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Chasing Convex Bodies with Linear Competitive Ratio
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We study the problem of chasing convex bodies online: given a sequence of convex bodies Kt ⊆ Rd the algo-

rithm must respond with points xt ∈ Kt in an online fashion (i.e., xt is chosen before Kt+1 is revealed). The

objective is to minimize the sum of distances between successive points in this sequence. Bubeck et al. (STOC

2019) gave a 2O (d )-competitive algorithm for this problem. We give an algorithm that isO (min(d,
√

d logT ))-

competitive for any sequence of length T .
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1 INTRODUCTION

In the problem of chasing convex bodies, we control a point in Rd , initially at x0 = 0. At each
timestep t , the adversary gives a closed convex set Kt ⊆ Rd as its request, and we must respond
with a point xt ∈ Kt . (In essence, we are moving our point to lie within Kt .) This response must
be done in an online fashion, namely, xt must be chosen before the next set Kt+1 is revealed. The
goal is to minimize the total movement cost: if the process goes on for T steps, this cost is

ALG :=

T
∑

t=1

�xt − xt−1�.

We focus on the Euclidean norm; there are other results known for general norms (see, e.g., [8]
for results and references). We work in the framework of competitive analysis; we compare the
algorithm’s cost to the optimal cost OPT incurred by an all-knowing adversary, and the ratio
between the two is called the competitive ratio.
Friedman and Linial [11] introduced the problem of chasing convex bodies as a generalization of

several existing online problems. They showed that no algorithm can achieve a competitive ratio
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32:2 C. J. Argue et al.

lower than
√
d , gave an algorithm for d = 2, and posed getting an O ( f (d ))-competitive algorithm

for general d as an open problem. Over the years, competitive algorithms were given for special
cases (see, e.g., [2, 11, 12, 18]). Motivated by problems in data center scheduling, this problem was
also studied under the name of smoothed online convex optimization (SOCO) (see, e.g., [10, 13]).

A particularly relevant line of recent work is that for nested convex body chasing, where the
request sequence satisoes Kt ⊇ Kt+1 for all t . For this case, a series of works [3, 4] culminated

in Bubeck et al. [8] giving an O (min(d,
√

d logT ))-competitive algorithm based on the classical
notion of the Steiner point of convex bodies, and a more sophisticated algorithm with a near-

optimal competitive ratio ofO (
√

d logd ). Moreover, a parallel paper of Bubeck et al. [9] built on the
recursive centroid approach from [3] to give the orst f (d )-competitive algorithm for the general
non-nested case in arbitrary dimension d , thereby resolving the open problem from [11]. Their

algorithm has competitive ratio f (d ) = 2O (d ) , and it substantially extends the recursive approach
of [3] for the nested case using a several new arguments. Our main result gives a simpler algorithm
with an improved competitive ratio.

Theorem 1.1. There is anO (min(d,
√

d logT ))-competitive algorithm for the general convex body

chasing problem in d-dimensional Euclidean space.

Our algorithm appears in Section 2. It uses the Steiner-point based algorithm for the nested
case [8] applied in a black-box fashion to a suitable body Ωt . The body is deoned using the concept
ofwork functions commonly used in online algorithms (see, e.g., [7, 14, 18]). Hence, our result relies
on bringing together the two lines of investigation that had held out hope for the problem: ideas
based on the work function, and those based on convex geometry. In Section 3, we give the details
of an eocient implementation. The reader not interested in these computational issues can focus
only on Section 2.
Friedman and Linial also deoned a more general problem of convex function chasing, as a di-

rect generalization of metrical task systems [7]. Here, the request at time t is a convex function
дt : R

d → R≥0, and the algorithm must again respond with a point xt ∈ Rd . The goal is to mini-
mize

∑

t (дt (xt ) + �xt − xt−1�), i.e., the total hit cost in addition to the movement cost. Setting дt
to be the indicator of a convex set Kt gives us back the problem of chasing convex bodies. Bubeck
et al. [9] showed that convex function chasing in d dimensions can be reduced to convex body
chasing in d + 1 dimensions using the epigraph. This reduction loses only a constant factor in the

competitive ratio. Hence, we get O (min(d,
√

d logT ))-competitiveness for chasing convex func-
tions as well. Independent and concurrent work by M. Sellke extends the notion of Steiner points

to functional Steiner points for convex functions in order to give a min(d,O (
√

d logT ))-competitive
ratio for convex function chasing, and hence for convex bodies as well [17]. His results hold for
more general norms.

