Mathematical Programming (2022) 192:597-630
https://doi.org/10.1007/s10107-021-01741-z

FULL LENGTH PAPER

Series B ")

Check for
updates

Stochastic makespan minimization in structured set
systems

Anupam Gupta' - Amit Kumar? - Viswanath Nagarajan3@® - Xiangkun Shen?*

Received: 14 May 2020 / Accepted: 8 November 2021 / Published online: 26 November 2021
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021

Abstract

We study stochastic combinatorial optimization problems where the objective is to
minimize the expected maximum load (a.k.a. the makespan). In this framework, we
have a set of n tasks and m resources, where each task j uses some subset of the
resources. Tasks have random sizes X ;, and our goal is to non-adaptively select ¢
tasks to minimize the expected maximum load over all resources, where the load on
any resource i is the total size of all selected tasks that use i. For example, when
resources are points and tasks are intervals in a line, we obtain an O (loglogm)-
approximation algorithm. Our technique is also applicable to other problems with
some geometric structure in the relation between tasks and resources; e.g., packing
paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using
the cumulant generating functions of the random variables. We also show that this LP

A preliminary version appeared in the Proceedings of the 21st Conference on Integer Programming and
Combinatorial Optimization, 2020. A. Gupta was supported in part by NSF award CCF-1907820,
CCF-1955785, and CCF-2006953, and by the Indo-US Joint Center for Algorithms Under Uncertainty.
V. Nagarajan and X. Shen were supported in part by NSF grants CCF-1750127, CMMI-1940766, and
CCF-2006778.

B Viswanath Nagarajan
viswa@umich.edu

Anupam Gupta
anupamg @cs.cmu.edu

Amit Kumar
amitk @cse.iitd.ac.in

Xiangkun Shen
xiangkun.shen @ verizonmedia.com

1 Carnegie Mellon University, Pittsburgh, PA, USA
Indian Instiute of Technology Delhi, New Delhi, India
3 University of Michigan, Ann Arbor, MI, USA

4 Yahoo! Research, NYC, New York, NY, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01741-z&domain=pdf
http://orcid.org/0000-0002-9514-5581

598 A. Gupta et al.

has an £2 (log* m) integrality gap, even for the problem of selecting intervals on a line;
here log* m is the iterated logarithm function.

Keywords Stochastic optimization - Approximation algorithms - Geometric
packing - Linear programming

Mathematics Subject Classification 68W25 - 90C27 - 90B15

1 Introduction

Consider the following task scheduling problem: an event center receives requests/tasks
from its clients. Each task j specifies a start and end time (denoted (a;, b;)), and the
amount x; of some shared resource (e.g., staff support) that this task requires through-
outits duration. The goal is to accept some target # number of tasks so that the maximum
resource-utilization over time is as small as possible. Concretely, we want to choose
a set S of tasks with | S| = ¢ to minimize

max E Xj.

times T |
JESZTE[aj,h_,']

usage at time ©

This can be modeled as an interval packing problem: if the sizes are identical, the
natural LP is totally unimodular and we get an exact algorithm. For general sizes,
there is a constant-factor approximation algorithm [5].

However, in many settings, we may not know the resource consumption X ; pre-
cisely up-front, at the time we need to make a decision. Instead, we may be only given
estimates. What if the requirement X ; is a random variable whose distribution is given
to us? Again we want to choose S of size ¢, but this time we want to minimize the
expected maximum usage:

E | max E X;
times 7
je€S:telaj,bj]

Note that our decision to pick task j affects all times in [a;, b;], and hence the loads
on various places are no longer independent: how can we effectively reason about such
a problem?

In this paper we consider general resource allocation problems of the following
form. There are several tasks and resources, where each task j has some size X ; and
uses some subset U; of resources. That is, if task j is selected then it induces a load
of X; on every resource in U;. Given a target t, we want to select a subset S of ¢ tasks
to minimize the expected maximum load over all resources. For the non-stochastic
versions of these problems (when X ; is a single value and not a random variable), we
can use the natural linear programming (LP) relaxation and randomized rounding to

@ Springer

Stochastic makespan minimization in structured set systems 599

getan O(j Og)lgom —-)-approximation algorithm [11]; here m is the number of resources.

However, much better results are known when the task-resource incidence matrix has
some geometric structure. One such example appeared above: when the resources have
some linear structure, and the tasks are intervals. Other examples include selecting
rectangles in a plane (where tasks are rectangles and resources are points in the plane),
and selecting paths in a tree (tasks are paths and resources are edges/vertices in the tree).
This class of problems has received a lot of attention and has strong approximation
guarantees, see e.g. [1,5-10].

However, the stochastic counterparts of these resource allocation problems
remain wide open. Can we achieve good approximation algorithms when the
task sizes X; are random variables? We refer to this class of problems as
stochastic makespan minimization (GENMAKESPAN). In the rest of this work, we
assume that the distributions of all the random variables are known, and that the
random variables X ;s are independent.

1.1 Results and techniques

We show that good approximation algorithms are indeed possible for GENMAKESPAN
problems that have certain geometric structure. We consider the following two assump-
tions:

— Deterministic problem assumption: There is an LP-based «-approximation algo-
rithm for a deterministic variant of GENMAKESPAN.

— Well-covered assumption: for any subset D C [m] of resources and tasks L (D)
incident to D, the tasks in L(D) incident to any resource i € [m] are “covered”
by at most A resources in D.

These assumptions are formalized in Sect. 2. To give some intuition for these assump-
tions, consider intervals on the line. The first assumption holds by the results of [5]. The
second assumption holds because each resource is some time t, and the tasks using
time t can be covered by two resources in D, namely the closest times 71, 72 € D
suchthat 7] <7 < 1p.

Our informal main result is the following:

Theorem 1 (Main (Informal)) There is an O (aA loglog m)-approximation algorithm
for stochastic makespan minimization (GENMAKESPAN), with « and A as in the above
assumptions.

We also show that both « and A are small in a number of geometric settings: for
intervals on a line, for paths in a tree, and for rectangles and “fat objects” in a plane.
Therefore, we obtain poly(loglog m)-approximation algorithms in all these cases.

A first naive approach for GENMAKESPAN is (i) to write an LP relaxation with
expected sizes E[X ;] as deterministic sizes and then (ii) to use any LP-based o-
approximation algorithm for the deterministic problem. However, this approach only
yields an O(« logjlgo;"m) approximation ratio, due to the use of union bounds in cal-
culating the expected maximum. Our idea is to use the structure of the problem to
improve the approximation ratio.

@ Springer

600 A. Gupta et al.

Our approach is as follows. First, we use the (scaled) logarithmic moment generat-
ing function (log-mgf) of the random variables X ; to define deterministic surrogates
to the random sizes. Second, we formulate a strong LP relaxation with an exponen-
tial number of “volume” constraints that use the log-mgf values. These two ideas
were used earlier for stochastic makespan minimization in settings where each task
loads a single resource [14,17]. In the example above, this would handle cases where
each task uses only a single time instant. However, we need a more sophisticated
LP for GENMAKESPAN to be able to handle the combinatorial structure when tasks
use many resources. Despite the large number of constraints, this LP can be solved
approximately in polynomial time, using the ellipsoid method and using a maximum-
coverage algorithm as the separation oracle. Third (and most important), we provide
an iterative-rounding algorithm that partitions the tasks/resources into O (loglogm)
many nearly-disjoint instances of the deterministic problem. The analysis of our round-
ing algorithm relies on both the assumptions above, and also on the volume constraints
in our LP and on properties of the log-mgf.

We also show some limitations of our approach. For GENMAKESPAN involving
intervals in a line (which is our simplest application), we prove that the integrality gap
of our LP is §2(log* m). This rules out a constant-factor approximation via this LP.
For GENMAKESPAN on more general set-systems (without any structure), we prove
that the integrality gap can be ‘Q(ao;iﬁ) even if all deterministic instances solved
in our algorithm have an « = O(1) integrality gap. This suggests that we do need to
exploit additional structure—such as the well-covered assumption above—in order to
obtain significantly better approximation ratios via our LP.

1.2 Related work

The deterministic counterparts of the problems studied here are well-understood. In
particular, there are very good LP-based approximation algorithms for maximum-
weight packing of intervalsin aline [5], paths in a tree (with edge loads) [10], rectangles
in a plane [7] and fat-objects in a plane [9].

Our techniques draw on prior work on stochastic makespan minimization for iden-
tical [17] and unrelated [14] resources; but there are also important new ideas. In
particular, the use of log-mgf values as the deterministic proxy for random variables
comes from [17] and the use of log-mgf values at multiple scales comes from [14]. The
“volume” constraints in our LP also has some similarity to those in [14]: however, a
key difference here is that the random variables loading different resources are corre-
lated (whereas they were independent in [14]). Indeed, this is why our LP can only be
solved approximately whereas the LP relaxation in [14] was optimally solvable. We
emphasize that our main contribution is the rounding algorithm which uses a new set
of ideas; these lead to the O (loglogm) approximation bound, whereas the rounding
in [14] obtained a constant-factor approximation. We also prove a super-constant inte-
grality gap in our setting (even for intervals in a line), which rules out the possibility
of a constant-factor approximation via our LP.

The stochastic load balancing problem on unrelated resources has also been studied
for general £,-norms (note that the makespan corresponds to the £x-norm) and a

@ Springer

Stochastic makespan minimization in structured set systems 601

constant-factor approximation is known [18]. We do not consider £,-norms in this
paper.

2 Problem definition and preliminaries

We are given n tasks and m resources. Each task j € [n] uses some subset U; C [m]
of resources. For each resource i € [m], define L; C [n] to be the tasks that utilize i.
Each task j € [n] has a random size X ;. If a task j is selected into our set S, it adds a
load of X ; to each resource in U : the load onresource i € [m]is Z; := Zjesml_ X;.
The makespan is the maximum load, i.e. max}’ , Z;. The goal is to select a subset
S C [n] with 7 tasks to minimize the expected makespan:

m
min E | max Xi|. 1
SCInl:|S|=1 i=1 Z / @
jeSNL;

The distribution of each random variable (r.v.) X ; is known, and these distributions are
independent. We assume that all the X ;s are discrete r.v.s with polynomial support size.
We also assume that each distribution is available explicitly (as a list of realizations
and probabilities). In our algorithm, we will use these distributions to compute some
“effective” sizes (defined in Sect. 2.2).

