [0,1/2] to get:

n n n _
L = l‘[(1-x;) > 1‘[eI > l‘[e~k /1E(G))|-(2a(k=1)/))*
j=i+l j=i+1 j=i+l
_ e—akRi—4a2(k—1)2 i U > e—akRi—4a2(k—1)2/i_

Since i > 4ak, we thus have Lg > e~*Ri=@k Taking expectations and using Jensen’s inequality,
we have E [Lg] > E[e—ath—ak] > g~ak—akE[R;] i

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:12 A. Gupta et al.

Using this, we can recover Karger and Stein’s original success probability of n=2#k~1)_ Although
it is much weaker than the bound of n=* we want, this is useful for a few edge cases in the analysis.

COROLLARY 5.2. For any parameter & > 1 and any k-cut K with |0K| < aAy, the Contraction
Algorithm with parameter = [4ak] selects K with probability at least n~2* (k=D =0(ak)_

Proor. Consider the Contraction Process for edge set] = dK. In each stage j, Proposition 3.1
shows that graph G; has at least Z(i—lil)/lk edges. Hence, with probability one, there holds

R; < i 2(kk; Y < 20k~ 1) log(n/7).

k

j=t+1

By Proposition 5.1, the probability K survives to stage 7 is at least e"*KEIRe1-ak which is at least

n~2¢k=1) with our bound on R,. Next, suppose that K does survive to stage 7 (this includes the
case where n < 7). The resulting graph has at most 7 vertices and hence at most k* different k-cuts.
Thus, K is selected from this graph with probability at least k7 > k~9(@K)_ Overall K is selected
with probability at least n=2%(k=1) =0O(ak)]

6 ANALYZING THE DYNAMICS OF THE CONTRACTION PROCESS

Our goal now is to analyze the Contraction Process for a given edge set J. Let a = |J|/Ax. We fix
some parameter ¢ € [0, 1/k), and define a good cut to be a medium cut C with

k =
ocC > (1- Aks
10C\JI 2 (1= &)7— A
the role of ¢ will be explained later. We also define two related parameters

_1-c¢k
k-1’

Note that § > 0 and 1+ = (1 — ¢)k/(k — 1). We begin with a lower bound on edge count in a
single iteration of the Contraction Algorithm.

o

and B =k +2ak/e.

PROPOSITION 6.1. Let s be the number of good cuts in G. If n > f3, then
m>>s- %Xk/2+(n—s—,b’)-zk.

Proor. Each vertex v of G corresponds to a cut C,,. At most k — 2 of these vertex cuts may be
small cuts. For, if there are k — 1 such vertices vy, vy, . .., vg_1, then the k-cut generated by the
{v1},...,{vK-1} would have weight below (k — 1) - %Ik = kA = Ay, a contradiction.

Let U denote the set of vertices v for which cut C, is medium but not good. For v € U, we have
[0C,| > %Ik and hence |0C, N J| > ezk. Each edge appears in at most two vertex cuts, so

=1 Z 10Cy N]| > |UeAy/2;
vel

since |J| = akAg, this implies |U| < 2ak/e.
Summarizing, at most k — 2 vertices correspond to small cuts, and at most s + 2ak/e vertices
correspond to medium cuts. The remaining vertices (at least n—s—2ak/e—k+2 of them) correspond

to large cuts so their degree is at least 2A;. We thus have
2m > (s+2ak/£)-%Ik+(n—s—2ak/s—k+2)-2zk >s- %1k+(n—s—ﬁ)-21k. O

For our purposes, we can combine Propositions 3.1 and 6.1 to get the following (somewhat crude)
estimate:

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:13

COROLLARY 6.2. IfG has s good cuts, thenm > (n — ﬁ)zk — min{s, (n — ﬁ)}Ik/z.

We are now ready derive the key bound on the random variable R; as defined in Equation (2).
For p > jand s > 0, define the function

log(1+ (5/p)(1 + 1/)(1 - (/p)°))
£G.5.p) = log(p/i) + — . ©)
We will prove a bound on E[R;] in terms of the function f by induction. The derivation of

the function f is itself rather opaque; we describe the (non-rigorous) analysis that leads to it in
Appendix A. We first observe a few analytical properties of function f.

PROPOSITION 6.3. Forp > j ands > 0, we have the following:
(1) Function f(j, s, p) is a well-defined, nonnegative, nondecreasing, concave-down function of's.