1.1 Notation

Given an instance of convex body chasing, the work function wt (x ) at time t for the point x ∈ Rd
is the cost of the optimal trajectory that starts at x0, satisoes the orst t requests, and ends at the
point x . Formally, it is given by the convex program:

wt (x ) = min

t
∑

s=1

�xs − xs−1� + �xt − x �

s.t. xt ∈ Kt

x0 = 0.

Journal of the ACM, Vol. 68, No. 5, Article 32. Publication date: August 2021.
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Fig. 1. ∇hK (θ ) is the maximizer of maxx ∈K �θ ,x�.

Let K ⊆ Rd be a bounded convex body, and let cg(K ) =

∫

x∈K x dx
∫

x∈K dx
denote the center of gravity of

K . (This is also called the center of mass, the centroid, or the barycenter of the body.) Let B (x0,R) :=
{x ∈ Rd : �x − x0� ≤ R} denote the ball of radius R centered at x0, and let B := B (0, 1) denote the
unit ball in Rd . The Steiner point of the convex body K is [15]

st(K ) := lim
s→∞

cg(K + sB), (1)

where the sum is the Minkowski sum K1 +K2 := {x1 + x2 | xi ∈ Ki }. The Steiner point has several
other equivalent characterizations, including these two [16, Section 5.4]:

st(K ) = d

∫

θ ∈Sd−1
θ hK (θ ) dω (θ ) = d Eθ∼ω [θ hK (θ )] and (2)

st(K ) =

∫

θ ∈Sd−1
∇hK (θ ) dω (θ ) = Eθ∼ω [∇hK (θ )], (3)

where ω is the uniform (isometry invariant) measure on Sd−1 with ω (Sd−1) = 1, the function

hK (θ ) := max
x ∈K
�θ ,x�

is the support function of the convex body K , and its gradient

∇hK (θ ) := argmax
x ∈K
�θ ,x�

is the maximizing point (see Figure 1 for an example). We will use deonitions (1) and (2) in the two
proofs for the algorithm, and Equation (2) for the eocient implementation. Deonition (3) shows
that st(K ) ∈ K , which is crucial to the proof of Bubeck et al. in [8], though we will not need this
property for our proofs. See, e.g., [6, 16], for more about the history and properties of the Steiner
point.

2 THE ALGORITHM

The algorithm has an outer guess-and-double step, where we maintain a current estimate r that
lies in [OPT /2,OPT ]. Given such an r , the algorithm is a single sentence: at each time t , we take
the 2r -level set Ωt of the work functionwt (x ), and move to its Steiner point.

Lemma 2.1. The work functionwt is a convex function, and Ωt is a bounded convex set.

Proof. For x ,y ∈ Rd , let {xs }ts=1, {ys }ts=1 be the optimal solutions to the convex program that
witness the valueswt (x ),wt (y). Consider z := λx + (1 − λ)y. Then, for each timestep s ≤ t , deone
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ALGORITHM 1: Steiner-Point-Based General Chasing

1: x0 ← 0, r ← dist(x0,K1) {Assume that x0 � K1}
2: for t = 1, . . . , do
3: Ωt ← {x | wt (x ) ≤ 2r }
4: while (Ωt = ∅) do
5: r ← 2r
6: Ωt ← {x | wt (x ) ≤ 2r }
7: end while

8: xt ← st(Ωt ) {2.2 shows feasibility}
9: end for

zs := λxs + (1 − λ)ys and note that zs ∈ Ks by convexity. Therefore,

wt (z) ≤
t
∑

s=1

�zs − zs−1� + �zt − z� ≤ λwt (x ) + (1 − λ)wt (y),

where the orst inequality is because {zs } is a feasible solution to the convex program for point
z and wt (z) is the minimum value for it, and the second inequality is by the convexity of the
norm. Hence, wt (·) is a convex function, and its (sub-)level sets Ωt are convex sets. Moreover,
Ωt ⊆ {x | �x � ≤ 2r } and hence is bounded. �

The all-important next claim shows that our choice of xt in Step 8 is feasible.

Lemma 2.2. With Ωt and xt as deoned in the algorithm, xt ∈ Kt .

