
Mathematical Programming (2022) 192:597–630

https://doi.org/10.1007/s10107-021-01741-z

FULL LENGTH PAPER

Series B

Stochastic makespanminimization in structured set
systems

Anupam Gupta1 · Amit Kumar2 · Viswanath Nagarajan3 · Xiangkun Shen4

Received: 14 May 2020 / Accepted: 8 November 2021 / Published online: 26 November 2021

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021

Abstract

We study stochastic combinatorial optimization problems where the objective is to

minimize the expected maximum load (a.k.a. the makespan). In this framework, we

have a set of n tasks and m resources, where each task j uses some subset of the

resources. Tasks have random sizes X j , and our goal is to non-adaptively select t

tasks to minimize the expected maximum load over all resources, where the load on

any resource i is the total size of all selected tasks that use i . For example, when

resources are points and tasks are intervals in a line, we obtain an O(log log m)-

approximation algorithm. Our technique is also applicable to other problems with

some geometric structure in the relation between tasks and resources; e.g., packing

paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using

the cumulant generating functions of the random variables. We also show that this LP

A preliminary version appeared in the Proceedings of the 21st Conference on Integer Programming and

Combinatorial Optimization, 2020. A. Gupta was supported in part by NSF award CCF-1907820,

CCF-1955785, and CCF-2006953, and by the Indo-US Joint Center for Algorithms Under Uncertainty.

V. Nagarajan and X. Shen were supported in part by NSF grants CCF-1750127, CMMI-1940766, and

CCF-2006778.

B Viswanath Nagarajan

viswa@umich.edu

Anupam Gupta

anupamg@cs.cmu.edu

Amit Kumar

amitk@cse.iitd.ac.in

Xiangkun Shen

xiangkun.shen@verizonmedia.com

1 Carnegie Mellon University, Pittsburgh, PA, USA

2 Indian Instiute of Technology Delhi, New Delhi, India

3 University of Michigan, Ann Arbor, MI, USA

4 Yahoo! Research, NYC, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01741-z&domain=pdf
http://orcid.org/0000-0002-9514-5581

598 A. Gupta et al.

has an Ω(log∗ m) integrality gap, even for the problem of selecting intervals on a line;

here log∗ m is the iterated logarithm function.

Keywords Stochastic optimization · Approximation algorithms · Geometric

packing · Linear programming

Mathematics Subject Classification 68W25 · 90C27 · 90B15

1 Introduction

Consider the following task scheduling problem: an event center receives requests/tasks

from its clients. Each task j specifies a start and end time (denoted (a j , b j)), and the

amount x j of some shared resource (e.g., staff support) that this task requires through-

out its duration. The goal is to accept some target t number of tasks so that the maximum

resource-utilization over time is as small as possible. Concretely, we want to choose

a set S of tasks with |S| = t to minimize

max
times τ

�

j∈S:τ∈[a j ,b j]

x j

� �� �
usage at time τ

.

This can be modeled as an interval packing problem: if the sizes are identical, the

natural LP is totally unimodular and we get an exact algorithm. For general sizes,

there is a constant-factor approximation algorithm [5].

However, in many settings, we may not know the resource consumption X j pre-

cisely up-front, at the time we need to make a decision. Instead, we may be only given

estimates. What if the requirement X j is a random variable whose distribution is given

to us? Again we want to choose S of size t , but this time we want to minimize the

expected maximum usage:

E

⎡
£ max

times τ

�

j∈S:τ∈[a j ,b j]

X j

¤
⎦ .

Note that our decision to pick task j affects all times in [a j , b j], and hence the loads

on various places are no longer independent: how can we effectively reason about such

a problem?

In this paper we consider general resource allocation problems of the following

form. There are several tasks and resources, where each task j has some size X j and

uses some subset U j of resources. That is, if task j is selected then it induces a load

of X j on every resource in U j . Given a target t , we want to select a subset S of t tasks

to minimize the expected maximum load over all resources. For the non-stochastic

versions of these problems (when X j is a single value and not a random variable), we

can use the natural linear programming (LP) relaxation and randomized rounding to

123

Stochastic makespan minimization in structured set systems 599

get an O(
log m

log log m
)-approximation algorithm [11]; here m is the number of resources.

However, much better results are known when the task-resource incidence matrix has

some geometric structure. One such example appeared above: when the resources have

some linear structure, and the tasks are intervals. Other examples include selecting

rectangles in a plane (where tasks are rectangles and resources are points in the plane),

and selecting paths in a tree (tasks are paths and resources are edges/vertices in the tree).

This class of problems has received a lot of attention and has strong approximation

guarantees, see e.g. [1,5–10].

However, the stochastic counterparts of these resource allocation problems

remain wide open. Can we achieve good approximation algorithms when the

task sizes X j are random variables? We refer to this class of problems as

stochastic makespan minimization (GenMakespan). In the rest of this work, we

assume that the distributions of all the random variables are known, and that the

random variables X j s are independent.

1.1 Results and techniques

We show that good approximation algorithms are indeed possible for GenMakespan

problems that have certain geometric structure. We consider the following two assump-

tions:

– Deterministic problem assumption: There is an LP-based α-approximation algo-

rithm for a deterministic variant of GenMakespan.

– Well-covered assumption: for any subset D ⊆ [m] of resources and tasks L(D)

incident to D, the tasks in L(D) incident to any resource i ∈ [m] are “covered”

by at most λ resources in D.

These assumptions are formalized in Sect. 2. To give some intuition for these assump-

tions, consider intervals on the line. The first assumption holds by the results of [5]. The

second assumption holds because each resource is some time τ , and the tasks using

time τ can be covered by two resources in D, namely the closest times τ1, τ2 ∈ D

such that τ1 ≤ τ ≤ τ2.

Our informal main result is the following:

Theorem 1 (Main (Informal)) There is an O(αλ log log m)-approximation algorithm

for stochastic makespan minimization (GenMakespan), with α and λ as in the above

assumptions.

We also show that both α and λ are small in a number of geometric settings: for

intervals on a line, for paths in a tree, and for rectangles and “fat objects” in a plane.

Therefore, we obtain poly(log log m)-approximation algorithms in all these cases.

A first naive approach for GenMakespan is (i) to write an LP relaxation with

expected sizes E[X j] as deterministic sizes and then (ii) to use any LP-based α-

approximation algorithm for the deterministic problem. However, this approach only

yields an O(α
log m

log log m
) approximation ratio, due to the use of union bounds in cal-

culating the expected maximum. Our idea is to use the structure of the problem to

improve the approximation ratio.

123

600 A. Gupta et al.

Our approach is as follows. First, we use the (scaled) logarithmic moment generat-

ing function (log-mgf) of the random variables X j to define deterministic surrogates

to the random sizes. Second, we formulate a strong LP relaxation with an exponen-

tial number of “volume” constraints that use the log-mgf values. These two ideas

were used earlier for stochastic makespan minimization in settings where each task

loads a single resource [14,17]. In the example above, this would handle cases where

each task uses only a single time instant. However, we need a more sophisticated

LP for GenMakespan to be able to handle the combinatorial structure when tasks

use many resources. Despite the large number of constraints, this LP can be solved

approximately in polynomial time, using the ellipsoid method and using a maximum-

coverage algorithm as the separation oracle. Third (and most important), we provide

an iterative-rounding algorithm that partitions the tasks/resources into O(log log m)

many nearly-disjoint instances of the deterministic problem. The analysis of our round-

ing algorithm relies on both the assumptions above, and also on the volume constraints

in our LP and on properties of the log-mgf.

We also show some limitations of our approach. For GenMakespan involving

intervals in a line (which is our simplest application), we prove that the integrality gap

of our LP is Ω(log∗ m). This rules out a constant-factor approximation via this LP.

For GenMakespan on more general set-systems (without any structure), we prove

that the integrality gap can be Ω(
log m

(log log m)2) even if all deterministic instances solved

in our algorithm have an α = O(1) integrality gap. This suggests that we do need to

exploit additional structure—such as the well-covered assumption above—in order to

obtain significantly better approximation ratios via our LP.

1.2 Related work

The deterministic counterparts of the problems studied here are well-understood. In

particular, there are very good LP-based approximation algorithms for maximum-

weight packing of intervals in a line [5], paths in a tree (with edge loads) [10], rectangles

in a plane [7] and fat-objects in a plane [9].

Our techniques draw on prior work on stochastic makespan minimization for iden-

tical [17] and unrelated [14] resources; but there are also important new ideas. In

particular, the use of log-mgf values as the deterministic proxy for random variables

comes from [17] and the use of log-mgf values at multiple scales comes from [14]. The

“volume” constraints in our LP also has some similarity to those in [14]: however, a

key difference here is that the random variables loading different resources are corre-

lated (whereas they were independent in [14]). Indeed, this is why our LP can only be

solved approximately whereas the LP relaxation in [14] was optimally solvable. We

emphasize that our main contribution is the rounding algorithm which uses a new set

of ideas; these lead to the O(log log m) approximation bound, whereas the rounding

in [14] obtained a constant-factor approximation. We also prove a super-constant inte-

grality gap in our setting (even for intervals in a line), which rules out the possibility

of a constant-factor approximation via our LP.

The stochastic load balancing problem on unrelated resources has also been studied

for general �p-norms (note that the makespan corresponds to the �∞-norm) and a

123

Stochastic makespan minimization in structured set systems 601

constant-factor approximation is known [18]. We do not consider �p-norms in this

paper.

2 Problem definition and preliminaries

We are given n tasks and m resources. Each task j ∈ [n] uses some subset U j ⊆ [m]

of resources. For each resource i ∈ [m], define L i ⊆ [n] to be the tasks that utilize i .

Each task j ∈ [n] has a random size X j . If a task j is selected into our set S, it adds a

load of X j to each resource in U j : the load on resource i ∈ [m] is Zi :=
�

j∈S∩L i
X j .

The makespan is the maximum load, i.e. maxm
i=1 Zi . The goal is to select a subset

S ⊆ [n] with t tasks to minimize the expected makespan:

min
S⊆[n]:|S|=t

E

⎡
£ m

max
i=1

�

j∈S∩L i

X j

¤
⎦ . (1)

The distribution of each random variable (r.v.) X j is known, and these distributions are

independent. We assume that all the X j s are discrete r.v.s with polynomial support size.

We also assume that each distribution is available explicitly (as a list of realizations

and probabilities). In our algorithm, we will use these distributions to compute some

“effective” sizes (defined in Sect. 2.2).

For any subset K ⊆ [m] of resources, let L(K) :=
"

i∈K L i be the set of tasks that

utilize at least one resource in K .

2.1 Structure of set systems: the two assumptions

Our results hold when the following two properties are satisfied by the set system

([n],L), where L is the collection of sets L i for each i ∈ [m]. Note that the set system

has n elements (corresponding to tasks) and m sets (corresponding to resources).

