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feedback was provided using an invasive approach. During 
object recognition of different properties, multiple sources of 
sensory feedback are needed [21], [22]. Noninvasive multi-
source feedback approaches have been evaluated in previous 
studies [23]-[25]. Some have shown improvement in prosthetic 
functionality [25] and distinguishability of haptic cues [24], 
while others have reported degraded control when compared 
to single feedback sources [23]. Nonetheless, most of these 
approaches elicited solely haptic feedback. As a result, it re-
mains unclear how concurrent haptic and tactile-proprioceptive 
feedback sources are used at different myoelectric control 
strategies. 

Accordingly, the purpose of the current study was to evaluate 
object recognition using a specific non-invasive multimodal sen-
sory stimulation when participants myoelectrically controlled a 
prosthetic hand. Specifically, we examined how different types 
of somatosensory (hap tic and tactile-proprioceptive) informa-
tion were integrated for different types of controllers (position-
vs. velocity-based control) for object recognition (size and 
stiffness). We hypothesized that position control would result 
in greater recognition accuracies, because the EMO-position 
mapping is more intuitive and muscle activation level could 
provide additional information about the joint angle. Haptic 
feedback was elicited via transcutaneous stimulation of the 
peripheral nerves, using an electrode grid placed along the 
upper arm targeting the median and ulnar nerves [7]-[9], [26]. 
Spatially distinct sensations could be evoked by recruiting 
distinct sensory axons [27]. In contrast, nerve stimulation is 
less likely to elicit tactile-proprioceptive sensation, which is 
commonly provided using sensory substitution [28]-[3 I]. We 
elicited tactile-proprioceptive feedback describing the pros-
thetic's joint kinematics using a vibrotactor array placed on the 
upper arm. The prosthetic hand was myoelectrically controlled 
using either position- or velocity-based control. During pros-
thetic control, fingertip forces were transformed to amplitudes 
of nerve stimulation, while the joint angles of the index finger 
were translated to distinct vibratory parameters (location and 
intensity). This unique design allowed us to evaluate the inte-
grative role of artificial tactile-proprioceptive feedback and so-
matotopic haptic feedback for the recognition of multiple object 
properties concurrently, when different myoelectric controllers 
were employed. Prior work has evaluated the recognition of a 
single object property using force feedback approaches [32], 
[33]; however, artificial feedback of multiple modalities (either 
invasive or non-invasive) has yet to be assessed to the same 
extent, especially when discerning their interaction with various 
control strategies. Additionally, concurrent recognition of mul-
tiple object properties has not been tested non-invasively with 
myoelectric control. The current study can help us understand 
the impact of concurrent haptic and tactile-proprioceptive feed-
back on closed-loop control of prosthetic hands during object 
recognition. Our novel haptic feedback approach also elicits 
somatotopic percepts that are deemed more intuitive compared 
to typical sensory substitutional perceptions [34], thereby po-
tentially reducing the cognitive load. The non-invasive feedback 
strategies can also be refined, and applied on a greater number 
of individuals with various clinical populations. 
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Fig. 1. Diagram illustrating the location of the vibrotactors, 2x8 electrode 
grid, and EMG channels (a) along with the sensory feedback approach. The 
joint angle and fingertip force from the sensorized prosthetic hand was used 
to elicit tactile-proprioceptive (b, c) and haptic feedback (d, e), respectively. 
Joint angle was converted to a tactor setting (b) eliciting vibratory feedback (c). 
Fingertip force was converted to a desired current amplitude using a user-specific 
sigmoid function (d) to generate the stimulation train (e). 

II. METHODS 

A. Participants 

Nine neurologically intact participants (6 Male, 3 Female, 
23-30 years of age) and one amputee (Female, 6 years after 
amputation) were recruited for this study. Informed consent was 
received from each participant via protocols approved by the 
Institutional Review Board of the University of North Carolina 
at Chapel Hill (Approval#: I 6- I 852). All participants were nai've 
about the experimental protocol. 