For any subset K C [m] of resources, let L(K) := [J;x L be the set of tasks that
utilize at least one resource in K.

2.1 Structure of set systems: the two assumptions

Our results hold when the following two properties are satisfied by the set system
([n], £), where L is the collection of sets L; for each i € [m]. Note that the set system
has n elements (corresponding to tasks) and m sets (corresponding to resources).

A1 (x-packable): A set system ([n], £) is said to be a-packable if for any assign-
ment of size s; > 0 and reward r; to each element j € [n], and any threshold
parameter ¢ > max s;, there is a polynomial-time algorithm that rounds a frac-
tional solution y to the following LP relaxation into an integral solution y, losing
a factor of at most o > 1:

max er-yj : Zsj'yjfé?, VLeL; 0<y; <1, Vjeln]ly. (2
j€ln] JjeL

That is, Y ir j:)zj > é Zj rjy;. We also assume, without loss of generality, that
the support of y is contained in the support of y. (The support of vector z € R’} is
{j € [n]: zj > 0} which corresponds to its positive entries.)

A2(1-safe): Let [m] be the indices of the sets in £; recall that these are the resources.
The set system ([n], £) is A-safe if there is a polynomial-time algorithm that, given

@ Springer

602 A. Gupta et al.

any subset D C [m] of (“dangerous”) resources, finds a subset M 2 D of (“safe”)
resources, such that

(a) |M]| is polynomially bounded by | D|, and

(b) for every i € [m], there is a subset R; € M, |R;| < A, such that L; N L(D) <
L(R;); in other words, every task that uses i and some resource from D also uses
a resource from R;.

Recall that L(D) = UheD Lj,. We denote the set M as Extend(D).

Let us give an example. Suppose P = [m] are m points on the line, and consider n
intervals Iy, ..., I, of the line with each /; C P. Now the set system is defined on n
elements (one for each interval), with m sets where set L; for pointi € [m] consists of
the indices of all intervals that contain i. The A-safe condition says that for any subset
D of points in P, we can find a superset M which is not much larger such that for
any point i on the line, there are A points in M containing all the intervals that pass
through both i and D. In other words, if these intervals contribute any load to i and D,
they also contribute to one of these A points. And indeed, choosing M = D ensures
that A = 2: for any i we choose the nearest points in M on either side of i.

Other families that are a-packable and A-safe include:

— Each element in [n] corresponds to a path in a tree, with the set L; being the subset
of paths through node i. See Lemmas 14—15 for the proof.

— Elements in [n] correspond to rectangles or fat-objects in a plane, and each L;
consists of the elements containing a particular point i in the plane. See Lemmas 16
and 17.

For a subset X C [n], the projection of ([n], £) to X is the smaller set system
(X, L|x), where L|x = {LN X | L € L}. Loosely speaking, the following lemma
formalizes that packability and safeness properties also hold for sub-families and
disjoint unions.

Lemma 1 Consider a set system ([n], L) that is a-packable and \-safe. Then,

(i) forall X C [n], the set system (X, L|x) is a-packable and A-safe, and
(ii) givenapartition X1, ..., X, of [n], and set systems (X1, L1), . .., (Xy, Ly), where
L; = L|x, for all i, the disjoint union of these systems is also a-packable.

Proof For the first statement, consider any X C [n] and let L|x = {L}}"",. The A-
safe property follows by using the same sets M and R;s for each D C [m]; note that
L; = L;NX foralli € [m]. To see the a-packable property, consider any rewards r;
and sizes s ;=0 for elements j € X, and threshold 6. We extend these rewards and
sizes to the entire set [n] by settingr; = s; = O forall j € [n]\X. We now use the fact
that the original set-system is a-packable. Let y € [0, 1]" denote an LP solution to
(2). Because rj = Oforall j ¢ X, wecanset y; = 0forall j ¢ X, without changing
the objective. Now, the rounded integer solution y obtains at least a 1/« fraction of
the LP reward. Moreover, y only selects elements in X as the support of ¥ is contained
in the support of y, which is contained in X.

For the second statement, note that the LP constraint matrix in (2) for such a
set-system is block-diagonal. Indeed, because of the disjoint union, constraints cor-
responding to resources in L; only involve variables corresponding to Xy, for all

@ Springer

Stochastic makespan minimization in structured set systems 603

h =1, ---s5. Let y(h) denote the restriction of the LP solution y to elements X},
for each h. Then, using the a-packable property on (Xj, L), we obtain an integral

solution y(» that has at least a 1/« fraction of the reward from y?. Combining the

integer solutions y" over all h = 1, ---s proves the a-packable property for the
disjoint union. O

We consider the GENMAKESPAN problem for settings where the set system
([n], {L;}ie[m)) is a-packable and A-safe for some small parameters o and A. We
show in Sect. 4 that the families discussed above satisfy these properties. Our main
result is the following:

Theorem 2 For any instance of GENMAKESPAN where the corresponding set system
([n], {L;}iepm)) is a-packable and \-safe, there is an O (aA -loglog m)-approximation
algorithm.

2.2 Effective size and random variables

In all the arguments that follow, imagine that we have scaled the instance so that
the optimal expected makespan is between % and 1. It is useful to split each random
variable X ; into two parts:

e the fruncated random variable X ; =X - Ix;<1), and
o the exceptional random variable X ;’ =X Iix;=1)-

These two kinds of random variables behave very differently with respect to the
expected makespan. Indeed, the expectation is a good measure of the load due to
exceptional r.v.s, whereas one needs a more nuanced notion for truncated r.v.s (as we
discuss below). The following result was shown in [17]:

Lemma 2 (Exceptional Items Lower Bound) Ler X, X7, ..., X/ be non-negative
discrete random variables each taking value zero or at least L. If 3 ; E[X ;.’] > L then

E[max X;.’] > L/2.

We now consider the trickier case of truncated random variables X’.. We want to find
a deterministic quantity that is a good surrogate for each random variable, and then use
this deterministic surrogate instead of the actual random variable. For stochastic load
balancing, a useful surrogate is the effective size, which is based on the logarithm of
the (exponential) moment generating function (also known as the cumulant generating
function) [13-16].

Definition 1 (Effective Size) For any r.v. X and integer k > 2, define
1
Be(X) = —— - 1og1E[e<‘°gk>'X]. 3)
logk

Also define 81 (X) := E[X].

@ Springer

604 A. Gupta et al.

To see the intuition for the effective size, consider a set of independentr.v.s Yq, ..., Y
all assigned to the same resource. The following lemma, whose proof is very reminis-
cent of the standard Chernoff bound (see [15]), says that the load is not much higher
than the expectation.

Lemma 3 (Effective Size: Upper Bound) For indep. rv.s Y1, ..., Y, if Y Bc(Y;) < b
thenP[Y_; Yi > c] < kul,b.

The usefulness of the effective size comes from a partial converse [17]:

Lemma 4 (Effecti\ﬂzde Size: Lower Bound) Letr X1, X», - -- X, be independent [0, 1]
valued r.v.s, and {L;}"_, a partition of [n]. Ifz;le Bm(X ;) = 17m then

E[r?iallf(Z Xj] =2(1).

JEL;

3 The general framework

In this section we prove Theorem 2: given a set system that is o-packable and A-safe,
we show an O (a4 log log m)-approximation algorithm. The idea is to write a suitable
LP relaxation for the problem (using the effective sizes as deterministic surrogates
for the stochastic tasks), to solve this exponentially-sized LP, and then to round the
solution. The novelty of the solution is both in the LP itself, and in the rounding,
which is based on a delicate decomposition of the instance into O (loglogm) many
deterministic sub-instances.

In order to obtain an O (p)-approximation algorithm for GENMAKESPAN, it suffices
to find a polynomial algorithm that does one of the following:

— find a solution of objective at most p, or
— prove that the optimal GENMAKESPAN value is more than 1.

This follows from standard scaling ideas: see Appendix A. Henceforth, we will assume
that the optimal value is at most 1, and provide an algorithm that finds a solution with
small expected makespan.

3.1 The LP relaxation

Consider an instance Z of GENMAKESPAN given by a set of n tasks and m resources,
with sets U; and L; as described in Sect. 2. We now provide an LP relaxation which
is feasible if the optimal makespan is at most one. We use properties of truncated and
exceptional random variables; recall the definitions of these r.v.s from Sect. 2.2.
Lemma5 Consider any feasible solution to T that selects a subset S C [n] of tasks.
If the expected maximum load E [max;.”:l 3 jeLins Xj] <1, then

ZE[X;/] <2, and 4)
jes

@ Springer

Stochastic makespan minimization in structured set systems 605

Z ,Bk(X;-) < b-k, forall K C [m], wherek = |K|,)
JjeL(K)NS

for b being a large enough but fixed constant.

Proof The first inequality (4) follows from Lemma 2 applied to {X}’ : j € S}and
L=1.
__ For the second inequality (5), consider any subset K < [m] of the resources. Let
L; € L;fori € K besuchthat{L;};cx formsapartitionof ;. x (L;NS) = L(K)NS.
Then, we apply Lemma 4 to the resources in K and the truncated random variables
{X} : J € Ujex Li}. Because, E[max;cx Zjel:i X;.] < E[max;ex ZjeL,ﬂS X;.] <
1, the contrapositive of Lemma 4 implies ZjEU'eK o ,Bk(X}) < b-k,whereb = O(1)
is a fixed constant. Inequality (5) now follows from Ui K f, =L(K)NnS. O
Lemma 5 allows us to write the following feasibility linear programming relaxation

for GENMAKESPAN (assuming the optimal value is at most 1). For every task j, we
have a binary variable y; corresponding to selecting j.

