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ABSTRACT

One of the most promising tracers of the Galactic potential in the halo region is stellar streams. However, individual stream fits
can be limited by systematic biases. To study these individual stream systematics, we fit streams in Milky Way-like galaxies
from Feedback In Realistic Environments cosmological galaxy formation simulations with an analytical gravitational potential
by maximizing the clustering of stream stars in action space. We show that for coherent streams the quality of the constraints
depends on the orbital phase of the observed stream stars, despite the fact that the phase information is discarded in action-
clustering methods. Streams on intermediate phases give the most accurate results, whereas pericentre streams can be highly
biased. This behaviour is tied to the amount of correlation present between positions and momenta in each stream’s data: weak
correlation in pericentre streams prohibits efficient differentiation between potentials, while strong correlation in intermediate
streams promotes it. Although simultaneous fitting of multiple streams is generally prescribed as the remedy to combat individual
stream biases, we find that combining multiple pericentric streams is not enough to yield a bias-free result. We finally show that
adopting the two-component Stickel model does not fundamentally induce a biased mass estimate. With our full data set of two
multiwrap streams, we recovered the true rotation curve of the simulated galaxy within 12 per cent over the entire range of radii
covered by our set of stars (10-176 kpc) and within 6.5 per cent between the 5 and 95 percentile distance range (23—109 kpc).
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1 INTRODUCTION

Stellar streams, relics of tidally disrupted globular clusters and dwarf
galaxies, are one of the most promising probes of the gravitational
field of the Milky Way at large Galactocentric distances. Since
the first detections of streams in the Milky Way (Ibata, Gilmore
& Trwin 1994; Grillmair et al. 1995; Helmi et al. 1999), many
methods have been developed to constrain the Galactic mass profile
using streams. Some of these make comparisons between predictions
and data directly in position and velocity space such as the orbit-
fitting technique (e.g. Koposov, Rix & Hogg 2010), particle ejection
methods (e.g. the ‘streakline’ method of Kiipper, Lane & Heggie
2012, the modified Lagrange Cloud Stripping method of Gibbons,
Belokurov & Evans 2014, the ‘particle-spray’ method of Fardal,
Huang & Weinberg 2015), or full N-body simulations (e.g. Law &
Majewski 2010), while others utilize the action-angle coordinates,
such as the angle-frequency slope method (Sanders & Binney 2013)
and action-clustering method (Sanderson, Helmi & Hogg 2015).
These methods have thus far been applied to only a handful of
streams, most commonly GD-1 (Koposov et al. 2010; Malhan &
Ibata 2019), Pal 5 (Kiipper et al. 2015), Sagittarius (Law & Majewski
2010; Dierickx & Loeb 2017; Vasiliev, Belokurov & Erkal 2021),
and Orphan (Newberg et al. 2010; Erkal et al. 2019).
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To date, most of these studies have focused on measuring the
potential with single streams (although see Bovy et al. 2016).
However, using a sample of streams evolved in the Via Lactea
II simulation Bonaca et al. (2014) showed that constraints from
individual streams can be highly biased. Only simultaneous fitting of
a collection of streams would result in accurate potential recovery.
They estimated that GD-1 and Pal 5-like streams could individually
return up to 50 per cent biased mass estimates for the Milky Way. In
Reino et al. (2021), we showed that this also holds true when using
the action-clustering method. In particular, we saw a significant bias
arise from the analysis of GD-1 compared to the constraints derived
with a collection of streams. The strategy of simultaneous fitting
of multiple streams to avoid the pitfalls of a single stream fit was
also advocated by Lux et al. (2013), Sanders & Binney (2013), and
Sanderson, Hartke & Helmi (2017).

