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THE BIGGER PICTURE Viral spread may sometimes be controlled via social-distancing directives. However,
with a pandemic such as COVID-19, the time between a patient being infected and being recorded as positive
can be over a week. This creates a time lag of the order of several weeks between the initiation of a regulatory
measure and its observed effect. Safe Blues offers a solution for real-time population-level estimates of an
epidemic’s response to government directives and near-future projections. Safe Blues strands are safe vir-
tual “virus-like” tokens that respond to social-distancing directives similarly to the actual virus. However,
they are spread using Bluetooth and are measured online. The relationship between strand counts and the
progress of the actual epidemic can be determined using machine learning techniques applied to delayed
measurements of the actual epidemic. This then allows real-time data on the Safe Blues tokens to be used
for estimation of the epidemic’s current and near-future state.
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Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Viral spread is a complicated function of biological properties, the environment, preventative measures such
as sanitation and masks, and the rate at which individuals come within physical proximity. It is these last two
elements that governments can control through social-distancing directives. However, infection measure-
ments are almost always delayed, making real-time estimation nearly impossible. Safe Blues is one way of
addressing the problem caused by this time lag via online measurements combined with machine learning
methods that exploit the relationship between counts of multiple forms of the Safe Blues strands and the
progress of the actual epidemic. The Safe Blues protocols and techniques have been developed together
with an experimental minimal viable product, presented as an app on Android devices with a server backend.
Following initial exploration via simulation experiments, we are now preparing for a university-wide experi-
ment of Safe Blues.

INTRODUCTION the spread of the virus through measurement and modeling. Viral

spread is a complicated function of multiple elements, including
biological properties, the environment, preventative measures,
such as sanitation and masks, and the level of physical prox-

The COVID-19 pandemic is the most significant global event faced
by humanity in the 21st century. In less than a year, there have

been over 50 million confirmed cases and over 1.5 million deaths.
In trying to mitigate the effects of this virus, economies are crum-
bling and whole societies are undergoing transformation due to
the new norms dictated by the virus and the human response.
In parallel with the race to develop SARS-CoV-2 vaccines,
there are many efforts in the scientific community to understand
m
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imity. It is these last two elements, preventative measures and
the level of physical proximity, that governments can control
via social-distancing directives and lockdowns. However, with
a pandemic, such as COVID-19, the data we have are always
lagging and biased: the time between a patient being infected
and being recorded as positive can be 1 or 2 weeks. A
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Figure 1. The 2020 outbreak in Victoria
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consequence is that the typical time between the initiation of a
regulatory measure and our observation of its effect can be of
the order of several weeks. This delay hinders the ability of epi-
demiologists, mathematical biologists, and public health officials
to make inferences about the current situation and projections
about the future trajectory of viral spread. As a consequence,
governments have struggled to deliver an effective response to
the pandemic.

Biological properties of SARS-CoV-2 have been studied since
the start of the outbreak' and are being better understood as
time progresses.2 On the other hand, population behavior is
changing rapidly due to unprecedented social-distancing regu-
lation and is hard to observe, model, and predict. As a conse-
quence, achieving tight real-time estimates of time-varying
parameters, such as Re(t), the expected number of individuals
infected by an infectious person at time t, is a difficult task.”

The effects of this uncertainty are painfully visible in the sec-
ond waves afflicting multiple countries that responded “well”
with strong social-distancing measures in February—-May,
2020. As an illustration, consider Figure 1, which presents the
confirmed daily new cases in the state of Victoria, Australia.
The initial lockdown during April-May managed to suppress
COVID-19. However, a second outbreak in July required a
further lockdown and the magnitude of the second wave was
much more significant than the first. In managing crises like
these, governments face extreme difficulty in determining the
optimal level of social distancing that should be imposed. Such
decisions often involve guesswork because it is difficult to get
immediate feedback on how various implementations of so-
cial-distancing regulation affect the level of physical proximity
and, in turn, viral spread.

While the Victorian response appears to have suppressed the
spread of SARS-CoV-2 in both waves, the social-distancing
measures have had huge economic and social costs. Can the
response be improved in future outbreaks or waves? For
example, a swifter response entailing the imposition of social-
distancing measures might have allowed an earlier easing of
those measures with fewer overall infections and ultimately lower
economic and human impact. However, without real-time esti-
mates of the epidemic’s state, it is unreasonable to expect
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Measured daily new cases of SARS-CoV-2 in the
Australian state of Victoria in 2020. Both the first
wave and the second wave were mitigated via
social-distancing measures. Government imposed
various social-distancing directives, with severity
labeled stage 2 (lightest), stage 3, and stage 4
(complete lockdown).

such a refined response. Essentially,
government has very little real-time infor-
mation of viral spread to inform its deci-
sion-making process.