A1 (α-packable): A set system ([n],L) is said to be α-packable if for any assign-

ment of size s j ≥ 0 and reward r j to each element j ∈ [n], and any threshold

parameter θ ≥ max j s j , there is a polynomial-time algorithm that rounds a frac-

tional solution y to the following LP relaxation into an integral solution�y, losing

a factor of at most α ≥ 1:

max

§
¨
©
�

j∈[n]

r j · y j :
�

j∈L

s j · y j ≤ θ, ∀L ∈ L; 0 ≤ y j ≤ 1, ∀ j ∈ [n]

«
¬
­ . (2)

That is,
�

j r j�y j ≥ 1
α

�
j r j y j . We also assume, without loss of generality, that

the support of�y is contained in the support of y. (The support of vector z ∈ Rn
+ is

{ j ∈ [n] : z j > 0} which corresponds to its positive entries.)

A2(λ-safe): Let [m] be the indices of the sets in L; recall that these are the resources.

The set system ([n],L) is λ-safe if there is a polynomial-time algorithm that, given

123

602 A. Gupta et al.

any subset D ⊆ [m] of (“dangerous”) resources, finds a subset M ⊇ D of (“safe”)

resources, such that

(a) |M | is polynomially bounded by |D|, and

(b) for every i ∈ [m], there is a subset Ri ⊆ M , |Ri | ≤ λ, such that L i ∩ L(D) ⊆

L(Ri); in other words, every task that uses i and some resource from D also uses

a resource from Ri .

Recall that L(D) =
"

h∈D Lh . We denote the set M as Extend(D).

Let us give an example. Suppose P = [m] are m points on the line, and consider n

intervals I1, . . . , In of the line with each I j ⊆ P . Now the set system is defined on n

elements (one for each interval), with m sets where set L i for point i ∈ [m] consists of

the indices of all intervals that contain i . The λ-safe condition says that for any subset

D of points in P , we can find a superset M which is not much larger such that for

any point i on the line, there are λ points in M containing all the intervals that pass

through both i and D. In other words, if these intervals contribute any load to i and D,

they also contribute to one of these λ points. And indeed, choosing M = D ensures

that λ = 2: for any i we choose the nearest points in M on either side of i .

Other families that are α-packable and λ-safe include:

– Each element in [n] corresponds to a path in a tree, with the set L i being the subset

of paths through node i . See Lemmas 14–15 for the proof.

– Elements in [n] correspond to rectangles or fat-objects in a plane, and each L i

consists of the elements containing a particular point i in the plane. See Lemmas 16

and 17.

For a subset X ⊆ [n], the projection of ([n],L) to X is the smaller set system

(X ,L|X), where L|X = {L ∩ X | L ∈ L}. Loosely speaking, the following lemma

formalizes that packability and safeness properties also hold for sub-families and

disjoint unions.

Lemma 1 Consider a set system ([n],L) that is α-packable and λ-safe. Then,

(i) for all X ⊆ [n], the set system (X ,L|X) is α-packable and λ-safe, and

(ii) given a partition X1, . . . , Xs of [n], and set systems (X1,L1), . . . , (Xs,Ls), where

Li = L|Xi
for all i , the disjoint union of these systems is also α-packable.

Proof For the first statement, consider any X ⊆ [n] and let L|X = {L "
i }

m
i=1. The λ-

safe property follows by using the same sets M and Ri s for each D ⊆ [m]; note that

L "
i = L i ∩ X for all i ∈ [m]. To see the α-packable property, consider any rewards r j

and sizes s j ≥ 0 for elements j ∈ X , and threshold θ . We extend these rewards and

sizes to the entire set [n] by setting r j = s j = 0 for all j ∈ [n]\X . We now use the fact

that the original set-system is α-packable. Let y ∈ [0, 1]n denote an LP solution to

(2). Because r j = 0 for all j /∈ X , we can set y j = 0 for all j /∈ X , without changing

the objective. Now, the rounded integer solution �y obtains at least a 1/α fraction of

the LP reward. Moreover,�y only selects elements in X as the support of�y is contained

in the support of y, which is contained in X .

For the second statement, note that the LP constraint matrix in (2) for such a

set-system is block-diagonal. Indeed, because of the disjoint union, constraints cor-

responding to resources in Lh only involve variables corresponding to Xh , for all

123

Stochastic makespan minimization in structured set systems 603

h = 1, · · · s. Let y(h) denote the restriction of the LP solution y to elements Xh ,

for each h. Then, using the α-packable property on (Xh,Lh), we obtain an integral

solution�y(h) that has at least a 1/α fraction of the reward from y(h). Combining the

integer solutions �y(h) over all h = 1, · · · s proves the α-packable property for the

disjoint union. ��

We consider the GenMakespan problem for settings where the set system

([n], {L i }i∈[m]) is α-packable and λ-safe for some small parameters α and λ. We

show in Sect. 4 that the families discussed above satisfy these properties. Our main

result is the following:

Theorem 2 For any instance of GenMakespan where the corresponding set system

([n], {L i }i∈[m]) is α-packable and λ-safe, there is an O(αλ · log log m)-approximation

algorithm.

2.2 Effective size and random variables

In all the arguments that follow, imagine that we have scaled the instance so that

the optimal expected makespan is between 1
2

and 1. It is useful to split each random

variable X j into two parts:

• the truncated random variable X "
j := X j · I(X j ≤1), and

• the exceptional random variable X ""
j := X j · I(X j >1).

These two kinds of random variables behave very differently with respect to the

expected makespan. Indeed, the expectation is a good measure of the load due to

exceptional r.v.s, whereas one needs a more nuanced notion for truncated r.v.s (as we

discuss below). The following result was shown in [17]:

Lemma 2 (Exceptional Items Lower Bound) Let X ""
1 , X ""

2 , . . . , X ""
t be non-negative

discrete random variables each taking value zero or at least L. If
�

j E[X ""
j] ≥ L then

E[max j X ""
j] ≥ L/2.

We now consider the trickier case of truncated random variables X "
j . We want to find

a deterministic quantity that is a good surrogate for each random variable, and then use

this deterministic surrogate instead of the actual random variable. For stochastic load

balancing, a useful surrogate is the effective size, which is based on the logarithm of

the (exponential) moment generating function (also known as the cumulant generating

function) [13–16].

Definition 1 (Effective Size) For any r.v. X and integer k ≥ 2, define

βk(X) :=
1

log k
· log E

�
e(log k)·X

�
. (3)

Also define β1(X) := E[X].

123

604 A. Gupta et al.

To see the intuition for the effective size, consider a set of independent r.v.s Y1, . . . , Yk

all assigned to the same resource. The following lemma, whose proof is very reminis-

cent of the standard Chernoff bound (see [15]), says that the load is not much higher

than the expectation.

Lemma 3 (Effective Size: Upper Bound) For indep. r.v.s Y1, . . . , Yn , if
�

i βk(Yi) ≤ b

then P[
�

i Yi ≥ c] ≤ 1
kc−b .

The usefulness of the effective size comes from a partial converse [17]:

Lemma 4 (Effective Size: Lower Bound) Let X1, X2, · · · Xn be independent [0, 1]

valued r.v.s, and {"L i }
m
i=1 a partition of [n]. If

�n
j=1 βm(X j) ≥ 17m then

E

"
m

max
i=1

�

j∈"L i

X j

"
= Ω(1).

3 The general framework

In this section we prove Theorem 2: given a set system that is α-packable and λ-safe,

we show an O(αλ log log m)-approximation algorithm. The idea is to write a suitable

LP relaxation for the problem (using the effective sizes as deterministic surrogates

for the stochastic tasks), to solve this exponentially-sized LP, and then to round the

solution. The novelty of the solution is both in the LP itself, and in the rounding,

which is based on a delicate decomposition of the instance into O(log log m) many

deterministic sub-instances.

In order to obtain an O(ρ)-approximation algorithm for GenMakespan, it suffices

to find a polynomial algorithm that does one of the following:

– find a solution of objective at most ρ, or

– prove that the optimal GenMakespan value is more than 1.

This follows from standard scaling ideas: see Appendix A. Henceforth, we will assume

that the optimal value is at most 1, and provide an algorithm that finds a solution with

small expected makespan.

3.1 The LP relaxation

Consider an instance I of GenMakespan given by a set of n tasks and m resources,

with sets U j and L i as described in Sect. 2. We now provide an LP relaxation which

is feasible if the optimal makespan is at most one. We use properties of truncated and

exceptional random variables; recall the definitions of these r.v.s from Sect. 2.2.

Lemma 5 Consider any feasible solution to I that selects a subset S ⊆ [n] of tasks.

If the expected maximum load E

�
maxm

i=1

�
j∈L i ∩S X j

�
≤ 1, then

�

j∈S

E[X ""
j] ≤ 2, and (4)

123

Stochastic makespan minimization in structured set systems 605

�

j∈L(K)∩S

βk(X "
j) ≤ b · k, for all K ⊆ [m], where k = |K |, (5)

for b being a large enough but fixed constant.

Proof The first inequality (4) follows from Lemma 2 applied to {X ""
j : j ∈ S} and

L = 1.

For the second inequality (5), consider any subset K ⊆ [m] of the resources. Let
"L i ⊆ L i for i ∈ K be such that {"L i }i∈K forms a partition of

"
i∈K (L i ∩S) = L(K)∩S.

Then, we apply Lemma 4 to the resources in K and the truncated random variables

{X "
j : j ∈

"
i∈K
"L i }. Because, E[maxi∈K

�
j∈"L i

X "
j] ≤ E[maxi∈K

�
j∈L i ∩S X "

j] ≤

1, the contrapositive of Lemma 4 implies
�

j∈
"

i∈K
"L i

βk(X "
j) ≤ b ·k, where b = O(1)

is a fixed constant. Inequality (5) now follows from
"

i∈K
"L i = L(K) ∩ S. ��

Lemma 5 allows us to write the following feasibility linear programming relaxation

for GenMakespan (assuming the optimal value is at most 1). For every task j , we

have a binary variable y j corresponding to selecting j .

n�

j=1

y j ≥ t (6)

n�

j=1

E[X ""
j] · y j ≤ 2 (7)

�

j∈L(K)

βk(X "
j) · y j ≤ b · k ∀K ⊆ [m] with |K | = k, ∀k = 1, 2, . . . m, (8)

0 ≤ y j ≤ 1 ∀ j ∈ [n]. (9)

In the above LP, b ≥ 1 denotes the universal constant multiplying k in the right-

hand-side of (5). Note that the effective sizes βk(X j) can be computed in polynomial

time because each X j has polynomial support-size. Despite having an exponential

number of constraints, this linear program can be solved approximately in polynomial

time. This relies on the ellipsoid algorithm with an approximate separation oracle, see

e.g. [4].

Theorem 3 (Solving the LP) There is a polynomial time algorithm which given an

instance I of GenMakespan outputs one of the following:

• a solution y ∈ Rn to LP (6)–(9), except that the right-hand-side of (8) is replaced

by e
e−1

bk, or

• a certificate that LP (6)–(9) is infeasible.