Today, more than 60 streams have been discovered in the Milky
Way (Newberg & Carlin 2016; Mateu, Read & Kawata 2018; Ibata,
Malhan & Martin 2019; Koppelman et al. 2019; Myeong et al. 2019;
Naidu et al. 2020; Malhan et al. 2021) and ideally we should seek a
consensus fit. However, the observational data required for Galactic
potential inference is only available for a subset of these streams.
Attaining the full 6D phase space information tends to be difficult and
necessitates a cross-matching of information from different surveys,
e.g. proper motions from Gaia (Gaia Collaboration 2016), distances
of RR Lyrae from PanSTARRS1 survey (Sesar et al. 2017) or Gaia’s
Specific Object Study catalogue (Clementini et al. 2019), and radial
velocities from RAVE (Kunder et al. 2017), WEAVE (Dalton et al.
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2012),4MOST de Jong et al. (2019), or DESI (Levi etal. 2019). Since
steams are typically distant and faint, targeted follow-up surveys are
often needed, such as the H3 survey (Conroy et al. 2019) targeting
the stellar halo and the S5 survey (Li et al. 2019) targeting the stellar
streams in the Southern Hemisphere. With this in mind, knowledge of
which streams are the most useful for putting accurate constraints on
the Galactic potential would be valuable for selecting which streams
to focus both our modelling and observing efforts on.

To gain this insight, Bonaca & Hogg (2018) explored the intrinsic
information content in the tracks of 11 mock globular cluster stellar
streams as a function of their properties using the Fisher-matrix
approach. They found that angular length of the stream was the
best predictor of the tightness of their parameter constraints and that
streams on more eccentric orbits were the most sensitive to the halo
shape. However, while the Fisher-matrix approach allowed them to
investigate the precision of the constraints the different streams were
capable of reaching, they did not address the question of accuracy.

In this paper, we aim instead to gauge the accuracy of the con-
straints that arise from different streams using the action-clustering
method. In particular, we explore the systematics of stream-driven
constraints as a function of their orbital phase. To this end, we select
two long spatially coherent streams from Feedback In Realistic Envi-
ronments (FIRE) cosmological-hydrodynamical simulations (Hop-
kins et al. 2018) for our analysis. First, we set the expectation for the
accuracy obtainable with two full-length streams and then divide the
streams into smaller sections based on their current orbital phase and
analyse these segments independently. This approach is motivated,
first, by the fact that in reality it is more likely to detect (or have the
full 6D phase space information for) only a small nearby segment
of the whole longer stream, or that associations between stream
sections observed in different parts of the sky are uncertain. Second,
the streams most commonly used for characterizing the potential of
the Milky Way are from globular cluster origin, and therefore much
shorter than the dwarf galaxy streams found in FIRE simulations.
Since globular cluster streams do not intrinsically form in the FIRE
simulations, we can instead approximate their length by treating each
section as an independent stream. Third, this approach allows us to
keep constant some properties of the streams we are working with
(for instance eccentricity, inclination, apocentre distance), and to
direct our focus on phase differences. Finally, with this framework
we can easily apply our method to the full stream data to verify that
our potential model does not induce severe systematic biases on these
sectional results. As a by-product, this setup will give us an indication
of whether, and how much, the constraints vary over the length of
the full long stream. Another goal of our study is to investigate how
accurately we can recover the true potential of the simulated galaxy
when modelling the streams with a Stickel potential. Although
Stickel potentials are generally considered inadequate for describing
realistic galaxies, they have the great benefit of exact actions. This
property was our incentive for adopting the Stéckel potential when
analysing real Milky Way stellar streams in Reino et al. (2021). In
this work, we will test whether this assumption can introduce any
significant additional bias into our results.

This paper is organized as follows. We discuss the elements of
our method in Section 2, introducing the Stickel potential (2.1), the
action coordinates (2.2), and our action-space clustering measure
(2.3). We give an overview of the FIRE suite of simulations and our
stream sample in Section 3. In Section 4, we present our results for
the full streams, while the results for stream sections are shown in
Section 5. Next, in Section 6 we explore the stream section results as a
function of orbital phase. In Section 7, we explore the dependence of
our result on other stream section properties and provide a reasoning

MNRAS 509, 5365-5381 (2022)

for the orbital-phase effects. Finally, we discuss our results and make
conclusions in Section 8.

2 METHOD

We follow the action-clustering method outlined in Sanderson et al.
(2015) and Reino et al. (2021) which aims to constrain the galactic
potential by maximizing the clustering of stream stars in action space.
We vary the potential used for converting the stars’ positions and ve-
locities into action coordinates and adopt as the best-fitting potential
the one that gives rise to the most clustered distribution of actions.