D oyi=t 6)
j=1
> EBIX]1-y; <2 @)

j=1
Z Bu(X)) -y <b-k VK C [m]with |K| =k, Vk=1,2,...m, (8)
JEL(K)

0<y <1 Vj € [n]. ©)

In the above LP, b > 1 denotes the universal constant multiplying & in the right-
hand-side of (5). Note that the effective sizes By (X ;) can be computed in polynomial
time because each X ; has polynomial support-size. Despite having an exponential
number of constraints, this linear program can be solved approximately in polynomial
time. This relies on the ellipsoid algorithm with an approximate separation oracle, see
e.g. [4].

Theorem 3 (Solving the LP) There is a polynomial time algorithm which given an
instance I of GENMAKESPAN outputs one of the following:

e asolution'y € R" to LP (6)—(9), except that the right-hand-side of (8) is replaced
by ei;lbk, or
e a certificate that LP (6)—(9) is infeasible.

Proof Our algorithm aims to satisfy the constraints (8), but will only achieve the
following slightly weaker constraint:

3 Bx)) -y < le-k, VK C [m] with |[K| =k, Vk € [m], (10)
JeL(K) €

@ Springer

606 A. Gupta et al.

We use the ellipsoid algorithm to find a feasible solution to the above LP. Given
y € R" the separation oracle needs to check if constraint (8) is satisfied (the other
constraints are easy to check). To this end, we use the maximum-coverage problem.
Given n elements with non-negative weights {w };?zl, a collection {S; C [n]}/L, of
subsets and bound k, the goal is to select k subsets 77, - - - Ty that maximize the total
weight > jeuk_ 1, Wj of covered elements. There is an _%; ~ 1.58 approximation
algorithm for maximum-coverage [12].

For each k, 1 < k < m, we consider an instance 7; of the maximum-coverage
problem with m sets {L;}?" | and weights w; = ﬂk(X}) - yj on each task j € [n].
Note that checking (8) for subsets K of size k is equivalent to checking if the optimal
value of 7 is at most bk. Let Ay C [m] denote the approximate solution to Z that we

obtain for each k by using the algorithm from [12]. Then we have the following cases:

e Forsome k, the value ZjeL(Ak) Bk (X;.) -y, ismore than bk. Then, this is a violated
constraint, which can be added to the ellipsoid algorithm.

e Foreachk, the value } ./ 4, Be(X) - y; is at most bk. Then it follows that, for
each k, the optimal value of Zj is at most ;%7 bk. This implies that constraint (10)
is satisfied.

This proves the desired result. O

In the rest of this section, we assume we have a feasible solution y to (6)—(9), and
ignore the fact that we only satisfy (8) up to a factor of _%5, since it only affects the
approximation ratio by a constant factor.

Note that we only use effective sizes By of truncatedr.v.s, so we have 0 < B (X ’l.) <
1 for all k € [m] and j € [n]. Moreover, we make the following assumption (without
loss of generality) on the exceptional r.v.s.

Assumption 4 We have IE[X;./] < 2 for every task j € [n].

Indeed, we can simply drop all tasks j with E[X ;.’] > 2 as such a task would never be
part of an optimal solution- by (4).

3.2 Overview of analysis

Let us give some intuition behind the factor of O (loglogm) that arises in the approx-
imation ratio. To keep things concrete, consider the special case of intervals on a line:
each task is an interval, and each of the m resources is a point on the line. Each task
(interval) loads all the resources (points) that lie within the interval. For simplicity,
consider the special case where we have an integral solution y to the LP relaxation
(6)—(9), and therefore there is no need to perform any rounding. (Our analysis loses a
log log m factor even in this special integral case.) Let T denote the set of intervals for
which y; = 1. We would like to argue that the expected makespan due to selecting
set T is O (loglogm).

To this end, we partition the points into O (loglogm) groups such that (roughly
speaking) the expected makespan due to each group is O(1). We maintain a variable
k which is initialized to 2, and a set J of remaining intervals (initially equal to T').
Consider a greedy procedure to build an ordering iy, i2, . . . , i, on the points as follows.

@ Springer

Stochastic makespan minimization in structured set systems 607

Given iy, ..., i, define i,1 to be any point i for which ZjemL,» ﬂk(X}) > b, and
remove all intervals containing this point i from J. If there is no such point then we
update k to k2, and continue. (If k exceeds m, order the remaining points arbitrarily.)
Observe that k takes values which are of the form &k, := 22 for non-negative integers £.
We refer to the index £ as the “class”. For each class ¢, let D, denote the set of points in
the above sequence that were added when k was equal to k¢. Note that | Dy| < ky—this
follows directly from (8). Indeed, if |Dy¢| > k;, then by choosing any k, points from
Dy, constraint (8) (with k = k¢) would not be satisfied. For each class £, let J, C T
denote those intervals that were removed from J when k = k.

We now argue about the makespan of Dy (i.e., the class-¢ points) due to J; (the
class-£ intervals). We first observe that for any pointi € Dy, ZjelgﬂL[Bro_; (X;.) is
at most b. Indeed, if not, this point i would have been added to D,_; instead. We
now apply Lemma 3: for any point i € Dy, the probability that intervals J; load i to
more than b + 4 is at most k[f'l = k[z. Then, by a union bound over all points in
Dy, the probability that intervals in J; load any point in Dy to more than b + 4 is at
most |Dy| - k;z < é With some additional work, we can also show that the expected
makespan of Dy (due to intervals Jy) is a constant. These arguments are formalized
(for the general setting) in Lemmas 6 and 7.

However, for any particular point i € D,, we also need to worry about intervals
which are in (T'\J¢) N L;. These intervals must belong to previous classes, by the
construction of the ordering. For each class ¢/ < £, consider the two points in Dy
closest to i on either side: this gives us at most 2 log log m such “representative” points.
Any interval in (T'\Jy) N L; would load at least one of these representatives. Hence,
we can bound the load from these intervals by the total load on the representatives,
which is O(loglogm) in expectation. This is formalized by the A-safe property and
Lemma 11.

In this overview, we omitted the issue of rounding the LP solution. This is handled
by classifying tasks as being large/small based on their y; value (see Lemma 9) and
using the a-packable property (see Lemmas 8 and 10).

3.3 The deterministic subproblem

We actually need a slight generalization of the reward-maximization problem men-
tioned in (2), which we call the DETCOST problem. An instance Z of the DETCOST
problem consists of a set system ([n], S), with a size s ; and cost ¢; for each element
J € [nl. It also has parameters 6 > max; s; and ¥ > max; c;. The goal is to find a
maximum cardinality subset V of [n] such that each set in S is “loaded” to at most 6,
and the total cost of V is at most 1. We use the following LP relaxation:

n
max Z yj
j=1

s.t. Zsj-nge, VS esS
jes

@ Springer

608 A. Gupta et al.

Z cjyj =V,

jeln]
O<y;=1, Vj€ln] (11

The following result, which motivates the a-packable property, shows that the o-
packable property for a set system implies an O («)-approximation for the DETCOST
problem.

Theorem 5 (detsolve) Suppose a set system satisfies the a-packable property. Then
there is an O(a)-approximation algorithm for DETCOST relative to the LP relax-
ation (11).

Proof Consider an instance Z of DETCOST consisting of a set system ([n], £), cost ¢;
and size s; for each element j € [n], and parameters § > max; s; and > max; c;.
Let y be a solution to the LP (11), with objective function value 7 =) jyj- We
construct an instance Z' of the reward-maximization problem with LP relaxation (2).
The set system, sizes of elements and the parameter 0 are as in Z. Furthermore, the
reward r; of an element j is defined as:

R T
i’j = (1 — Wcj) .

Since the set of constraints in (2) is a subset of that in (11), the solution y is also a
feasible solution to (2) with objective function value equal to

T
Z riyj = Z <l_ﬁcj>yj >T-T/2=T)2.

J€ln] Jj€ln]

The inequality uses the fact that Z?:l ¢jyj < ¥. Now the a-packable property
implies that we can find a subset S C [n] which is a feasible integral solution to (2),

whose total reward ZjeS rj > % Since r; < 1 for all j, it follows that | S| > % as

well. Moreover, by definition of 7, we have that ZjeS ri =|S|— %C(S) > % > 0.

Hence,
512 27, (12)
29

If the total cost of the elements in § is at most 1, this is also a feasible solution to
T with [S] > 5.

Below, we assume that ¢(S) = Y jes €j > . Starting with a partition of § into
singletons, we repeatedly merge any two parts whose total cost is at most ¥. Let
S0, - .., Sy—1 denote the parts at the end of this process. As each element has cost at
most ¥ and we only merge parts when their total cost is at most v, it follows that the
cost ¢(Sg) of each part Sy is at most 1. Moreover, the total cost of any pair of parts is
more than . This implies that ¢(Sx) + ¢(Sk+1) > ¢ foreachk = 0,...u — 1 (the
indices are modulo). Adding these u inequalities, we have 2 ZZ;& c(Sg) >u-y
which implies u < % ZZ;(I) c(Sy) = %C(S). Let S* be the maximum cardinality set

among {Sk},’z;(l). Note that |S*| > %|S| > %(S)lSL Using (12) we obtain |S*| > %.

@ Springer

Stochastic makespan minimization in structured set systems 609

So in either case, we are guaranteed an ¢ = max{2«, 4} = O(«) approximation
for DETCOST relative to the LP. This completes the proof. O

3.4 Rounding a feasible LP solution

We first give some intuition about the GENMAKESPAN rounding algorithm. It involves
formulating O (log log m) many almost-disjoint instances of the deterministic reward-
maximization problem (2) used in the definition of «-packability. The key aspect of
each deterministic instance is the definition of the sizes s;: for the 2" instance we
use effective sizes Sx (X ") with parameter k = 22", We use the A- safety property to
construct these determmlstlc instances and the «-packable property to solve them.
Finally, we show that the expected makespan induced by the selected tasks is at most
O(aA) from each deterministic instance, which leads to an overall O («aA loglogm)-
approximation ratio. The procedure is described formally in Algorithm 1.