Proof Our algorithm aims to satisfy the constraints (8), but will only achieve the

following slightly weaker constraint:

�

j∈L(K)

βk(X "
j) · y j ≤

e

e − 1
b · k, ∀K ⊆ [m] with |K | = k, ∀k ∈ [m], (10)

123

606 A. Gupta et al.

We use the ellipsoid algorithm to find a feasible solution to the above LP. Given

y ∈ Rn the separation oracle needs to check if constraint (8) is satisfied (the other

constraints are easy to check). To this end, we use the maximum-coverage problem.

Given n elements with non-negative weights {w j }
n
j=1, a collection {Si ⊆ [n]}m

i=1 of

subsets and bound k, the goal is to select k subsets T1, · · · Tk that maximize the total

weight
�

j∈∪k
i=1Ti

w j of covered elements. There is an e
e−1

≈ 1.58 approximation

algorithm for maximum-coverage [12].

For each k, 1 ≤ k ≤ m, we consider an instance Ik of the maximum-coverage

problem with m sets {L i }
m
i=1 and weights w j = βk(X "

j) · y j on each task j ∈ [n].

Note that checking (8) for subsets K of size k is equivalent to checking if the optimal

value of Ik is at most bk. Let Ak ⊆ [m] denote the approximate solution to Ik that we

obtain for each k by using the algorithm from [12]. Then we have the following cases:

• For some k, the value
�

j∈L(Ak)
βk(X "

j)· y j is more than bk. Then, this is a violated

constraint, which can be added to the ellipsoid algorithm.

• For each k, the value
�

j∈L(Ak)
βk(X "

j) · y j is at most bk. Then it follows that, for

each k, the optimal value of Ik is at most e
e−1

bk. This implies that constraint (10)

is satisfied.

This proves the desired result. ��

In the rest of this section, we assume we have a feasible solution y to (6)–(9), and

ignore the fact that we only satisfy (8) up to a factor of e
e−1

, since it only affects the

approximation ratio by a constant factor.

Note that we only use effective sizes βk of truncated r.v.s, so we have 0 ≤ βk(X "
j) ≤

1 for all k ∈ [m] and j ∈ [n]. Moreover, we make the following assumption (without

loss of generality) on the exceptional r.v.s.

Assumption 4 We have E[X ""
j] ≤ 2 for every task j ∈ [n].

Indeed, we can simply drop all tasks j with E[X ""
j] > 2 as such a task would never be

part of an optimal solution- by (4).

3.2 Overview of analysis

Let us give some intuition behind the factor of O(log log m) that arises in the approx-

imation ratio. To keep things concrete, consider the special case of intervals on a line:

each task is an interval, and each of the m resources is a point on the line. Each task

(interval) loads all the resources (points) that lie within the interval. For simplicity,

consider the special case where we have an integral solution y to the LP relaxation

(6)–(9), and therefore there is no need to perform any rounding. (Our analysis loses a

log log m factor even in this special integral case.) Let T denote the set of intervals for

which y j = 1. We would like to argue that the expected makespan due to selecting

set T is O(log log m).

To this end, we partition the points into O(log log m) groups such that (roughly

speaking) the expected makespan due to each group is O(1). We maintain a variable

k which is initialized to 2, and a set J of remaining intervals (initially equal to T).

Consider a greedy procedure to build an ordering i1, i2, . . . , im on the points as follows.

123

Stochastic makespan minimization in structured set systems 607

Given i1, . . . , ir , define ir+1 to be any point i for which
�

j∈J∩L i
βk(X "

j) > b, and

remove all intervals containing this point i from J . If there is no such point then we

update k to k2, and continue. (If k exceeds m, order the remaining points arbitrarily.)

Observe that k takes values which are of the form k� := 22�
for non-negative integers �.

We refer to the index � as the “class”. For each class �, let D� denote the set of points in

the above sequence that were added when k was equal to k�. Note that |D�| ≤ k�—this

follows directly from (8). Indeed, if |D�| > k�, then by choosing any k� points from

D�, constraint (8) (with k = k�) would not be satisfied. For each class �, let J� ⊆ T

denote those intervals that were removed from J when k = k�.

We now argue about the makespan of D� (i.e., the class-� points) due to J� (the

class-� intervals). We first observe that for any point i ∈ D�,
�

j∈J�∩L i
βk�−1

(X "
j) is

at most b. Indeed, if not, this point i would have been added to D�−1 instead. We

now apply Lemma 3: for any point i ∈ D�, the probability that intervals J� load i to

more than b + 4 is at most k−4
�−1 = k−2

� . Then, by a union bound over all points in

D�, the probability that intervals in J� load any point in D� to more than b + 4 is at

most |D�| · k−2
� ≤ 1

k�
. With some additional work, we can also show that the expected

makespan of D� (due to intervals J�) is a constant. These arguments are formalized

(for the general setting) in Lemmas 6 and 7.

However, for any particular point i ∈ D�, we also need to worry about intervals

which are in (T \J�) ∩ L i . These intervals must belong to previous classes, by the

construction of the ordering. For each class �" < �, consider the two points in D�"

closest to i on either side: this gives us at most 2 log log m such “representative” points.

Any interval in (T \J�) ∩ L i would load at least one of these representatives. Hence,

we can bound the load from these intervals by the total load on the representatives,

which is O(log log m) in expectation. This is formalized by the λ-safe property and

Lemma 11.

In this overview, we omitted the issue of rounding the LP solution. This is handled

by classifying tasks as being large/small based on their y j value (see Lemma 9) and

using the α-packable property (see Lemmas 8 and 10).

3.3 The deterministic subproblem

We actually need a slight generalization of the reward-maximization problem men-

tioned in (2), which we call the DetCost problem. An instance I of the DetCost

problem consists of a set system ([n],S), with a size s j and cost c j for each element

j ∈ [n]. It also has parameters θ ≥ max j s j and ψ ≥ max j c j . The goal is to find a

maximum cardinality subset V of [n] such that each set in S is “loaded” to at most θ ,

and the total cost of V is at most ψ . We use the following LP relaxation:

max

n�

j=1

y j

s.t .
�

j∈S

s j · y j ≤ θ, ∀S ∈ S

123

608 A. Gupta et al.

�

j∈[n]

c j · y j ≤ ψ,

0 ≤ y j ≤ 1, ∀ j ∈ [n] (11)

The following result, which motivates the α-packable property, shows that the α-

packable property for a set system implies an O(α)-approximation for the DetCost

problem.

Theorem 5 (detsolve) Suppose a set system satisfies the α-packable property. Then

there is an O(α)-approximation algorithm for DetCost relative to the LP relax-

ation (11).

Proof Consider an instance I of DetCost consisting of a set system ([n],L), cost c j

and size s j for each element j ∈ [n], and parameters θ ≥ max j s j and ψ ≥ max j c j .

Let y be a solution to the LP (11), with objective function value T =
�

j y j . We

construct an instance I " of the reward-maximization problem with LP relaxation (2).

The set system, sizes of elements and the parameter θ are as in I. Furthermore, the

reward r j of an element j is defined as:

r j :=
�

1 − T
2ψ

c j

�
.

Since the set of constraints in (2) is a subset of that in (11), the solution y is also a

feasible solution to (2) with objective function value equal to

�

j∈[n]

r j y j =
�

j∈[n]

�
1 −

T

2ψ
c j

�
y j ≥ T − T /2 = T /2.

The inequality uses the fact that
�n

j=1 c j y j ≤ ψ . Now the α-packable property

implies that we can find a subset S ⊆ [n] which is a feasible integral solution to (2),

whose total reward
�

j∈S r j ≥ T
2α

. Since r j ≤ 1 for all j , it follows that |S| ≥ T
2α

as

well. Moreover, by definition of r j , we have that
�

j∈S r j = |S|− T
2ψ

c(S) ≥ T
2α

≥ 0.

Hence,

|S| ≥
c(S)

2ψ
T . (12)

If the total cost of the elements in S is at most ψ , this is also a feasible solution to

I with |S| ≥ T
2α

.

Below, we assume that c(S) =
�

j∈S c j > ψ . Starting with a partition of S into

singletons, we repeatedly merge any two parts whose total cost is at most ψ . Let

S0, . . . , Su−1 denote the parts at the end of this process. As each element has cost at

most ψ and we only merge parts when their total cost is at most ψ , it follows that the

cost c(Sk) of each part Sk is at most ψ . Moreover, the total cost of any pair of parts is

more than ψ . This implies that c(Sk) + c(Sk+1) > ψ for each k = 0, . . . u − 1 (the

indices are modulo u). Adding these u inequalities, we have 2
�u−1

k=0 c(Sk) > u · ψ

which implies u < 2
ψ

�u−1
k=0 c(Sk) = 2

ψ
c(S). Let S∗ be the maximum cardinality set

among {Sk}
u−1
k=0 . Note that |S∗| ≥ 1

u
|S| >

ψ
2c(S)

|S|. Using (12) we obtain |S∗| ≥ T
4

.

123

Stochastic makespan minimization in structured set systems 609

So in either case, we are guaranteed an ᾱ = max{2α, 4} = O(α) approximation

for DetCost relative to the LP. This completes the proof. ��

3.4 Rounding a feasible LP solution

We first give some intuition about the GenMakespan rounding algorithm. It involves

formulating O(log log m) many almost-disjoint instances of the deterministic reward-

maximization problem (2) used in the definition of α-packability. The key aspect of

each deterministic instance is the definition of the sizes s j : for the �th instance we

use effective sizes βk(X "
j) with parameter k = 22�

. We use the λ-safety property to

construct these deterministic instances and the α-packable property to solve them.

Finally, we show that the expected makespan induced by the selected tasks is at most

O(αλ) from each deterministic instance, which leads to an overall O(αλ log log m)-

approximation ratio. The procedure is described formally in Algorithm 1.

Algorithm 1: Rounding Algorithm

Input : A fractional solution y to (6)–(9)

Output: A subset of tasks.

1 Initialize remaining tasks J ← [n];

2 for � = 0, 1, . . . , log log m do

3 Set k ← 22�
;

4 Initialize class-� resources D� ← ∅;

5 while there is a resource i ∈ [m] :
�

j∈Li ∩J βk2 (X "
j
) · y j > 2b do

6 update D� ← D�

"
{i};

7 Set "L i ← J ∩ L i and J ← J\"L i ;

8 Define the class-� tasks J� ←
"

i∈D�
"L i ;

9 Use λ-safety on the set system (J�, {L i ∩ J�}i∈[m]) to get M� := Extend(D�) ;

10 ρ ← 1 + log log m;

11 Define class-ρ tasks Jρ = J and class-ρ resources Mρ := Dρ = [m]\
�"ρ−1

�=0
D�

�
;

12 Define an instance C of DetCost as follows: the set system is the disjoint union of the set systems

(J�, M�) for � = 0, . . . , ρ. The other parameters are as follows:

Sizes s j = β
22� (X "

j) for each j ∈ J� and 0 ≤ � ≤ ρ, bound θ = 2ᾱb,

Costs c j = E[X ""
j] for each j ∈ [n], bound ψ = 2ᾱ,

where ᾱ is the approximation ratio from Theorem 5 ;

13 Let NH = { j ∈ [n] : y j > 1/ᾱ} ;

14 Let ȳ j = ᾱ · y j for j ∈ [n]\NH and ȳ j = 0 otherwise ;

15 Round ȳ (as a feasible solution to (11)) using Theorem 5 to obtain NL ;

16 Output NH

"
NL .