2.1 Stiickel potential

Analytical transformation of phase space coordinates (x, v) to action
coordinates J is possible only for a small set of potentials for which
Hamilton—Jacobi equations can be solved by separation of variables.
Action estimation for general potentials requires the use of numerical
approximation algorithms (see Sanders & Binney 2016), although
repeated calculation of actions can be computationally costly in these
cases. Analytical calculation, in contrast, is less expensive and as such
allows both for a larger number of stream stars to be included in the
fit and more potentials to be considered.

The Stickel potential, which separates in ellipsoidal coordinates, is
the most general of the small group of separable potentials to describe
areal galaxy, as it allows for arbitrarily flattened density profiles and
construction of flat rotation curves with the two-component Stéckel
model (Batsleer & Dejonghe 1994).

However, the applicability of Stéckel potentials is limited by the
fact that all orbits are defined by the same foci. This restriction has
been shown to be incorrect for real galaxies (Kuijken & Gilmore
1989; Binney 2012) and therefore a perfect global fit is not possible.
Many action-calculation methods still utilize its advantages and, for
example, fit each orbit with a local Stickel potential instead (Sanders
2012) or apply the Stidckel formulae to another more complex
potential of interest (Binney 2012).

One of the aims of this work is to test the practicality of adopting
a Stickel potential to describe a realistic galaxy and to see whether,
despite its known limits, it could still be utilized as a valuable tool.
Discussion on the expected size of errors originating from our choice
of the Stéckel potential model is included in Section 4.

In this work, we consider oblate axisymmetric two-component
Stickel potentials described by spheroidal coordinates, a limiting
case of ellipsoidal coordinates. Spheroidal coordinates (, v, ¢) are
related to cylindrical coordinates (R, z, ¢) by the following quadratic
equation:

R2 ZZ

—a -t W

T —¢?
where T = A, v are the roots.

Parameters a and ¢ are constants that determine the location of
the foci A = +/a? — ¢? and define the axial ratio of the coordinate
surfaces, e = % and therefore establish the shape of the coordinate
system. For an oblate density distribution, we have a > c. Further
details about this coordinate system can be found in de Zeeuw (1985)
and Dejonghe & de Zeeuw (1988).

A Stickel potential, @, in spheroidal coordinates can be written
as

d(r, v) = _M7
A—v
f(@) = (r —cHG(), (2)
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where we set G(7) to be the Kuzmin—-Kutuzov potential
GM[(J[
JT+c

where M\, is the total mass and G is the gravitational constant.

To construct a two-component Stickel model, we combine two
individual Stdckel potentials, ®@gyer and Pipner. The motivation for
this is to add more flexibility to our potential model thereby allowing
for a more realistic model of the galaxy (Batsleer & Dejonghe 1994;
Reino et al. 2021). The two components are defined by different
parameters doyters Couter aNd @inner» Cinner» and therefore each has a
different scale and axial ratio but, crucially, they must have the same
foci for the total potential to retain the Stdckel form (as defined by
equation 2). It then follows that

G(r) =

3)

2 2 2 2 —
Aouter — %inner = Couter — Cinner = 9>
Aouter — Ainner = Vouter — Vinner = q, “)

where ¢ > 0 is a constant. The total G(7) is now a combination of
two partS, gouler(f) and ginner(f)

G(r) = GM(1—k) G Mok )
A/ Touter =+ Couter A/ Touter — ¢4 ~+ Cinner '
and the total two-component potential is
CD(}Voulers Voulers q)
1—k k
= —GMtot (6)

— + ,
)\outer + RY Vouter )"outer - q + Y] UOUICF

where k is the ratio between the inner component and the outer
component masses and M, is the sum of the two-component masses.

We define our two-component Stickel potentials on a grid of
five parameters § = (Miot, Aouter» €outers @inner» k). We select the trial
potentials by drawing 50 points for each of the shape parameters,
from uniform distributions in log space, over the ranges: [0.7,
1.8] in logo(@outer/kpc), [10g10(1.0), logi0(2.0)] in logio(eouter), and
[logi0(0.), logi0(0.7)] in log;y(ainner/kpc). However, we only use a
subset of these parameter combinations (~8000) that constructs a
mathematically valid potential according to equation (4); i.e. the

inati i 2 Cuer o o2
parameter combinations which adhere to cgy, = 8" > ¢y We

also draw 20 points for each mass parameter over tﬂuemranges: [11.5,
12.5] in log1o(M/Mg) and [logio(0.01), log;p(0.3)] in logjo(k). In
total, our grid contains 3253 600 trial potentials.