Algorithm 1: Rounding Algorithm

Input : A fractional solution y to (6)—(9)
Output: A subset of tasks.
1 Initialize remaining tasks J < [n];
2 for¢ =0,1,...,loglogm do
3 Set k < sz;
4 Initialize class-£ resources Dy < ;
5 while there is a resource i € [m] : ZjeL,ﬂJ 5k2(X;.) yj > 2bdo
6 update Dy < Dy (i}
7 SetL ~—JNL; andJ<—J\Ll,

8 Define the class-{ tasks Jp < UiED[i
9 | Use A-safety on the set system (Jg, {L; N Jg}ie[m]) to get My := Extend(Dy) ;

10 p < 1+ loglogm;
11 Define class-p tasks J, = J and class-p resources M, := D, = [m]\ (Uf;ol Dg) ;

12 Define an instance C of DETCOST as follows: the set system is the disjoint union of the set systems
(Jg, My) for £ =0, ..., p. The other parameters are as follows:

Sizes sj= ﬂzzg (X;-) foreach j € Jyand0 < ¢ < p, bound 6 = 2ab,

Costs cj = IE[X}’] for each j € [n], bound ¥ = 2a,

where « is the approximation ratio from Theorem 5 ;
13 Let Ny ={j€ln]:y;>1/a};
14 Lety; =a-yjfor j € [n]\Ny and y; = O otherwise ;
15 Round y (as a feasible solution to (11)) using Theorem 5 to obtain Ny ;
16 Output Ny | J N

The algorithm proceeds in loglogm iterations of the for loop in Lines 3-9. The
set J denotes the remaining tasks at any point in the algorithm. In each iteration ¢,

we make use of effective sizes By with parameter k = 22 (see Line 3). In Line 5,
we identify resources i which are fractionally loaded to more than 2b, where the load

@ Springer

610 A. Gupta et al.

is measured in terms of f;2 (X ;.) values and we only consider the remaining tasks J.
The set of such resources is grouped in the set Dy (called the class-¢ resources). We
also define the class-£ tasks J; to be all remaining tasks (in J) which can load the
resources Dy. Ideally, we would like to remove these resources and tasks, and iterate
on the remaining tasks and resources. However, the problem is that tasks in J; also load
resources other than Dy, and so (Dy, J;) is not independent of the rest of the instance.
This is where we use the A-safe property: in Line 9 we expand D, to a larger set of
resources My := Extend(Dy), which will be used to bound the load induced by J;
on resources outside Dy. We use (Jy, My) to represent the set system corresponding
to class-£: note that each set is of the form L; N J, for some i € M.

Having partitioned the tasks into classes Ji, ..., J,, we consider the disjoint union
D of the set systems (J¢, My), for £ = 1, ..., p. While the sets D, are disjoint, the
sets M, may not be disjoint. For each resource appearing in multiple sets M;, we
make distinct copies in the combined set-system D. Then we set up an instance C
of DETCOST (in Line 12): the set system is D, the disjoint union of (J¢, M), for
¢=1,...,p.Everytask j € Jy has size (X;.) and cost IE[X;.’]. The parameters 6
and v are as mentioned in Line 12. In Line 13, we include into our solution, all tasks
(Np) that have a large LP value. Then, we define a scaled-up fractional solution y (in
Line 14) supported on all other tasks [n]\ Ng: we will show later that this is feasible
to the LP relaxation (11) for C. Finally, we use Theorem 5 to round y to an integral
solution Ny (in Line 15) which is added to our solution.

3.5 The analysis

We now show that the expected makespan for the solution produced by the rounding
algorithm above is O(«xAp), where p = 1 + loglogm is the number of classes. In
particular, we show that the expected makespan (taken over all resources) due to the
selected tasks from each class £ is O (aA).

Our first lemma shows that the fractional load on every resource due to class-£ tasks
(using effective size f,,¢) is at most a constant.

Lemma 6 Forany class £, 0 < £ < p, and resource i € [m],

Z Br(X})-yj <2b, wherer = 22
jeJeNL;

Proof If £ = 0, we have r = 2. Using the LP constraint (8) for a subset {i, i’} of size
two containing the resource i, we have:

Yo By =Y XDy Y BaX)) -y <2b,

J€JeNL; JeLi JEL{i,i')

which implies the desired result.

@ Springer

Stochastic makespan minimization in structured set systems 611

So assume £ > 1. Let J denote the set of remaining tasks at the end of iteration
L—1,1e.,J = U€/>€ J¢r. The terminating condition in Line 5 (for iteration £ — 1)
implies that

Z Br(X) - y; < 2b, foralli € [m],
jeJNL;

which implies the lemma. O

Next, we bound the sizes of sets Dy and M, as functions of £.

Lemma7 Forany{,0 < € < p, |Dg¢| < k?, where k = 22, S0 |M¢| < kP for some
constant p.

Proof The lemma is trivial for the last class £ = p as k > m in this case. Now consider
any class £ < p. Using the condition in Line 5, we have:

> B(X)) -y >2b, VieDy, (13)
jeLi

where I?, is as defined in Line 7. Note that the subsets {Iji 11 € Dy} are disjoint as
the set J gets updated (in Line 7) after adding each i € D,. Suppose, for the sake of
contradiction, that |Dg| > k2. Letting K € Dy be any set of size kz, we have:

2K <Y S X -yi= Y BeX)) -y <bIK|=b-K

i€k jef; jeL(K)

which is a contradiction. Above, the first inequality uses (13) and K € Dy, and the
last inequality uses the LP constraint (8) on subset K. This proves the first part of
the lemma. Finally, the A-safe property implies that | M| is polynomially bounded by
| D¢|, which proves the second part. O

We now show that the fractional solution y from Line 14 is feasible to the LP
relaxation for DETCOST given in (11).

Lemma 8 The fractional solution y is feasible for the LP relaxation (11) corresponding
to the DETCOST instance C. Moreover, we have max;s; < 6 and max;c; < V¥ in
instance C.
Proof Note that 0 < ¥ < 1 by construction. Since the sets J; partition [n],
0
DD i V=) ¢ Y say ey s2a=y
=0 jely Jj€ln] J

where the last inequality follows from the feasibility of constraint (7).

@ Springer

612 A. Gupta et al.

To verify the size constraint for each resource i in the disjoint union of M, for

£=0,...,p,consider any such class £ and i € M. The size constraint for i is:
D B(X)) - <0 =2ab, (14)
jeJeNL;

where k = 22°. Since y < a -y, this follows directly from Lemma 6.

Finally, since the truncated sizes X ; lie in [0, 1], so do their effective sizes. Hence
sj <1 <6forall j € [n]. Moreover, by Assumption 4 we have c; = E[X;’] <2<y
for all j € [n]. O

Based on this lemma, we can indeed apply Theorem 5 to round y into an integer
solution (as done in Line 15). We now analyze our solution Ny | J Np.. Recall that Ny
consists of all tasks j with y; > 1/a and N is the rounded solution obtained from y.

Lemma 9 The solution obtained in Algorithm 1 has |[Ny| + |N| > t.

Proof Note that by the feasibility of the constraint (6), > jeln Ny Yi =t — INg|.
Further, y; = a - y; € [0, 1] for all tasks j € [n]\Ng. Therefore,

1 -
INlz = > §i= D yizt—INul
JEMN\Ny JEMN\Ny
which completes the proof. O

We now bound the expected makespan of our solution N := Ny | J N. We will
focus on a particular class £ < p and show that the expected makespan due to tasks
in N N Jg is small. Recall that k = 222. For sake of brevity, let Ny := N N Jy be
the selected class-£ tasks, and let Loadl@) = JeN/NL; X ; denote the load on any
resource i € [m] due to the selected class-£ tasks. The following lemma can be viewed
as the “rounded” version of Lemma 6.

Lemma 10 For any class £ < p and resource i € My,

Z Be(X)) < dab, wherek = 22
JENNL;

Proof Since NeNL; = (NgNJeNL;) JWNLNJeNL;), we bound the left-hand-side

above in two parts. By Lemma 6, the solution y has 3¢ ;. ﬂk(X;.) -y <2b. As
eachtask j € Ny has y; > 1/a,

Y. B(X)) <2ab.

jeNyNJNL;

@ Springer

Stochastic makespan minimization in structured set systems 613

Since Ny, is a feasible integral solution to (11), the size constraint for i € M,
implies that

, -
Yo AX)= Y s <0=2ab.
jeNLNJyNL; jeNLNJ,NL;

Combining the two bounds above, we obtain the claim. O

We are now ready to bound the makespan due to the truncated part of the random
variables.

Lemma 11 For any class £ < p, we have E [maxieMe Load[@)] < 4ab+ O(1) and
therefore, E [max:.”:1 Loadl@)] < d4rab+ O(A) = O(alr).

Proof Consider aresource i € M. Lemmas 3 and 10 imply that for any y > 0,
P[Load,@ > 4ab + y] —P| Y X,>4ab+y| <k
JEN(NL;

By a union bound, we get

P [mﬁx Load" > 4ab + y] <|My| k7 <kP7Y, forally >0,
reMy

where p is the constant from Lemma 7. So the expectation

o0
E |:max Loadl@] = / P [max Loadl@ > 9] do
ieMy 6=0 ieMg

IA

o
4ab+p+2+ / P |:max Load" > 4ab + y:| dy
)/:P+2 ieMy
o0
4&b+p+2+/ k' tPdy < dab+p+2+
y=p+2

IA

L
ke —1)°

which completes the proof of the first statement.

We now prove the second statement. Consider any class £ < p: by definition of
J¢, we know that J, € L(Dy). The A-safe property implies that for every resource
i € [m] there is a subset R; € M, with |R;| < A and L; N L(Dy) € L(R;); using
Jo € L(Dy) the latter property implies L; N Jy € L(R;) N J;. Because Ny € Jg, we
also have L; N Ny € L(R;) N Ny. Therefore,

Load® < Load® < A max Load®.

Taking expectation on both sides and using the first statement in the lemma, we obtain
the desired result.

@ Springer

614 A. Gupta et al.

Finally, for the last class £ = p, note that any task in J, loads only the resources
in D, = M, Therefore, max]" Loadl@ = max;ey, Loadg). Taking expectation on
both sides, we obtain the second statement. O

Using Lemma 11, we can bound the expected makespan due to all truncated random
variables:

I o
m n (0) m (0)
E 1}1:alx | Z X} =E |:1}1_aleLoadi] < Z]E |:1}1_alx Load; } < O(a)rp).
jENNL; £=0 £=0
(15)
The next lemma handles exceptional random variables.