Proof. By the orst deonition (1) of st(Ωt ), it suoces to show that for any oxed s ≥ 0 we
have cg(Ωt + sB) ∈ Kt . To this end, we show that cg(Ωt + sB) is contained in every halfspace
containing Kt .
Let H := {x ∈ Rd | �a,x� ≥ b} be a halfspace containing Kt and let H= := {x ∈ Rd | �a,x� = b}

denote the supporting hyperplane of this halfspace. (Assume that a is a unit vector.) For x � H ,
deone ρ (x ) to be the renection of x across H=:

ρ (x ) := x + 2(b − �a,x�) a.
Consider that

wt (x ) = min
y∈Kt

{�x − y� +wt−1 (y)
}

.

Let y be the argmin of the expression on the right. Using that fact that y ∈ Kt ⊆ H , we have

wt (x ) = �x − y� +wt−1 (y) ≥ �ρ (x ) − y� +wt−1 (y) ≥ wt (ρ (x )).

It follows that if the point x ∈ Ωt \ H , then its renection ρ (x ) ∈ Ωt as well.
A similar argument holds for any point z ∈ (Ωt + sB) \H : we claim that ρ (z) ∈ Ωt + sB. Get

x ∈ Ωt with �z − x � ≤ s . If x ∈ H , then �ρ (z) − x � ≤ �z − x � so ρ (z) ∈ Ωt + sB. Suppose x � H .
The above argument shows that ρ (x ) ∈ Ωt and furthermore �ρ (z) − ρ (x )� = �z − x � ≤ s , so
ρ (z) ∈ Ωt + sB. Hence, the renection of the part of Ωt + sB that is infeasible for H actually lies
within Ωt + sB: namely, for any s ≥ 0,

ρ ((Ωt + sB) \ H ) ⊆ (Ωt + sB) + H . (4)

For convenience, we will write the convex body Ωt + sB = Ω− , Ω+ , �Ω (see Figure 2) where

— Ω− := (Ωt + sB) \ H .
— Ω+ := ρ (Ω−).

— �Ω := [(Ωt + sB) + H ] \ Ω+.
Journal of the ACM, Vol. 68, No. 5, Article 32. Publication date: August 2021.
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Fig. 2. Proof of Lemma 2.2.

Fig. 3. Alternate proof of Lemma 2.2.

By symmetry, cg(Ω− , Ω+) lies on H=. Since �Ω ⊆ H , we have cg(�Ω) ∈ H . Letting γ =
Vol(Ω+,Ω− )
Vol(Ωt+sB )

,

it follows that

cg(Ωt + sB) = cg((Ω− , Ω+) , �Ω) = γ · cg(Ω− , Ω+) + (1 − γ ) · cg(�Ω) ∈ H .
But H was chosen to be a generic halfspace containing Kt , so cg(Ωt + sB) is contained in every
halfspace H containing Kt . �

An Alternate Proof of 2.2. This proof follows a renection argument similar to the one in the
orst proof, but is based on deonition (2) of the Steiner point. By translating the frame of reference,
assume that the origin lies in H=, namely, b = 0.

Consider some direction θ ∈ Sd−1 such that �θ ,a� ≤ 0 (i.e., θ lies to the left of the separating
hyperplane in Figure 3). Let zθ ∈ Ωt be such that hΩt

(θ ) = �θ , zθ �. If zθ ∈ H , then deone z �
θ
= zθ ,

else deone z �
θ
= ρ (zθ ) to be the renection of zθ across H=. By the arguments above, z �

θ
∈ Ωt as

well, and moreover by construction z �
θ
∈ H . Finally, let θ � := ρ (θ ) be the renection of θ across H=.

We claim that

�z �θ ,θ
�� ≥ �zθ ,θ�. (5)

Indeed, we can rewrite (5) as �z �
θ
− zθ ,θ

�� + �zθ ,θ � − θ� ≥ 0. If zθ ∈ H , then the orst term is 0
and the second term is 2 �zθ ,a� �θ �,a� ≥ 0 (since θ is the renection of θ � across H=). Otherwise,
the orst term is −2 �zθ ,a� �a,θ �� and the second term is 2 �zθ ,a� �θ �,a�, hence their sum is 0. This
proves Equation (5), and we can infer that

hΩt
(θ �) ≥ �z �θ ,θ

��
(5)
≥ �zθ ,θ� = hΩt

(θ ),
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where the orst inequality follows from the deonition of the support function as the maximizer. So
θhΩt

(θ ) + θ �hΩt
(θ �) is a point in H . Averaging over the choices of θ gives us a point also in H .

