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We consider epidemiological modeling for the design of COVID-19
interventions in university populations, which have seen signifi-
cant outbreaks during the pandemic. A central challenge is sensi-
tivity of predictions to input parameters coupled with uncertainty
about these parameters. Nearly 2 y into the pandemic, parameter
uncertainty remains because of changes in vaccination efficacy, vi-
ral variants, and mask mandates, and because universities’ unique
characteristics hinder translation from the general population: a
high fraction of young people, who have higher rates of asymp-
tomatic infection and social contact, as well as an enhanced ability
to implement behavioral and testing interventions. We describe
an epidemiological model that formed the basis for Cornell Uni-
versity’s decision to reopen for in-person instruction in fall 2020
and supported the design of an asymptomatic screening program
instituted concurrently to prevent viral spread. We demonstrate
how the structure of these decisions allowed risk to be minimized
despite parameter uncertainty leading to an inability to make
accurate point estimates and how this generalizes to other univer-
sity settings. We find that once-per-week asymptomatic screening
of vaccinated undergraduate students provides substantial value
against the Delta variant, even if all students are vaccinated, and
that more targeted testing of the most social vaccinated students
provides further value.

epidemiological modeling | parameter uncertainty | asymptomatic
screening

When is it safe to offer in-person university instruction dur-
ing the COVID-19 pandemic? What interventions, if any,

provide the level of safety required? Colleges and universities
across the globe faced this question in summer 2020 as they con-
sidered whether to offer in-person instruction. They continue to
face this question today as they contemplate partially vaccinated
student populations, waning immunity, booster shots, and the
potential for new variants to emerge.

These questions are significant because outbreaks in university
student populations have occurred regularly (1) and may harm
the health of students and more-vulnerable employees and com-
munity members that interact with them (2). Even when vaccina-
tion protects the bulk of the population against the most severe
health outcomes of severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) infection, widespread breakthrough in-
fections would threaten the health of unvaccinated and immuno-
compromised individuals in their midst. At the same time, social
distancing, masking, asymptomatic screening, the migration of
in-person instruction to a virtual format, vaccine mandates, and
other interventions that can be brought to bear against university
outbreaks all incur social and financial costs (3, 4). Better un-
derstanding the protection offered by these interventions would
support providing safety while minimizing these costs.

These questions remain difficult to answer because vaccination
levels, SARS-CoV-2 variants, and other conditions continue to
change and because experiences at the city, state, and national
level do not easily generalize to university populations. Indeed,
university populations are younger than the general population

and thus have increased rates of contact (5) that may elevate
virus transmission (2, 6). In addition, universities can implement
interventions that would be substantially more difficult for the
general population, such as mandatory vaccination and manda-
tory asymptomatic screening (7, 8).

Universities have responded to this central question in dra-
matically different ways. In the 2020–2021 academic year, many
schools went fully online, whilemany others opened for in-person
instruction with a modest set of interventions centered around
symptomatic testing, contact tracing, and social distancing (9).
Moreover, those schools that opened for in-person instruction
pursued dramatically different testing strategies (10). Some
tested only symptomatic students, others tested all students once
on arrival, and others tested all students at least once per week.
In the fall 2021 semester, schools differ in whether they mandate
vaccines, their testing strategies, and masking policies (11).

This diversity in approach reflects, in part, a diversity of
circumstance, such as proximity to, and interaction with,
population centers, prevalence in those population centers,
availability of housing to quarantine students, and the desires
of the surrounding community (12). However, it also reflects
substantial continued uncertainty about how policy translates
into outcomes. Such uncertainty and diversity in approach among
universities reflects the larger response to the pandemic, in
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which US states and national governments adopted dramatically
different responses to the pandemic despite apparently similar
circumstances.

Simulation-based epidemic models would seem to offer the
power to resolve this uncertainty in support of high-quality deci-
sions. They allow prediction, customized to the circumstances of
a university, city, state, or nation. By varying the interventions in
silico and observing predicted outcomes, one can hope to choose
the best course of action. Unfortunately, epidemic models only
approximate reality (13). Ever-present uncertainty in model in-
put parameters coupledwith the potential for exponential growth
significantly limit accuracy. Small differences in behavioral and
biological parameters can cause huge differences in predicted
case counts. As a consequence, epidemic models have been
maligned for producing inaccurate point estimates (13, 14).

This article demonstrates that simulation models can support
effective selection of COVID-19 interventions even when they
are unable to provide accurate point estimates of epidemic out-
comes. We demonstrate this through a case study of how simu-
lation models supported the design of COVID-19 interventions
that were subsequently implemented at Cornell University. We
also present a modeling framework that can support decisions at
other universities. (The use of epidemic models in the presence
of significant parameter uncertainty is also discussed in, for exam-
ple, ref. 15. In such settings, clear communication of uncertainties
is key; see, for example, ref. 16).)

In close communication with Cornell University’s administra-
tion, we conducted a simulation-based analysis in summer 2020
using a compartmental Susceptible, Exposed, Infectious, and
Recovered model with multiple subpopulations; see refs. 17–19
for closely relatedmodels.Ourworkwas the basis for the decision
to reopen Cornell’s Ithaca campus for residential instruction in
fall 2020 (20) and was used to design an asymptomatic screening
program that was and remains a critical part of Cornell’s strategy.

Based on these modeling recommendations, all students were
invited to return to Cornell’s Ithaca campus for residential in-
struction during the 2020–2021 school year under an asymp-
tomatic screening program, and 75% of students returned (21).
The surveillance program used pooled PCR testing with the
testing frequencies obtained through our modeling. The surveil-
lance program used less-sensitive but more-comfortable anterior
nares (AN) sampling over nasopharyngeal (NP) sampling, be-
cause modeling suggested that the benefits of comfort to test
compliance outweighed a potential loss in sensitivity. Asymp-
tomatic surveillance was enabled at Cornell through a major
effort to support large-scale sample collection and develop a
new COVID-19 testing laboratory based on diagnostic exper-
tise in Cornell’s College of Veterinary Medicine, and through a
unique partnership with a local health care provider. Based on
recommendations from our simulation modeling approach, this
strategy was updated for the spring 2021 semester to test varsity
athletes and students inGreek-life organizationsmore frequently
(contact tracing data showed them to have more social contact
than other individuals) and again in fall 2021 to adjust for the
Delta variant, changes in social distancing policies, and the pro-
tection offered by vaccination. Over the course of the 2020–2021
academic year, there were fewer than 1,044 infections among
students and employees, fewer than many schools with similar
student populations offering only virtual instruction (1, 22).