We further discard the potentials that cause any of the star particles
in our sample to be unbound from the host galaxy. In Reino et al.
(2021), we showed that our results did not change appreciably if,
instead of this strict condition, we allowed a small percentage of the
stars to become unbound. Furthermore, in that work we were dealing
with real stream data with measurement errors while here we know
the true position and velocity of all our particles and do not need to
worry about measurement errors causing unbound stars.

2.2 Actions

The action-angle coordinates are a set of canonical coordinates which
considerably simplify the equations of motion of a bound star in a
static or adiabatically time-evolving potential: the actions, J;, are
integrals of motion that uniquely define the stellar orbit and the
angles, 6;, are periodic coordinates that express the phase of the
orbit. For the Stidckel potential, we define the actions J; and J, as

1
Jo=— ¢ pdrt, @)
2w
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where p, is the conjugate momentum to the coordinate t and the
integral is over the full oscillation in 7. The third action Jy is equal to
the z-component of the angular momentum, L., and hence is constant
in our axisymmetric potentials.

The conjugate momenta, p,, can be found by solving the
Hamilton—Jacobi equation by separation of variables. In addition to
the momenta, the separation of variables introduces three isolating
integrals: I, I3, and the total energy E. The integrals I, and I3 are
defined as (Dejonghe & de Zeeuw 1988)

L2
12:21’

1) @ ey [ 29 =G
13—2(Lx—|—Ly)+(a c){zvz i } ®)

The solution to the Hamilton—Jacobi equation then allows the
momenta, p,, to be expressed as a function of the t coordinate
and the three isolating integrals:

I

2 1 _ ) _
P = 2(t — a?) [Q(t) T—a*> t1-¢? * E} ’ ©)

which can then be used in equation (7) and integrated numerically.

2.3 Clustering measurement

An intrinsic element of the action-clustering method is the procedure
of quantifying and comparing the degree of clustering present in the
action space of different potentials. Following Sanderson et al. (2015)
and Reino et al. (2021), we measure this degree of clustering with the
Kullback—Leibler divergence (KLD). The KLD is a measure of the
divergence between two probability distributions p(x) and ¢g(x). For
a discrete sample [x;] with i = 1, ..., N drawn from a distribution
p(x), the KLD can be calculated as

¢ p(x;)
qx;)

1 N
KLD(””‘”“NIZ“ . ifg(x) #£0Vi. (10)

The value of KLD increases with increasing difference between p(x)
and ¢g(x) and is equal to 0 when p(x) = g(x).

Since we are looking to measure the amount of clustering in action
space, irrespective of the cluster locations, we proceed with the idea
of comparing the distribution of actions in a particular trial potential
to a completely unclustered, featureless distribution. In other words,
we set g(x) to a uniform distribution in the actions, u(J), and p(x) to
a probability distribution of actions, p(J | ¢, @), found by mapping
the phase space coordinates w to action space J with a trial potential
parametrized by ¢. The difference between the two distributions is
greater the more clustered the action distribution.

Our goal is to maximize the difference, and therefore the KLLD
value, between these probability distributions as we vary the trial
potential and explore the parameter space. The trial potential with
the highest KLD value is adopted as the best-fitting potential, with
parameters £, for that particular data set, ®.

The standard KLD gives equal weight to each star particle in the
sample and as a consequence, when multiple streams (or stream
sections) are analysed simultaneously, streams (or stream sections)
containing more star particles have stronger influence over the results.
Since stream membership in this case is known, we can make the
best use of the data by giving equal weight to all streams instead, by
weighting the contribution of each star particle with

1 1

_ L b 1
N, N, (1

w;
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where N is the number of streams and N; is the number of star
particles in stream j.
This weighted KLD is thus calculated as follows:

Ny Nj
KLD1(¢) =ZZ w; 1ogM (12)

r u(J) J:JQf’

where J '{’ = J(¢, w;;) and w;; are the phase space coordinates for
star i in stream j.