(2) The functiony + y + f(j,se” 1Y, p) is an increasing function of y.

Proor. (1) The argument of the logarithm in function f is an affine function of s, with con-
stant term 1 and coefficient %(1 +1/8)(1 = (j/p)®) = 0.
(2) The derivative as a function of y is
5e(1+6)y
5e(+9 + (s/p)(1+8)(1 = (j/p)?)’

which is positive. O

LEMMA 6.4. Suppose that G has s good cuts and n vertices. Then, for the Contraction Process for |
up to some stage i with f < i < n, we have E[R;] < f(i — f,s,n — p).

Proor. We show this by induction on n. We will write p = n— f,j = i — f and m = |E(G)|. The
case n = iis clear, since R; = 0 = f(i — f,s,i — f).

For the induction step with n > i, the Contraction Process first selects an edge of E(G) \ J,
arriving at a new graph G” with n — 1 vertices. So

= — +E[R7],

E[R;]
where Rl.G' denotes the random variables defined in Equation (2) for graph G’.
Let random variable S’ denote the number of good cuts in G’. By the induction hypothesis
applied to G’, we have

E[R:] < (Ae/m) +E[f(,S",p - 1)]. (4)
Each good cut C is selected with probability at least ”l;?g;\]]ll > %(1 - S)Ik/m =1+ 5)Zk/m, SO

E[S'] < s(1— (1+ 8)Ax/m) < se 1+ A/m
By Proposition 6.3, Jensen’s inequality applies for the random variable S’ in Equation (4), giving
E[R/] < (e/m) + fG.E[S'L.p — 1) < (e/m) + f (. se”FOA/m p 1)
Next, by Corollary 6.2, we have m > pzk - min{s,p}jk/z. So Ax/m < z, where we define
2
2= ————.
2p — min{s, p}
Since y + f(j, se”1*9)¥ p — 1) is an increasing function of y, we therefore have

E[R;] < z+ f(j,se”1*9Z p—1).

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:14 A. Gupta et al.

To finish the proof and complete the induction, it suffices to show z+ f (j, se" 179 p—1) < £(j, s, p)
or, equivalently,
e(1+8)(z+f (s D% p=1)) _ (148)f (is.p) < .)

After substituting in the formula for f, this expands to

p-1\1+6 (1+6)z s i \O p\1+6 s i\O
(57)7 (e () v 1) (1= (5)°)) - (8)7 (1 () w9y (1= (3)°)) <0
(6)
To simplify further, let us define a number of terms:
r=s/p, q=1Jjlp, 0=1-1/p, t =2 —min{r, 1}.
We thus have pj;.l =0/q, P%l =r/6,and z = 2(1 — 0)/t. The inequality in Equation (6) becomes

(O/9)" (200D 1 (1/0) (1 +1/6)(1 = (/0)")) - (1/0)** (14 r(1+ 1/8)1 =)| < .

Clearing out common factor ¢'*® and multiplying the left term through by 6'*9, it is equivalent
to
(0140200t 41 (14 1/8)(0° - ¢°)) — (1+7r(1+1/8)(1 - ¢°)) < 0.

Collecting terms, multiplying through by &, and changing signs for convenience, Equation (5)
is thus equivalent to showing:

S+r(1+8)(1—0%) - §01+020-00+8)/t 5 (7)

Note that parameter g no longer plays a role in Equation (7). Since r > 2 — t, it suffices to show
that
S+ (2-1)(1+8)(1—0%) —§0020-000+0)/t 5 ¢ (8)
To show Equation (8), let us define a function
FO,t) =6+ (2-1)(1+8)(1 - 0%) — 501+02(1-0)(1+0)/¢

for independent variables 6, t. We need to show that F(0,t) > 0 for all 6 € [0,1] and ¢ € [1, 2].
The second partial derivative of F with respect to ¢ is given by

°F(0,1) —45(1+6)(1 - 0)01+02(1+0)1=0)/t((1 1 §)(1 - 0) + 1)
oz t4 ’

which is clearly negative for §, 0, t in the given range. Thus, the minimum value of F(0, t) in the
region occurs at either t = 1 or ¢ = 2. So, to show that F(0, t) > 0, it suffices to show that F(0,1) > 0
and F(0,2) > 0.