Our modeling approach hinges on delineating those simu-
lation model input parameters yielding epidemics that can be
successfully controlled versus those that cannot. If the set of plau-
sible input parameters are contained within the set of safe param-
eters, then we can be highly confident, although never certain,
that the epidemic can be controlled. At Cornell in summer 2020,
we demonstrated this to the university administration for a suite
of interventions available with in-person instruction: frequent
asymptomatic screening, testing students on arrival to campus,

contact tracing, social distancing on campus, limits on student
and employee travel, masking requirements, and a behavioral
compact curtailing student social gatherings. It was also possible
that we would have found that plausible ranges of the input
parameters overlapped the portion of parameter space where
epidemics would grow out of control, in which case we would not
have been able to recommend reopening.

We found that access to regular asymptomatic screening
(7, 23), with an ability to increase testing frequency if needed,
was critical. Indeed, those few universities employing a similar
asymptomatic screening approach succeeded, by and large,
in controlling campus outbreaks (24–27). See also refs. 28–
33 for explorations of the interaction of pooled testing and
asymptomatic surveillance for controlling epidemics.

We also found it was critical to analyze epidemic growth if
in-person instruction were not offered, to quantify the relative
merits of the alternative to in-person instruction. Survey results
(20, 34) suggested that a significant number of students would
return to the Ithaca area even if in-person instruction were not
offered. Without the benefits of the legal framework offered by
in-person instruction, frequent asymptomatic screening would
have been difficult tomandate for this population.Moreover, our
analysis suggested that many of those parameter settings in which
asymptomatic screening would not ensure safe in-person instruc-
tion would also be ones in which a significant outbreak would
occur in the local student population under virtual instruction.
This resulted in the decision to reopen Cornell’s Ithaca campus
with a fully residential semester in fall 2020 (20).

We additionally measure key parameters of a university
population needed for understanding the dynamics of epidemic
spread, including university subpopulations’ intergroup and
intragroup rates of viral transmission and how it has changed over
time with vaccination, the Delta variant, and relaxation in social
distancing.We find that a small group of students has significantly
more intergroup viral transmission than other groups and plays
an important role in determining the risk of an outbreak. We find
that targeting interventions to this group provides substantial
protection against outbreaks. Unlike students, we find that
employees have very little transmission at work and are well
separated from students, with extremely little transmission across
the two groups. This has implications for understanding the risk
to older andmore vulnerable individuals from student infections.

When considering a range of interventions against the Delta
variant, we find that achieving high levels of vaccination provides
significant protection, but that, even in a 100% vaccinated stu-
dent population, there is significant potential for breakthrough
outbreaks in the absence of asymptomatic screening and social
distancing. This is consistent with findings from other modeling
studies (19). While once per week asymptomatic screening of
vaccinated students might be sufficient in many situations, we
find that testing vaccinated student groups with high rates of
social contact twice per week substantially reduces risk evenwhen
the entire population is vaccinated. We also find that moving
from 75% vaccination to full vaccination provides substantial
additional protection.

To summarize, the key contributions of this paper are 1)
providing a simulation framework for supporting the design
of COVID-19 interventions despite parameter uncertainty; 2)
demonstrating this framework through its implementation at
Cornell University; 3) measuring key parameters of the dynamics
of the spread of SARS-CoV-2 in university populations and the
effectiveness of interventions; and 4) providing a framework for
making decisions moving forward, including the design of asymp-
tomatic screening strategies in the presence of partial vaccination
and the Delta variant.

Our work adds to the broader literature using epidemic mod-
eling in the context of universities. See, for example, ref. 35
for a perspective on the challenges of reopening as informed

2 of 12 PNAS
https://doi.org/10.1073/pnas.2112532119

Frazier et al.
Modeling for COVID-19 college reopening decisions: Cornell, a case study

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
M

ay
 2

0,
 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

28
.8

4.
12

6.
18

8.

https://doi.org/10.1073/pnas.2112532119


A
PP

LI
ED

M
AT

H
EM

AT
IC
S

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

by a variety of epidemic models, refs. 36 and 37 for the use of
agent-based modeling to evaluate mitigation strategies to enable
safe in-person instruction, ref. 38 for probabilistic modeling of
strategies to suppress virus spread in dorms and classrooms, and
ref. 39 for a study of interventions for generic small residential
campuses.

Results
Model Structure and Fit. We focus on Cornell’s main campus,
located in Ithaca, NY (40). Ithaca is located in Tompkins County
with a population of∼102,000. Approximately 12,000 undergrad-
uates (of which 35% live on campus), 8,500 graduate students (of
which 6,200 were local in Ithaca during the 2020–2021 academic
year due to the pandemic), and 10,000 employees study or work
on the Ithaca campus. Ithaca is 4 h to 5 h by car from major city
centers such as New York, Boston, Philadelphia, and Toronto.

In June 2020, we developed a compartmental simulation
model to predict infections and hospitalizations for Cornell’s fall
2020 semester (Fig. 1A). The model contains compartments by
subpopulation, stages of symptom development and infectivity,
and quarantine/isolation status (Methods A–C). Since our
model is stochastic, there is variance in case trajectories
with fixed parameters. Infections in the Cornell population
are roughly proportional to other outcomes of importance
(SI Appendix, section 3.F), and therefore figures here focus on
this outcome.

To demonstrate that the model can accurately capture reality,
we use deidentified aggregated data obtained from surveillance
testing in the 2020–2021 academic year (these data were un-
known at the time recommendations were made) to fit model
parameters and retrospectively model, with hindsight, the 2020–
2021 academic year.

In this retrospective model fit, we first separated individuals
into groups based on risks observed during the fall 2020 and
spring 2021 semester. Employees constituted a single group.
Students were separated into undergraduates who are in social
Greek-life organizations or on varsity athletic teams, other un-
dergraduates, and graduate/professional students. In the spring
2021 semester, graduate/professional students were additionally
separated into those in the MBA program and other gradu-
ate/professional students.

Contact tracing data showed that transmission between stu-
dents and nonstudent employees was extremely rare, so we set
transmission parameters between employees and students to
zero. This caused the model to treat them as two completely
separated groups that do not infect each other.

We then used observed data to estimate other key model
parameters: one governing the effectiveness of contact trac-
ing for students and employees, the rate of transmission be-
tween the three student groups up to a proportionality constant,
and the rate of infection from outside sources for students and
employees.

After, one free parameter remained for employees (transmis-
sion rate) and one for students (a proportionality constant giving
the transmission rate between each student group).We estimated
these parameters, separately for employees and for students,
by calibrating simulation results to observed data, varying each
parameter to minimize the sum of squared differences between
themean of the model’s predictions and the observed cumulative
infection count (SI Appendix, section 2).