To help address this problem, we pro-
pose the use of Safe Blues.”* Safe Blues
uses Bluetooth signals to transmit tokens
between mobile devices that mimic virus
spread in a real-time privacy-preserving
manner. The wireless technology that it uses is similar to existing
and emerging contact-tracing frameworks such as, Proximity,®
Blue Trace,” and the Privacy-Preserving Contact Tracing frame-
work developed by Apple and Google.® However, its purpose is
completely different. It does not record and store information
about individuals and their interactions with the intention of map-
ping specific contacts. Instead, various Safe Blues virus strands
are periodically created and their spread through the (mobile de-
vice) population is tracked. Aggregated counts for each strand
are reported to a server without recording private information.
An analysis of the counts can be used to produce aggregate es-
timates of population contact. The result is a real-time evaluation
of the effect of any social-distancing rules that are in place. The
effects of other mass contact events, such as public demonstra-
tions and large gatherings, are also automatically measured.

This information can be thought of as a proxy measure for
aggregate physical proximity. Along with retrospective informa-
tion about actual (not Safe Blues) SARS-CoV-2 case numbers, it
can be used to train sophisticated machine learning (ML) models
to estimate SARS-CoV-2 infection numbers as a function of the
prevalence of Safe Blues strands. Real-time information on Safe
Blues strands thus provides, via the ML projections, live near-
future estimates of SARS-CoV-2 infection levels and can feed
directly into policy decisions.

One may wonder how a safe virtual virus spread solution, such
as Safe Blues, differs from “contact counting”-based measure-
ments. Such contact counting could potentially be obtained via
contact-tracing apps, although we are not aware of an imple-
mentation where aggregate contact-tracing data are down-
loaded and tracked in real time. A number of technology
companies®'® collect and provide data that can be used to
help with estimating behavioral patterns in the community. For
example, Apple provides daily updated mobile data segregated
into three streams: driving, walking, and transport. Google sup-
plies data on GPS-derived indices of the amount of time spent in
workplaces, residential areas, grocery stores, transit stations,
and the like. These data have been used to provide estimates
of population contact rates that have been input into epidemio-
logical analyses.>'" We believe that Safe Blues can provide
complementary data, with the social mixing information
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provided by Apple, Google, and similar companies being inte-
grated with Safe Blues data to provide powerful ML predictive
models. Safe Blues has the potential to be a substitute, and
possibly an improvement, for the micro-level distancing informa-
tion derived from such surveys.

Safe Blues shares some characteristics with agent-based
simulation'™'* in the sense that its outcomes are driven by the
behavior of individuals. Both approaches rely on capturing real-
istic physical proximity behavior of individuals, along with virus
transmission, to make predictions about population outcomes.
The difference between them is that Safe Blues data is driven
by actual population behavior, whereas agent-based models
simulate this behavior. The latter have the advantage that they
can be used to explore potential future scenarios and can model
the effect of interventions, such as mask wearing and surface
cleaning. However, they rely on assumptions about how agents
interact rather than the actual interactions.

Ultimately policy makers should use a mix of agent-based sim-
ulations as in Victoria,'® aggregate mobility data, such as the
Google and Apple data, and virtual safe virus spread solutions,
such as Safe Blues, which we propose here. These tools com-
plement one another and, if used effectively, may empower pol-
icy makers with a much clearer view on the state of the
pandemic. Our focus in this paper is to present the potential of
a virtual safe virus spread solution, such as Safe Blues.

MEASURING AND CONTROLLING AN EPIDEMIC

Epidemics are largely governed by the average number of individ-
uals infected by each sick individual. This quantity, usually
referred to as the effective reproduction number Rex(t) at time
t, measures the ebbs and flows of the epidemic in aggregate.
For SARS-CoV-2, early estimates indicate that, without signifi-
cant control measures in place, Re(t) lies in the range of 2-4."°
Its magnitude depends on a combination of biological and behav-
ioral factors. Key biological factors include the propensity of the
pathogen to infiltrate human hosts, the duration of infectiousness
in an infected individual, and the susceptibility of different age
groups. Key behavioral factors include personal hygiene prac-
tices, cultural practices around touching, such as hand shaking,
and, importantly, the structure of social networks and amount of
time that individuals spend in close proximity to each other.