Although the function p(J | {, w) is not known a priori, it can
be constructed using the observed points J via a density estimator.
Here, we obtain p(J | {, ®) using the Enlink algorithm developed
by Sharma & Johnston (2009). u(J), on the other hand, is constant
across all trial potentials and does not have an impact on the results.
It can therefore be set to any preferred value.

Finally, the method will work best if the different streams do
not overlap with each other in action space. Since in this case,
as in Reino et al. (2021), we know which stars belong to which
stream, we can ensure this absence of overlap by calculating the
probability distributions for each stream independently. So, instead
of estimating p(J | ¢, w) with the full set of sample points J,
we construct a probability density function p;(J; | ¢, w;) for each
stream j individually from points J ;. To keep the p; at the correct
relative size between the different streams, we normalize each p; with

% In practice, the KLD equation that we use is therefore

Ny Nj
s Nipi(Ji|¢ o
KLDIG) = > > w;log WJW L (13)
i =J¢

J

It is important to note that neither the weighing nor the separation
of streams in action space is critical for the action-clustering method
to work, as we have shown in previous works (Sanderson et al. 2015;
Reino et al. 2021).

The goal of this procedure, as already stated above, is to determine
the set of Stidckel potential parameters that maximize the KLDI1
value. As a second step in our procedure, we calculate the confidence
intervals on these best-fitting parameters, by comparing the action
distribution of the best-fitting potential, p(J | £, , @), to the action
distributions of the other trial potentials, p(J | ¢, » @) using again
the Kullback—Leibler divergence.

The KLD defined in such a way can be interpreted as the
relative probability of the potential parameters ¢, to the best-
fitting potential parameters ¢, (Kullback & Leibler 1951; Kullback
1959). As we move further from the best-fitting parameter values, the
difference between the two action distributions grows and so does the
KLD value. In other words, we can measure how far from the best-
fitting parameters we can move before the action distribution starts
to significantly differ from that of the best-fitting action distribution.
The confidence intervals can then be drawn based on the value of
KLD that we deem to correspond to significant difference. The
interpretation of KLD as the expectation value of the difference
in the log of two posterior probabilities allows us to determine the
value of KLD that corresponds to any preferred level of significance.
For example, the significance of lo corresponds to KLD = 0.5.
An in-depth derivation of the relation between the KLD values and
the confidence levels can be found in Reino et al. (2021) and a full
discussion of this interpretation of KLD in Sanderson et al. (2015).

As with KLD1(¢) in equation (13), this version of KLD will
incorporate weights and a separate density estimation for different
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streams. It is defined as follows:

Ny, Nj
N; pi(J; | ;0,(1)[)
KLD2(Z) = R v TS A
;lz J N pi(Ji | ;triz\]’wi) J,:Jg

Once again, we use Enlink to estimate the probability density
functions p;(J; | £y, ;) and p;(J; | .., @i) using the two sets
of actions. Both functions are then evaluated at Jo = J (¢, , ®), the
actions computed with the best-fitting potential parameters &.

Finally, throughout the rest of the paper we discuss the un-
certainties of our measurements as lo confidence intervals. This
corresponds to the subset of trial potentials with KLD2(¢) < 0.5.
The individual parameter confidence intervals are determined as the
full range of parameter values in this subset of potentials.

3 SIMULATION DATA

In this work, we make use of streams formed from the tidal disruption
of dwarf galaxies in cosmological-baryonic simulations of Milky
Way-like galaxies from the Latte suite (Wetzel et al. 2016) and
ELVIS on FIRE suite (Garrison-Kimmel et al. 2019) of the FIRE
project (Hopkins et al. 2018). All haloes were simulated in ACDM
cosmology at particle mass resolution of 3500-7100 M, and spatial
resolution of 1-4 pc for star/gas particles; 18 000-35000 M and
40 pc for DM particles. The resolution of this suite of simulations
allows both luminous and dark subhaloes to be resolved well even
near each Milky Way-like galaxy, and follows the formation of tidal
streams from dwarf galaxies down to slightly below the mass of
the Milky Way’s ‘classical‘ dSphs: around 103 Mg, in total mass or
10° Mg, in stellar mass (at z = 0).