Fig. 1 B and C compares observed total (student + employee)
cases to simulation trajectories from the calibrated model using
the test frequencies implemented in practice. In the fall 2020
semester, undergraduates were tested twice per week, graduate

Fig. 1. (A) The dynamics of our compartmental simulation across compartment categories (ellipses). Population counts are maintained for each
compartment on each day, and compartments comprise a category, for example, “susceptible,” a demographic group, for example, undergraduates in
high-density housing, and the elapsed time in that compartment category. Solid lines represent virus transmission, disease progression, and the end of
quarantine/isolation. Dashed lines represent the effect of testing, self-reported symptoms, and contact tracing, which puts individuals testing positive into
isolation and their contacts into quarantine. (B and C) Average cumulative case trajectories (and their 10th to 90th percentiles) for all Cornell cases under
calibrated parameters and observed fall 2020 and spring 2021 cases, including presemester periods. Asymptomatic surveillance began on 3 September 2020.
Students arrived to campus 16 August to 2 September and then again 21 January 2021 to 8 February before departing at the end of horizons shown on
the respective graphs. The yellow regions indicate when the campus alert level was raised to yellow; it never went above this level. Increased testing and
a lockdown were initiated on 26 March 2021 for 1 wk for MBA students. (D) Table summarizing the key fitted parameters from fall 2020 and spring 2021
calibration. (E) The number of infections (lines provide the median; shading indicates the 10th to 90th percentile range across simulation replications) as
two key parameters vary while holding the others fixed, under nominal and pessimistic scenarios. (F) Parameter values for nominal and pessimistic scenarios
for fall 2020.
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students were tested once per week, and employees were tested
at a frequency between twice per week and once every 2 wk
specific to how often they were on campus. Over the spring 2021
semester, students affiliated with Greek-life organizations and
varsity athletes were tested more frequently at three times per
week. In late March 2021, a cluster of cases among students in
the Masters in Business Administration (MBA) program led to
elevating their test frequency to twice per week for the duration
of the semester. As indicated in the figure, a color-coded campus
alert level was used to warn students of elevated risk during four
periods in this timeframe.

The average calibrated trajectory closely tracks observed cases
for both fall 2020 and spring 2021. There is some deviation during
both semesters when a single high-transmission individual or
event led to a burst in the number of cases not captured by our
model. Nevertheless, observed trajectories are contained within
the 10th to 90th percentiles on nearly all days, indicated by the
shaded regions in Fig. 1 B and C.

Fig. 1D summarizes key calibrated parameter values. Groups
of students participating in Greek-life social organizations and
varsity athletics are found to have a significantly higher rate
of transmission than others. We find later that screening these
groups more often significantly reduces risk. For most groups,
estimated transmission in spring 2021 is higher than in fall 2020,
consistent with colder weather and fatigue with social distancing
restrictions drivingmore indoor gatherings and theAlpha variant
becomingmore prevalent in theUnited States. In spring 2021, the
testing frequency for students in Greek life and varsity athletes
was raised. This likely led to the reduction in the number of cases
found per contact trace, as a contact trace was more likely to be
initiated before a student had infected others. Lastly, the vast
majority of cases spread within the same group. More detailed
information on the spread between groups can be found in
SI Appendix, section 2.

Sensitivity of Model Predictions to Parameters. While the model
developed in the summer of 2020 had the capacity to model

trajectories seen over the following academic year (2020–2021),
key input parameters had not been measured accurately in
college populations for SARS-CoV-2 in June 2020. Moreover,
sensitivity analysis (SI Appendix, section 3.E) demonstrated that
model predictions were sensitive to these unknown parameters.
Fig. 1E shows the result of varying one of the uncertain
parameters with the largest effect on outcomes while holding
the others fixed at parameter values from the two scenarios in
Fig. 1F. These scenarios were chosen as described in Results C.

To represent this uncertainty, we first identified ranges
containing plausible values for each simulation parameter
(SI Appendix, section 3.A) based on information available in
June 2020.

To understand the sensitivity of model predictions to uncertain
parameters, we then evaluated infections assuming residential in-
struction at 2,000 parameter configurations chosen using a Latin
Hypercube design (41) over the collective set of parameters de-
fined by these plausible ranges (while also supporting a sensitivity
analysis over four additional parameters used for predicting out-
comes under virtual instruction; SI Appendix, section 3.E). We fit
a linear model to quantify the first-order impact of each param-
eter on infections. We then multiply the estimated rate at which
residential infections change as we vary a parameter (from this
linear model) by the width of the range quantifying uncertainty
for this parameter (Fig. 2A and SI Appendix, Table S22). To first
order, this value is the change in predicted infections resulting
frommoving the parameter from the lower to the upper bound of
its corresponding range. Parameters for which this value is largest
are those that lead to the greatest uncertainty about infections,
whether because our uncertainty about the parameter is large or
because outcomes are sensitive to it.

The effect of uncertainty is substantial, with uncertainty about
several individual parameters creating uncertainties ofmore than
500 infections relative to a baseline of ∼250 infections. The
parameters thatmost drive uncertainty about infections are those
that influence 1) transmission of the virus, especially R0 as well
as two contact tracing parameters and a parameter governing the

Fig. 2. (A) The first-order effect of parameter uncertainty on predicted infections, using a linearmodel to estimate sensitivity of infections to each parameter
and a range of plausible parameter values. Each dot shows the estimated effect of uncertainty on predicted infections (absolute value of the regression
coefficient times the uncertainty range’s width) with the sign of the regression coefficient indicated in the label. The uncertainty of this estimated effect
(derived from the regression coefficient’s 95% CI) is approximately±60 for all parameters. Mult, multiplier; Prob, probability; Inf, infection; Prev, prevalence.
(B) Histogram of median Cornell infections when parameters are sampled from the prior. (C) Contour plot showing the number of Cornell infections as test
frequency and the level of pessimism changes. (D) Scatter plot showing the median number of Cornell and Ithaca infections for each of the 200 points
sampled from the prior. (E) The average number of infections and (F) probability of shutdown under each of a set of shutdown policies that model the more
nuanced decision-making process available to leaders in practice.

4 of 12 PNAS
https://doi.org/10.1073/pnas.2112532119

Frazier et al.
Modeling for COVID-19 college reopening decisions: Cornell, a case study

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
M

ay
 2

0,
 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

28
.8

4.
12

6.
18

8.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112532119/-/DCSupplemental
https://doi.org/10.1073/pnas.2112532119


A
PP

LI
ED

M
AT

H
EM

AT
IC
S

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

likelihood an infected individual develops symptoms, and 2) our
ability to control virus transmission through testing (test sensi-
tivity). These parameters are described in detail in SI Appendix,
section 1.

Coping with Parameter Uncertainty. Uncertainty about parame-
ters prevented accurate point estimates for the number of infec-
tions and presented the central challenge when deciding whether
it would be safe to bring students back to campus. Against this
challenge, we hypothesized that asymptomatic screening can pre-
vent epidemic growth over some set of parameter settings. More
frequent testing creates a larger set of safe parameter settings.