The algorithm proceeds in log log m iterations of the for loop in Lines 3–9. The

set J denotes the remaining tasks at any point in the algorithm. In each iteration �,

we make use of effective sizes βk with parameter k = 22�
(see Line 3). In Line 5,

we identify resources i which are fractionally loaded to more than 2b, where the load

123

610 A. Gupta et al.

is measured in terms of βk2(X "
j) values and we only consider the remaining tasks J .

The set of such resources is grouped in the set D� (called the class-� resources). We

also define the class-� tasks J� to be all remaining tasks (in J) which can load the

resources D�. Ideally, we would like to remove these resources and tasks, and iterate

on the remaining tasks and resources. However, the problem is that tasks in J� also load

resources other than D�, and so (D�, J�) is not independent of the rest of the instance.

This is where we use the λ-safe property: in Line 9 we expand D� to a larger set of

resources M� := Extend(D�), which will be used to bound the load induced by J�

on resources outside D�. We use (J�, M�) to represent the set system corresponding

to class-�: note that each set is of the form L i ∩ J� for some i ∈ M�.

Having partitioned the tasks into classes J1, . . . , Jρ , we consider the disjoint union

D of the set systems (J�, M�), for � = 1, . . . , ρ. While the sets D� are disjoint, the

sets M� may not be disjoint. For each resource appearing in multiple sets M�, we

make distinct copies in the combined set-system D. Then we set up an instance C

of DetCost (in Line 12): the set system is D, the disjoint union of (J�, M�), for

� = 1, . . . , ρ. Every task j ∈ J� has size β
22� (X "

j) and cost E[X ""
j]. The parameters θ

and ψ are as mentioned in Line 12. In Line 13, we include into our solution, all tasks

(NH) that have a large LP value. Then, we define a scaled-up fractional solution ȳ (in

Line 14) supported on all other tasks [n]\NH : we will show later that this is feasible

to the LP relaxation (11) for C. Finally, we use Theorem 5 to round ȳ to an integral

solution NL (in Line 15) which is added to our solution.

3.5 The analysis

We now show that the expected makespan for the solution produced by the rounding

algorithm above is O(αλρ), where ρ = 1 + log log m is the number of classes. In

particular, we show that the expected makespan (taken over all resources) due to the

selected tasks from each class � is O(αλ).

Our first lemma shows that the fractional load on every resource due to class-� tasks

(using effective size β
22�) is at most a constant.

Lemma 6 For any class �, 0 ≤ � ≤ ρ, and resource i ∈ [m],

�

j∈J�∩L i

βr (X "
j) · y j ≤ 2b, where r = 22�

.

Proof If � = 0, we have r = 2. Using the LP constraint (8) for a subset {i, i "} of size

two containing the resource i , we have:

�

j∈J�∩L i

β2(X "
j) · y j ≤

�

j∈L i

β2(X "
j) · y j ≤

�

j∈L({i,i "})

β2(X "
j) · y j ≤ 2b,

which implies the desired result.

123

Stochastic makespan minimization in structured set systems 611

So assume � ≥ 1. Let J denote the set of remaining tasks at the end of iteration

� − 1, i.e., J =
"

�"≥� J�" . The terminating condition in Line 5 (for iteration � − 1)

implies that

�

j∈J∩L i

βr (X "
j) · y j ≤ 2b, for all i ∈ [m],

which implies the lemma. ��

Next, we bound the sizes of sets D� and M� as functions of �.

Lemma 7 For any �, 0 ≤ � ≤ ρ, |D�| ≤ k2, where k = 22�
. So |M�| ≤ k p for some

constant p.

Proof The lemma is trivial for the last class � = ρ as k ≥ m in this case. Now consider

any class � < ρ. Using the condition in Line 5, we have:

�

j∈"L i

βk2(X "
j) · y j > 2b, ∀i ∈ D�, (13)

where "L i is as defined in Line 7. Note that the subsets {"L i : i ∈ D�} are disjoint as

the set J gets updated (in Line 7) after adding each i ∈ D�. Suppose, for the sake of

contradiction, that |D�| > k2. Letting K ⊆ D� be any set of size k2, we have:

2b · k2 <
�

i∈K

�

j∈"L i

βk2(X "
j) · y j ≤

�

j∈L(K)

βk2(X "
j) · y j ≤ b|K | = b · k2,

which is a contradiction. Above, the first inequality uses (13) and K ⊆ D�, and the

last inequality uses the LP constraint (8) on subset K . This proves the first part of

the lemma. Finally, the λ-safe property implies that |M�| is polynomially bounded by

|D�|, which proves the second part. ��

We now show that the fractional solution ȳ from Line 14 is feasible to the LP

relaxation for DetCost given in (11).

Lemma 8 The fractional solution ȳ is feasible for the LP relaxation (11) corresponding

to the DetCost instance C. Moreover, we have max j s j ≤ θ and max j c j ≤ ψ in

instance C.

Proof Note that 0 ≤ ȳ ≤ 1 by construction. Since the sets J� partition [n],

ρ�

�=0

�

j∈J�

c j · ȳ j =
�

j∈[n]

c j · ȳ j ≤ ᾱ
�

j

c j · y j ≤ 2ᾱ = ψ

where the last inequality follows from the feasibility of constraint (7).

123

612 A. Gupta et al.

To verify the size constraint for each resource i in the disjoint union of M� for

� = 0, . . . , ρ, consider any such class � and i ∈ M�. The size constraint for i is:

�

j∈J�∩L i

βk(X "
j) · ȳ j ≤ θ = 2ᾱb, (14)

where k = 22�
. Since ȳ ≤ ᾱ · y, this follows directly from Lemma 6.

Finally, since the truncated sizes X "
j lie in [0, 1], so do their effective sizes. Hence

s j ≤ 1 ≤ θ for all j ∈ [n]. Moreover, by Assumption 4 we have c j = E[X ""
j] ≤ 2 ≤ ψ

for all j ∈ [n]. ��

Based on this lemma, we can indeed apply Theorem 5 to round ȳ into an integer

solution (as done in Line 15). We now analyze our solution NH

"
NL . Recall that NH

consists of all tasks j with y j > 1/ᾱ and NL is the rounded solution obtained from ȳ.

Lemma 9 The solution obtained in Algorithm 1 has |NH | + |NL | ≥ t .

Proof Note that by the feasibility of the constraint (6),
�

j∈[n]\NH
y j ≥ t − |NH |.

Further, ȳ j = ᾱ · y j ∈ [0, 1] for all tasks j ∈ [n]\NH . Therefore,

|NL | ≥
1

ᾱ

�

j∈[n]\NH

ȳ j =
�

j∈[n]\NH

y j ≥ t − |NH |,

which completes the proof. ��

We now bound the expected makespan of our solution N := NH

"
NL . We will

focus on a particular class � ≤ ρ and show that the expected makespan due to tasks

in N ∩ J� is small. Recall that k = 22�
. For sake of brevity, let N� := N ∩ J� be

the selected class-� tasks, and let Load
(�)
i :=

�
j∈N�∩L i

X "
j denote the load on any

resource i ∈ [m] due to the selected class-� tasks. The following lemma can be viewed

as the “rounded” version of Lemma 6.

Lemma 10 For any class � ≤ ρ and resource i ∈ M�,

�

j∈N�∩L i

βk(X "
j) ≤ 4ᾱb, where k = 22�

.

Proof Since N� ∩ L i = (NH ∩ J� ∩ L i)
"

(NL ∩ J� ∩ L i), we bound the left-hand-side

above in two parts. By Lemma 6, the solution y has
�

j∈J�∩L i
βk(X "

j) · y j ≤ 2b. As

each task j ∈ NH has y j > 1/ᾱ,

�

j∈NH ∩J�∩L i

βk(X "
j) ≤ 2ᾱb.

123

Stochastic makespan minimization in structured set systems 613

Since NL is a feasible integral solution to (11), the size constraint for i ∈ M�

implies that

�

j∈NL∩J�∩L i

βk(X "
j) =

�

j∈NL∩J�∩L i

s j ≤ θ = 2ᾱb.

Combining the two bounds above, we obtain the claim. ��

We are now ready to bound the makespan due to the truncated part of the random

variables.

Lemma 11 For any class � ≤ ρ, we have E

�
maxi∈M�

Load
(�)
i

�
≤ 4ᾱb + O(1) and

therefore, E

�
maxm

i=1 Load
(�)
i

�
≤ 4λᾱb + O(λ) = O(αλ).

Proof Consider a resource i ∈ M�. Lemmas 3 and 10 imply that for any γ > 0,

P

�
Load

(�)
i > 4ᾱb + γ

�
= P

⎡
£ �

j∈N�∩L i

X "
j > 4ᾱb + γ

¤
⎦ ≤ k−γ .

By a union bound, we get

P

"
max
i∈M�

Load
(�)
i > 4ᾱb + γ

"
≤ |M�| · k−γ ≤ k p−γ , for all γ ≥ 0,

where p is the constant from Lemma 7. So the expectation

E

"
max
i∈M�

Load
(�)
i

"
=

� ∞

θ=0

P

"
max
i∈M�

Load
(�)
i > θ

"
dθ

≤ 4ᾱb + p + 2 +

� ∞

γ=p+2

P

"
max
i∈M�

Load
(�)
i > 4ᾱb + γ

"
dγ

≤ 4ᾱb+p+2+

� ∞

γ=p+2

k−γ+p dγ ≤ 4ᾱb + p + 2 +
1

k(k − 1)
,

which completes the proof of the first statement.

We now prove the second statement. Consider any class � < ρ: by definition of

J�, we know that J� ⊆ L(D�). The λ-safe property implies that for every resource

i ∈ [m] there is a subset Ri ⊆ M� with |Ri | ≤ λ and L i ∩ L(D�) ⊆ L(Ri); using

J� ⊆ L(D�) the latter property implies L i ∩ J� ⊆ L(Ri) ∩ J�. Because N� ⊆ J�, we

also have L i ∩ N� ⊆ L(Ri) ∩ N�. Therefore,

Load
(�)
i ≤
�

z∈Ri

Load
(�)
z ≤ λ max

z∈M�

Load
(�)
z .

Taking expectation on both sides and using the first statement in the lemma, we obtain

the desired result.

123

614 A. Gupta et al.

Finally, for the last class � = ρ, note that any task in Jρ loads only the resources

in Dρ = Mρ . Therefore, maxm
i=1 Load

(�)
i = maxz∈M�

Load
(�)
z . Taking expectation on

both sides, we obtain the second statement. ��

Using Lemma 11, we can bound the expected makespan due to all truncated random

variables:

E

⎡
£ m

max
i=1

�

j∈N∩L i

X "
j

¤
⎦ = E

�
m

max
i=1

ρ�

�=0

Load
(�)
i

�
≤

ρ�

�=0

E

"
m

max
i=1

Load
(�)
i

"
≤ O(αλρ).