Panithanpaisal et al. (2021) search these simulated galaxies for
accreted structures that are spatially coherent and stream-like at
present day. They identify 100 such streams across 13 simulations
(see their table 1) and confirm that the progenitor galaxies of
these coherent streams are consistent with the mass—size—velocity
dispersion relationship of observed present-day Milky Way satellites.
This implies that the streams’ phase-space volumes, and therefore
their sizes and densities in action space, are representative of real
streams from satellite galaxies.

In this work, we focus on two of the nine coherent tidal streams
found in the halo of the isolated galaxy simulation m121i. This
simulated galaxy has had a quiet recent accretion history involving
mostly quite low-mass galaxies, as the Milky Way’s is expected to
have been since the Gaia—Enceladus merger (e.g. Bonaca et al. 2017,
2020; Belokurov et al. 2018, 2020; Haywood et al. 2018, Di Matteo
et al. 2019, Naidu et al. 2020). Specifically, m12i experiences no
mergers with mass ratios more similar than 1:3 after z = 1.7 (about
9.5 Gyr ago; Santistevan et al. 2020). Its thin disc stabilizes in its
current configuration more than 5 Gyr before present day (Garrison-
Kimmel et al. 2018), and has a stellar mass and surface density at the
Solar circle comparable to the Milky Way (Sanderson et al. 2020).

We select two long streams identified in m121, which each have
multiple wraps around their host galaxy and contain between 2000
and 4000 star particles. Although they are far longer than nearly
every known Milky Way stream, this length is ideal for our purposes
as it allows us to divide each stream into many sections that are
each comparable to most known stream lengths, and to select several
instances of the same orbital phase from each stream. Throughout
the paper, we use the error-free present-day positions and velocities
of the star particles that belong to these streams and assume complete
and contamination-free knowledge of stream membership for each
star particle.
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Figure 1. Streams A (top) and B (bottom) in galactocentric coordinates. Each stream section is identified by a given colour throughout the whole paper (see
Table 1 for a summary). Star particles not belonging to any section are shown as grey.

We define 11 sections in each stream by eye using a combination of
the position, velocity, and orbital phase information. Fig. 1 shows the
two streams in the galactocentric reference frame with each section
highlighted using a different colour (the velocities of the streams
are shown in Fig. Al). Throughout this paper, we consistently use
the same colour to represent a particular section of each stream, the
legend for this section-specific colour scheme is given in Table 1.
Gold-coloured points represent the progenitor-containing section in
both streams. The star particles that do not belong to any section
are shown in light grey. In Fig. 2, we show the streams after we
have unwound them using angle coordinates. The angle coordinates
were computed using the AGAMA library (Vasiliev 2019) in a low-
order multipole (dark matter and hot gas distribution) and cylindrical
spline (stellar and cold gas distribution) model fit to the potential
of m121 (Arora et al., in preparation). To unwind each stream, we
utilized the Hough transform (Duda & Hart 1972), a line detection
algorithm, to identify line overdensities in the 6, versus 64 projection
(Pearson et al. 2021; Shih et al. 2021). All the lines identified were
then connected by exploiting the periodic boundary condition in
the angle projection (i.e. if a line terminates at (6,, 6,) = (2, §¢),
it will reappear at (6, 6,) = (0, §¢)). Starting from the line with
the most members as the stem, we progressively connected more
lines to both sides, shifting (6,, 64) of the members of the newly
attached lines with suitable offsets, until all the lines are used. A more
detailed explanation of the unwinding process will be presented in
Panithanpaisal et al. (in preparation).

Fig. 2 thus allows for clear identification of the phase that
each section is on, which we have also summarized in Table 1.
Although we define for both streams the section which contains the

remaining progenitor (4A and 6B), we do this purely for visualization
purposes and do not make use of these sections individually. In
total, discounting the progenitor-containing sections, we identify six
apocentre sections, seven pericentre sections, and seven intermediate
sections between the two streams. The sizes of the sections vary
from 30 to 318 star particles, with a total of 973 star particles within
apocentre sections, 984 within pericentre sections, and 1176 within
intermediate sections.