B. Experimental Setup 

Each participant was seated in front of a table with their right 
arm placed comfortably atop of it. The medial and lateral sides of 
the upper arm and forearm were then cleaned using alcohol pads. 
Using the line connecting the medial epicondyle of the humerus 
to the center of the axilla as a reference, a 2x8 electrode grid was 
positioned across the medial side of each participant's upper arm 
(Fig. la). The median and ulnar nerves are superficial to the skin 
near this location, allowing for electrical stimulation to elicit 
haptic feedback along the hand. By stimulating distinct pairs 
(i.e., bipolar stimulation), unique electric field activated unique 
sensory axons that innervate discrete hand regions. Following 
grid placement, a plastic vice applied mild pressure ensuring 
stable electrode-skin contact. 

A custom MATLAB interface ( v2017b, Math Works Inc) com-
municated with a switch matrix (Agilent Technologies) and 
an electrical stimulator (STG4008, Multichannel System) to 
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Fig. 2. Diagram illustrating the placement of the vibrotactor array in relation 
to the right upper arm of the participant (a). Each combination of tactor and 
stimulation level corresponds to a given prosthetic joint angle range (b ). 

delivery stimulation trains to designated electrode pairs. The 
matrix linked the cathode and anode of the stimulator to one of 
sixteen Ag/ AgCl gel-based electrodes. Using a fixed pulse width 
(200 µs) and frequency ( I 50 Hz) [26], [27], the stimulator deliv-
ered biphasic, charge-balanced, square waves with amplitudes 
modulated by the fingertip force from the I-limb Ultra prosthetic 
hand (Robo-limb, Ossur) (Fig. le). 

A band of vibrotactors was wrapped around the upper arm just 
proximal to the participant's elbow (Fig. I a). The band consisted 
of 4 tactors (3.05 cm diameter C-2 Tactor, ATAC) each spaced 
approximately 6 cm apart (center-to-center). Tactors I and 2 
were positioned along the laterial side of the upper arm, while 
tactors 3 and 4 were placed on the medial side (Fig. 2a). The 
band was then gently tightened to ensure sufficient skin contact. 
Participants were asked and reminded to report any discomfort 
throughout the experiment. 

Vibration timing, amplitude, and frequency for each tactor 
was specified through a controller (ATAC) programmed by the 
MATLAB interface. During the study, the frequency was fixed 
at 200 Hz, because human skin was most responsive to values 
between 200-250 Hz [14]. Four tactors and two stimulation 
levels were combined to represent eight discrete finger positions 
along the prosthetic index finger's range of motion (Fig. 2b ). 
Eight finger positions, 10 degrees apart, were selected to match 
the natural proprioceptive acuity of the hand in healthy indi-
viduals [35]. A low and high stimulation level was executed 
using RMS amplitudes of I 5 I and 300 mA, respectively. These 
parameters produced sensory feedback without eliciting tendon 
illusion [36]. The use of multiple tac tors minimized the potential 
for irritation and desensitization of the skin [37] and increased 
user intuitiveness. To further minimize desensitization, vibration 
transitions to an idle state when the robot's joint angle was held 
constant for longer than 2 seconds. In this state, one second 
of stimulus was delivered to provide users with feedback once 
every 3 seconds. The system returns to its normal state once 
movement was resumed. 

Electrical and vibratory stimulation were modulated concur-
rently in real-time based on the force and joint angle record-
ings from the prosthetic hand, respectively. Specifically, current 
amplitudes were defined by transforming the recorded forces 
using a participant-specific sigmoid function (Fig. Id). The 
function was constructed using a minimum of 0. IO N and 

TABLE I 
STIMULATION PARAMETERS FOR INDIVIDUAL PARTICIPANTS 

Sensation Region: Electrode Sensory Just Below 
Participant I: Index, M: Pair Threshold Motor 

# Middle, R: Ring, (Cathode- (mA) Threshold 
T:Thumb Anode) (mA) 

Intact! l&M 4-6 1.5 2.0 
lntact2 I 2-5 3.9 6.0 
Intact3 l&M 3-6 3.2 3.7 
Intact4 l&T 11-13 1.3 5 
Intact5 I,M&R 3-5 2.8 3.8 
Intact6 l&R 11-13 2.8 3.6 
Intact? I 5-7 3.5 4.4 
Intact8 l&M 2-4 2.7 3.6 
Intact9 I 4-7 3.1 3.9 