Lemma 12 E[Zje,\, X//’] = ZjeN cj < 4a.

Proof Feasibility of constraint (7) implies that 3} _; ¢;-y; < 2. Aseachtask j € Ny
hasy; > 1/a, wehave)y, ¢; < 2a.For tasks in Ny, the fact that N, is a feasible
integral solution to (11) implies that jen, Cj =¥ = 2¢. This completes the proof.

m]

Finally, using (15) and Claim 12, we have:

m _ m / "
Elmax D Xj|=Ejmax) G+

JENNL; L jeENNL;

m ’ 1
<E Iln:alx Z X + E ZXJ- < O(a)rp).

JjeNNL; JjeN

This completes the proof of Theorem 2.

4 Applications

In this section, we show that several stochastic optimization problems of interest
satisfy the two assumptions of «-packability and A-safety for small values of these
parameters (typically o, A = O(1) in these problems). Hence GENMAKESPAN can be
solved efficiently using our framework.

4.1 Intervals on a line

We are given a path graph on n vertices, which we call a line. The resources are the
vertices in this line. Each task corresponds to an interval in this line and loads all the
vertices in the corresponding interval. For each vertex i, L; denotes the subset of tasks
(i.e., intervals) which contain i.

The «-packable property for this set system with @ = O (1) follows from the result
in [5]—indeed, the LP relaxation (2) corresponds to the unsplittable flow problem
where all vertices have uniform capacity . We now show the A-safe property.

@ Springer

Stochastic makespan minimization in structured set systems 615

Lemma 13 The above set system is 2-safe.

Proof Consider a subset D of vertices. We define M := Extend(D) to be same as
D. For a vertex i, let [; and r; denote the closest vertices in M to the left and to the
right of i respectively (if i € M, then both these vertices are same as i). Define R; as
{l;, r;}. It remains to show that L; N L(D) € L(R;). This is easy to see. Consider a
task j (represented by interval /;) which belongs to L; N L(D). Then I; contains i
and a vertex from D. But then it must contain either /; or r;. Therefore, j belongs to
L(R;) as well. O

Theorem 2 now implies the following.

Corollary 1 There is an O (loglogm)-approximation algorithm for GENMAKESPAN
where the resources are represented by vertices on a line and tasks by intervals in this
line.

4.2 Paths on a tree

We are given atree T = (V, E) on |V| = m vertices, and a set of n paths, {Pj};?zl,
in this tree. The resources correspond to vertices and the tasks correspond to paths.
For a vertex i € [m], L; is the set of paths which contain i. We first show the A-safe
property.

Lemma 14 The set system ([n], {L; : i € [m]}) is 2-safe.

Proof Let D be a subset of vertices. We define M := Extend(D) as follows: let T’
be the minimal sub-tree of T which contains all the vertices in D. Note that all leaves
of T’ must belong to D. Then M contains D and all the vertices in 7’ which have
degree at least three (in the tree T”). It is easy to check that [M| < 2|D|. Fix a vertex
i € V. Weneed to define R; such that L; N L(D) € L(R;). Let v; be the vertex in the
sub-tree 7' that has the least distance to i (if i € T/, then v; is same as i). Note that if
v; has degree 2 (in the tree T"), it may not lie in M. See also Fig. 1. We claim that:

L;NL(D) € L, NL(D) (16)

In other words, a path P; containing i and a vertex w in D must contain v; as well.
Indeed, the last T’-vertex in the path from w to i must be v; (the closest vertex to i in
T"). We now consider two cases:

- Ifv; € M, we set R; = {v;}. By (16) we have L; N L(D) C L,; = L(R;).

— If v; ¢ M then v; must be a degree-2 vertex in T'. Let a; and b; be the first two
vertices of M that we encounter if we move from v; (along the sub-tree T”) in both
directions. Set R; := {a;, b;}. Let Q be the path from a; to b; in T’. Observe that Q
contains v;, all internal vertices in Q have degree 2 (in) and Q "M = {a;, b;}.
Let P; be any path which contains i and a vertex w in D. By (16) v; € P;. The
part of P; from v; to w must lie in T’ and hence contains either a; or b;.

Since |R;| < 2, the desired result follows. m|

@ Springer

616 A. Gupta et al.

Fig.1 The solid-square vertices are the “dangerous” vertices D. The box vertices are the additional marked
vertices M\ D. For vertex 8, we have vg = 10 and Rg = {5, 7}. Similarly, for vertex 9, vg = 2 and Rg = {2}

We now consider the «-packable property. As in the case of the line graph applica-
tion, this is equivalent to bounding the integrality gap of the unsplittable flow problem
on trees where vertices have capacities. An analogous result with edge capacities was
given by Chekuri et al. [10], and our rounding algorithm is inspired by their approach.

Consider an instance of the unsplittable flow problem where every vertex in the
tree has capacity 6, and path P; has reward r; and size s; (we assume that 6 >
max s ;). Our goal is to find a maximum reward subset of paths which obey the vertex
capacities—we call this problem UFP-Tree. It is easy to see that (2) is the natural
LP relaxation for this problem.

Lemma 15 The LP relaxation (2) for UFP-Tree has constant integrality gap, and so
the above set system is O (1)-packable.

Proof Consider a feasible solution {y; };le to (2). We root the tree T arbitrarily and
this naturally defines an ancestor-descendant relationship on the vertices of the tree.
The depth of a vertex is its distance from the root. For each path Pj, let v; be the
vertex in P; with the least depth, and define the depth of P; to be the depth of v;.

We partition the set of paths into types: P, the small paths, are the ones with
sj < 6/2, and P, the large paths, are the ones with s; > 6/2. We maintain two
feasible sets of paths, S; € Py and §; € P;. We initialize both S, §; = 0. We
consider the paths in ascending order of depth. Each path P; is rejected immediately
with probability 1 — y; /4 and with the remaining % probability we do the following:
if P; is a small (resp. large) path, we add it to Sy (resp. ;) provided the resulting set
S; (resp. §p) is feasible, i.e., it does not violate any vertex capacity. Finally, we return
the better among the two solutions S; and ;.

For the analysis, we will show that

plres|Js] = %’ Vj e [nl. 17

@ Springer

Stochastic makespan minimization in structured set systems 617

This would imply the lemma because our solution’s expected objective is:

n

n
E | max Z T, Z r Z%er~P[PjESSUSI]Z%Z”j'yj-
=l J=l

j:PjESS j:PjESZ
We begin with a key observation, which is easy to see.

Observation 6 Suppose that path Py is considered before another path P; and P; N
P #0. Thenv; € P.

Observation 7 Let P; be a small(resp. large) path. Before path P; is considered, the
load on any vertex v € Pj due to paths in S (resp. Sy) is at most the load due to these
paths on v;.

Proof Assume P; is a small path (the argument for large paths is identical). Consider
a time during the rounding algorithm before P; is considered. For a vertex v € P;,
let F, be the set of paths in S that contain v. By Observation 6, any path in F,, also
contains v;. This implies the claim. O

Observation 7 implies that if we want to check whether adding a path P; will violate
feasibility (of Sy or &), it suffices to check the corresponding load on v; (as all
capacities are uniform). We are now ready to prove (17). For any path P; (small or
large), let I be the indicator of the event that P, does not get immediately rejected,;
so P[Ix] = yx /4. We consider two cases:

— Pj is small. We condition on the event /; = 1: note that P[P; € S&] = P[/; =
11-P[P; € S|I; = 1]. Let L' C [n] denote the indices of paths Py considered
before P; with v; € Py and Iy = 1. Note that L' C Ly, . If the total size of L'is
at most & — s, then P; will get added to S, (conditioned on /; = 1). So,

PIP; ¢ Sill; =11 <Ps(L) =0 —5;1=P| Y sily =0 —s;

keLUj
E[ZkeL,)j Sk li] Zkeij sk (Ye/4) 6/4 1
= < — —
- 0 —s; 0 —s; —0-6/2 2

where the last inequality follows from LP constraints in (2) and the fact that P; is
small. Therefore,

P[P; € Sl =P[Pj € Ss|1; =1]-P[I; = 1] > y/8.

— Pj islarge. Let L” denote the indices of the large paths Py considered before P;
with v; € Py. If none of the paths indexed L” is selected then P; will be added to
S;. Moreover, path Py can be selected only if Iy = 1. So,

@ Springer

618 A. Gupta et al.

Vi
P[P ¢ Sl1j=1] SP[Z Iy = 1} SkXL;IP’[Ik ==y =

keL” kel”

where the second last inequality follows from the fact that sy > 0/2 forallk € L”,
and the last inequality follows from the fact that L” C L,; and the LP con-

straints (2). As in the previous case, this implies P[P; € §;] > %.

This completes the proof of (17) and the lemma. O
Combining Theorem 2 with Lemmas 15 and 14, we get

Corollary 2 There is an O(loglog m)-approximation algorithm for GENMAKESPAN
when the resources are given by the vertices in a tree and the tasks are given by paths
in this tree.

4.3 Axis-aligned rectangles in the plane

We now consider the following geometric set system: the tasks are n axis-aligned
rectangles in the plane and the resources are all points in the plane. The set L; for a
resource (i.e., point) i is given by the set of rectangles containing i. Note that any set
of n rectangles partitions the plane into poly(n) many connected regions: this follows
from the fact that the total number of intersection points is O (n%). We designate one
point in each connected region as the representative point for that region. Clearly,
it suffices to bound the loads on the representative points. Note that the number of
representative points is m = poly(n). Below, whenever we refer to an arbitrary point
p, it is equivalent to using p’s representative point.

Lemma 16 The above mentioned set-system is 4-safe.

Proof Let D = {(x;, yi)}i.‘:1 be a subset of points. Define the set M := Extend(D)
to be the Cartesian product of all the x and y coordinates in D, i.e., M = {(x;, y;) :
(xi, yi), (xj,y;) € D}. Clearly, |[M| < k2, which satisfies the first condition in the
definition of A-safe. Notice that the points in M correspond to a rectangular grid G
partitioning the plane, where the rectangles on the boundary of G are unbounded. See
Fig. 2a.