Since H= contains the origin, scaling by d still gives a point in H . �

Theorem 1.1 is now proved by applying standard doubling arguments (as in [3]) to the results
of [8].

Proof of Theorem 1.1. We consider the progression of the algorithm in phases; each new phase
begins when r changes. Suppose the phase corresponding to some value of r consists of times
{t1, . . . , t2}. From the fact that the work function is non-decreasing over time, i.e., wt ≤ wt+1, it
follows that

Ωt1 ⊇ Ωt1+1 ⊇ · · · ⊇ Ωt2 .

Moreover, B (0, 2r ) ⊇ Ωt for each t in this phase. This gives an instance of the nested body chas-
ing problem. From Bubeck et al. [8, Theorem 3.3], the algorithm that moves to the Steiner point

st(Ωt ) at each time pays at most (2r ) · O (min(d,
√

d logT )). It follows that our algorithm pays
at most that quantity plus an additive O (r ) during the phase, where the extra O (r ) comes from
imaginarily moving to 0 at the beginning of the phase. Summing over all phases, we pay at most

ronal ·O (min(d,
√

d logT )), whereas OPT pays at least ronal. Hence the proof. �

3 AN EFFICIENT IMPLEMENTATION FOR CHASING HALFSPACES

We now give an eocient implementation of our O (min(d,
√

d logT )-competitive algorithm. For
simplicity, we consider the case where each body Kt is a halfspace {x | aᵀt x ≥ bt }. Henceforth, we
will use Lt to denote the bit-complexity of the sequence {(as ,bs )}s≤t .

The basic idea is the following: (a) we show how to construct (weak) evaluation oracles for the
work function wt and for the support function hΩt

of the body Ωt . Then (b) using Deonition (2)
and the evaluation oracle for the support function, we use random sampling to compute a point
xt such that the expected error E[�xt − st(Ωt )�] ≤ O ( 1

t 2
) ·OPT ; this computation takes poly(Lt )

time. Now the total expected error over all the timesteps isO (
∑

t
1
t 2
) ·OPT = O (1) ·OPT ; this adds

only a constant to the competitive ratio. Along the way, we need to change the algorithm slightly
to control the bit-precision issues.

3.1 The Modified Algorithm

To ensure thatΩt remains full-dimensional, we change the algorithm by stopping each phasewhen
we know that OPT has increased by a constant factor, but Ωt still contains a large enough ball.

Note the changes in the algorithm: when the minimum work-function value (i.e., the optimal
cost thus far) exceeds approximately 3r/2, we reset our estimate r for the work function. This
ensures that (a) the optimal cost increases by a constant factor each time we reset r , and (b) when
we reach line 6, the optimal value is guaranteed to be no more than 3r/2, and hence Ωt contains an
r/2 ball within it. The former property allows us to use the <doubling trick,= and hence only the last
phase matters. The latter is useful for the computations, since Ωt is <centered= (it is sandwiched
between two balls of Θ(r ) radius).
There are two steps that need to be explained further. In Lemma 3.3 we show how to compute

MinWF(wt , ε ), the minimumwork function value up to additive error ε , which is needed in lines 3
and 4. In Section 3.3, we give a randomized algorithm to compute an approximate Steiner point of
the body Ωt , needed in line 7. This computation additionally requires the radius R of a bounding
ball for Ω (which we set to 2r ), an error parameter (which we set to r/t2), and a failure probabil-
ity parameter δ (which we can set to 1 in our case since we are concerned only with expected
cost). Lemma 3.5 then ensures that the expected distance from the true Steiner point is at most

Journal of the ACM, Vol. 68, No. 5, Article 32. Publication date: August 2021.
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ALGORITHM 2: Eocient Steiner Point Chasing

x0 ← 0, r ← dist(x0,K1).
for t = 1, . . . , do

if MinWF
(

wt ,
r
100

)

> 3r
2 −

r
100 then

r ← MinWF
(

wt ,
r
100

)

end if

Ωt ← {x | wt (x ) ≤ 2r } {Ωt contains an r/2-ball}
�xt ← Steiner(Ωt , 2r ,

r
t 2
, 1) {Computed by 3}

xt ← Proj(�xt ,Kt ) {}Proj(�xt ,Kt ) := �xt + (bt − �at ,�xt �) at
�at �

end for

εt = (1 +
√
δ )r/t2 = O (r/t2). Finally, in line 8 we project this approximate Steiner point onto the

halfspace to get a feasible point.