Amputee! I,M,&T 2-5 1.6 2.5 

maximum of 5 N force, an allowable stimulation range, and 
a steepness value of I [8], [9]. The minimum and maximum 
forces were selected via preliminary test. The minimum value 
ensured stimulus was not continuously delivered if force sensor 
drift occurred. The maximum value was set to a value slightly 
below the average peak force exerted when grasping the softest 
objects, which ensured that stiffness was identified based on 
the rate of change of the stimulus strength rather than the 
peak intensity. For each participant, the stimulation range was 
bound using the sensory threshold and just below the motor 
threshold for the selected electrode pair (Table I). The sensory 
threshold was identified as the stimulation amplitude that ini-
tially evoked haptic sensation on the fingers of the participants. 
The motor threshold was identified as the stimulation amplitude 
that evoked visible motion of the finger. For each threshold 
identification process, the amplitude was set to a random value 
and was slowly increased using a step of 0.1 mA until the given 
threshold was identified. The upper limit amplitude was set to 
one to two steps below the motor threshold to minimize the 
potential for muscle contractions. This process was repeated 
three times for each threshold, and the three outcomes were 
then averaged to find the stimulation range. The flattening of the 
sigmoid curve ensured participant safety and further reduced the 
likelihood of inducing muscle activations. 

The joint angle relating to the metacarpophalangeal (MCP) 
joint of the prosthetic's index finger was used to modulate the 
tactor vibration to provide tactile-proprioceptive feedback to the 
user. The desired setting was determined using discrete mapping 
of the joint angle to one of the eight tactor settings (Fig. I b and 
2b ). The encoding resolution was IO degrees. 

C. Myoelectric Control 

The prosthetic hand was placed on a stand in front of the 
experimenter to ensure that incidental feedback, such as the 
vibration of the prosthetic, would not be provided to the partici-
pants. Visual feedback was blocked by placing the hand outside 
of the participant's line of sight. Noise-canceling headphones 
were also used to block the audio cues from the devices. The 
prosthetic's index finger was myoelectrically controlled by the 
participant. Two electromyogram (EMG) electrodes (Delsys 
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Trigno) were placed on the anterior and posterior sides of the 
participant's forearm (Fig. la) to record the activities of extensor 
digitorum communis and flexor digitorum superficialis of the 
index finger, respectively. Using a 200-ms window with I 00-ms 
overlap, the activation level was extracted from the rectified 
and filtered EMG signals after normalization by the maximum 
voluntary contraction (MVC) for each channel. The joint angle 
or velocity was linearly mapped in real-time based on the relative 
muscle activation level with the maximum values correspond-
ing to 50% MVC to minimize potential muscle fatigue. By 
comparing the relative extensor and flexor activation levels, 
the direction and speed in which the prosthesis articulates was 
determined using position- or velocity-based control schemes. 
Position-based control mapped the relative level of activation to 
a given finger position, e.g., a relatively higher flexor activation 
than extensor resulted in a greater joint flexion angle. The joint 
angle of the prosthesis can move from 0-85° of flexion with a 
minimal controllable angle of~ I .25°, as a result 2-degrees of er-
ror tolerance was set for the reference angle. For velocity-based 
control, the relative level of flexor and extensor activation was 
mapped to the joint speed. For this prosthetic hand, the minimum 
and maximum angular velocity was approximately 25° and 80° 
per second, respectively. A custom-made proportional derivative 
(PD) controller was implemented using MATLAB to control 
the position or velocity of the finger. The controller updated the 
reference position or velocity at 10 Hz, and the control command 
to the motor was updated at 40 Hz. 

D. Experimental Procedure 

Pre-experimental preparations were performed. First, each 
vibratory setting was stimulated to ensure the stimulus did not 
cause any pain or discomfort. Next, the electrode grid was 
searched to find an electrode pair and stimulation range that 
elicited sensation along the individual's index finger (Table I). 
Each participant then practiced controlling the prosthetic hand 
using each control scheme for 1-2 minutes. Participants were 
then introduced to each of the 8 vibratory settings. During 
this period, the experimenter informed the participant of which 
joint angle the stimulus represented. The vibrator settings were 
elicited in order from IO to 80 degrees and back to IO degrees. 