To understand whether a candidate value of 2×/wk asymp-
tomatic screening would be enough to make residential
instruction safe in the 2020–2021 academic year under plausible
parameter values, we formed a Bayesian prior probability
distribution over parameters consisting of independent normal
distributions for each parameter. The (marginal) mean and
variance of the prior over each parameter was chosen so
that the resulting symmetric 95% Bayesian credible interval
corresponded to the previously selected plausible ranges for each
parameter (Results B and SI Appendix, section 3.A).

The use of a multivariate normal distribution as a prior reflects
both modeling concerns and tractability concerns. We required a
unimodal prior with ellipsoidal contours to permit the analysis
that follows. The multivariate normal was the natural candidate,
as discussed in more detail in SI Appendix, section 3.A.

We then drew random sets of parameters from this Bayesian
prior, appropriately truncated to ensure feasible values for pa-
rameters known to be positive and/or bounded, and ran our
simulation for each, forming a prior distribution over infections
accounting for parameter uncertainty (Fig. 2B). Under most
parameter settings, 2×/wk testing is sufficient to achieve sub-
stantial infection control, but large outbreaks occur under some
parameter settings.

To better understand the impact of interventions like testing
on robustness to parameter uncertainty, we developed a one-
dimensional family of parameter configurations with varying lev-
els of pessimism regarding the number of infections (Methods
D and SI Appendix, section 3.A). This family of parameter con-
figurations is indexed by a pessimism level between zero and
one, with larger levels corresponding to parameter configurations
with more infections. The parameter configuration at pessimism
level q is the most likely configuration under the prior for which
median infections is equal to the q quantile of infections under
the prior, assuming that infections for a given parameter config-
uration are given by the previously fitted linear model.

Within this family, we name two for more frequent use, given
in Fig. 1F: the nominal and pessimistic scenarios, corresponding
to pessimism levels 0.5 and 0.99, respectively. We indicate the
latter in plots as “pessimistic (residential)” to distinguish it from
a scenario that is pessimistic about a different outcome defined
in Results D. (The nominal scenario also corresponds to setting
each parameter to the middle of its range, that is, to the mean
of the prior.) Relative to the nominal scenario, the pessimistic
scenario significantly increases the asymptomatic ratio and trans-
mission rate while decreasing test sensitivity and contact tracing
effectiveness. These parameters also have the largest absolute
normalized effect on infections (Fig. 2A). This is visualized in
SI Appendix, Fig. S15.

To understand the impact of the assumption of linearity used
when creating these scenarios, we compared the median num-
ber of infections under q pessimistic scenarios against the q
quantile of median infections, drawing parameters from the
prior (SI Appendix, section 3.B), for varying q. We found strong
agreement (SI Appendix, Fig. S16), suggesting that the linearity
assumption had little impact on the level of pessimism inherent
in our scenarios.

We then plotted simulated infections using 2×/wk testing at
parameter configurations across a range of pessimism levels
(Fig. 2C at test frequency multiplier = 1.0; Fig. 3C). This level of
testing is sufficient to keep the number of infections below 1,000
in all but the most pessimistic parameter configurations. Still,
there are some parameter configurations where more than 1,000
infections arise, and infections grow rapidly as the parameter
configuration growsmore pessimistic. Additional testing canmit-
igate this risk (Fig. 2D). When the test frequency is high enough,
predicted infections remain low even at pessimism levels as high
as 0.99.

Plots of infections versus test frequency and simulation pa-
rameters were distributed in public reports (42) and at Cornell
Faculty Senate meetings (43). These reports also included nom-
inal and pessimistic scenarios (SI Appendix, section 3.C) similar
to the ones detailed here, although highlighting more concerning
outcomes. They were a central component of deliberation at Cor-
nell on whether testing could allow a safe residential reopening.
They resulted in the decision by Cornell leadership that, if the
campus were to open for residential instruction, we would use a
test frequency that was as large as could be provided reliably, to
maximize the range of parameter settings with effective infection
control.

While we focus here on a single outcome, infections in the
campus population, other outcomes are important: infections in
the surrounding community created by clusters in the campus
population, and hospitalization and deaths. As shown in Fig. 2E
and SI Appendix, section 3.F, these outcomes tend to move to-
gether when varying parameters and the overall frequency of
testing. Thus, for the purposes of understanding the overall
level of risk and deciding whether to reopen, considering only
on-campus infections tends to produce the same decisions as
would more holistic consideration of on-campus and community
outcomes examining infections, hospitalizations, and deaths.

In addition to testing, which was instituted at the start of the
semester, a second measure combating parameter uncertainty
is recourse: the opportunity to change interventions based on
data as it is observed, ranging from, for example, enforcement of
behavioral policies or modified social distancing policies targeted
to certain areas of the campus to a broad decision to shut the
campus down. Indeed, a reopening decision that was likely to be
safe but not guaranteed to be so under a fixed set of interventions
(testing frequency) can be made more safe by the ability to bring
additional interventions to bear if needed.

Modeling decision makers’ ability to shut down the campus
upon observing substantial transmission, Fig. 2 E and F shows
outcomes under plans of the form “initiate campus shutdown
if confirmed cases exceed more than Y cases in X weeks” as a
function of the pessimism level. While simpler than the more
nuanced decision-making process available to leaders in practice,
these plans take a simple interpretable form to support broad
understanding and are reminiscent of cumulative sum control
charts used for monitoring industrial processes for defects (44).
They essentially “learn” whether reality is such that infection
control is not being provided, and then respond by shutting down
when a threshold is reached. Varying X and Y trades acting
quickly against “false alarms” in which the campus would be shut
down when infection control would have been achieved had it
stayed open. Fig. 2 E and F demonstrates that adding recourse
through shutting down can reduce the risk of reopening. Average
total infections are eventually decreasing with pessimism level
because the shutdown happens more quickly at high pessimism
levels.

Virtual vs. Residential Instruction. While substantial focus was
given to what would happen if universities reopened for
residential instruction in the late summer of 2020 (35–39), an
equally important consideration is what would happen if they
did not. If a university chooses to offer only virtual instruction
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in place of in-person classes, many students may still elect to
return to the university’s local area. This was the case at Cornell,
where a significant number of students had signed leases with
local landlords for fall 2020 before the severity of the pandemic
became clear, and a survey revealed that many students were
planning to return to Ithaca even if residential instruction and
on-campus housing were not offered (20, 34).

For universities like Cornell, located in college towns, where
the student population is significant relative to the overall pop-
ulation, this influx of students may represent a significant in-
crease in the number of young people in the area. This could be
dangerous because these young people may be socially cohesive,
and, during normal times, young people have elevated rates of
social contact (5, 45). Moreover, a university may have reduced
ability tomandate and enforce behavioral restrictions and asymp-
tomatic screening for students taking classes virtually even if they
are nearby.