(15)

The next lemma handles exceptional random variables.

Lemma 12 E

��
j∈N X ""

j

�
=
�

j∈N c j ≤ 4ᾱ.

Proof Feasibility of constraint (7) implies that
�n

j=1 c j · y j ≤ 2. As each task j ∈ NH

has y j > 1/ᾱ, we have
�

j∈NH
c j ≤ 2ᾱ. For tasks in NL , the fact that NL is a feasible

integral solution to (11) implies that
�

j∈NL
c j ≤ ψ = 2ᾱ. This completes the proof.

��

Finally, using (15) and Claim 12, we have:

E

⎡
£ m

max
i=1

�

j∈N∩L i

X j

¤
⎦ = E

⎡
£ m

max
i=1

�

j∈N∩L i

(X "
j + X ""

j)

¤
⎦

≤ E

⎡
£ m

max
i=1

�

j∈N∩L i

X "
j

¤
⎦ + E

⎡
£�

j∈N

X ""
j

¤
⎦ ≤ O(αλρ).

This completes the proof of Theorem 2.

4 Applications

In this section, we show that several stochastic optimization problems of interest

satisfy the two assumptions of α-packability and λ-safety for small values of these

parameters (typically α, λ = O(1) in these problems). Hence GenMakespan can be

solved efficiently using our framework.

4.1 Intervals on a line

We are given a path graph on n vertices, which we call a line. The resources are the

vertices in this line. Each task corresponds to an interval in this line and loads all the

vertices in the corresponding interval. For each vertex i , L i denotes the subset of tasks

(i.e., intervals) which contain i .

The α-packable property for this set system with α = O(1) follows from the result

in [5]—indeed, the LP relaxation (2) corresponds to the unsplittable flow problem

where all vertices have uniform capacity θ . We now show the λ-safe property.

123

Stochastic makespan minimization in structured set systems 615

Lemma 13 The above set system is 2-safe.

Proof Consider a subset D of vertices. We define M := Extend(D) to be same as

D. For a vertex i , let li and ri denote the closest vertices in M to the left and to the

right of i respectively (if i ∈ M , then both these vertices are same as i). Define Ri as

{li , ri }. It remains to show that L i ∩ L(D) ⊆ L(Ri). This is easy to see. Consider a

task j (represented by interval I j) which belongs to L i ∩ L(D). Then I j contains i

and a vertex from D. But then it must contain either li or ri . Therefore, j belongs to

L(Ri) as well. ��

Theorem 2 now implies the following.

Corollary 1 There is an O(log log m)-approximation algorithm for GenMakespan

where the resources are represented by vertices on a line and tasks by intervals in this

line.

4.2 Paths on a tree

We are given a tree T = (V , E) on |V | = m vertices, and a set of n paths, {Pj }
n
j=1,

in this tree. The resources correspond to vertices and the tasks correspond to paths.

For a vertex i ∈ [m], L i is the set of paths which contain i . We first show the λ-safe

property.

Lemma 14 The set system ([n], {L i : i ∈ [m]}) is 2-safe.

Proof Let D be a subset of vertices. We define M := Extend(D) as follows: let T "

be the minimal sub-tree of T which contains all the vertices in D. Note that all leaves

of T " must belong to D. Then M contains D and all the vertices in T " which have

degree at least three (in the tree T "). It is easy to check that |M | ≤ 2|D|. Fix a vertex

i ∈ V . We need to define Ri such that L i ∩ L(D) ⊆ L(Ri). Let vi be the vertex in the

sub-tree T " that has the least distance to i (if i ∈ T ", then vi is same as i). Note that if

vi has degree 2 (in the tree T "), it may not lie in M . See also Fig. 1. We claim that:

L i ∩ L(D) ⊆ Lvi
∩ L(D) (16)

In other words, a path Pj containing i and a vertex w in D must contain vi as well.

Indeed, the last T "-vertex in the path from w to i must be vi (the closest vertex to i in

T "). We now consider two cases:

– If vi ∈ M , we set Ri = {vi }. By (16) we have L i ∩ L(D) ⊆ Lvi
= L(Ri).

– If vi /∈ M then vi must be a degree-2 vertex in T ". Let ai and bi be the first two

vertices of M that we encounter if we move from vi (along the sub-tree T ") in both

directions. Set Ri := {ai , bi }. Let Q be the path from ai to bi in T ". Observe that Q

contains vi , all internal vertices in Q have degree 2 (in T ") and Q ∩ M = {ai , bi }.

Let Pj be any path which contains i and a vertex w in D. By (16) vi ∈ Pj . The

part of Pj from vi to w must lie in T " and hence contains either ai or bi .

Since |Ri | ≤ 2, the desired result follows. ��

123

616 A. Gupta et al.

Fig. 1 The solid-square vertices are the “dangerous” vertices D. The box vertices are the additional marked

vertices M\D. For vertex 8, we have v8 = 10 and R8 = {5, 7}. Similarly, for vertex 9, v9 = 2 and R9 = {2}

We now consider the α-packable property. As in the case of the line graph applica-

tion, this is equivalent to bounding the integrality gap of the unsplittable flow problem

on trees where vertices have capacities. An analogous result with edge capacities was

given by Chekuri et al. [10], and our rounding algorithm is inspired by their approach.

Consider an instance of the unsplittable flow problem where every vertex in the

tree has capacity θ , and path Pj has reward r j and size s j (we assume that θ ≥

max j s j). Our goal is to find a maximum reward subset of paths which obey the vertex

capacities—we call this problem UFP-Tree. It is easy to see that (2) is the natural

LP relaxation for this problem.

Lemma 15 The LP relaxation (2) for UFP-Tree has constant integrality gap, and so

the above set system is O(1)-packable.

Proof Consider a feasible solution {y j }
n
j=1 to (2). We root the tree T arbitrarily and

this naturally defines an ancestor-descendant relationship on the vertices of the tree.

The depth of a vertex is its distance from the root. For each path Pj , let v j be the

vertex in Pj with the least depth, and define the depth of Pj to be the depth of v j .

We partition the set of paths into types: Ps , the small paths, are the ones with

s j ≤ θ/2, and Pl , the large paths, are the ones with s j > θ/2. We maintain two

feasible sets of paths, Ss ⊆ Ps and Sl ⊆ Pl . We initialize both Ss,Sl = ∅. We

consider the paths in ascending order of depth. Each path Pj is rejected immediately

with probability 1 − y j/4 and with the remaining
y j

4
probability we do the following:

if Pj is a small (resp. large) path, we add it to Ss (resp. Sl) provided the resulting set

Ss (resp. Sl) is feasible, i.e., it does not violate any vertex capacity. Finally, we return

the better among the two solutions Ss and Sl .

For the analysis, we will show that

P

�
Pj ∈ Ss

�
Sl

�
≥

y j

8
, ∀ j ∈ [n]. (17)

123

Stochastic makespan minimization in structured set systems 617

This would imply the lemma because our solution’s expected objective is:

E

⎡
£max

§
¨
©
�

j :Pj ∈Ss

r j ,
�

j :Pj ∈Sl

r j

«
¬
­

¤
⎦ ≥

1

2

n�

j=1

r j · P

�
Pj ∈ Ss

�
Sl

�
≥

1

16

n�

j=1

r j · y j .

We begin with a key observation, which is easy to see.

Observation 6 Suppose that path Pk is considered before another path Pj and Pj ∩

Pk �= ∅. Then v j ∈ Pk .

Observation 7 Let Pj be a small(resp. large) path. Before path Pj is considered, the

load on any vertex v ∈ Pj due to paths in Ss (resp. Sl) is at most the load due to these

paths on v j .

Proof Assume Pj is a small path (the argument for large paths is identical). Consider

a time during the rounding algorithm before Pj is considered. For a vertex v ∈ Pj ,

let Fv be the set of paths in Ss that contain v. By Observation 6, any path in Fv also

contains v j . This implies the claim. ��

Observation 7 implies that if we want to check whether adding a path Pj will violate

feasibility (of Ss or Sl), it suffices to check the corresponding load on v j (as all

capacities are uniform). We are now ready to prove (17). For any path Pk (small or

large), let Ik be the indicator of the event that Pk does not get immediately rejected;

so P[Ik] = yk/4. We consider two cases:

– Pj is small. We condition on the event I j = 1: note that P[Pj ∈ Ss] = P[I j =

1] · P[Pj ∈ Ss |I j = 1]. Let L " ⊆ [n] denote the indices of paths Pk considered

before Pj with v j ∈ Pk and Ik = 1. Note that L " ⊆ Lv j
. If the total size of L " is

at most θ − s j , then Pj will get added to Ss (conditioned on I j = 1). So,

P[Pj /∈ Ss |I j = 1] ≤ P[s(L ") ≥ θ − s j] = P

⎡
⎢£
�

k∈Lv j

sk Ik ≥ θ − s j

¤
⎥⎦

≤
E[
�

k∈Lv j
sk Ik]

θ − s j

=

�
k∈Lv j

sk(yk/4)

θ − s j

≤
θ/4

θ − θ/2
=

1

2
,

where the last inequality follows from LP constraints in (2) and the fact that Pj is

small. Therefore,

P[Pj ∈ Ss] = P[Pj ∈ Ss |I j = 1] · P[I j = 1] ≥ yk/8.

– Pj is large. Let L "" denote the indices of the large paths Pk considered before Pj

with v j ∈ Pk . If none of the paths indexed L "" is selected then Pj will be added to

Sl . Moreover, path Pk can be selected only if Ik = 1. So,

123

618 A. Gupta et al.

P
�
Pj /∈ Sl |I j = 1

�
≤ P

��

k∈L ""

Ik ≥ 1

�
≤
�

k∈L ""

P[Ik = 1] ≤
�

k∈L ""

yk

4

≤
1

2

�

k∈L ""

sk yk

θ
≤

1

2
,

where the second last inequality follows from the fact that sk ≥ θ/2 for all k ∈ L "",

and the last inequality follows from the fact that L "" ⊆ Lv j
and the LP con-

straints (2). As in the previous case, this implies P[Pj ∈ Sl] ≥
y j

8
.

This completes the proof of (17) and the lemma. ��

Combining Theorem 2 with Lemmas 15 and 14, we get

Corollary 2 There is an O(log log m)-approximation algorithm for GenMakespan

when the resources are given by the vertices in a tree and the tasks are given by paths

in this tree.

4.3 Axis-aligned rectangles in the plane

We now consider the following geometric set system: the tasks are n axis-aligned

rectangles in the plane and the resources are all points in the plane. The set L i for a

resource (i.e., point) i is given by the set of rectangles containing i . Note that any set

of n rectangles partitions the plane into poly(n) many connected regions: this follows

from the fact that the total number of intersection points is O(n2). We designate one

point in each connected region as the representative point for that region. Clearly,

it suffices to bound the loads on the representative points. Note that the number of

representative points is m = poly(n). Below, whenever we refer to an arbitrary point

p, it is equivalent to using p’s representative point.

Lemma 16 The above mentioned set-system is 4-safe.