The biological factors determining Re¢(t) tend to be uncontrol-
lable and, with the exception of weather effects, may generally
be assumed to remain constant over time as long as significant
virus mutation does not occur. The behavioral factors, however,
are controllable to some extent. Indeed, the social-distancing
measures imposed in over 150 countries during the first few
months of 2020, some of which were outlined in a high-impact
report,’” are attempts to control the behavioral component of
Ret(t).'® Retrospectively, it is clear that these measures were
essential for slowing down the epidemic, but it is also clear
that their effectiveness decreased over time as people became
less cautious and were unaware of a growing second wave
(see Figure 1). Unfortunately, at this early stage, it was very diffi-
cult to quantify in real time the effect that any particular social-
distancing measure had on population behavior or network
structure, and in turn on the evolution of Re(t) and the course
of the epidemic.
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A lack of near real-time information on social proximity is prob-
lematic, because all models that aid policy makers by projecting
the course of the epidemic require an estimate of Re(t). Above,
we mentioned papers®'" thatincorporated data provided by tech-
nology companies into a process for estimating Re¢(t) in real time.
Other work has involved attempts to quantify the level of human-
to-human interaction either at broad scales'®*° (such as social
gatherings) or at finer scales'”"% (such as handshaking prac-
tices). A notable effort to obtain such a quantification®® used sur-
vey sampling of the UK population to estimate that, in March of
2020, Res(t) shifted from around 2.6 before lockdown to around
0.62 after lockdown. While impressive, such questionnaire-based
surveys are difficult and expensive to execute and do not yield
real-time estimates. Other approaches to measuring Res(t)>**°
use up-to-date count data, such as the now-famous dashboard
by the CSSE at Johns Hopkins.?® However, in such cases the
problem is that reported “live data” about SARS-CoV-2 is based
only on confirmed tested cases which lags infection events and
does not consider the large number of asymptomatic cases or
otherwise untested cases. Better estimates become known only
retrospectively, after the pandemic has progressed.

In a controlled system, lags in a system’s response (in this
case, virus transmission) to a control intervention (such as
increased social restrictions) are problematic. Lags lead to unde-
sirably slow control updates, which hinder policy makers’ ability
to effectively reduce transmission while minimizing wider social
and economic disruptions. Safe Blues provides a real-time proxy
for the virus transmission response, thereby reducing the lag be-
tween social intervention and the epidemiological response.

VIRTUAL SAFE VIRUS MEASUREMENT

The key idea of Safe Blues is to obtain real-time estimates of
gross population engagement dynamics in a safe and privacy-
preserving manner. Safe Blues data can be processed to yield
estimates of the spread of a virus, such as SARS-CoV-2. Near-
future projections and estimates of the Re«(f) can be continu-
ously updated. At the heart of the system is a measurement
framework of auxiliary variables describing the spread of Safe
Blues strands, which we describe below.

The system works by having personal mobile devices take part
in an ongoing safe real-time virus spread “simulation,” where, by
means of Bluetooth signals, the time that individuals spend in
close proximity is a key driving factor. This is done in a way
that does not compromise individual privacy, does not cause
any risk to human health, and does not introduce any risk to in-
dividual software or hardware. See Figure 2 for a schematic illus-
tration of the Safe Blues data collection system.

A Safe Blues strand is a virtual token that circulates and repli-
cates between the mobile devices of individuals using dynamics
designed to reflect the transmission of a biological virus but
without any threat to safety, software, or privacy. Strands differ
in their viral properties, such as incubation time and level of infec-
tiousness. Strands are counted as “active” for a finite duration of
time in each mobile device that is “infected.” During that time, if
the mobile device is in close proximity to another device, there is
a chance for the strand to “spread” to the neighboring device.
Similarly, if the mobile device is in relative isolation, the strand
is not likely to spread.
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We allow multiple strands to be present on each mobile de-
vice. These strands evolve independently from one another, so
in effect we are “simulating” multiple “epidemics,” correspond-
ing to the multiple strands, at any given time. Unlike with biolog-
ical epidemics, the number of devices infected by each strand
can be measured in real time.