The main experiment evaluated the recognition performance 
of objects of varying size and stiffness with haptic and tactile-
proprioceptive feedback simultaneously. Based on the prosthetic 
fingertip force, stimulation intensity was altered during object 
grasping. Object recognition was performed using four cubes: 
two sizes (4 cm and 6 cm) and two stiffness levels (1.7 N/mm and 
2.9 N/mm). Object size was encoded as the sensed joint angle 
(tactor location and vibration intensity) when the prosthetic fin-
ger contacted the cube, while the rate of change of the electrical 
stimulation intensity was used to discriminate object stiffness. 

We tested position and velocity control in two blocks. These 
two control schemes were executed in a random order across 
participants. Prior to each control scheme, participants explored 
the two types of sensory percepts as they grasped various ob-
jects using the prosthesis. After 2-3 minutes of exploration, 
visual and auditory information was blocked prior to a short 
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Fig. 3. Example force (red) and joint angle (blue) traces when grasping the 
four objects of varying size and stiffness. The gray region indicates the time 
needed to reach the maximum force of the sigmoid function. 

training period (10-15 trials) with feedback of performance 
provided. The experimenter placed the object in a random order 
between the prosthetic's index finger and thumb. Participants 
were instructed to flex the prosthetic's index finger to grasp the 
object, and report the perceived size and stiffness. After training, 
participants completed 3 trials per object totaling 12 trials per 
block. The amputee participant performed 4 trials per object for a 
total of 16 trials per block. During these trials, participants were 
not given feedback about their responses. Example force and 
joint angle traces produced during a given object grasp are shown 
in Fig. 3. Supplementary videos demonstrate the closed-loop 
control of the prosthesis during object recognition. 

E. Data Analysis 

To evaluate the recognition accuracy, confusion matrices were 
constructed to compare the ground truth with the recognized 
object. The average and standard error of the evaluation metrics 
were calculated across participants. 

F. Statistical Analysis 

One sample Wilcoxon signed rank test were conducted for 
each testing condition to evaluate if recognition accuracies were 
significantly greater than chance values. The chance of correctly 
identifying both the size and stiffness of the object was 0.25. 
Additionally, a chance value of 0.5 was utilized to assess the 
recognition of object size or stiffness individually. Lastly, paired 
Wilcoxon signed rank tests were performed to assess the effect 
of control schemes and feedback conditions. To control the 
risk of type I error when performing multiple statistical tests, a 
Bonferroni-based correction was applied to the p-value of 0.05 
[38]. 

III. RESULTS 

We evaluated the recognition performance of object size and 
stiffness using the position or velocity control scheme. The 
objects were labeled with 'S-S' denoting a small-soft object, 
'S-H' denoting a small-hard object, 'L-S' denoting a large-soft 
object, and 'L-H' denoting a large-hard object. The confusion 
matrices (Fig. 4) evaluate the perceived object size and stiff-
ness to the ground truth. The results showed that most objects 
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large-soft, and 'L-H': large-hard. Error bars denote standard error. 

were correctly identified when using both position and velocity 
control, with an accuracy of 73. I%± 2.5% and 74. I%± 3. I% 
for intact participants, respectively. The corresponding accuracy 
levels were 68.8% and 8 I .3% for the amputee, which were sim-
ilar to the intact participants. Most of the errors were observed 
when recognizing the L-S and S-H objects. All recognition 
accuracies were found to be significantly greater than chance 
(p<0.05, power > 0.8) with no significant difference across 
control conditions (p > 0.05). 

The recognition accuracy varied across the four objects 
(Fig. 5a). When utilizing velocity control, the L-H object was 
identified correctly most often by intact participants, resulting 
in an accuracy of 89.0% ± 5.2%; however, the S-S object 
showed the highest accuracy (77.9% ± 7.4%) when utiliz-
ing position control. Similarly, the amputee showed a 100% 
accuracy when identifying the L-H object using both control 
schemes. Across both control schemes, the lowest recognition 
accuracy was reported when grasping the S-H object for intact 
participants. The S-H object was correctly identified during 63% 

of position-control trials and during 59% of velocity-control 
trials. The amputee also showed the lowest accuracy (50%) when 
recognizing the S-H and L-S objects using position-control, and 
a higher accuracy (75%) was observed on these two objects when 
using velocity-control. Nevertheless, all four objects resulted in 
recognition accuracies significantly greater than chance value 
(p < 0.05, power > 0.8). When comparing across control 
schemes, no significant differences were observed, except for 
the L-H object. Velocity-control resulted in a statistically greater 
recognition accuracy (p < 0.05), compared to position-control. 