Proof Let D = {(xi , yi)}
k
i=1 be a subset of points. Define the set M := Extend(D)

to be the Cartesian product of all the x and y coordinates in D, i.e., M = {(xi , y j) :

(xi , yi), (x j , y j) ∈ D}. Clearly, |M | ≤ k2, which satisfies the first condition in the

definition of λ-safe. Notice that the points in M correspond to a rectangular grid G

partitioning the plane, where the rectangles on the boundary of G are unbounded. See

Fig. 2a.

Let p be any point. We need to define a set Rp ⊆ M such that L p ∩L(D) ⊆ L(Rp).

Let Q denote the minimal rectangle in the grid G that contains p. Let Rp ⊆ M denote

the corners of rectangle Q (if Q is unbounded then it has fewer than four corners, but

the following argument still applies.) Define Rp to be the set of these corner points.

Now let J be a task (i.e., rectangle) containing p and a point in D. By construction of

M , it must be that J contains one of the points in Rp. This proves the lemma. ��

We now consider the α-packable assumption. Corollary 5 in Appendix B proves that

this set-system is O((log log n)2)-packable. Therefore, using Theorem 2 we obtain:

123

Stochastic makespan minimization in structured set systems 619

(a) (b)

Fig. 2 Examples for rectangles and fat objects

Corollary 3 There is an O
�
(log log n)3

�
-approximation algorithm for GenMakespan

when the resources are represented by all points in the plane and the tasks are given

by a set of n axis-aligned rectangles.

4.4 Fat objects in the plane

We now consider more general shapes which are not skewed in any particular direction.

The tasks are given by a set of n “fat” objects in a plane and the resources are given

by the set of all points in the plane. We assume that the number of intersection points

between any pair of objects is constant, which is true for all our specific applications

(disks, triangles, rectangles). This implies that any set of n objects partitions the plane

into m = poly(n) many connected regions. As in Sect. 4.3, we designate one point

in each connected region as the representative point for that region and focus on the

loads of the m representative points. Whenever we refer to an arbitrary point p, it is

equivalent to using p’s representative point. For any resource (i.e., point) p, L p is the

set of fat objects containing p.

Definition 2 (Fat objects [9]) A set F of objects in R2 is called fat if for every axis-

aligned square B of side-length r , we can find a constant number of points Q(B) such

that every object in F that intersects B and has diameter at least r also contains some

point in Q(B).

Examples of fat objects include squares/disks (with arbitrary diameters) and trian-

gles/rectangles with constant aspect ratio (i.e., when the ratio of the maximum to

minimum side length is constant). For concreteness, one can consider all objects to be

disks; note that the radii can be different.

Lemma 17 The above-mentioned set system is O(1)-safe.

Proof Let F denote the set of fat objects represented by the tasks. Let D be any subset

of points in the plane and H denote the set of all non-zero pairwise distances between

the points in D; note that |H| ≤ |D|2.

123

620 A. Gupta et al.

We define the set M := Extend(D) as follows: for each point p ∈ D and distance

θ ∈ H let G(p, θ) be the square centered at p with side-length 10θ . We divide this

square into a grid consisting of smaller squares (called cells) of side length 0.1θ . So

G(p, θ) has 100 cells in it. For each cell B in G(p, θ), add to M the points Q(B)

from Definition 2 with r := 0.1θ .

Clearly, |M | ≤ O(1) · |D| |H| = O(|D|3) = poly(|D|) as required by the first

condition of λ-safe. We now check the second condition of this definition. Let p be

an arbitrary point. We need to show that there is a constant size subset Rp ⊆ M such

that L p ∩ L(D) ⊆ L(Rp). Let q be the closest point in D to p, and d(p, q) denote

the (Euclidean) distance between these two points. Note that d(p, q) may not belong

to H. We consider the following cases:

Case 1: there exists some θ ∈ H with
d(p,q)

5
≤ θ ≤ 5d(p, q). Consider the grid

G(q, θ). There must be some cell B in this grid that contains p. Define Rp := Q(B),

where Q(B) is as in Definition 2 (with respect to F).

Let us see why this definition has the desired property. Let F ∈ F be any object

which contains p and some point r ∈ D. Since q is the closest point in D to p, the

diameter of F is at least d(p, r) ≥ d(p, q) > 0.1θ , which is the side length of B.

Note also that F intersects B because p ∈ F . So, by Definition 2, the object F must

intersect Q(B) as well. Thus, L p ∩ L(D) ⊆ L(Rp).

Case 2: there is no θ ∈ H with
d(p,q)

5
≤ θ ≤ 5d(p, q). Let D0 ⊆ D be the subset of

D at distance at most d(p, q)/5 from q. Let q " be the point in D\D0 which is closest

to p; see Fig. 2b. (If D\D0 = ∅ then we just ignore all steps involving q " below.)

Since q " /∈ D0, d(q, q ") > d(p, q)/5. Moreover, as H ∩ [
d(p,q)

5
, 5d(p, q)] = ∅ we

have d(q, q ") > 5d(p, q). Using triangle inequality, we get d(p, q) + d(p, q ") ≥

d(q, q ") > 5d(p, q), and so, d(p, q ") > 4d(p, q). We are now ready to define Rp.

There are two kinds of points in Rp:

– Type-1 points: If D0 is the singleton set {q}, add q to Rp. Otherwise, let Δ ∈ H

be maximum pairwise distance between any two points in D0. Note that:

Δ = max
q1,q2∈D0

d(q1, q2) ≤ max
q1,q2∈D0

(d(q, q1) + d(q, q2)) ≤
2

5
d(p, q).

For each cell B in the grid G(q,Δ), add Q(B) to Rp. Note that the number of

cells is 100, and so we only add O(1) many points to Rp.

– Type-2 points: Recall that d(p, q ") > 4d(p, q). It follows that d(q, q ") ≤

d(p, q) + d(p, q ") ≤ 1.25d(p, q "), and d(q, q ") ≥ d(p, q ") − d(p, q) ≥

0.75d(p, q "). So there is an element θ " ∈ H with 0.75d(p, q ") ≤ θ " ≤

1.25d(p, q "). We consider the grid G(q ", θ ")—there must be a cell in this grid

which contains p. Let B be this cell. Add all the points in Q(B) to Rp. Again, we

only add a constant number of points to Rp.

It is clear that Rp is a subset of M . Now, consider any object F ∈ F which contains

p and some point in D. We will show that F also contains some point in Rp, which

would prove L p ∩ L(D) ⊆ L(Rp). Two cases arise:

123

Stochastic makespan minimization in structured set systems 621

– F ∩ D0 �= ∅: If D0 = {q}, then F clearly intersects Rp. So assume that |D0| ≥ 2.

Recall that Δ is the diameter of D0. So, the grid G(q,Δ) contains all of D0, which

implies that there is a cell B in G(q,Δ) intersecting F . As q is the closest point

in D to p, the diameter of F is at least d(p, q) ≥ 0.1Δ, the side length of B.

Hence, by Definition 2, F must contain a point in Q(B), and so, contains one of

the type-1 points in Rp.

– F ∩ D0 = ∅: Recall point q " and value θ " used in the definition of type-2 points

in Rp. Note that there is some cell B in G(q ", θ ") that contains p; so object F

intersects cell B. Further, F contains some point r ∈ D\D0 which implies that

the diameter of F is at least d(p, r) ≥ d(p, q ") ≥ 0.8 · θ ", which is larger than the

side length of B. So, by Definition 2, F must contain a point in Q(B), i.e., some

type-2 point in Rp.

This completes the proof of the lemma. ��

For the α-packable condition, Corollary 6 in Appendix B implies that disks (of

arbitrary radii) are O(log log n)-packable. And, Corollary 7 implies that fat triangles

are O(log∗ n · log log n)-packable. Combined with Theorem 2 and Lemma 17, we

obtain:

Corollary 4 The GenMakespan problem admits an O
�
(log log n)2)

�
-approximation

algorithm when tasks are disks in the plane, and an O
�
(log∗ n) · (log log n)2

�
-

approximation algorithm when tasks are fat triangles in the plane.

5 Integrality gap lower bounds

We now study the limitations of our LP relaxation (6)–(9). There are two natural

questions—(i) can we obtain an O(1)-approximation for GenMakespan under the

α-packable and λ-safe assumptions with α, λ = O(1)? and (ii) can we obtain an

approximation ratio similar to Theorem 2 without the λ-safe assumption? For the

first question, we show that even for set systems given by intervals on a line (as in

Sect. 4.1) where α, λ = O(1), the integrality gap of our LP is Ω(log∗ m). For the

second question, we show that the integrality gap of our LP for general set systems

is Ω

�
log m

(log log m)2

�
. So we cannot get an approximation ratio that is significantly better

than logarithmic without some additional condition (such as λ-safe) on the set system.

5.1 Lower bound for intervals on a line

We consider the set system as in Sect. 4.1. Recall that resources are given by m vertices

on a line, and tasks by a set of n intervals on the line. We construct such an instance

of GenMakespan with Ω(log∗ m)-integrality gap.

Let H be an integer. The line consists of m = 2H points and n = 2H+1−1 intervals.

The intervals are arranged in a binary tree structure. For each “depth” d = 0, 1, · · · H ,

there are 2d many disjoint depth-d intervals of width m/2d each. We can view these

intervals as nodes in a complete binary tree T of depth H where the nodes at depth

123

622 A. Gupta et al.

d correspond to the depth-d intervals, and for any interval I and its parent I " we

have I ⊆ I ". Moreover, points in the line correspond to root-leaf paths in T where

all intervals in the root-leaf path contain the corresponding point. The size of every

depth-d interval j is a random variable X j = Ber(2−d), i.e. X j = 1 w.p. 2−d and

X j = 0 otherwise. The target number of intervals is t = n: so we need to select all

the intervals.

Consider the LP relaxation with a target bound of 1 on the expected makespan. We

will show that the LP (6)–(9) is feasible with decision variables y j = 1 for all intervals

j . Note that every random variable X j is already truncated (there is no instantiation

larger than one). So constraints (6), (7) and (9) are clearly satisfied.

Lemma 18 For any K ⊆ [m] with k = |K | we have
�

j∈L(K) βk(X j) ≤ 4k. Hence,

constraint (8) is satisfied with b = 4 on the right-hand-side.

Proof Consider any subset K ⊆ [m] of vertices on the line. Recall that for any vertex

i , L i denotes the set of intervals that contain it; and L(K) :=
"

i∈K L i . We partition

L(K) into the following two sets: L " consisting of intervals of depth at most log k and

L "" = L(K)\L " consisting of intervals of depth more than log k. We will bound the

summation separately for these two sets.

Bounding the contribution of L ". Note that the total number of intervals of depth at

most log k is less than 2k. So |L "| < 2k. Moreover, βk(X j) ≤ 1 for all intervals j . So�
j∈L " βk(X j) ≤ |L "| < 2k.