Let p be any point. We need to define aset R, € M suchthat L ,NL(D) € L(R)).
Let Q denote the minimal rectangle in the grid G that contains p. Let R, € M denote
the corners of rectangle Q (if Q is unbounded then it has fewer than four corners, but
the following argument still applies.) Define R, to be the set of these corner points.
Now let J be a task (i.e., rectangle) containing p and a point in D. By construction of
M, it must be that J contains one of the points in R,. This proves the lemma. O

We now consider the «-packable assumption. Corollary 5 in Appendix B proves that
this set-system is O ((log log n)?)-packable. Therefore, using Theorem 2 we obtain:

@ Springer

Stochastic makespan minimization in structured set systems 619

D,\. Do fat object F' containing p

[/S

q
[

[rectangle Q

Square points represent D Square points represent D
Circle points represent M \ D
(a) The rectangular grid G in Lemma 16. (b) Example for Case 2 in Lemma 17.

Fig.2 Examples for rectangles and fat objects

Corollary 3 Thereisan O ((log log n)3) -approximation algorithm for GENMAKESPAN
when the resources are represented by all points in the plane and the tasks are given
by a set of n axis-aligned rectangles.

4.4 Fat objects in the plane

We now consider more general shapes which are not skewed in any particular direction.
The tasks are given by a set of n “fat” objects in a plane and the resources are given
by the set of all points in the plane. We assume that the number of intersection points
between any pair of objects is constant, which is true for all our specific applications
(disks, triangles, rectangles). This implies that any set of n objects partitions the plane
into m = poly(n) many connected regions. As in Sect. 4.3, we designate one point
in each connected region as the representative point for that region and focus on the
loads of the m representative points. Whenever we refer to an arbitrary point p, it is
equivalent to using p’s representative point. For any resource (i.e., point) p, L is the
set of fat objects containing p.

Definition 2 (Fat objects [9]) A set F of objects in R? is called fat if for every axis-
aligned square B of side-length r, we can find a constant number of points Q (B) such
that every object in F that intersects B and has diameter at least r also contains some
point in Q(B).

Examples of fat objects include squares/disks (with arbitrary diameters) and trian-
gles/rectangles with constant aspect ratio (i.e., when the ratio of the maximum to
minimum side length is constant). For concreteness, one can consider all objects to be
disks; note that the radii can be different.

Lemma 17 The above-mentioned set system is O (1)-safe.

Proof Let F denote the set of fat objects represented by the tasks. Let D be any subset
of points in the plane and H denote the set of all non-zero pairwise distances between
the points in D; note that |H| < |D|>.

@ Springer

620 A. Gupta et al.

We define the set M := Extend(D) as follows: for each point p € D and distance
0 € H let G(p, 09) be the square centered at p with side-length 100. We divide this
square into a grid consisting of smaller squares (called cells) of side length 0.16. So
G(p, 6) has 100 cells in it. For each cell B in G(p, #), add to M the points Q(B)
from Definition 2 with r := 0.16.

Clearly, [M| < O(1) - |D||H| = O(D?) = poly(|D|) as required by the first
condition of A-safe. We now check the second condition of this definition. Let p be
an arbitrary point. We need to show that there is a constant size subset R, € M such
that L, N L(D) € L(R)). Let g be the closest point in D to p, and d(p, g) denote
the (Euclidean) distance between these two points. Note that d(p, ¢) may not belong
to H. We consider the following cases:

Case I: there exists some 0 € H with M < 6 < 5d(p,q). Consider the grid
G(q, 0). There must be some cell B in this grid that contains p. Define R, := Q(B),
where Q(B) is as in Definition 2 (with respect to F).

Let us see why this definition has the desired property. Let F' € F be any object
which contains p and some point » € D. Since q is the closest point in D to p, the
diameter of F is at least d(p,r) > d(p,q) > 0.10, which is the side length of B.
Note also that F' intersects B because p € F. So, by Definition 2, the object ' must
intersect Q(B) as well. Thus, L, N L(D) € L(R)).

Case 2: there is no 0 € H with @ <60 <5d(p,q). Let Dy € D be the subset of
D at distance at most d(p, ¢)/5 from g. Let ¢’ be the point in D\ Dy which is closest
to p; see Fig. 2b. (If D\Dy = ¢ then we just ignore all steps involving g’ below.)
Since ¢’ ¢ Dy, d(q,q’) > d(p, q)/5. Moreover, as H N [@, 5d(p,q)] = 0 we
have d(q,q’) > 5d(p, q). Using triangle inequality, we get d(p, q) + d(p,q’) >
d(q.q") > 5d(p, q), and so, d(p,q’) > 4d(p, q). We are now ready to define R,.
There are two kinds of points in R :

— Type-1 points: If Dy is the singleton set {g}, add g to R,. Otherwise, let A € H
be maximum pairwise distance between any two points in Dy. Note that:

2
A= max d(qi,q) < max (d(g,q1)+d(q,q2) < -d(p,q).
q1.92€ Do q1.92€ Do 5

For each cell B in the grid G(g, A), add Q(B) to R,. Note that the number of
cells is 100, and so we only add O (1) many points to R),.

— Type-2 points: Recall that d(p,q’) > 4d(p,q). It follows that d(q, q")
d(p.q) +d(p.q') < 125d(p.q’), and d(q.q") = d(p.q') — d(p.q)
0.75d(p, q’). So there is an element 8’ € H with 0.75d(p,q") < 0’
1.25d(p, q’). We consider the grid G(q’, 8")—there must be a cell in this grid
which contains p. Let B be this cell. Add all the points in Q(B) to R,,. Again, we
only add a constant number of points to R,.

IAN TV IA

Itis clear that R, is a subset of M. Now, consider any object ' € F which contains
p and some point in D. We will show that F' also contains some point in R, which
would prove L, N L(D) € L(R)). Two cases arise:

@ Springer

Stochastic makespan minimization in structured set systems 621

— FN Dy #@:1f Dy = {q}, then F clearly intersects R,. So assume that | Dy| > 2.
Recall that A is the diameter of Dg. So, the grid G (g, A) contains all of Dy, which
implies that there is a cell B in G(gq, A) intersecting F. As ¢ is the closest point
in D to p, the diameter of F is at least d(p,q) > 0.1A, the side length of B.
Hence, by Definition 2, F must contain a point in Q(B), and so, contains one of
the type-1 points in R),.

— F N Dy = ¥: Recall point ¢" and value 6" used in the definition of type-2 points
in R,. Note that there is some cell B in G(g’,0’) that contains p; so object F
intersects cell B. Further, F' contains some point r € D\ Dy which implies that
the diameter of F is atleastd(p, r) > d(p,q’) > 0.8 -6’, which is larger than the
side length of B. So, by Definition 2, F must contain a point in Q(B), i.e., some
type-2 pointin R .

This completes the proof of the lemma. O

For the a-packable condition, Corollary 6 in Appendix B implies that disks (of
arbitrary radii) are O (loglogn)-packable. And, Corollary 7 implies that fat triangles
are O(log*n - loglogn)-packable. Combined with Theorem 2 and Lemma 17, we
obtain:

Corollary 4 The GENMAKESPAN problem admits an O ((log log n)2))-appr0ximati0n
algorithm when tasks are disks in the plane, and an O ((log* n) - (loglog n)2)-
approximation algorithm when tasks are fat triangles in the plane.

5 Integrality gap lower bounds

We now study the limitations of our LP relaxation (6)—(9). There are two natural
questions—(i) can we obtain an O (1)-approximation for GENMAKESPAN under the
a-packable and A-safe assumptions with o, A = O(1)? and (ii) can we obtain an
approximation ratio similar to Theorem 2 without the A-safe assumption? For the
first question, we show that even for set systems given by intervals on a line (as in
Sect. 4.1) where o, . = O(1), the integrality gap of our LP is §2(log* m). For the
second question, we show that the integrality gap of our LP for general set systems

is 2 ((b;ﬁﬁ). So we cannot get an approximation ratio that is significantly better

than logarithmic without some additional condition (such as A-safe) on the set system.

5.1 Lower bound for intervals on a line

We consider the set system as in Sect. 4.1. Recall that resources are given by m vertices
on a line, and tasks by a set of n intervals on the line. We construct such an instance
of GENMAKESPAN with £2 (log* m)-integrality gap.

Let H be an integer. The line consists of m = 2 points andn = 2#+! —1 intervals.
The intervals are arranged in a binary tree structure. For each “depth”d =0, 1, --- H,
there are 2¢ many disjoint depth-d intervals of width m/2¢ each. We can view these
intervals as nodes in a complete binary tree 7 of depth H where the nodes at depth

@ Springer

622 A. Gupta et al.

d correspond to the depth-d intervals, and for any interval I and its parent I’ we
have I C I’. Moreover, points in the line correspond to root-leaf paths in 7 where
all intervals in the root-leaf path contain the corresponding point. The size of every
depth-d interval j is a random variable X; = Ber(279), ie. X; =1wp. 2=4 and
X; = 0 otherwise. The target number of intervals is ¢ = n: so we need to select all
the intervals.

Consider the LP relaxation with a target bound of 1 on the expected makespan. We
will show that the LP (6)—(9) is feasible with decision variables y; = 1 for all intervals
J - Note that every random variable X ; is already truncated (there is no instantiation
larger than one). So constraints (6), (7) and (9) are clearly satisfied.

Lemma 18 For any K C [m] with k = |K| we have ZjeL(K) Br(X;) < 4k. Hence,
constraint (8) is satisfied with b = 4 on the right-hand-side.

Proof Consider any subset K C [m] of vertices on the line. Recall that for any vertex
i, L; denotes the set of intervals that contain it; and L(K) := |J;cx Li. We partition
L(K) into the following two sets: L’ consisting of intervals of depth at most log k and
L" = L(K)\L' consisting of intervals of depth more than log k. We will bound the
summation separately for these two sets.

Bounding the contribution of L. Note that the total number of intervals of depth at
most log k is less than 2k. So |L'| < 2k. Moreover, B (X ;) < 1 for all intervals j. So
Zjey Br(X;) < L] < 2k.