4 FULL STREAM RESULTS

In this section, we discuss the results of our action-clustering method
when applied to the two streams as a whole, both independently and
in combination. Fig. 3 compares our recovered Stickel potential
with the true potential in two projections: the circular velocity
curve (left) and enclosed mass profile (right). The true potential
which is derived from the spherically binned total mass profile of
the simulation snapshot is shown with the black dash—dotted line.
The solid lines show the best-fitting Stickel potential of a particular
data set. Both stream A (solid green line) and stream B (solid blue
line) recover the true potential relatively accurately, especially at the
galactocentric distances where most of their star particles are. Stream
A, whose star particles lie between ~10 and ~96 kpc, recovers
the true potential more accurately at lower radii than Stream B,
whose median distance is twice as large. The best-fitting velocity
curve lies within 32 kms~! of the true velocity curve across all the
distances of its star particles, with ~10 km s~! at the median distance
(~38 kpc). Stream B, covering the range of distances from ~20 to
~176 kpc, on the other hand recovers the true potential better at
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Table 1. Sections defined in our streams. The upper portion lists the sections from stream A and the lower portion
contains those of stream B, each with their respective full stream details on top. The columns give for each stream
their signifier, number of stars N,, median galactocentric distance r, approximate orbital phase, the colour scheme
(which is used to mark the corresponding sections throughout the paper), length, width, and velocity dispersion.
Discussion on how these properties were computed is included in Appendix B.

Stream N. r [kpc] Phase Colour  Length [kpc] ~ Width [kpc] o, [km s
A 2063 37.7 - - - - -
1A 215 50.8 apocentre 74.7 3.63 31.9
2A 165 26.4 pericentre — 61.6 2.60 20.8
3A 109 38.6 intermediate — 38.6 1.84 18.6
4A 362 55.6 apocentre (Progenitor) e 50.8 3.12 12.1
S5A 117 38.4 intermediate — 335 2.69 14.5
6A 167 233 pericentre — 47.0 1.67 232
7A 183 41.5 apocentre — 45.7 3.49 36.8
8A 43 31.1 intermediate 25.8 3.77 25.1
9A 70 15.0 pericentre — 32.1 2.37 61.3
10A 41 27.8 intermediate — 23.3 2.92 34.6
11A 45 37.2 apocentre — 34.1 6.28 40.6
B 4038 78.8 - - - - -
1B 149 68.2 pericentre 115.5 5.46 20.6
2B 263 115.2 apocentre 179.7 13.0 21.7
3B 305 80.8 intermediate — 110.9 6.48 16.4
4B 259 535 pericentre — 69.0 4.39 16.1
5B 243 72.4 intermediate — 58.4 3.66 12.0
6B 1152 96.8 apocentre (Progenitor) 93.8 4.75 11.1
7B 318 67.9 intermediate — 473 5.86 19.0
8B 144 38.8 pericentre — 103.1 3.45 22.6
9B 109 66.9 apocentre — 108.2 4.71 20.3
10B 30 429 pericentre — 55.8 242 19.0
11B 159 53.3 apocentre — 118.1 6.44 24.7
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Figure 2. Phase information of streams A (left) and B (right). The progenitor-containing section (in gold) is at 8, = 0. Colour scheme as in Fig. 1 (see also

Table 1).

larger radii. Its best-fitting velocity curve is within 20kms™' of
the true velocity curve across its radial range, with 2.6kms™! at
the median distance (~79 kpc). The largest differences between
the predicted and true velocity curves occur at the shortest and the
largest radii for both streams. The true potential at galactocentric
distances less than ~20 kpc cannot be well reproduced by either
stream likely due to the small number of star particles within that
range (only ~2 per cent of the stars in our full sample). A further
discrepancy might arise also due to the lack of flexibility in the
Stdckel potential but this possibility cannot be explored with the
current data.

Unsurprisingly, the uncertainties of these best-fitting measure-
ments (shows as the shaded regions) are also the tightest where each
stream contains the most data: the median distance of star particles
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in each stream (marked with a cross) correlates with the distance at
which the uncertainty region has reduced to its minimum extent over
all distances.