When evaluating each individual property, object size and 
stiffness could each be identified separately (Fig. 5b ). During 
position and velocity control, object size recognition resulted in 
accuracies of 85. I% ± 2.2% and 83.3% ± 2.6% for intact par-
ticipants, respectively. The corresponding accuracy levels were 
75% and 81.3% for the amputee. Object stiffness was correctly 
identified when using both position and velocity control, with 
an accuracy of 83.3% ± 2.3% and 8 I .4% ± 2.9% for intact 
participants, and 8 I .3% and 93.8% for the amputee. Addition-
ally, for both control schemes, the recognition accuracies of 
individual object property were significantly greater than chance 
value (p<0.05, power > 0.8). For each property, no significant 
difference was observed between control conditions (p > 0.05). 

IV. DISCUSSION 

The current study sought to determine how non-invasive 
somatosensory feedback affects object recognition with distinct 
myoelectric control schemes. Our findings show that concur-
rently evoked haptic and tactile-proprioceptive feedback al-
lowed for accurate object property recognition. The outcomes 
can facilitate our understanding of the sensorimotor integration 
process during human-robot interactions, which can potentially 
promote fine control of prosthetic devices. 

Our results showed that participants effectively performed 
object size and stiffness recognition via concurrent haptic and 
tactile-proprioceptive feedback in either position- or velocity-
control schemes with similar performance. It is possible that 
a simple open and closing task may have caused the similar-
ity in response accuracy, especially in naive participants. A 
task with higher complexity or involving object manipulation 
could potentially distinguish the two types of controllers. In 
the future, we plan to perform more in-depth evaluations of 
the stimulation approach in more ecological settings, where the 
task includes reaching, grasping, manipulation, and releasing. 
Although the amputee participant demonstrated identification 
accuracy levels largely similar to the intact participants, the 
accuracy levels varied based on the controller, with greater ac-
curacies observed in velocity-control. The amputee participant 
described that position-control provided greater controllability 
of the hand; however, the added control effort of maintaining 
greater muscle activation levels could have affected the recog-
nition accuracies. These outcomes represent the participants 
(both intact and amputee) that had no prior experience with the 
stimulation approaches. 

Our results also showed that all four objects could be recog-
nized with accuracies significantly greater than chance; however, 
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the lowest accuracy ( <60%) arose when attempting to recognize 
the small-hard object. The joint angle encoding resolution was 
10 degrees in our case. As shown in the example traces in Fig. 3c, 
the difference in the joint angles at object contact between the 
small-hard and large soft was <10 degrees. As a result, the 
object size recognition is likely affected by the low encoding 
resolution in joint angle. In addition, some participants had 
lower stimulation range (motor-sensory threshold). Prior work 
has shown that lower ranges can result in reduced accuracy when 
discerning stiffness [7]. A lower range reduces the number of 
perceived stimulation (sensation) levels and in turn the resolu-
tion of the elicited haptic information. Altering the stimulation 
waveform through reductions in pulse width and the addition 
of an interphasic delay can potentially improve the resolution 
of haptic encoding. Alternatively, the mapping of the EMG to a 
given position/velocity may affect the accuracy. Restricting the 
maximum speed can allow for more time to perceive the change 
in haptic sensation intensity and identify the tactor setting when 
the finger contacts an object. As a result, stiffness and size 
recognition may be improved, allowing for the recognition of 
a greater range of sizes and stiffness levels [7]. 

Lastly, a single feedback has shown differing levels of success 
when discerning stiffness. Some studies reported accuracies 
similar to those reported in the current study [5], [7], while 
others reported lower accuracy values [18], [33]. The reduction 
in accuracy may be due to the greater number of object stiffness 
levels assessed and/or feedback method used. Prior work re-
ported improved accuracy and response time when identifying 
a stimuli's position and intensity if the feedback was somato-
topic [34]. The greater success rates reported here may also be 
attributed to the added insight provided by a specific multimodal 
feedback approach. However, multiple feedback sources can 
also require more workload, given that both are not as natural as 
the biological feedback. Combining multiple feedback sources 
can cause a synergetic effect that alters perception of a partic-
ular stimulation. In addition, excessive information can lead to 
sensory overload affecting perceptibility of a given feedback 
source. Prior work has supported the use of multimodal systems 
for improving the perceptual accuracy of complex feedback 
information, such as haptic and proprioceptive cues [39], [ 40]. 
However, one study suggested that cognitive load likely affects 
sensory acuity [24]. Prior work has shown that somatotopic 
feedback was more robust to dual tasks compared to substi-
tutional strategies [ 41]. The results suggest that our somatotopic 
feedback approach may limit the cognitive load, which could 
decrease the potential loss of sensory acuity.Nevertheless, future 
work is needed to evaluate the cognitive load during multimodal 
feedback in order to optimize these feedback modalities. 