The Safe Blues system periodically injects strands into the mo-
bile host population and obtains real-time counts of the number
of infected hosts for each strand. While the population dynamics
of each strand do not necessarily directly resemble the dynamics
of SARS-CoV-2 or any other biological virus, the epidemics of
the strands all respond to social proximity and social-distancing
measures in a similar way to a biological virus, because they all
experience the same social proximity and social distancing, at
least up to the stage where SARS-CoV-2-infected individuals
are recognized and isolated. Hence, we expect the course of
strand epidemics to be coupled with the course of the COVID-
19 epidemic.

The mechanism of communication between devices is Blue-
tooth. This is similar to the communication protocol used by
many emerging contact-tracing apps. In the Safe Blues protocol,
the probability of transmission increases as individuals spend
time in close proximity. Conversely, as individuals maintain a
higher level of social distancing, the Safe Blues strands are
less likely to spread. As far as we know, data collected by exist-
ing contact-tracing apps around the world are accessed only
when an individual tests positive. However, the contacts them-
selves are recorded without knowledge of the disease status
of individuals. This is a characteristic that is shared by Safe Blues
transmission. For example, in Figure 2, some individuals are
infected by SARS-CoV-2 (red) while others are not (green). How-
ever, Safe Blues is not aware of, and does not need, this private
information. Similarly, some individuals participate in Safe Blues
(as signified by those holding a mobile device in the figure) and
others do not. Some level of population participation is required,
but Safe Blues does not require all individuals to participate. A

4 Patterns 2, March 12, 2021

Patterns

Figure 2. The Safe Blues concept

Individuals of the population with Safe Blues-
enabled devices take part in spreading Safe Blues
strands. SARS-CoV-2-infected individuals are in
red and others are in green. The Safe Blues system
operates independently of the health status of in-
dividuals.
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complete specification of the system is
provided by the Safe Blues protocol.”

EVALUATION OF SAFE BLUES VIA
SIMULATION

For initial evaluation of Safe Blues we
created three different simulation models,
each of a different nature. This allowed us
to test the robustness of the system to
different realities. In these simulation
models, we tracked both the biological vi-
rus and Safe Blues strands. Full details of
the models are given in the Computational
procedures section in the Supplemental information. We now re-
view the key ideas.

All models feature a population comprising a fixed number of in-
dividuals. Some of these individuals have Safe Blues-enabled de-
vices, while others do not. At each point intime, the simulated state
of anindividual registers whether they are susceptible, infected, or
removed with respect to the actual (biological) virus. If an individual
has a Safe Blues-enabled device, then the state also registers, for
every Safe Blues strand, whether they are susceptible, infected, or
removed. Hence an individual’s simulated device maintains the
state of multiple Safe Blues strands simultaneously.

The three models differ in their complexity and how they cap-
ture individual proximity. However, regardless of the model, indi-
vidual proximity drives both the (simulated) SARS-CoV-2 spread
and the Safe Blues spread in a coupled manner because both
SARS-CoV-2 and Safe Blues strands only spread when individ-
uals are in close proximity. This roughly approximates what one
may expect to happen in reality. Importantly, all three models
allow for time-varying parameters that enforce social distancing,
which in turn affects both SARS-CoV-2 spread and Safe Blues
spread by changing how much time individuals spend in close
proximity of each other.

Figure 3 sketches the three models. Model | is a very simple
and stylized discrete-time stochastic model. One of its appealing
features is that the numbers of susceptible, infectious, and
removed individuals converge to the well-known SIR difference
equations as the population size becomes large, which makes
this model well suited as a first test bed. Model Il is a contin-
uous-time stochastic SIR model with migration. It incorporates
several social and spatial features that are ignored in model I.
In particular, model Il has a spatial component (people have to
be in the same place at the same time for virus transmission to
occur) as well as a notion of social levels (people have a home
where they meet a selected number of other people, a workplace
where they may meet a larger number of people, and so forth).
Model Ill is a spatial movement model with location attraction
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in which individuals move randomly in two-dimensional space.
Its distinguishing feature is that it has a notion of centrality:
although individuals move around randomly, they are biased to-
ward visiting places that are important for them, such as their
home and the supermarket. This creates a form of clustering
that is not present in the first two models.