At 't = 2 we have F(6,2) = §(1 — e(1+9)(1-0)g1+5) "To show that F(6,2) > 0, we thus need to
show that e(1+9)(1-09(1+0) < 1 or equivalently e'~?6 < 1; this can be verified by routine calculus.

Att =1, we have F(0,1) = § + (1 + 8)(1 — 0%) — §0+9¢2(1-0)1+9) Note that F(1,1) = 0. So, to
show that F(0,1) > 0 forall 8 € [0, 1], it suffices to show that the derivative of F(0, 1) with respect
to 0 is negative for 0 € (0,1). This derivative is given by

6F((999, D _ —5(1 + 8)e2(1+9)1-0) g=(1-5) (e—z(1+5)(1—0) 202 4 9)_

To show this is negative, it suffices to show that e 2(1*90-0) _ 202 4 9 > 0. Since § < 1/2, it
suffices to show that e 3(1=9) — 202 + § > 0, which can be verified by routine calculus for 6 € (0, 1).
This shows that % < 0,and so F(0,t) > F(1,1) = 0.

Thus, F(6,t) > 0 for all & € [0,1] and t € [1,2] and hence the inequality of Equation (8)
holds. |

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:15

7 PUTTING IT TOGETHER: BOUNDS ON THE CONTRACTION ALGORITHM

We now finish by getting our main bound for the Contraction Algorithm.

LEMMA 7.1. Suppose that] is an edge set with a = |J|/Ax andn > i > 8ak? + 2k. Then] survives
the Contraction Algorithm to stage i with probability at least (n/i)’“kk’o(“kz).

ProOF. Let us set ¢ = % and also define f = k + 2ak/e,and j=i—-f,p=n—fand = i
By Theorem 4.1, the number of medium cuts in G is at most an for a = k9™ and so Lemma 6.4
gives:
_ - log(1+92(1+1/8)(1 - (i/p)?))
B[R] < f(.an.p) = log(p/) + — .
Our condition on i ensures i > 2. So p > n/2 and j > i/2, and thus log(p/j) < log(n/i) + O(1)
and an/p < 2a. We therefore have

1 1)
B[R] < log(n/i) + og(l +2a(1+1/))

+ 0(1) < log(n/i) +loga+ O(1).

1+6
Note that i > max{4ak, k} as required in Proposition 5.1. Thus, J survives with probability at least
(n/i)~ke-ak-ak(logatlogk+O(1)) Gince g = kOK) this is at least (n/i)‘“kk‘o(“kz). O

THEOREM 7.2. Running the Contraction Algorithm with parameter t = [20ak®] produces any
given k-cut K of weight at most aAx with probability at least n~kj-0@k?)

Proor. If n > 7, then Lemma 7.1 applied to J] = JK (noting that necessarily @ > 1) shows
that K survives to G, with probability at least (n/)~k k=O@k) Then K is selected from G, with
probability at least k=% > kOk?) Combining these probability bounds gives the stated result. If
n < 7, then the Contraction Algorithm simply selects a random k-cut, and so K is chosen with
probability at least k™" > f~O(ak®) O

COROLLARY 7.3. There are at most n®*k©O(@k") many k-cuts in G with weight at most aAy.

We could enumerate these k-cuts by repeatedly running the Contraction Algorithm, but each
iteration would cost O(n?) time giving an overall runtime of roughly O(n®**?). The next result
shows how to remove this extraneous n? factor using a recursive version of the Contraction Al-
gorithm from Reference [12]. Note that directly printing out the k-cuts could take Q(n®**!) time,
since each k-cut defines a partition of V. Hence, the algorithm necessarily produces the collec-
tion of k-cuts in a compressed data structure, which supports basic operations such as counting,
sampling, and so on. See Reference [12] or Reference [9] for a more in-depth discussion.

THEOREM 7.4. For each k > 3, there is an algorithm to enumerate all k-cuts of weight at most oA
in time n®* (log n)C@k) yith probability at least 1 — 1/poly(n).

Proor. First, if n < 2%, then we directly use the Contraction Algorithm to stage r = [4ak]. By
Corollary 5.2, this enumerates any given k-cut with probability at least n=2¢(k=D=0(@k) "5 we
must run it for n?@*k-DEO@k) . poly(a, k,log n) trials to get them all. This gives overall runtime of
n2e (k=0 0@k) . poly(a, k, log n) - O(n?), which is at most eO@k?) by our assumption on n. We thus
assume for the remainder of the proof that n > 2.