Prior studies have shown that recognition of object size and 
stiffness can be performed using invasive techniques [20], [29]. 
Our current non-invasive approach resulted in accuracies that 
were slightly lower than those reported in prior work. Varia-
tions in the accuracies were likely affected by differences in 
training/user experience, experimental protocol, prosthetic con-
troller, and object characteristics. In our study, the participants 
received minimum training with the elicited sensory feedback. 
The amount of prior training and experience with a prosthesis or 
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sensory feedback strategy can affect an individual's perception 
of the elicited sensations. Regarding the experimental protocol, 
earlier work [20] evaluated the recognition of object size and 
stiffness separately, potentially reducing the complexity of size 
and stiffness interactions. Regarding the prosthetic controller, 
our study evaluated the difference in recognition accuracy when 
utilizing continuous position- and velocity-control schemes. A 
previous work [29] utilized a pattern classification of three states 
(hand open, hand close, and rest) using a fixed articulation speed. 
In this case, a fixed speed reduces the variability in exerted forces 
and finger movement, improving the consistency across trials. 
Lastly, the differences in object size and stiffness in different 
studies may affect the produced force and joint angle, including 
the contact timing and rate of change of the evoked sensory 
feedback. Overall, our findings suggest that object size and 
stiffness recognition can be performed using non-invasive sen-
sory stimulation, which allows for routine testing across a larger 
population and eliminates the need for surgical procedures. 

Haptic feedback was elicited by stimulating the peripheral 
nerves, evoking feedback based on the force exerted by the pros-
thesis. Unlike fingertip haptic feedback, tactile-proprioceptive 
feedback is often conveyed using sensory substitutional tech-
niques. In the current study, 4 tactors were placed along the 
distal region of the upper arm. This setup was selected to 
distribute the vibratory stimulus across multiple locations of 
the skin surface. This design limited the possibility of sensory 
adaptation or habituation due to continued activation at a single 
location, if a single tactor is used. Sensory adaptation can affect 
user's perceptual accuracy, which could impact the closed-loop 
control of the device [ 4 2]. Although the tactor controller can 
activate multiple tactors concurrently, a prolonged activation of 
a previous active tactor could lead to sensory habituation. A 
higher number of stimulation levels can also provide greater 
number of encoded angles. However, during muscle contraction 
or limb movement, the contact between the skin and the tactor 
could change, which could bias the perceived stimulation levels. 
Therefore, we used only two stimulation levels. In addition, 8 
settings were selected to mimic the proprioceptive acuity of 
the finger with the change in vibration intensity and location 
mirroring the finger's motion. If greater angle resolution were 
needed, stimulation levels or tactors could be added to improve 
system performance [43]. 

The non-invasive nature of our technique could be employed 
with other prosthetic devices as well. Other devices could be 
used in the place of the current prosthesis if force and joint 
angle information can be recorded. One study has shown that the 
SoftHand Pro can lead to greater functional outcomes compared 
with typical devices used by recruited amputees [44]. Pairing 
this feedback strategy with the SoftHand Pro could close the 
loop, further improving system functionality. The non-invasive 
nature also allows for use in alternative settings. For exam-
ple, this approach can potentially be implemented for other 
clinical populations, such as individuals with sensory deficits, 
post-stroke survivors, or for the utility of teleoperated devices. 
Sensory deficiencies can potentially be restored with enhanced 
sensory feedback, and individuals with sensory impairments can 
perceive the evoked haptic and tactile-proprioceptive feedback 

Authorized licensed use limited to: N.C. State University Libraries -Acquisitions & Discovery S. Downloaded on May 20,2022 at 13:41 :42 UTC from IEEE Xplore. Restrictions apply. 