Thus, when deciding whether to reopen, in addition to whether
the number of infections can be kept reliably low during a resi-
dential semester, an additional key consideration is the risk of
an outbreak among virtual instruction students. In other words,
a key trade-off is whether to invite back all students and have
stronger behavioral and screening interventions, or to have a
smaller number of students return but have weaker interventions.

To study this trade-off, we extended our model to capture
virtual instruction at Cornell’s Ithaca campus. Under virtual
instruction, staff and faculty, along with some research-focused
graduate students, stay on campus. They are tested 2×/wk and
are subject to the same behavioral compact governing student
behavior under residential instruction.We alsomodel some other
students returning to Ithaca to live while taking classes virtually,
outside of the control of the university. We assume that Cornell
offers twice-weekly testing to these students, but noncompliance
is higher than in a residential semester.

This extended model included four additional parameters,
about which we also had uncertainty (SI Appendix, Table S21).
We thus extended our parameter uncertainty framework to
understand the range of outcomes possible under virtual
instruction. We first generated ranges for these additional
parameters based on information available in June 2020
(SI Appendix, section 3.A), extending our prior probability
distribution to include independent normal priors for these
new parameters. We also extended our nominal scenario for
residential instruction to set each of these additional parameters
to the center of its range.

In this extended model, reduced population density lowers
transmission for unmonitored off-campus students relative to
off-campus students during residential instruction, but lower

compliance with social distancing and masks raises transmission.
These effects can offset each other, or one can bemore dominant,
depending on parameters. Reduced use of now-optional testing
blunts its benefits. Fig. 3A shows that reduced use of testing by
the off-campus population can lead to a substantial number of
infections, while outcomes are less sensitive to the number of off-
campus students.

To understand the relative safety of residential and virtual in-
struction under plausible parameter configurations, we sampled
200 parameter configurations from the prior. Fig. 3B then plots
the number of infections under residential and virtual instruction
for each of these configurations. We see that infections are fewer
under residential instruction in almost all parameter configura-
tions. In those parameter configurations where there are more
infections under residential instruction, the number of additional
infections is small. This suggests that residential instruction is
a safer strategy than virtual instruction, given the information
available in June 2020.

Exploring further, we extended each of the 2,000 parameter
configurations used for our residential infection sensitivity anal-
ysis (Results C) to include the four additional virtual instruction
parameters (SI Appendix, section 3.E) and used simulation to
predict virtual instruction infections (in the on-campus students
and employees and the off-campus virtual instruction students
in Ithaca) under each parameter configuration, enabling a com-
parison with predicted residential instruction infections for each
configuration.

We then identified a new collection of parameter configura-
tions of varying pessimism about the relative safety of residential
instruction compared to virtual instruction. To do so, we adopted
the same approach used to identify configurations of varying
pessimism about residential infections but taking our primary
outcome as the difference in infections between residential
instruction and virtual instruction (a positive value indicates
residential has more infections) (SI Appendix, section 3.A).
We refer to this difference as residential-virtual infections.
The nominal scenario remains the same and corresponds to
pessimism level 0.5. We obtain a new pessimistic scenario,
corresponding to pessimism level 0.99. Unlike the pessimistic
scenario for residential infections, this new pessimistic scenario
(SI Appendix, Table S22 and Fig S15) decreases R0 relative to
nominal. This is because themost likely parameter configurations
with large residential - virtual infections (according to the fitted
linear model) are those in which transmission is small regardless
of instruction method.

Fig. 3C plots residential and virtual instruction infections for
the two families of parameter configurations, one varying our
pessimism about residential infections and the other varying our

Fig. 3. (A) The number of infections in the Cornell community under virtual instruction under the nominal scenario, varying the fraction of off-campus
students engaged in virtual instruction that do not use the offered testing (“persistent noncompliance”) and the total number of off-campus students. If
off-campus students’ willingness to comply with 2×/wk optional testing is not sufficiently high, a large number of infections result. (B) Under 200 parameter
configurations drawn from the prior, the number of infections under virtual and residential instruction. Infections are smaller under residential instruction
than under virtual instruction in most parameter configurations (blue dots), and when they are not (red dots) they are not substantially larger. (C) Number
of infections under two pessimistic configurations (maximizing residential infections and residential - virtual infections) and two types of semesters (virtual
and residential) for different levels of pessimism. Param, parameter.
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Fig. 4. (A) Select Pareto-efficient testing policies (frequencies for each group) according to median simulated infections. Vertical bars depict the distribution
of infections, ranging from the 10% to the 90% quantile over simulation outcomes. The point highlighted in yellow corresponds to the testing frequencies
Cornell selected for the fall semester. Policies shown are Pareto-efficient policies from the set of policies where each on-campus group is tested either once
or twice a week. The dotted lines are simulation estimates of the expected number of infections if tests are split homogeneously among the on-campus
population. (B) Contour plot showing the number of infections in the Cornell community as test compliance and test sensitivity vary under the pessimistic
(residential) scenario.

pessimism about residential - virtual infections. In almost all
scenarios, virtual infections are larger than residential infections,
and are sometimes much larger. Those few scenarios where
residential infections are larger have few infections in bothmodes
of instruction.

Thus, modeling suggests that virtual instruction presented
a substantial risk, while residential instruction would result
in lower infection counts under a broad range of the most
reasonable parameter settings. This was a primary basis for
Cornell’s decision to reopen for residential instruction (20).

Design of Asymptomatic Testing Protocol. Our modeling approach
was also an important tool for supporting detailed design of
Cornell’s surveillance testing strategy.

A first key question was the testing frequency for students and
employees. Operational constraints limited the total number of
tests that could be completed per day. We hypothesized that
targeting more frequent testing to those groups likely to have
higher rates of transmission would provide more robust infection
control within this constraint.

We enumerated testing policies consisting of a testing fre-
quency (1× or 2× per wk) for the six groups spending significant
time on campus (e.g., undergraduates living on campus) under
both the pessimistic (for the residential infections outcome)
and nominal scenarios, producing 64 testing policies. We then
discarded those policies not on the Pareto frontier under the
(residential) pessimistic scenario. Fig. 4A shows the resulting
Pareto frontier and highlights the policy that was selected.

A second key question was the sampling methodology for
surveillance testing. We considered AN and NP sampling. While
NP is more sensitive (46), it is also less comfortable, and we
hypothesized that this discomfort might lower test compliance.
Fig. 4B, generated using our simulation under the pessimistic

(residential) scenario, evaluates this trade-off between test
sensitivity and test compliance. AN was chosen for Cornell’s
surveillance sampling methodology in part based on this analysis,
because the risk of a substantial loss in test compliance caused
by NP sampling would not be known until after the launch of
the program, while the test sensitivity of AN was measured
before launch and was known to be sufficient for robust infection
control.