Lemma 3.1. Suppose the point �xt satisoes E[��xt − st(Ωt )�] ≤ εt and ALG outputs xt := ΠKt (�xt ),
the projection of�xt onto the body Kt . Then the expected cost incurred byALG is at most 2

∑

εt greater

than the algorithm that plays the Steiner point st(Ωt ) at each step.

Proof. Firstly, since xt is the projection of �xt onto the body Kt , and st(Ωt ) ∈ Kt by Lemma 2.2,
we get �xt − st(Ωt )� ≤ ��xt − st(Ωt )�. Secondly, the triangle inequality implies

�xt − xt−1� ≤ �xt − st(Ωt )� + �st(Ωt ) − st(Ωt−1)� + �st(Ωt−1) − xt−1�.

Taking expectations, and using the assumptions of the lemma, we get

E[�xt − xt−1�] ≤ εt + �st(Ωt ) − st(Ωt−1)� + εt−1.

Summing over all times completes the proof. �

Corollary 3.2. The expected cost of Algorithm 2 is O (min(d,
√

d logT )) ·OPT . Furthermore, the

algorithm runs in time poly(LT ).

Proof. The cost of the ideal algorithm that plays the actual Steiner point isO (min(d,
√

d logT )) ·
OPT . Consider ronal, the onal value of r used by the algorithm; by construction, ronal = O (1) ·OPT .
Since we chose εt ≤ O (1/t2)ronal, the expected extra cost is 2

∑

t εt = O (1) ·OPT .
At step t , we can compute both MinWF and Steiner in poly(Lt , log(1/εt )). Note that Lt ≤ LT

and log(1/εT ) = log(poly(T )) ≤ poly(LT ). The computation time for step t is at most poly(LT ),
and we perform at most 2T such computations, hence the total computation time is bounded by
poly(LT ). �

Next, we show how to compute the work function, and the Steiner point.

3.2 Computing the Work and Support Functions

In this section, we show how to compute the minimum value of the work function wt and the
support function hΩt

of the body Ωt . The latter will be used in our estimation of the Steiner point
in Section 3.3. We do each calculation by writing it as a second-order cone program.

Lemma 3.3 (Minimization ofWork Function). Given a sequence {(ai ,bi )}ti=1 and an error toler-
ance ε > 0, there is a procedure MinWF(wt , ε ) that outputs a valuev satisfying |minx wt (x )−v | ≤ ε

in time poly(Lt , log(1/ε )).
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Proof. Consider the following program on variables (x1, λ1), . . . , (xt , λt ), where each λi is a
scalar (and recall that x0 = 0):

min

t
∑

i=1

λi

s.t. �xi − xi−1� ≤ λi ∀i ∈ [t],
�ai ,xi � ≥ bi ∀i ∈ [t].

The above program is a second-order cone program. (Second-order cone programming is a special
case of semideonite programming.) By setting xi = (bi + δ ) ai

�ai �2
, we get that �ai ,xi � ≥ bi + δ ,

and hence we get a point in the strict interior of the polyhedron K1 × K2 × . . . × Kt . Since there
is a strictly feasible point, we know that the optimal primal and dual solutions exist, and have
equal objective by [1, Thm 14]. Furthermore, we know that the optimal solution has bit-complexity
bounded by poly(Lt ). Therefore, we can solve this problem, e.g., using interior-point methods, to
get an ε-approximate solution with runtime poly(Lt , log(1/ε )) (see [5, Section 4.6.2]). �

Proposition 3.4 (Support Function Oracle). Given a sequence {(ai ,bi )}ti=1 and a value r > 0
(as deoned in line 4), then we can implement an oracle SuppΩt

for the support function hΩt
of Ωt such

that SuppΩt
(θ , ε ) outputs a value v within ε of hΩt

(θ ) and runs in time poly(Lt , log(
1
ε
)).

Proof. We use a second-order cone program similar to the one in the previous proof. We add
variables x and λ corresponding to an extra step after satisfying request Kt . Furthermore, we stip-
ulate that the total distance traveled be at most 2r to ensure that x ∈ Ωt .

max�θ ,x�
s.t. �xi − xi−1� ≤ λi ∀i ∈ [t],

�x − xt � ≤ λ ∀i ∈ [t],
�ai ,xi � ≥ bi ∀i ∈ [t],

λ +

t
∑

i=1

λi ≤ 2r .