We use a recursive algorithm, whose state is represented as a pair (H,{) where H is the current
graph and ¢ = 0,...,T is the current level in the recursion. The algorithm begins with the input
graph (G, 0) at level £ = 0. Given input (G, ¢) at level ¢, there are two cases. If £ < T, then
the algorithm runs t, = [(ns/ n[+1)ak-| independent trials of the Contraction Algorithm to ng.4

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:16 A. Gupta et al.

vertices and recursively calls (H, £ + 1) for each resulting contracted graph H. Otherwise, if £ = T,
then the algorithm outputs a randomly chosen k-cut. Here, the parameters n; are given by

ni = [max {n%)i,zo(xsz

and the recursion depth T is the first value with ny = [20ak?]. Since log(20ak?) < O(ak) and

ak/2 > 3/2, we have T < O(llt(’)iizgk';).

To calculate the algorithm’s success probability, fix some k-cut K of G with |0K| < aA, and
define a state (G, €) to be successful if no edge in K has been contracted so far from Gy = G to
G¢. Clearly, (G, 0) is successful. For each successful input (G,) with £ < T, by Lemma 7.1 with
i = ng41, the probability that K survives on each trial is at least (ne/nes1)”“*y where Y= k~Olak?),
Over all t, trials, K survives at least once with probability

1-(1- (nf/nm)‘“"w)” >1-e.

Thus, given that some instance (G, €) in the recursion tree is successful, the probability that at
least one instance (G¢y1, £ + 1) is successful is at least 1 — e™¥ > //2. Over all the T = O(llzggizgkr)l)
levels of the recursion, the probability that there is some successful instance (Gr,T) is at least
W/2)T > (log n)~O(@k?), Finally the probability of selecting K from a successful instance (Gr, T)
isat least k"7 > k~O(@k") So, overall, K is selected with probability at least (log n)_o(akz) Ok,
)—O(akz).

Due to our assumption that n > 2*, this is at least (logn
We now bound the runtime. For each level { < T, there are Hf:_& tj < Hf:_g 2(nj/nj+1)0‘k =

2%(no/n)®* instances (G, €). In each such instance, the algorithm runs ¢, trials of the Contraction
Algorithm, each taking O(n%) time. The running time over all instances (G, ¢) is therefore at most

2 (no/ne)™ - 1 - O(nf) < O(2" - (no/nesa) ™ - n7),

which is at most O(27 (2n0)%¥), since ngyq > nﬁ/(”"‘)/z. Summed over all T recursion levels, the
total runtime is at most T - O(27 (2ny)*¥) < (2n)*k - (log n)°W.

If we repeat the entire recursive algorithm from (G, 0) a total of (log n)Q(“kz) times, then K is
selected with probability at least 1/2. There are kO(ak?) pak many such k-cuts, so we run a further

O(ak? log k log n) many trials to enumerate them all with probability 1 — 1/poly(n).]

As one concrete application, we get the main result:

THEOREM 7.5. There is an algorithm to compute Ay in time n* (log n)O ") for any value k.

Proor. For k = 2, this is the standard Recursive Contraction Algorithm of Reference [12]. Oth-
erwise, apply Theorem 7.4 with « = 1. This gives a large collection of k-cuts, which includes all the
minimum k-cuts with high probability. We output the minimum weight of all k-cuts found. (The
operation of taking minimum weight can be performed on the corresponding data structure.) O

APPENDIX
A HEURISTIC BOUND ON R;

Given a graph G with s medium cuts, consider running the Contraction Process for some edge
set J up to stage i. We will focus on the case where s < n; as it will later turn out, the resulting
formulas are also correct (although not optimized) when s is larger than n.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

Optimal Bounds for the k-cut Problem 2:17

In each stage j > i, where the intermediate graph G; has j vertices and m; edges, each good cut

C gets selected with probability % >(1-¢) %Zk/mj =(1+ 5)zk/mj. Letting S; denote the
number of surviving good cuts at stage i, we thus have
n 5 —
E[S;] < s 1—[(1 1+ 5)/1k) < som i (140 T/ mi _ (~(1+O)R;
ms
j=i+1 J