Retrospective View of Fall 2020 to Spring 2021. We use the model
calibrated in Results A to retrospectively evaluate the quality
of the projections and decisions made in summer 2020 for the
2020–2021 academic year, focusing on two measures of quality:
consistencywith the range of plausible scenarios identified earlier
and quality in hindsight of the decision made. We picture these
results in Fig. 5.

First, we evaluate whether the calibrated model is consistent
with the range of likely scenarios identified in Results C. A com-
parison of calibrated parameters (SI Appendix, Table S25) shows
that the calibrated parameters are consistent with our prior.
Fig. 5A compares observed infections to a range of scenarios.
Observed infections were close to the nominal scenario and well
under the pessimistic scenario for almost the entire semester,
consistent with their design.

While the observed values are quite close to the nominal
scenario’s predictions, this was accidental. Indeed, it was clear, a
priori, thatmodel outputs are sensitive to inputs, and these inputs
were unknown, so the predictive accuracy of the range across
scenarios, in the sense of whether it contained reality or not, is
more important than whether a point prediction was close to the
realized trajectory.

Fig. 5A also includes predictions from the nominal scenario
in our June 2020 report (42). This scenario was nearly identical

Fig. 5. (A) Cornell fall 2020 cases relative to the calibrated trajectory and to the nominal, pessimistic, and June 2020 nominal scenarios. (B) Recreating the
Pareto-efficient testing frontier based on calibrated parameter values. (C) Using calibrated parameters to recreate the contour plot showing expected Cornell
infections (including students) under a virtual instruction scenario as the number of returning students and their test compliance varies; UGs, undergraduates;
GS, graduate students.
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to the nominal scenario reported here, except that three key
parameters were set to conservative values, given the urgent need
to generate recommendations without enough time to identify a
plausible range for these parameters (SI Appendix, section 3.C).
Second, we study the quality of the decisions made, relative to

potentially better decisions that could have been made with the
benefit of hindsight. We focus on two key decisions: the design of
the testing policy and whether to reopen campus.

Fig. 5B shows the expected number and range of Cornell
infections under Pareto-optimal testing policies, testing each of
the three student groups from the retrospective analysis at either
1× or 2× per wk, and testing employees at a frequency averaged
across those used in practice. Retrospectively, we selected one
of many testing policies resulting in few infections, but we did
not select the most efficient. The most efficient testing policies
require segmenting those with the most transmission (who our
data suggest are often in Greek-life organizations or are varsity
athletes), which we did not recognize at the beginning of the
semester. The figure also shows that there would have been
limited benefit in increasing the total testing capacity.

Turning to the question of whether to reopen campus, Fig. 5C
shows the expected Cornell infections for a virtual fall semester
under our calibrated model, varying the number of returning
undergraduate students and their test compliance. More than
80% of the returning students would need to remain test com-
pliant throughout the entire semester to achieve a number of
infections comparable to reopening campus (where fewer than
250 occurred). As discussed previously, enforcement of test com-
pliance would have been significantly more challenging in a
virtual scenario, and, therefore, the decision to reopen campus
was robust.

While the benefit of hindsight would have modestly improved
testing efficiency, the decision we selected gave health outcomes
similar to the best policies possible with hindsight.

Analysis for Fall 2021. We further analyzed the need for asymp-
tomatic screening to protect the campus population during the
fall 2021 semester at Cornell, during which the Delta variant
was widespread, vaccines were mandatory for students (but not
for employees), and masking was required on campus, but social
distancing measures were relaxed, and classes were operated in-
person with normal density. Our analysis also extends to similar
universities with varying vaccination rates. Here we provide a
summary. SI Appendix, section 4 provides further detail.
During summer 2021, the appetite for aggressive interventions

had softened, partly due to the prevailing confidence in vaccina-
tion, and Cornell’s capacity in both the testing laboratory and

contact tracing was reduced relative to the previous academic
year. Modeling nevertheless suggested that an outbreak of the
Delta variant in a fully vaccinated subpopulation of highly social
students was possible in the fall 2021 semester. Balancing this
against test capacity, once per week testing for vaccinated stu-
dents and twice per week for unvaccinated students was planned.
(Although vaccines were mandated, students might become vac-
cinated after arrival or receive medical or religious exemptions.)
As the start of the semester approached, studies emerged show-
ing lower vaccine effectiveness (47–50) than previous studies,
suggesting that the decision to test vaccinated students at the
start of the semester was prudent but that testing all vaccinated
students once per week might not be sufficient. Analysis of case
counts upon student return led to changes initiated on August
29, 2021 increasing test frequency for students in Greek-life
organizations, strengthening enforcement of test compliance,
and adding contact tracing personnel to reduce the time from
sampling to isolation of a positive case from 2 d to 1 d.

We leveraged the infection counts observed over this period
and later into the fall 2021 semester within a Bayesian analysis to
understand the effect of asymptomatic testing frequency and vac-
cination rate.We additionally leveraged parameters calibrated to
the 2020–2021 academic year data reported above, and informa-
tion from the scientific literature on vaccine effectiveness and the
transmission under the Delta variant.

We began by elevating transmission rates in our model by a
factor of 2.5 to account for the Delta variant. We added pa-
rameters to account for the effectiveness of vaccines against 1)
transmission and 2) susceptibility to infection. We modeled 95%
of the Cornell student population as vaccinated, a level that was
later exceeded once newly arriving international students were
vaccinated.

Significant changes had occurred since previous semesters:
Social distancing restrictions had been lifted, prevalence outside
the campus had changed, contact tracing faced a larger number
of contacts per trace (meaning less attention can be paid to each
contact), and asymptomatic vaccinated close contacts were no
longer required to quarantine. This created uncertainty in several
parameters: transmission rates within and from outside campus,
and the number of cases quarantined or isolated per initiated
contact trace. We placed a (joint) prior on these parameters,
sampled parameters from that prior, ran simulations at each
parameter set, and updated the prior to a posterior; seeMethods
F and SI Appendix, section 4.

Fig. 6A shows the marginal posteriors of each of the parame-
ters. While there is substantial uncertainty about each of the first
three parameters, the posterior on their product is more concen-

Fig. 6. Fall 2021 modeling. (A) Marginal posterior distribution for the key parameters. Vaccine susceptibility and vaccine transmission are multipliers on the
probability of becoming infected given exposure and the probability of infecting, respectively, compared to interaction between an unvaccinated source
and exposed individual. The contact rate multiplier, outside infections multiplier, and contact tracing effectiveness parameters are all multipliers on the
calibrated 2020–2021 parameters. (B) Estimated median cumulative infections over the semester for 50%, 75%, and 100% student vaccination levels versus
the average number of tests per student per week, under a collection of Pareto-optimal testing strategies.
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trated near 0.4 (SI Appendix, section 4D), suggesting that the net
effect of vaccination and relaxing social distancing restrictions in
a fully vaccinated population is to reduce transmission by 60%.
We find that the rate of infection from outside campus is ∼3×
higher than the same time in the previous year (the fall 2020
semester).