Bounding the contribution of L”. Consider any vertex i € K. For each depth
d=0,---H, L; contains exactly one interval of depth d. So we have

H H
—d _ —d
D B S) Aer@) = om) tog (1+ (k = 127
jeL"NL; d=logk d=logk
H
<m Z 27‘1 < 2.
— logk -

d=logk

The first inequality used the facts that (i) L” contains only intervals of depth more
than log k and (ii) the size of each depth-d interval is Ber(2_d). The second inequal-
ity uses log(l + x) < 2x for all x > 0. It now follows that ZjeL,, Br(Xj) <

Dick 2 jerrnt; Br(Xj) < 2k.
Combining the two bounds above, we obtain the lemma. O

Next, we show that the expected makespan when all the n intervals are selected
is £2(log™* n). To this end, we will show that with constant probability, there is some
root-leaf path in 7 for which §2 (log* n) random variables in it have size one. Define
a sequence {h; }

_o as follows:
ho=2, hiy1—hi=nh;-2"fori=1,---c—1.
We choose ¢ = ©(log* H) so that h, < H.

@ Springer

Stochastic makespan minimization in structured set systems 623

Lemma 19 For any depth-d interval j, let T denote the intervals in the subtree of T
below j, from depth d to depth d + d2?. Then,

P[va > 1} >1—e 9.

vel

Proof We show that PP [ZveI Xy = O] < =4, which will imply the desired result.
Note that foreach 2 =0, ...,d 2d, 7 contains 2" intervals at depth d + h and each of
these intervals has size given by Ber(2-¢~"). By independence, the probability that
all these sizes are zero is:

d2? I d2¢ .
[[Pix,=01=JJa-27"M> <J]e? " =e
veZ h=0 h=0
which proves the lemma. O

Lemma 20 With probability at least % there is a root-leaf path in T such that at least
¢ random variables in it are 1.

Proof We show the following by induction oni, 0 <i < ¢:

i—1
with probability at least 1_[(1 —e "), thereisa depth-A; node v;
i’=0
where the root to v; path has at least i random variables of value 1. (18)

For i = 0, this follows easily because the root itself is 1 with probability 1. We now
assume the induction hypothesis (18) for some i < ¢ and prove it fori + 1. Let V; be
the set of nodes (i.e., intervals) in 7 at depth /;. For an interval j € V;, let E; be the
event that j is the first vertex in V; (say from the left to right ordering) such that the
root to j path has at least i random variables which are 1. Let Z; be the sub-tree of
depth h; - 2" below j (so the leaves of 7 ; are at depth h;41); and E’; be the event that
there is a random variable in Z; which is 1. Lemma 19 implies that for any j € V;,
IP’[E;.] >(1-— e_hi). Since the events £ are disjoint, and are independent of E}/ for
any j € V;, we get

P[3jeVi:E; NE}] = ZP[E,- AE)] = ZP[EJ] -P[E]]
jev;i Jjevi

> (1 —e) > PIE;].

JjeVi

Since the events E; are disjoint, Zj PIE;] =P[3j € V; : E;]. By (18), this proba-
bility is at least]_[E,;lo(l —e~hi"). Hence,

@ Springer

624 A. Gupta et al.

i
Pl3j eV Ej AE > [—e).
i’=0

Note that if events E; and E ’/ are true (for any j € V;) then there is some depth-/; 41
node v;41 with at least i + 1 r.v.s of value 1 on the root to v;4 path. This proves
the inductive statement for i 4 1. Finally, using (18) for i = ¢, the probability that
there is a root-leaf path with at least c r.v.s of value one is at least]_[ic;é (1—eli)y>

1-Yge i = L. o
Combining Lemmas 18 and 20, we obtain:

Theorem 8 The integrality gap of the LP (6)—(9) for GENMAKESPAN when the set
system is given by intervals on the line is 2 (log* m).

5.2 Lower bound for general set systems

Now we consider GENMAKESPAN for general set systems and show that the LP relax-

ation has Q(aog’liﬁ) integrality gap.

The instance consists of n = g2 tasks and m = ¢ resources where ¢ is some
parameter. For each task j, the random variable X ; is a Bernoulli random variable that
takes value 1 one with probability %, i.e., the distribution of X ; is Ber(é). The tasks
are partitioned into g groups—T71, - - - T,;, with g tasks in each group. Each resource is
associated with a choice of one task a; from each group T}, j € [g]. In other words,
the set L; for any resource i has cardinality ¢ and contains exactly one element from
each of the groups T;. Thus, the total number of resources is g9. The target number
of tasks to be chosen is n = ¢, which means every task must be selected.

We first observe that the expected makespan is §2(g). Indeed, consider any group
T;. With probability 1 — (1 — 1/g)? ~ 1 — 1/e, there is a task a; € T; for which
the random variable X,; is 1. So the expected number of groups for which this event
happens is about (1 — 1/e)q. As there is a resource associated with every choice of
one task from each group, the expected makespan is at least (1 — 1/e)q.

Consider the LP relaxation with a target bound of B = logg on the expected
makespan. We will show that the LP constraints (6)—(9) are feasible with decision
variables y; = 1 for all objects j. We will scale all the random variables down by a
factor of B (because the LP relaxation assumes that the target makespan is 1). Let X
denote the scaled Bernoulli r.v. with X = % w.p. % and X = 0O otherwise. Since this

random variable will never exceed 1, X’ (the truncated part) is same as X, and X" (the
exceptional part) is 0. So constraints (6), (7) and (9) are clearly satisfied. Moreover,

21/ logq

1 k1/logq
Pr(X) = (——log| 1+ =< (19)
ogk q

g logk’
where we used log(1 + x) < 2x forall x > 0.

Lemma 21 Constraint (8) is satisfied with b = 2¢? for the above instance.

@ Springer

Stochastic makespan minimization in structured set systems 625

Proof Consider any subset K C [m] of k = |K| resources. Recall that L(K) C [n]
denotes the subset of tasks contained in any of the sets corresponding to K. As every
random variable has the same distribution as X, the left-hand-side (LHS) in (8) is just
|[L(K)| - Bx(X). We now consider three cases:
— k < g.Wehave |L(K)| < kq as each resource is loaded by exactly ¢ tasks. Using
(19), the LHS is at most kq - Bx(X) < kq zq Jea <2e-k.

-q< k < g Wenowuse |L(K)| <n = qg° By(19),wehaveﬂk(X) <

qlogk So LHS < ¢ fu(X) < 254 <22 - k.
-—k>gq 2 Here we just use |L(K)| < q and Bx(X) <1toget LHS <k.

2.q%/logq
q logk —

The lemma is proved as LHS < 2¢% - k in all cases. O

Asq = O(E2). the LP integrality gap is Q(izL,) = 2 (aogljﬁﬁ)

We also observe that the integrality gap of LP (2) is « < 2 for all instances of
the deterministic problem that need to be solved in our algorithm. As all sizes are
identically distributed, we only need to consider deterministic instances of the reward-
maximization problem for which all (deterministic) sizes are identical, say s. Using
the structure of the above set-system, it is clear that an optimal LP solution will assign
the same value z; € [0, 1] to all tasks in any group G;. So the LP objective equals

q _1 7(G) - z; where r(G;) is the total reward of the tasks in G;. The constraints in
(2) imply Z —1%i <% 9. So this LP now reduces to the max- knapsack problem, which
is known to have 1ntegra11ty gap at most two. In particular, choosing all tasks in the
L%J groups G; with the highest 7(G;) yields total reward at least half the LP value.

6 Conclusion

We considered a class of stochastic makespan minimization problems, where a
specific number of tasks need to be selected and each selected task induces a
random load on multiple resources. When the set-system (consisting of the tasks
and resources) satisfies some geometric properties, we obtained good approxima-
tion algorithms. In particular, for stochastic intervals on a line, we obtained an
O (log log m)-approximation algorithm. Our approach was based on a natural LP relax-
ation, which also has integrality gap £2 (log* m). Finding the correct integrality gap of
this LP remains an interesting open question. Obtaining a constant-factor approxima-
tion (or hardness results) for stochastic intervals is another interesting direction.

A Scaling the optimal value

Suppose that A is a polynomial algorithm that given any GENMAKESPAN instance,
returns one of the following:

— a solution of objective at most p, or

— a certificate that the optimal value is more than 1.

@ Springer

626 A. Gupta et al.

Using this, we provide a polynomial time O (p)-approximation algorithm for GEN-
MAKESPAN. Observe that the optimal value OPT of GENMAKESPAN lies between
L :=minjc; E[X;]and U := n - max e[, E[X]. It follows that 37* < OPT < B*
for some value B* in the set:

g;:izf.L;ogzglogz(U/L)Jrl,zez}

For each B € G, consider the modified GENMAKESPAN instance with r.v. X ;/B for
each task j; and run algorithm A on this instance. Finally, return the solution with
the smallest objective obtained over all B € G. Note that when B = B*, the optimal
value of the modified GENMAKESPAN instance is at most 1: so algorithm .4 must find
a solution with (modified) objective at most p, i.e., the expected makespan under the
original r.v.s {X ;} is at most p - B* < 2p - OPT. The number of times we call algorithm
Ais O(log(U/L)). Note that L > s, and U < n - $4x Where s;,i, and s,,4, are
the minimum and maximum values that the r.v.s take. So, log(U/L) = log(n Zﬁ‘:),
which is polynomial in the instance size. Hence, we obtain a polynomial time 2p-
approximation algorithm for GENMAKESPAN.

B The a-packable property for rectangles and fat objects

In this section, we relate the o-packable property of a set system to the the intergrality
gap of the natural LP relaxation for maximum (weighted) independent set for the set
system. Using known integrality gap results for maximum independent set for axis-
parallel rectangles and fat objects, we can show «-packability of the corresponding
set systems for suitable values of «.