In the simulations that we ran with each model (Figure 4), af-
ter an initially rapid spread of the epidemic, social-distancing
regulations were increasingly imposed over a period of 2 weeks
and then fixed to prevent the vast majority of social contact. As
these rules went into effect, the infected proportion began a
slow but steady decline. All the while, Safe Blues strands
were being transmitted on mobile devices. As a consequence,
the proportion of Safe Blues infections mirrors the decline in the
true infected proportion, driven by a corresponding reduction in
physical proximity between Safe Blues-enabled devices. In all
the runs, at around 100 simulated days after the start, and after
months of a promising decline in case numbers, the social-
distancing rules were mostly lifted, resulting in a second
wave. The goal of our numerical experiments was to see
whether Safe Blues could provide adequate information to pre-
dict this second wave.

PREDICTION AND REAL-TIME INFORMATION WITH
SAFE BLUES

For performing real-time projection from the Safe Blues strand
information, we created the Deep Safe Blues deep neural
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Figure 3. Simulation models

Model I: at every time point, each of the individuals
selects a random number of other individuals to
“invite” and this implies physical proximity. In this
case, orange and green individuals make in-
vitations. Model lI: all individuals traverse a binary
tree between their private leaf and the root. At any
node, infection follows a continuous-time sto-
chastic SIR model between the individuals who are
present. Model lll: a spatial model where each in-
dividual diffuses either around their base (e.g., their
home) or around a center (e.g., a supermarket).

%0

network model®” from the ensemble of
Safe Blues strands and historical
SARS-CoV-2 information. Full details of
this model and the Dynamic Deep Safe
Blues model of the next section are
specified in the Computational proced-
ures section in the Supplemental infor-
mation.

The basic setup follows the paradigm
presented in Figure 4, where accurate in-
formation of SARS-CoV-2 is available
only up to a certain time, say 2 weeks in
the past, after which only Safe Blues infor-
mation is available. This lag represents
the fact that SARS-CoV-2 information is
not present in real time, in contrast to
Safe Blues. The relative magnitude of
past social-distancing measures is also

available as a categorical input for projections, e.g., “full lock-
down,” “partial lockdown,” etc.

The projections displayed in Figure 4 demonstrate that Deep
Safe Blues is able to accurately detect the start of a trend toward
a second peak in the number of infected individuals a significant
time before such data are available in all three models. Impor-
tantly, the same neural network architecture was used for all
three simulation models, meaning no tuning of architectures is
required to achieve these results. Together, our results yield con-
fidence in the ability of Safe Blues to detect a second wave
before it shows up in the actual data. This can enable public
health officials to respond during the essential early period
before infection estimates can be updated.

SAFE BLUES FEEDBACK TO POLICY

In addition to being a tool for estimating the current number of in-
fected individuals before such data are available, Safe Blues can
also help estimate the potential effect of policy decisions. For
this we developed Dynamic Deep Safe Blues, which is a tool
for projecting Ret(t) as a function of future levels of social
distancing using Universal Ordinary Differential Equations.?®
This approach mixes neural networks with epidemiological
models to directly learn how policy decisions affect the spread
of Safe Blues and the actual infection. Figure 5 demonstrates
data-driven projections of Res(t) under various policy levels.
Such results can be used to help decision makers determine
the levels of social distancing necessary to contain the outbreak
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Figure 4. Prediction with Safe Blues
Deep Safe Blues: Safe Blues detection of a second
wave applied to data generated from three

Proportion Infected
Proportion Infected

different simulation models. The light-colored lines
indicate counts of various Safe Blues strands that
are inputs to our predictions. The proportion of
infected individuals is only known until the vertical
black lines. After that point, only Safe Blues infor-
mation is available. Nevertheless, Deep Safe Blues
(trained up to the black line) is able to accurately
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and ensure that exponential growth into a second peak does not
occur. By directly quantifying the effectiveness of interventions
over time, this technique can be related back to historical policy
decisions to determine the minimal level of social controls
required to achieve declining cases and thus prevent further dis-
ease outbreak.

ON THE PENETRATION PROPORTION AND STRAND
PARAMETERS

An important question deals with the relationship between the
level of adoption of Safe Blues in a population and its prediction
accuracy. We call the former the penetration proportion and
denote it by n. Our initial simulation experiments indicate that
Safe Blues can be effective with a small penetration proportion.
For example, in a relatively small simulated population of
100,000 people, an n between 0.1 and 0.2 already gives high-
quality data. We hypothesize that, with a population size in the
order of millions, a penetration level n between 0.05 and 0.1
may be sufficient for successful estimation using Safe Blues. It
is important to note that the required penetration level for Safe
Blues to be successful is much lower than is needed for con-
tact-tracing apps to be successful.