Bounding the contribution of L "". Consider any vertex i ∈ K . For each depth

d = 0, · · · H , L i contains exactly one interval of depth d. So we have

�

j∈L ""∩L i

βk(X j) ≤

H�

d=log k

βk(Ber(2−d)) =
1

log k

H�

d=log k

log
�

1 + (k − 1)2−d
�

≤
2(k − 1)

log k

H�

d=log k

2−d ≤ 2.

The first inequality used the facts that (i) L "" contains only intervals of depth more

than log k and (ii) the size of each depth-d interval is Ber(2−d). The second inequal-

ity uses log(1 + x) ≤ 2x for all x ≥ 0. It now follows that
�

j∈L "" βk(X j) ≤�
i∈K

�
j∈L ""∩L i

βk(X j) ≤ 2k.

Combining the two bounds above, we obtain the lemma. ��

Next, we show that the expected makespan when all the n intervals are selected

is Ω(log∗ n). To this end, we will show that with constant probability, there is some

root-leaf path in T for which Ω(log∗ n) random variables in it have size one. Define

a sequence {hi }
c
i=0 as follows:

h0 = 2, hi+1 − hi = hi · 2hi for i = 1, · · · c − 1.

We choose c = Θ(log∗ H) so that hc ≤ H .

123

Stochastic makespan minimization in structured set systems 623

Lemma 19 For any depth-d interval j , let I denote the intervals in the subtree of T

below j, from depth d to depth d + d2d . Then,

P

��

v∈I

Xv ≥ 1

�
≥ 1 − e−d .

Proof We show that P
��

v∈I Xv = 0
�

≤ e−d , which will imply the desired result.

Note that for each h = 0, . . . , d2d , I contains 2h intervals at depth d + h and each of

these intervals has size given by Ber(2−d−h). By independence, the probability that

all these sizes are zero is:

�

v∈I

P[Xv = 0] =

d2d�

h=0

(1 − 2−d−h)2h

≤

d2d�

h=0

e−2−d

= e−d ,

which proves the lemma. ��

Lemma 20 With probability at least 1
2

, there is a root-leaf path in T such that at least

c random variables in it are 1.

Proof We show the following by induction on i , 0 ≤ i ≤ c:

with probability at least

i−1�

i "=0

(1 − e−hi "), there is a depth-hi node vi

where the root to vi path has at least i random variables of value 1. (18)

For i = 0, this follows easily because the root itself is 1 with probability 1. We now

assume the induction hypothesis (18) for some i < c and prove it for i + 1. Let Vi be

the set of nodes (i.e., intervals) in T at depth hi . For an interval j ∈ Vi , let E j be the

event that j is the first vertex in Vi (say from the left to right ordering) such that the

root to j path has at least i random variables which are 1. Let I j be the sub-tree of

depth hi · 2hi below j (so the leaves of I j are at depth hi+1); and E "
j be the event that

there is a random variable in I j which is 1. Lemma 19 implies that for any j ∈ Vi ,

P[E "
j] ≥ (1 − e−hi). Since the events E j are disjoint, and are independent of E "

j "
for

any j " ∈ Vi , we get

P[∃ j ∈ Vi : E j ∧ E "
j] =
�

j∈Vi

P[E j ∧ E "
j] =
�

j∈Vi

P[E j] · P[E "
j]

≥ (1 − e−hi)
�

j∈Vi

P[E j].

Since the events E j are disjoint,
�

j P[E j] = P[∃ j ∈ Vi : E j]. By (18), this proba-

bility is at least
"i−1

i "=0(1 − e−hi "). Hence,

123

624 A. Gupta et al.

P[∃ j ∈ Vi : E j ∧ E "
j] ≥

i�

i "=0

(1 − e−hi ").

Note that if events E j and E "
j are true (for any j ∈ Vi) then there is some depth-hi+1

node vi+1 with at least i + 1 r.v.s of value 1 on the root to vi+1 path. This proves

the inductive statement for i + 1. Finally, using (18) for i = c, the probability that

there is a root-leaf path with at least c r.v.s of value one is at least
"c−1

i=0 (1 − e−hi) ≥

1 −
�c−1

i=0 e−hi ≥ 1
2

. ��

Combining Lemmas 18 and 20, we obtain:

Theorem 8 The integrality gap of the LP (6)–(9) for GenMakespan when the set

system is given by intervals on the line is Ω(log∗ m).

5.2 Lower bound for general set systems

Now we consider GenMakespan for general set systems and show that the LP relax-

ation has Ω(
log m

(log log m)2) integrality gap.

The instance consists of n = q2 tasks and m = qq resources where q is some

parameter. For each task j , the random variable X j is a Bernoulli random variable that

takes value 1 one with probability 1
q

, i.e., the distribution of X j is Ber(1
q
). The tasks

are partitioned into q groups—T1, · · · Tq , with q tasks in each group. Each resource is

associated with a choice of one task a j from each group T j , j ∈ [q]. In other words,

the set L i for any resource i has cardinality q and contains exactly one element from

each of the groups T j . Thus, the total number of resources is qq . The target number

of tasks to be chosen is n = q2, which means every task must be selected.

We first observe that the expected makespan is Ω(q). Indeed, consider any group

T j . With probability 1 − (1 − 1/q)q ≈ 1 − 1/e, there is a task a j ∈ T j for which

the random variable Xa j
is 1. So the expected number of groups for which this event

happens is about (1 − 1/e)q. As there is a resource associated with every choice of

one task from each group, the expected makespan is at least (1 − 1/e)q.

Consider the LP relaxation with a target bound of B = log q on the expected

makespan. We will show that the LP constraints (6)–(9) are feasible with decision

variables y j = 1 for all objects j . We will scale all the random variables down by a

factor of B (because the LP relaxation assumes that the target makespan is 1). Let X

denote the scaled Bernoulli r.v. with X = 1
B

w.p. 1
q

and X = 0 otherwise. Since this

random variable will never exceed 1, X " (the truncated part) is same as X , and X "" (the

exceptional part) is 0. So constraints (6), (7) and (9) are clearly satisfied. Moreover,

βk(X) ≤
1

log k
log

�
1 +

k1/ log q

q

�
≤

2k1/ log q

q log k
, (19)

where we used log(1 + x) ≤ 2x for all x ≥ 0.

Lemma 21 Constraint (8) is satisfied with b = 2e2 for the above instance.

123

Stochastic makespan minimization in structured set systems 625

Proof Consider any subset K ⊆ [m] of k = |K | resources. Recall that L(K) ⊆ [n]

denotes the subset of tasks contained in any of the sets corresponding to K . As every

random variable has the same distribution as X , the left-hand-side (LHS) in (8) is just

|L(K)| · βk(X). We now consider three cases:

– k ≤ q. We have |L(K)| ≤ kq as each resource is loaded by exactly q tasks. Using

(19), the LHS is at most kq · βk(X) ≤ kq
2q1/ log q

q log k
≤ 2e · k.

– q < k ≤ q2. We now use |L(K)| ≤ n = q2. By (19), we have βk(X) ≤
2·q2/ log q

q log k
≤

2e2

q log k
. So L H S ≤ q2 · βk(X) ≤

2e2q
log k

≤ 2e2 · k.

– k > q2. Here we just use |L(K)| ≤ q2 and βk(X) ≤ 1 to get L H S ≤ k.

The lemma is proved as L H S ≤ 2e2 · k in all cases. ��

As q = Θ(
log m

log log m
), the LP integrality gap is Ω(

q
log q

) = Ω

�
log m

(log log m)2

�
.

We also observe that the integrality gap of LP (2) is α ≤ 2 for all instances of

the deterministic problem that need to be solved in our algorithm. As all sizes are

identically distributed, we only need to consider deterministic instances of the reward-

maximization problem for which all (deterministic) sizes are identical, say s. Using

the structure of the above set-system, it is clear that an optimal LP solution will assign

the same value zi ∈ [0, 1] to all tasks in any group Gi . So the LP objective equals�q
i=1 r(Gi) · zi where r(Gi) is the total reward of the tasks in Gi . The constraints in

(2) imply
�q

i=1 zi ≤ θ
s
. So this LP now reduces to the max-knapsack problem, which

is known to have integrality gap at most two. In particular, choosing all tasks in the

� θ
s
� groups Gi with the highest r(Gi) yields total reward at least half the LP value.

6 Conclusion

We considered a class of stochastic makespan minimization problems, where a

specific number of tasks need to be selected and each selected task induces a

random load on multiple resources. When the set-system (consisting of the tasks

and resources) satisfies some geometric properties, we obtained good approxima-

tion algorithms. In particular, for stochastic intervals on a line, we obtained an

O(log log m)-approximation algorithm. Our approach was based on a natural LP relax-

ation, which also has integrality gap Ω(log∗ m). Finding the correct integrality gap of

this LP remains an interesting open question. Obtaining a constant-factor approxima-

tion (or hardness results) for stochastic intervals is another interesting direction.

A Scaling the optimal value

Suppose that A is a polynomial algorithm that given any GenMakespan instance,

returns one of the following:

– a solution of objective at most ρ, or

– a certificate that the optimal value is more than 1.

123

626 A. Gupta et al.

Using this, we provide a polynomial time O(ρ)-approximation algorithm for Gen-

Makespan. Observe that the optimal value OPT of GenMakespan lies between

L := min j∈[n] E[X j] and U := n · max j∈[n] E[X j]. It follows that B∗

2
≤ OPT ≤ B∗

for some value B∗ in the set:

G :=
�

2� · L : 0 ≤ � ≤ log2(U/L) + 1, � ∈ Z

�

For each B ∈ G, consider the modified GenMakespan instance with r.v. X j/B for

each task j ; and run algorithm A on this instance. Finally, return the solution with

the smallest objective obtained over all B ∈ G. Note that when B = B∗, the optimal

value of the modified GenMakespan instance is at most 1: so algorithm A must find

a solution with (modified) objective at most ρ, i.e., the expected makespan under the

original r.v.s {X j } is at most ρ · B∗ ≤ 2ρ ·OPT. The number of times we call algorithm

A is O(log(U/L)). Note that L ≥ smin and U ≤ n · smax where smin and smax are

the minimum and maximum values that the r.v.s take. So, log(U/L) = log(n smax

smin
),

which is polynomial in the instance size. Hence, we obtain a polynomial time 2ρ-

approximation algorithm for GenMakespan.

B The ˛-packable property for rectangles and fat objects

In this section, we relate the α-packable property of a set system to the the intergrality

gap of the natural LP relaxation for maximum (weighted) independent set for the set

system. Using known integrality gap results for maximum independent set for axis-

parallel rectangles and fat objects, we can show α-packability of the corresponding

set systems for suitable values of α.

Recall the setting in the α-packable property. There is a set system ([n],L) with

size s j ≥ 0 and reward r j for each element j ∈ [n], and a bound θ ≥ max j s j . We

are interested in the integrality gap (and a polynomial-time rounding algorithm) for

LP (2), restated below.

max

� �

j∈[n]

r j · y j :
�

j∈L

s j · y j ≤ θ, ∀L ∈ L; 0 ≤ y j ≤ 1, ∀ j ∈ [n]

�
.