Recall the setting in the a-packable property. There is a set system ([n], £) with
size s; > 0 and reward r; for each element j € [n], and a bound 6 > max;s;. We
are interested in the integrality gap (and a polynomial-time rounding algorithm) for
LP (2), restated below.

max{ D orjyii Y sy <60, VLeL; 0<y; <1, Vje[n]}.
jeln] jeL

When all sizes s; = 1 and the bound 6 = 1, we obtain the independent set LP:

max{er-yj:Zyjfl, VLeL; 0<y; <1, Vje[”]}~ (20)
Jj€ln] JjeL

Note that the corresponding integral problem involves selecting a max-reward subset
of disjoint elements. (Elements ¢ and f are disjoint if there is no set L € L with
e, felL.)

Theorem 9 Suppose that the independent set LP (20) has integrality gap p and
an associated polynomial time rounding algorithm. Then, the set-system is O(p -
log log m)-packable.

@ Springer

Stochastic makespan minimization in structured set systems 627

Proof The proof proceeds in several steps: (i) we first consider the special case when
all s; values are 1, but the parameter 6 can be arbitrary, (ii) secondly, when 6 > s;
for all j (by more than a log m factor), we use randomized rounding, and (iii) finally,
for the general case, we use a standard bucketing trick to create O (loglogm) groups,
and show that one of the above two steps will work for each of these groups.

We give details of the first step. We show a rounding algorithm for the following
LP, and show that its integrality gap is at most 2p:

maX{er-yj:Zyjfb, VLeL; 0<y; <1, Vje[n]}. 1)
jeln] jeL

Here, we assume that b > 1 is integer. Note that this is a special case of the LP (2)
used in the «-packable condition.
(i) Rounding for the LP (21): We combine the rounding algorithm for the independent
set LP relaxation (20) with a greedy strategy to round a feasible solution to the LP (21).
Let y be a feasible (fractional) solution to the latter LP. We define y = y/b, which is
a feasible solution to the independent set LP relaxation (20).

We build the solution T C [n] iteratively; initially 7 = . For each iteration
k=1, ---b, we perform the following steps:

1. Consider the solution y restricted to [n]\T . Since this is a feasible solution to the
independent set LP (20), we use the independent set rounding algorithm to obtain
an integral solution S; € [n]\T.

2. Update T <« T U S;.

As {Si} are disjoint subsets, T = UzzlSk is a feasible integral solution to (21).
We now analyze the reward of the solution 7. For any subset U C [n]let Y (U) :=
> jeu Tj - ¥j be the LP-value restricted to U. Consider the two cases:

— Suppose Y([n]\T) > % - Y([n]) at the end of the algorithm. It follows that

Y([r\T) > % - Y([n]) in each iteration k. Consider the LP solution y restricted
to [n]\T (in iteration k). Since the rounding algorithm for the independent set LP
relaxation has integrality gap p,

Y([n])

1 _ 1
rS == > rj-3j = YN\ 2 = 7=

P jetnr

Adding over all b iterations, r(T) = 22:1 r(Sy) > %z]).
— Suppose Y ([n\T) < % - Y ([n]) at the end of the algorithm. Then,

r(T) = Y(T) =Y([n])) = Y([nI\T) >

-Y([nD).

In either case, we obtain that the algorithm’s reward r(T") > ﬁ - Y ([n]). This proves

that the integrality gap of (21) is at most 2p.

@ Springer

628 A. Gupta et al.

(ii) Randomized Rounding for large 6. Let T denote ﬁ. Consider the special

case when s; < 7 forall j € [n]. In this case, the LP relaxation (2) is a special case
of packing integer programs (PIPs), studied in [19]. Theorem 3.7 in [19] implies an
O (m'/?) integrality gap for the LP (2), where

P=—— >
mane[n] S

0 0
— =2logm.
T

Therefore, the LP (2) has constant integrality gap in this special case.

(iii) Geometric grouping for the general case. 'We now consider the LP (2) in the
general setting. Let y be a fractional solution to this LP. As define above, t := ﬁ.
We first partition the elements into groups based on their sizes as follows:

{jelnl:s; <1} ifk =0
{jelnl:2x1t <s; <2kt) ifk>1 "
Note that the number of groups is K = O (loglogm) as max; s; < 6. We handle each
group separately, and pick the maximum reward solution across the K groups.
Consider a group G, k > 1. Consider the fractional solution z defined as:

_[yi/4ifjeGy
=0 otherwise
We claim that z is a feasible solution to the LP (21) restricted to G, and a suitable
value of b. Indeed, consider any L € L. Then,

1 1 0
Zz, = Sk=ig Z $i 7%= kg Z 5p0Yi = Skrip =
jeL JjeGrNL jeGrNL

< lel,

[\ N

where we have used the fact that y is a feasible solution to (2), and ¢ :=
0/max e, s; > max{l, 2%}. It follows that z is a feasible solution to the LP (21)
where b = |c]. Hence, using the rounding algorithm for (21) mentioned in the first
step above, we obtain a solution Vi C Gy with reward

1 1
r(Vk)z% ZFJHZJ'Z% ery]'-

JEGk JEGK

Moreover, for each L € L, we have |V, N L| < b. Hence, forany L € L,

6 b
> sy (maxs;) [VinLl==-|VinL| < — <.
jeVinL eGy C c

Thus, Vj is a feasible integral solution to (2).

@ Springer

Stochastic makespan minimization in structured set systems 629

Finally we consider the case k = 0, i.e., the group G. As argued in the second step
above, we obtain a solution Vy C G with reward r(Vy) > é . ZjeGO rjy; where
o > 1 is constant. It follows that V; is an integral solution to (2) as well.

Finally, choosing the best solution from {Vj} over all groups, we obtain reward at
least

| 1 |
Vi) > — viy> —— Y — — Ly
maxr(Ve) = ;w W max®p. o) Xk: ; "1 T K max(8p, o) jZ TiYi

€[n]
This proves that the integrality gap of (2) is O(p loglogm). O

We now combine Theorem 9 with known results on maximum weight independent
sets for rectangles and fat objects, to prove their «-packable property.

Corollary 5 The set-system where tasks are n axis-aligned rectangles in the plane and
resources are all points in the plane, is O ((loglog n)?)-packable.

Proof The weighted independent set problem for rectangles in the plane has an LP-
based O (loglogn) approximation [7]. Combined with Theorem 9 and the fact that
the number of points m can be ensured to be poly(n) (see Sect. 4.3), we obtain that
the set-system is O ((log log n)?)-packable. O

Corollary 6 The set-system where tasks are n disks (of arbitrary radii) in the plane
and resources are all points in the plane, is O(loglogn)-packable.

Proof There is an LP-based O (u(n)/n)-approximation algorithm for weighted inde-
pendent set on set-systems where the “union complexity” of n objects is at most
u(n) [9]. See the survey [2] for more details on union complexity. The union complexity
of disks (of arbitrary radii) is O (n). So there is an LP-based O (1)-approximation algo-
rithm for weighted independent set. Combined with Theorem 9 and thatm = poly(n),
the result follows. o

Corollary 7 The set-system where tasks are n fat triangles in the plane and resources
are all points in the plane, is O (log™ n - loglogn)-packable.

Proof The union complexity of fat triangles is u(n) = O(n log* n) [3]. Using the
result from [9], we obtain an LP-based O (log* n)-approximation algorithm for the
weighted independent set problem. Using Theorem 9 and that m = poly(n), the
result follows. O

References

1. Agarwal, PK., Mustafa, N.H.: Independent set of intersection graphs of convex objects in 2d. Comput.
Geom. 34(2), 83-95 (2006)

2. Agarwal, PK., Pach, J., Sharir, M.: State of the union of geometric objects. In: Surveys in Discrete and
Computational Geometry Twenty Years Later, pp. 9-48 (2008)

3. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of locally fat objects in
the plane. STAM J. Comput. 43(2), 543-572 (2014)

@ Springer

630

A. Gupta et al.

11.

12.

14.

15.

16.

17.

18.

19.

. Carr, R.D., Vempala, S.S.: Randomized metarounding. Random Struct. Algorithms 20(3), 343-352

(2002)

. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable

flow problem. Algorithmica 47(1), 53-78 (2007)

. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA, pp. 892-901 (2009)
. Chalermsook, P., Walczak, B.: Coloring and maximum weight independent set of rectangles. In: Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 860-868 (2021)

. Chan, T.M.: A note on maximum independent sets in rectangle intersection graphs. Inf. Process. Lett.

89(1), 19-23 (2004)

. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks.

Discrete Comput. Geom. 48(2), 373-392 (2012)

. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer

programs. ACM Trans. Algorithms 3(3), 27 (2007)

Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of
combinatorial structures. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pp. 575-584 (2010)

Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic
study of exact and approximate algorithms. Manag. Sci. 23(8), 789-810 (1977)

. Elwalid, A.I., Mitra, D.: Effective bandwidth of general markovian traffic sources and admission control

of high speed networks. IEEE/ACM Trans. Netw. 1(3), 329-343 (1993)

Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic load balancing on unrelated machines. Math.
Oper. Res. 46(1), 115-133 (2021)

Hui, J.Y.: Resource allocation for broadband networks. IEEE J. Sel. Areas Commun. 6(3), 1598-1608
(1988)

Kelly, F.P.: Notes on effective bandwidths. In: Stochastic Networks: Theory and Applications, pp.
141-168. Oxford University Press (1996)

Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections. SIAM J. Comput.
30(1), 191-217 (2000)

Molinaro, M.: Stochastic £, load balancing and moment problems via the I-function method. In:
SODA, pp. 343-354 (2019)

Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM
J. Comput. 29(2), 648-670 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Stochastic makespan minimization in structured set systems
	Abstract
	1 Introduction
	1.1 Results and techniques
	1.2 Related work

	2 Problem definition and preliminaries
	2.1 Structure of set systems: the two assumptions
	2.2 Effective size and random variables

	3 The general framework
	3.1 The LP relaxation
	3.2 Overview of analysis
	3.3 The deterministic subproblem
	3.4 Rounding a feasible LP solution
	3.5 The analysis

	4 Applications
	4.1 Intervals on a line
	4.2 Paths on a tree
	4.3 Axis-aligned rectangles in the plane
	4.4 Fat objects in the plane

	5 Integrality gap lower bounds
	5.1 Lower bound for intervals on a line
	5.2 Lower bound for general set systems

	6 Conclusion
	A Scaling the optimal value
	B The α-packable property for rectangles and fat objects
	References