A potential difficulty is systematic bias. For example, the
mobility and interaction profiles of individuals that adopt Safe
Blues may differ from those of the general population. Neverthe-
less, the prediction system will probably work well if this bias is
consistent over time, as long as there is sufficient correlation be-
tween the proximity patterns of Safe Blues users and other co-
horts of the population.

The penetration proportion n has an impact on the way in which
Safe Blues strand infections should be configured. Assume that,
at a given point in time, COVID-19 has an estimated infection
rate of § and a removal rate of y. We can then set the infection
rate and recovery rate of a Safe Blues strand s to approximately
follow, B :% and vys=1, where the approximation is due to
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the lack of exact knowledge about y and
B, as well as due to the desire for some
heterogeneity between strands. The
choices of the parameters §; and ys can
then be incorporated into operational
strand parameters. Regarding the incuba-
tion period for Safe Blues strands, we may
want to configure the strands to incubate
faster than in reality, to ensure quicker
response time in measurements.

The motivation for this choice of strand
parameters comes from basic epidemiological considerations
appearing in SIR models. As an example, consider the difference
equations associated with model | in Equation (S1) of the
Computational procedures section in the Supplemental informa-
tion. In this case, if one decreases the population size by a factor
of =1, then achieving similar epidemic behavior (on the smaller
population) can be achieved by setting §s and vy, as sug-
gested above.

A CAMPUS EXPERIMENT FOR SAFE BLUES

We are now in the process of devising a campus-wide experiment
to assess the efficacy of Safe Blues. We are aware of at least two
similar experiments, each carried out for a different purpose. The
Contagion project® was a large-scale social contact and data
collection project in the UK, aiming to simulate epidemic spread.
The experiment logged the GPS location of volunteers to the near-
est square kilometer and used the data to simulate the spread of a
virus. The study was labor intensive because it required self re-
porting the number of people each participant interacted with
each hour. The FluPhone (and associated EpiMap) project™°
used cellular devices to record contacts, but did not focus on vir-
tual safe virus spread and did not restrict information collection to
just counts as Safe Blues does. Our proposed experiment thus
differs from both of these previous experiments.

The main purpose of the Safe Blues campus experiment is to
test whether the Safe Blues system can add to the predictive po-
wer of traditional epidemic forecasting methods. The experiment
will be carried out at the University of Queensland, St Lucia
campus or/and at the University of Auckland’s main campus.
The experiment will source student participants who will run
the Safe Blues app as they attend campus. A randomized reward
mechanism will motivate participants to continue to use the app
over a prolonged period.

We have developed an Android application based on the open
source contact-tracing OpenTrace software’ published by the
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Figure 5. Policy projection with Safe Blues

Demonstration of policy projection and refinement
using Dynamic Deep Safe Blues on model Ill.

tiousness of the red and blue strands.
Such artificial control enables one to
simulate varying degrees of social-
distancing measures. The goal is to
have a first wave (of red and blue strands)
and then, in the second wave, Safe Blues
measurements will be employed for pre-
diction. Further updates about the Safe
Blues campus experiment will be posted
on the Safe Blues website.®
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Singaporean government. Our app follows the Safe Blues proto-
col specified in Appendix A of a previous study”* with additional
implementation details. The app source code is written in the
Kotlin language, and interfaces with a backend service using
the gRPC protocol. We have developed an associated dash-
board and control panel to aid in creating new Safe Blues strands
and in tracking their spread. The source code for the app, the
backend, and the dashboard is available from GitHub.*' Figure 6
illustrates the app and the control panel.

As participants run the Safe Blues app, they will propagate an
ensemble of red strands and an ensemble of blue strands. Each
red strand simulates an epidemic that is to be tracked. With mul-
tiple red strands, the experiment can simultaneously simulate
multiple epidemics. The blue strands are Safe Blues. During the
experiment, they are tracked to obtain quantifiable uncertainties
of the predictive power of Safe Blues versus traditional methods.