VARGAS et al.: OBJECT RECOGNITION VIA EVOKED SENSORY FEEDBACK DURING CONTROL OF A PROSTIIETIC HAND 213 

to allow for improved control of their limb. In stroke popu-
lations, significant correlation between upper limb motor and 
somatosensory impairments has been reported [45]. Underly-
ing somatosensory impairments, including reduced haptic and 
proprioceptive sensations, can negatively affect the execution 
of motor tasks [46]. In addition, functional imaging suggest 
that motor training leads to heightened somatosensory cortex 
activation [47]. Thus, synchronized somatosensory and motor 
training can potentially strengthen the activation of both cortical 
regions leading to supplemental benefits during rehabilitation. 
Like prosthetic devices, teleoperated devices have advanced 
in recent years. Accurate device operation can be challenging 
for the user when the device interacts with objects of varying 
properties, such as stiffness, size, and weight [ 48]. In general, a 
teleoperation system should be intuitive enough to allow users to 
easily control the end-effector, in order to efficiently and safely 
perform a given task [49]. Sensory feedback provides insight 
into the interaction between the user and the device in a remote 
setting, which can ensure successful task performance [50]. The 
elicited multimodal feedback could enable dexterous control 
by pairing our stimulation approach with a teleoperated device. 
Nonetheless, future investigations are needed to evaluation the 
possible outcomes from these alternative applications. 

The current study has several limitations. First, evaluations 
were performed with a limited number of trials and participants 
spanning both intact and amputee populations. In terms of am-
putee recruitment, a prior study identified that the haptic percepts 
elicited via transcutaneous electrical nerve stimulation is similar 
between individuals with and without arm amputations [27]. In 
addition, similar recognition accuracies were observed between 
the amputee and the intact participants in the current study. As 
a result, outcomes seen in intact participants may characterize 
those expected in amputees. Unlike the plastic behavior of the 
motor cortex representation, several years following an ampu-
tation, the phantom hand's somatosensory cortex representation 
remains s [51]. In addition, several studies, comparing the spatial 
acuity of an amputee's residual and intact limbs, suggest that the 
touch and two-point discrimination thresholds were better on the 
residual limb [30], [52]. The improvements are potentially due 
to either the reorganization of the central sensory mapping [53] 
or the attentional resources that can prioritize use after amputa-
tion [54 ]. Nevertheless, further investigations involving a larger 
number of arm amputees are necessary to examine whether the 
findings remain consistent in this population. A small number 
of trials were tested in each condition to limit the duration of 
the experiment. In the future, a greater number of trials can 
be performed to ensure observations remain consistent over 
multiple sessions. Second, the study utilized an array of tactors to 
represent the kinematics of a single finger. Daily tasks typically 
require multiple fingers to perform a variety of grasp patterns. 
Encoding of multi-finger proprioception can be employed by 
varying the vibration frequency or through temporally varied 
stimulation pulses. During myoelectric control of the prosthesis 
joint, EMG variations and inconsistency of object placement in 
the hand could lead to variations of vibrotactile feedback for 
the same object. It is unlikely that the participants used a fixed 
vibration setting to indicate a specific object. However, it would 

be meaningful to evaluate the recognition of a range of objects 
not used during the initial training. Last, the control schemes 
applied were relatively simple with proportional control based 
on the EMG amplitude of two channels. The simplification of 
the control strategy allowed for a direct evaluation of prosthetic 
control and object recognition during position- and velocity-
control with and without feedback. Nevertheless, it is crucial 
to evaluate whether these findings can hold with more complex 
control strategies, such as musculoskeletal model-based control 
or motor unit-based control approaches [55]-[58]. 

V. CONCLUSION 

Overall, our study demonstrated that non-invasively evoked 
haptic and tactile-proprioceptive feedback could enable ob-
ject recognition tasks using continuous position- and velocity-
control schemes. Our findings highlight the integrative role of 
multiple feedback modalities during object recognition. The 
outcomes suggest that this sensation encoding strategy can po-
tentially improve the control of sensorized prosthesis orremotely 
controlled devices. The elicited sensory information could im-
prove user confidence and experience. The sensory stimulation 
approach can also offer an evaluation platform to understand the 
sensorimotor integration processes during bidirectional human-
machine interactions. 
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