Sampling parameters from the posterior, we then simulated
potential trajectories for infections over the fall semester. This
enabled a comparison of the effectiveness of different testing
frequencies under different vaccination levels, as might be seen
at universities similar to Cornell; Fig. 6B shows results for 50%,
75%, and 100% vaccination. We see that a nonuniform testing
policy that focuses on highly social students is highly effective,
but that, if vaccination levels are not sufficiently high, then
substantial infections can result irrespective of testing policy.
SI Appendix, Fig. S21B includes additional results that show that,
for 50% and 75% vaccination levels, testing students once per
week brings the great majority of the benefits of testing that are
possible, and, at 100% (and lower levels), there is still important
benefit in some testing, even of vaccinated students.

In contemplating projected infections for vaccinated popula-
tions, including Cornell’s fall 2021 semester, it is important to
keep inmind that vaccination substantially reduces the possibility
that an individual COVID-positive patient will become seriously
ill. Indeed, considering a vaccine whose estimated efficacy is 95%
in preventing serious illness given infection (see, e.g., ref. 51),
one needs 1/(1 − 0.95) = 20 cases in vaccinated individuals to
create the same expected number of cases with serious illness
as one case in an unvaccinated individual. Thus, the gap in
health outcomes between different vaccination levels is larger
than the gap in infections seen in Fig. 6B. Moreover, in Cornell’s
overwhelmingly vaccinated population (96% as of October 9,
2021), the chance of a serious negative health outcome during
the fall 2021 semester is likely lower than in the fall 2020 semester
despite a higher projected number of cases.

Discussion
Use at Cornell. As described above, our analysis played a signifi-
cant role in the decision to reopenCornell University in the fall of
2020. It also determined the overall testing frequency required to
limit spread, as well as the refined policy of varying test frequency
across university subpopulations, and was an important factor in
the choice to use AN instead of NP swabs for screening.

The modeling effort played a central role in a broad range
of other tactical and operational policy decisions. First, it was
essential to estimate, and then plan for, quarantine and isolation
capacity. In doing so, the model was used to understand the re-
quirements both for the initial arrival period and for the stochas-
tic evolution of demand for these resources as the semester
unfolded. Analysis focused on understanding the distribution of
the maximum number of rooms that would be needed at any one
time and ensuring that Cornell would either have enough rooms
on hand or could rent them from local hotels. Second, the model
quantified the impact of shortening the time between collecting
samples and isolating positive individuals, which supported the
design of the testing infrastructure. Third, the Cornell academic
calendar was restructured to limit impact of a potential “second
wave”: In-person education ended prior to Thanksgiving, and
the final 3 wk of instruction were given virtually. Similar to the
primary question of virtual vs. in-person education, the epidemi-
ological modeling demonstrated the imperative of continued
surveillance testing for the Cornell community residing in Ithaca
beyond Thanksgiving. Fourth, the model indicated the need to
increase the frequency of surveillance testing for themost socially
active students from 2× per wk to 3× per wk at the beginning
of the spring 2021 semester. Fifth, the model was the basis for
the summer 2021 decision to screen vaccinated students. Sixth, as
cases grew quickly at the start of the fall 2021 semester, themodel

was used tomake the case for prioritizing additional contact trac-
ing staffing to reduce test delays and to elevate testing frequency
for students in Greek-life organizations. Upon implementing the
interventions, daily cases fell dramatically.

Finally, the modeling effort also played an important role
in enhancing communication with the community—as a tool
for explaining the considerations in making decisions, and for
explaining what might happen and why.

Use at Other Universities. Considering other universities, we find
that testing students, on average, once per week, even in the pres-
ence of high vaccination rates, is important in limiting infections
when the Delta variant is dominant. Further testing beyond that
level can help, but, for maximum benefit, it is sufficient to target
this testing to the most social students.

This finding is consistent with student outbreaks observed in
cohorts with high vaccination rates that were being tested once
per week at Duke and Harvard Universities (52, 53).

When applying results contingent on vaccination level, keep
in mind that our analysis assumes unvaccinated individuals have
immune systems naive to SARS-CoV-2. Infection-acquired im-
munity shares at least some characteristics with vaccination,
in that (future) infection probability and severity if infected is
lowered (54). Moreover, many universities had large outbreaks
in the 2020–2021 school year, and the most social students on
campus would have been among the most likely to be infected.
Thus, in applying our results, a university’s level of immunity may
be higher than what its vaccination level would suggest.

Our finding that there is little or no interaction leading to trans-
mission between Cornell university employees and students is
important for understanding andmitigating risks to employees at
other universities. At Cornell, we have found that the biggest risk
to employees is through their interactions outside the university.

Our finding that a small group of highly social students plays a
large role in viral transmission in the Cornell student population
may be important for designing interventions at other universi-
ties. If a comparable group can be identified at other universities
and specific interventions brought to bear that prevent spread
within this group, then this may provide outsized protection for
the resources required.

In applying our results to other universities in the future, it is
important to keep in mind several specific characteristics of the
Cornell population and environment that lent themselves to the
strategies developed. 1) Beginning early in the pandemic, Cor-
nell’s College of Veterinary Medicine had substantial capacity to
provide PCR testing, exploiting pooling. 2) Ithaca has had lower
prevalence than much of the rest of the country and is several
hours’ drive from major cities. 3) Cornell’s student population
is largely residential, with few commuting from nearby commu-
nities. 4) Cornell’s students have been largely willing to comply
with social distancing, masking, and testing policies. 5) Cornell
has access to a hotel on campus and other buildings that have
been used for quarantine and isolation capacity.

Beyond universities, our modeling framework can be applied
to other closed (or nearly closed) communities such as cruise
ships, prisons, retirement homes, homeless shelters (55), military
bases, or professional sports bubbles. While differences in the
behavioral and health characteristics of the populations involved,
as well as the interventions available, would require adjustments
to model parameters, any of these relatively closed communities
could be modeled and analyzed in a similar way, coping with
parameter uncertainty as discussed here.

Like most epidemiological modeling, ours has limitations.
Most importantly, our results are highly sensitive to input
parameters for which there was significant uncertainty. Although
our results showed that our conclusions were remarkably robust,
our June 2020 nominal scenario was cautious in selecting
conservative values for parameters, based on literature and
other relevant data. Cumulatively, this caused the predictions we
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released in the summer of 2020 to be conservative. Conversely,
the interventions we helped design over the summer of 2021
in preparation for the 2021 fall semester needed modification
in late August before infections seen in the early part of that
semester were fully controlled.