The Safe Blues predictor will have available real-time Safe
Blues strand information as well as delayed red strand measure-
ments. Separately, for each red strand, the Deep Safe Blues
method described above will be used to project the current state
of the red epidemic, as well as a 10-day forecast. In parallel,
several state-of-the-art predictive techniques®? will be employed
to project infection levels of the red epidemic using only suitably
lagged red strand historical data. The goal of the experiment is to
test whether the projections obtained with the aid of Safe Blues
can yield significant improvement in the accuracy of projections
that one would obtain without Safe Blues, only based on lagged
red strand data.

The experiment will take place in a small campus environment
with only a few hundred active participants, so the parameters of
the Safe Blues app will need to be adjusted beforehand. Such a
calibration phase is needed to ensure that both red strands and
Safe Blues strands can propagate efficiently, so that red/blue
epidemics are possible. This phase may also involve agent-
based simulations to aid in calibration.

After the calibration phase and during the experiment, social
distancing will be simulated by artificially controlling the infec-

OUTLOOK

A century of technological innovations

passed between the 1918-1920 H1N1

pandemic and the current COVID-19
pandemic. What innovations are helping humanity fight the cur-
rent pandemic that were not available in 1918? In addition to
many advances in the understanding of pathogens and their ef-
fect on the human body, some of the innovations used for
quantifying and managing the 2020 pandemic include compart-
mental (SIR type) differential equation epidemic models, agent-
based simulation models, contact-tracing apps, and a variety
of data collection and visualization mechanisms. However,
the past few decades have witnessed great advances in
computational statistics and ML, and one may ask if tools
from these areas have so far been effectively employed in the
fight against COVID-19. We believe that, to date, the answer
is generally negative due to the lack of available coherent
data associated with the pandemic. It is thus unfortunate that
a pandemic hitting humanity in the midst of the “Al revolution”
cannot be controlled using the ML tools that are celebrated in
so many other domains.

The value proposition of methods, such as Safe Blues, is to
empower modelers and policy makers to utilize computational
statistics and ML effectively. Our method allows one to collect
additional real-time information at scale. Indeed, large quanti-
ties of data are often needed for effective application of deep
learning and related methods. Safe Blues aims to provide pol-
icy makers and modelers with ample information that informs
better decision making. To the best of our knowledge this
type of framework is fundamentally different from existing solu-
tions and other suggestions that have appeared in the
literature.**

Based on simulation experiments, the ML principles and anal-
ysis that we use appear to be robust enough to yield immediate
value from collected Safe Blues signals. The next stepis to collect
results using our experimental app in a campus level experiment.

A further critical attribute of any such system is privacy. The
Safe Blues system is highly privacy-preserving relative to many
other apps that aim to fight the COVID-19 epidemic. No individ-
ual interaction information or any other private information is
shared between devices or between a device and the server.
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Figure 6. Safe Blues software

Patterns

Safe Blues is active.
No further action is required.

Safe Blues doesn't require any
= personal information.

Share Safe Blues >
Invite others to join the fight.

The control panel, dashboard, and Android app used for the planned campus experiment.

This is achieved by not associating long-term identifiers with
users or devices, nor collecting any information about the users
themselves. The devices do not share anything other than the
strands with which they are currently infected.

This is in contrast to contact-tracing apps that raise more
serious concerns about personal privacy, even when engineered
using novel privacy-protecting methods. Fundamentally, this is
because the goal of any contact-tracing app is to observe rela-
tionships between individual people through their interactions,
whereas the goal of Safe Blues is to collect only aggregate simu-
lated epidemic signals. Thus a proper implementation of Safe
Blues can provide stronger privacy guarantees than contact-
tracing apps.”**

Nonetheless, there are some issues that need to be ad-
dressed. For example, the case of an adversary choosing a
rare strand and infecting a user with that strand to track
them is averted by making sure that the seeding probability
of each strand is sufficiently large to make strands common,
making them meaningless for trying to identify an individual.
Still, tracking might be possible using combinations of
strands. Addressing such concerns remains a goal for future
research.

An idea we have not yet pursued is to take the Safe Blues idea
further, and consider gamification. For example, in a second or
third generation of the app, one might consider presenting users
with an up-to-date count of the strands of Safe Blues infecting
their device. This information may help users to get a feel for
the level of social distancing that they are practising and to
stay socially responsible as advised by government. One might

8 Patterns 2, March 12, 2021

even use randomized rewards to further incentivize users to
maintain social distancing.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
patter.2021.100220.
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