Since this is just a heuristic derivation, we blur the distinction between E[S;] and S;, and we
suppose that S; itself also satisfies this bound, i.e., S; < se~(1+O)R;
We have R;_; = il—"l + R;. By Proposition 6.1, we have m; > S;Ax/2 + (i — Si — f)Ax, s0
A 1
L 9)
m; 11— ﬂ - S,/Z
To carry out the induction proof later, we will need our bound on R; to have a simple closed
form with nice concavity properties. To achieve this, we will need to use an upper bound on the

quantity fn—’j which is a linear function of S;. As we have mentioned, in the relevant case, we have
s < n, and in this case we will also have S; < i. We can then upper-bound the RHS of Equation (9)
by its secant line from S; = 0 to S; = i — 3, yielding

Xk< 1 (1+ S;)
mi " i-p i-pg)

note that by Proposition 3.1, this upper bound will also be valid in the case where S; > i — f.
Again ignoring any distinctions between random variables and their expectations, this implies

1 se—(l+5)Ri
Ri-1 <R +
! i— ﬁ(i-p)
If we define g(x) = Ryyp and p = n — f3, then this can be relaxed to a differential equation with
g'(i) = Riyp — Ri_14p defined as follows:

g =— . g =0,

1, se-(+8)g(x)
(=)
X

The differential equation has a closed-form solution:

log(1+ (s/p) (1 +1/8)(1 - (x/p)?))
146 ’
Note the similarity of function g to the function f from Equation (3) defined in Section 6.

9(x) =log(p/x) +

REFERENCES

[1] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. 2020. Improved bounds for the sunflower lemma. In
Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC’20). 624-630.

[2] Chandra Chekuri, Kent Quanrud, and Chao Xu. 2020. LP relaxation and tree packing for minimum k-cut. SIAM 7.
Discr. Math. 34, 2 (2020), 1334-1353.

[3] P.Erdds and R. Rado. 1960. Intersection theorems for systems of sets. J. Lond. Math. Soc. 35, 1 (1960), 85-90. https:
//doi.org/10.1112/jlms/s1-35.1.85

[4] Olivier Goldschmidt and Dorit S. Hochbaum. 1988. Polynomial algorithm for the k-cut problem. In Proceedings of
the 29th Annual IEEE Symposium on Foundations of Computer Science (FOCS’88). 444-451.

[5] Olivier Goldschmidt and Dorit S. Hochbaum. 1994. A polynomial algorithm for the k-cut problem for fixed k. Math.
Operat. Res. 19, 1 (1994), 24-37. https://doi.org/10.1287/moor.19.1.24

[6] Anupam Gupta, Euiwoong Lee, and Jason Li. 2018. Faster exact and approximate algorithms for k-cut. In Proceedings
of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18). 113-123.

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

2:18 A. Gupta et al.

[7] Anupam Gupta, Euiwoong Lee, and Jason Li. 2019. The number of minimum k-cuts: Improving the karger-stein

bound. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC’19). 229-240.

Anupam Gupta, Euiwoong Lee, and Jason Li. 2020. The karger-stein algorithm is optimal for k-cut. In Proccedings of

the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 473-484. https://doi.org/10.1145/3357713.3384285

David G. Harris and Aravind Srinivasan. 2018. Improved bounds and algorithms for graph cuts and network reliabil-

ity. Rand. Struct. Algor. 52, 1 (2018), 74-135.

[10] Yoko Kamidoi, Noriyoshi Yoshida, and Hiroshi Nagamochi. 2006. A deterministic algorithm for finding all minimum
k-way cuts. SIAM J. Comput. 36, 5 (2006), 1329-1341. https://doi.org/10.1137/050631616

[11] David R. Karger. 1993. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In Proceedings
of the 40th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’93). 21-30.

[12] David R. Karger and Clifford Stein. 1996. A new approach to the minimum cut problem. 7. ACM 43, 4 (1996), 601-640.

[13] Ken-ichi Kawarabayashi and Mikkel Thorup. 2018. Deterministic edge connectivity in near-linear time. 7 ACM 66,
1(2018), 1-50.

[14] Jason Li. 2019. Faster minimum k-cut of a simple graph. In Proceedings of the 60th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’19). 1056-1077.

[15] Mikkel Thorup. 2008. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing (STOC’08). 159-166.

[8

[t

[9

—

—

Received May 2020; revised January 2021; accepted July 2021

Journal of the ACM, Vol. 69, No. 1, Article 2. Publication date: November 2021.