Beyond parameter uncertainty, our model has limitations due
to its simple structure. For example, we assume that all members
of a subgroup are homogeneous, and„ therefore we do not model
contact network structure. As a result, while it is similar to
that used in other analysis (19), our model of contact tracing
has limitations; for example, we assume that all quarantined
contacts are in the preinfectious exposed state. Further, within
a single compartment, we assume that infectiousness does not
vary across individuals or over time, in contrast to, for example,
ref. 7. Moreover, we model the impact of age and its effect on the
distribution of infection severity in a discretized way. We do not
model overdispersion in contacts (for example, one individual
havingmanymore contacts than another), because our estimated
transmission parameters are based on empirical R0 estimates
often driven by the most social individuals. When infections
are driven by spread among subpopulations with the highest
transmission, empirical estimates of R0 naturally correspond to
transmission rates in these subpopulations.

Methods
Here we provide an overview; SI Appendix gives full details.

Simulation Model: Overview. We model COVID-19 transmission
using a compartmental model with Susceptible, Exposed, Infec-
tious, and Recovered compartments along with additional com-
partments to reflect specific characteristics of COVID-19 and
the interventions applied (Fig. 1A). To account for asymptomatic
and presymptomatic transmission, the infectious phase is split
into three compartments: Infectious, Asymptomatic, and Symp-
tomatic. Individuals formerly in the Exposed compartment enter
the Infectious compartment before randomly being assigned to
either the Asymptomatic or Symptomatic compartments. We
also add compartments for quarantined noninfected individuals
(Quarantine) and isolated infected individuals (Isolation). Due
to significant age and social heterogeneity in a university com-
munity, we replicate the compartments described above for each
of several university groups. The groups interact via cross-group
contacts. In addition, since the severity of COVID-19 varies
significantly with age, the probabilities of symptom severities are
determined by a group’s age distribution.

Simulation Model: Transmission. Modeled COVID-19 transmis-
sion is governed by two variables: contact rates between groups,
represented by a contact matrix, and the probability of transmis-
sion during any interaction. The contact matrix is estimated using
prepandemic measurements of age-based socialization patterns.
The probability of transmission is calibrated to match external
estimates of R0 (2.5 for the nominal scenario). Transmission is
modeled as stochastic, and the number of new infections in each
group has a Poisson distribution with a mean determined by the
product of the contact matrix and the transmission probability
and the number of nonisolated infectious individuals in each
group.

SimulationModel:Quarantine and Isolation. Wemodel threemech-
anisms for identifying and quarantining/isolating infected indi-
viduals.

1) Testing is the first mechanism. Every day, a fraction of each
group is selected uniformly at random to be tested, and test
results are available the same day. The number of individuals
selected to be tested per group per day is determined by the
group’s testing frequency. (This is a conservative approxima-
tion to what had been implemented, where each student is
tested at a specified frequency.)

2) Symptomatic self-reporting is the second mechanism. Every
day, each symptomatic individual not in Isolation has a con-
stant probability of self-reporting their symptoms, upon which
they enter Isolation the same day.

3) Contact tracing is the final mechanism. Each case found
through testing or self-reporting is contact traced. (Cases
found through contact tracing are not, themselves, modeled as
contact traced. This is an approximation of reality that is nec-
essary because our simulation tracks counts within groups, not
individuals.) Each contact trace moves a Poisson-distributed
number of people to Quarantine or Isolation after a 1-d delay.
We assume that contact tracing only finds contacts within the
same group as the source case, reflecting the social dynamics
of college campuses.

Parameter Configurations of Varying Pessimism. To summarize the
effect of parameter uncertainty on an outcome (infections in a
residential semester, or the difference in infections between resi-
dential and virtual instruction), we developed a one-dimensional
family of parameter configurations with varying levels of risk for
each outcome. For each real number y, we consider the set of
parameter configurations A(y) whose median outcome is equal
to y according to the fitted linear model. (All configurations are
in exactly one A(y), so this partitions the parameter configura-
tion space.) For each y, we select a representative configuration
from A(y): the one that is most likely under the prior. As we
increase y, outcomes under the representative configuration tend
to degrade. We then graph the outcome under this configuration
versus P(∪y′≤yA(y ′)), that is, the probability under the prior
of seeing a parameter configuration whose outcomes (under the
linear model) are no worse than those in A(y). We refer to
this probability as the “pessimism level.” It ranges from zero to
one, with larger values corresponding to representative param-
eter configurations that are more pessimistic. For details, see
SI Appendix, section 3.A.

Retrospective Parameter Estimation andModel Calibration. Weesti-
mate most model parameters for the fall semester (initial preva-
lence, outside infection rate, a contactmatrix with entries that are
proportional to the intergroup transmission rates, and contact
tracing effectiveness) directly from fall semester data available in
operationally focused nonresearch public communications (56).
These public health communications were based on deiden-
tified positive case, testing, and contact tracing stored along
with student life, housing, and employee data in a Health In-
surance Portability and Accountability Act (HIPAA)–compliant
database. These data were collected and analyzed pursuant to
the urgent public health need presented by the pandemic. Ad-
ditional aggregations of deidentified data for research purposes
were provided by Cornell University and deemed by Cornell’s
institutional review board to not meet the regulatory definition
of human subjects research.

Remaining parameters, that is, the proportionality constant
scaling the contact matrix for the student group and the rate
of transmission for the employee group, were estimated by cal-
ibrating the model output to the infection trajectories observed
during the fall 2020 semester. As already discussed, we consider
employees and students to be two completely separate groups
that do not infect each other. The calibration results are robust
to the addition of a small but positive employee–student trans-
mission term, although such a term can change outcomes more
substantially in extreme regimes where student or employee
prevalence is much higher than observed in the fall.

Bayesian Analysis for Fall 2021 Decisions. We leveraged informa-
tion gathered from the fall 2020 semester but adjust for changes
such as the Delta variant and vaccination level. Then, we identify
a set of key parameters with uncertainty and perform a Bayesian
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analysis for fall 2021 projections based on recently observed stu-
dent case counts at Cornell in the fall 2021 semester. Specifically,
we placed a range on each of these parameters, which we treated
as the symmetric 95% credible interval of a normal prior distri-
bution. We then derived a truncated multivariate normal prior
by limiting each parameter to its valid range. We then sampled
parameter configurations from the prior distribution and ran
simulations at each parameter configuration. To approximate the
posterior distribution for the parameters, we used a lognormal
likelihood function for the trajectory observed to date in the
fall 2021 semester, with hyperparameters estimated from the
sampled trajectories. Finally, we sampled parameters from the
approximated posterior distribution and simulated trajectories
based on these sampled parameter sets. These trajectories rep-

resent potential epidemic outcomes for the fall 2021 semester.
For details, see SI Appendix, section 4.

Data Availability. Code and simulation results have been deposited in
GitHub, https://github.com/peter-i-frazier/group-testing (57). Data collected
from Cornell students and employees during surveillance testing is HIPAA-
protected and not approved for public release. Aggregates from this data
approved for release are reported in the main text and SI Appendix.
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