We will orst show that the feasible set contains a point in the strict interior. Let x∗t denote
the minimizer of the work function wt , and let (x∗1 , . . . ,x

∗
t ) be an optimal path witnessing the

value of wt (x
∗
t ). We know that Ωt contains the ball of radius r/2 around x∗t . Consider the points

xi = x∗i +
(

r
10·t 2
)

ai
�ai � and set x = xt . By construction, we know that each �ai ,xi � > bi . Furthermore,

we get a point that satisoes the distance constraint strictly:

t
∑

i=1

�xi − xi−1� + �xt − x � =
t
∑

i=1

�xi − xi−1�

≤
t
∑

i=1

(

""x∗i − x∗i−1"" + 2 ·
r

10t2

)

≤ 3r

2
+

t
∑

i=1

r

5t2
< 2r .

The second inequality follows from the triangle inequality, and the third inequality comes from
the early doubling in line 3. Since the optimal primal solution is bounded above by 2r and there is
a strictly feasible point, we know that the optimal primal and dual solutions exist, and have equal
objective (again, by [1, Thm 14]). We can now use interior point methods to get an ε-approximate
solution in time poly(Lt , log(

1
ε
)) as in the preceding proof. �
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3.3 Approximating the Steiner Point

Finally, we show how to approximate the Steiner point of a convex body using the oracle for the
support function. Recall the deonition (2) of the Steiner point st(K ) as

st(K ) = d Eθ∼Sd−1[θ hK (θ )],

where hK (θ ) := maxx ∈K �θ ,x� is the support function of the convex body K .
We are given halfspaces {(a1,b1), . . . , (at ,bt )} and access to an oracle SuppK (θ , ε ) (deoned in

Proposition 3.4) to compute the support function; given a vector θ ∈ Sd−1, this oracle returns a
value v such that |v − hK (θ ) | ≤ ε . We assume that we are also given a radius R of a bounding
ball B (0,R) ⊇ K . The estimation algorithm samples some number N of random directions θ , uses
the oracle to get estimates for hK (θ ), and then uses the empirical mean as an estimate for the
expectation in Equation (2). Formally, the algorithm is specioed as Algorithm 3.

ALGORITHM 3: Steiner(K ,R, ε,δ )

1: N ← (d+1)2R2

ε2δ
2: for i = 1, . . . ,N do

3: Sample θi uniformly from Sd−1

4: pi ← SuppK (θi , ε/d )
5: end for

6: S ← d
N

∑N
i=1 piθi

7: return S

We show that Algorithm 3 computes a 2ε-approximate Steiner point both in expectation and
with probability 1 − δ , although only the former is necessary for this work.

Lemma 3.5. For ε,δ > 0, suppose K ⊆ B (0,R) is a bounded convex body specioed by a weak linear
optimization oracle SuppK . Let x̂ be the output of Steiner(K ,R, ε,δ ). Then

(a) E[�x̂ − st(K )�] ≤ ε (1 +
√
δ ), and

(b) Pr[�x̂ − st(K )� ≤ 2ε] ≥ 1 − δ .

Proof. Let x := st(K ). We orst ignore the error of the linear optimization oracle and bound only
the error due to sampling. Let qi := hK (θi ) be the true maximum value in the direction of the unit

vector θi and let �SN = d
N

∑N
i=1 qiθi . Since the (θi ,qi ) are i.i.d. samples with E[dqiθi ] = st(K ) = x

and qi ≤ maxz∈B (0,R )�θi , z� = R, we have

E

�
��SN − st(K )�2

�
= E

£¤¤¤¤¤¥

""""""
1

N

N
∑

i=1

(dqiθi − x )
""""""

2¦§§§§§̈
=

1

N 2

N
∑

i=1

E

�""dqiθi − x""2
�
≤ (d + 1)2R2

N
≤ ε2δ .

Now Jensen’s inequality says E[��SN − st(K )�]2 ≤ E[��SN − st(K )�2] ≤ ε2δ . The second-to-last
inequality follows since both qiθi and x lie in B (0,R). Moreover, using Markov’s inequality in

conjunction with the second inequality also implies that ��SN − st(K )� ≤ ε with probability at least
1 − δ .

Finally, to account for error in the weak linear optimization oracle, note that the magnitude
of each error is |pi − qi | < ε/d . Hence, the convexity of norms implies that the additional error

between the algorithm’s output S and the true estimate �SN is �S −�SN � ≤ ε . The triangle inequality
completes the proof. �
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