When all sizes s j = 1 and the bound θ = 1, we obtain the independent set LP:

max

� �

j∈[n]

r j · y j :
�

j∈L

y j ≤ 1, ∀L ∈ L; 0 ≤ y j ≤ 1, ∀ j ∈ [n]

�
. (20)

Note that the corresponding integral problem involves selecting a max-reward subset

of disjoint elements. (Elements e and f are disjoint if there is no set L ∈ L with

e, f ∈ L .)

Theorem 9 Suppose that the independent set LP (20) has integrality gap ρ and

an associated polynomial time rounding algorithm. Then, the set-system is O(ρ ·

log log m)-packable.

123

Stochastic makespan minimization in structured set systems 627

Proof The proof proceeds in several steps: (i) we first consider the special case when

all s j values are 1, but the parameter θ can be arbitrary, (ii) secondly, when θ � s j

for all j (by more than a log m factor), we use randomized rounding, and (iii) finally,

for the general case, we use a standard bucketing trick to create O(log log m) groups,

and show that one of the above two steps will work for each of these groups.

We give details of the first step. We show a rounding algorithm for the following

LP, and show that its integrality gap is at most 2ρ:

max

� �

j∈[n]

r j · y j :
�

j∈L

y j ≤ b, ∀L ∈ L; 0 ≤ y j ≤ 1, ∀ j ∈ [n]

�
. (21)

Here, we assume that b ≥ 1 is integer. Note that this is a special case of the LP (2)

used in the α-packable condition.

(i) Rounding for the LP (21): We combine the rounding algorithm for the independent

set LP relaxation (20) with a greedy strategy to round a feasible solution to the LP (21).

Let y be a feasible (fractional) solution to the latter LP. We define ȳ = y/b, which is

a feasible solution to the independent set LP relaxation (20).

We build the solution T ⊆ [n] iteratively; initially T = ∅. For each iteration

k = 1, · · · b, we perform the following steps:

1. Consider the solution ȳ restricted to [n]\T . Since this is a feasible solution to the

independent set LP (20), we use the independent set rounding algorithm to obtain

an integral solution Sk ⊆ [n]\T .

2. Update T ← T ∪ Sk .

As {Sk} are disjoint subsets, T = ∪b
k=1Sk is a feasible integral solution to (21).

We now analyze the reward of the solution T . For any subset U ⊆ [n] let Y (U) :=�
j∈U r j · y j be the LP-value restricted to U . Consider the two cases:

– Suppose Y ([n]\T) ≥ 1
2

· Y ([n]) at the end of the algorithm. It follows that

Y ([n]\T) ≥ 1
2

· Y ([n]) in each iteration k. Consider the LP solution ȳ restricted

to [n]\T (in iteration k). Since the rounding algorithm for the independent set LP

relaxation has integrality gap ρ,

r(Sk) ≥
1

ρ

�

j∈[n]\T

r j · ȳ j =
1

ρb
Y ([n]\T) ≥

Y ([n])

2ρb
.

Adding over all b iterations, r(T) =
�b

k=1 r(Sk) ≥
Y ([n])

2ρ
.

– Suppose Y ([n]\T) < 1
2

· Y ([n]) at the end of the algorithm. Then,

r(T) ≥ Y (T) = Y ([n]) − Y ([n]\T) >
1

2
· Y ([n]).

In either case, we obtain that the algorithm’s reward r(T) ≥ 1
2ρ

· Y ([n]). This proves

that the integrality gap of (21) is at most 2ρ.

123

628 A. Gupta et al.

(ii) Randomized Rounding for large θ . Let τ denote θ
2 log m

. Consider the special

case when s j ≤ τ for all j ∈ [n]. In this case, the LP relaxation (2) is a special case

of packing integer programs (PIPs), studied in [19]. Theorem 3.7 in [19] implies an

O(m1/P) integrality gap for the LP (2), where

P =
θ

max j∈[n] s j

≥
θ

τ
= 2 log m.

Therefore, the LP (2) has constant integrality gap in this special case.

(iii) Geometric grouping for the general case. We now consider the LP (2) in the

general setting. Let y be a fractional solution to this LP. As define above, τ := θ
2 log m

.

We first partition the elements into groups based on their sizes as follows:

Gk :=

�
{ j ∈ [n] : s j < τ } if k = 0

{ j ∈ [n] : 2k−1τ ≤ s j < 2kτ } if k ≥ 1
.

Note that the number of groups is K = O(log log m) as max j s j ≤ θ . We handle each

group separately, and pick the maximum reward solution across the K groups.

Consider a group Gk, k ≥ 1. Consider the fractional solution z defined as:

z j =

�
y j/4 if j ∈ Gk

0 otherwise

We claim that z is a feasible solution to the LP (21) restricted to Gk , and a suitable

value of b. Indeed, consider any L ∈ L. Then,

�

j∈L

z j ≤
1

2k−1τ

�

j∈Gk∩L

s j · z j =
1

2k+1τ

�

j∈Gk∩L

s j · y j ≤
θ

2k+1τ
≤

c

2
≤ �c�,

where we have used the fact that y is a feasible solution to (2), and c :=

θ/ max j∈Gk
s j ≥ max{1, θ

2kτ
}. It follows that z is a feasible solution to the LP (21)

where b = �c�. Hence, using the rounding algorithm for (21) mentioned in the first

step above, we obtain a solution Vk ⊆ Gk with reward

r(Vk) ≥
1

2ρ

�

j∈Gk

r j · z j ≥
1

8ρ

�

j∈Gk

r j y j .

Moreover, for each L ∈ L, we have |Vk ∩ L| ≤ b. Hence, for any L ∈ L,

�

j∈Vk∩L

s j ≤

�
max
j∈Gk

s j

�
· |Vk ∩ L| =

θ

c
· |Vk ∩ L| ≤

θb

c
≤ θ.

Thus, Vk is a feasible integral solution to (2).

123

Stochastic makespan minimization in structured set systems 629

Finally we consider the case k = 0, i.e., the group G0. As argued in the second step

above, we obtain a solution V0 ⊆ G0 with reward r(V0) ≥ 1
σ

·
�

j∈G0
r j y j where

σ ≥ 1 is constant. It follows that V0 is an integral solution to (2) as well.

Finally, choosing the best solution from {Vk} over all groups, we obtain reward at

least

max
k

r(Vk) ≥
1

K

�

k

r(Vk) ≥
1

K · max(8ρ, σ)

�

k

�

j∈Gk

r j y j =
1

K · max(8ρ, σ)

�

j∈[n]

r j y j .

This proves that the integrality gap of (2) is O(ρ log log m). ��

We now combine Theorem 9 with known results on maximum weight independent

sets for rectangles and fat objects, to prove their α-packable property.

Corollary 5 The set-system where tasks are n axis-aligned rectangles in the plane and

resources are all points in the plane, is O((log log n)2)-packable.

Proof The weighted independent set problem for rectangles in the plane has an LP-

based O(log log n) approximation [7]. Combined with Theorem 9 and the fact that

the number of points m can be ensured to be poly(n) (see Sect. 4.3), we obtain that

the set-system is O((log log n)2)-packable. ��

Corollary 6 The set-system where tasks are n disks (of arbitrary radii) in the plane

and resources are all points in the plane, is O(log log n)-packable.

Proof There is an LP-based O(u(n)/n)-approximation algorithm for weighted inde-

pendent set on set-systems where the “union complexity” of n objects is at most

u(n) [9]. See the survey [2] for more details on union complexity. The union complexity

of disks (of arbitrary radii) is O(n). So there is an LP-based O(1)-approximation algo-

rithm for weighted independent set. Combined with Theorem 9 and that m = poly(n),

the result follows. ��

Corollary 7 The set-system where tasks are n fat triangles in the plane and resources

are all points in the plane, is O(log∗ n · log log n)-packable.

Proof The union complexity of fat triangles is u(n) = O(n log∗ n) [3]. Using the

result from [9], we obtain an LP-based O(log∗ n)-approximation algorithm for the

weighted independent set problem. Using Theorem 9 and that m = poly(n), the

result follows. ��

References

1. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex objects in 2d. Comput.

Geom. 34(2), 83–95 (2006)

2. Agarwal, P.K., Pach, J., Sharir, M.: State of the union of geometric objects. In: Surveys in Discrete and

Computational Geometry Twenty Years Later, pp. 9–48 (2008)

3. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of locally fat objects in

the plane. SIAM J. Comput. 43(2), 543–572 (2014)

123

630 A. Gupta et al.

4. Carr, R.D., Vempala, S.S.: Randomized metarounding. Random Struct. Algorithms 20(3), 343–352

(2002)

5. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable

flow problem. Algorithmica 47(1), 53–78 (2007)

6. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA, pp. 892–901 (2009)

7. Chalermsook, P., Walczak, B.: Coloring and maximum weight independent set of rectangles. In: Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 860–868 (2021)

8. Chan, T.M.: A note on maximum independent sets in rectangle intersection graphs. Inf. Process. Lett.

89(1), 19–23 (2004)

9. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks.

Discrete Comput. Geom. 48(2), 373–392 (2012)

10. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer

programs. ACM Trans. Algorithms 3(3), 27 (2007)

11. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of

combinatorial structures. In: 51th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2010, October 23–26, 2010, Las Vegas, Nevada, USA, pp. 575–584 (2010)

12. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic

study of exact and approximate algorithms. Manag. Sci. 23(8), 789–810 (1977)

13. Elwalid, A.I., Mitra, D.: Effective bandwidth of general markovian traffic sources and admission control

of high speed networks. IEEE/ACM Trans. Netw. 1(3), 329–343 (1993)

14. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic load balancing on unrelated machines. Math.

Oper. Res. 46(1), 115–133 (2021)

15. Hui, J.Y.: Resource allocation for broadband networks. IEEE J. Sel. Areas Commun. 6(3), 1598–1608

(1988)

16. Kelly, F.P.: Notes on effective bandwidths. In: Stochastic Networks: Theory and Applications, pp.

141–168. Oxford University Press (1996)

17. Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections. SIAM J. Comput.

30(1), 191–217 (2000)

18. Molinaro, M.: Stochastic �p load balancing and moment problems via the l-function method. In:

SODA, pp. 343–354 (2019)

19. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM

J. Comput. 29(2), 648–670 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

	Stochastic makespan minimization in structured set systems
	Abstract
	1 Introduction
	1.1 Results and techniques
	1.2 Related work

	2 Problem definition and preliminaries
	2.1 Structure of set systems: the two assumptions
	2.2 Effective size and random variables

	3 The general framework
	3.1 The LP relaxation
	3.2 Overview of analysis
	3.3 The deterministic subproblem
	3.4 Rounding a feasible LP solution
	3.5 The analysis

	4 Applications
	4.1 Intervals on a line
	4.2 Paths on a tree
	4.3 Axis-aligned rectangles in the plane
	4.4 Fat objects in the plane

	5 Integrality gap lower bounds
	5.1 Lower bound for intervals on a line
	5.2 Lower bound for general set systems

	6 Conclusion
	A Scaling the optimal value
	B The α-packable property for rectangles and fat objects
	References