The results from combined data (solid green line) show improved
accuracy and precision along the whole range of galactocentric
distances probed by our streams. The uncertainty region no longer
has a specific galactocentric distance where it is the tightest, instead
we are able to recover the true velocity curve within 12 per cent over
the range of radii covered by all the star particles (10-176 kpc). As
is the case with the individual stream results, the best-fitting rotation
curve most deviates from the true rotation curve at very short and
very large distances: between 23 and 109 kpc, the 5-95 percentile
galactocentric distance range of the star particles, we recover the true
rotation curve within 6.5 per cent.
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Figure 3. Results for stream A, stream B, and their combined data. We compare the results from these data sets to the true potential (black dash—dotted
line) in circular velocity and enclosed mass. The solid coloured lines show the best-fitting Stickel potential of each data set and the shaded regions show the
corresponding 1o uncertainty regions. The median distance of the star particles in the stream A and stream B data sets is marked with a cross (see Table 1).

To confirm that this accuracy is typical of all streams in the
simulation, we randomly selected three of the other nine coherent
streams present in the simulation and applied the action-clustering
method to each whole stream separately. We find that all three streams
recover the true potential very well — within 13 per cent, 3 per cent,
and 10 percent between the 5 and 95 percentile galactocentric
distance range covered by their respective star particles.

These full stream results, for which we used all the star particles
of the two streams, are virtually unaffected if we remove the sections
that contains the progenitors (4A and 6B). Stream B identifies the
exact same potential as best fit with or without the progenitor, while
stream A finds a best-fitting potential with a somewhat lower mass
across all radii in the without-progenitor-section case compared to the
full stream case. However, this lower mass profile is still well within
the uncertainty region of both stream A and the combined streams
(shown in Fig. 3). The extent of the uncertainty regions between
the with-progenitor and no-progenitor results only show very minor
differences for both streams.

To address the question whether the difference between the best-
fitting Stdckel potentials and the true potential might largely be
attributed to our adoption of the Stickel model, we performed
a least-squares fit to the true velocity curve over the range of
galactocentric distances where we have stellar data (10-176 kpc)
using only our set of trial potentials. The potential that minimizes the
least squares can be considered the best possible Stickel potential
approximation to the true potential in terms of circular velocity.
We find that this Stickel potential approximates the true potential
extremely well: it recovers the true velocity curve within 2.8 kms™!
or 1.2 percent over this distance range. Therefore, we expect the
bias due to adopting the Stidckel model to be negligible even for
the innermost stream sections in our sample, and well within our
uncertainties.

Fig. 4 shows the comparison of the vertical acceleration (i.e.
acceleration in z-direction) field of the simulated galaxy (left-hand
panel) and that of our best-fitting potential model of the combined
stream data set (middle panel). The relative residuals are shown in the
right-hand panel. In general, the two acceleration fields are consistent
with each other. It is not surprising that the greatest difference

between the true and model z-accelerations occur near the plane
of the galaxy. Part of the reason lies in the fact that the simulated
galaxy is dynamic and the accelerations are not perfectly symmetric
around the mid-plane (see e.g. Beane et al. 2019). In addition to
this m12i has a warp in its outer disc, that our model, or any other
axisymmetric model, is not designed to reproduce. This warping is
likely the cause for such pronounced differences just above the z-axis
on the positive x-direction and just below the z-axis on the negative
x-direction. Another reason for the mismatch lies in the fact that,
like most parametrized, axisymmetric potentials, the Stickel model
has limited flexibility when used as a global model of the potential
of a realistic galaxy. This is likely because the disc is flatter than
our Stidckel model can account for, causing it to underestimate the
maximum density in the plane. In particular, as is clear from Fig. 3, it
does not deliver a good match to the galaxy at small radii. However,
this is also the region where the uncertainties in our best-fitting model
are the largest, and where we have no data. The green circle in the
right-hand panel of Fig. 4 shows the minimum radius of the star
particles in our sample.

We compare the alignment between the streams and the predicted
orbits in Fig. 5. The figure shows the orbits of a single representative
star particle per each stream section, selected to lie near the centre
of its respective section. These stars have then been integrated
backwards and forwards in time in the best-fitting potential of their
respective full stream. We do not expect to see perfect alignment
between the star particles and the integrated orbits for several reasons:
there is a natural small misalignment between streams and orbits due
to the range of energies in the stream stars, but more importantly
in this situation, these streams have evolved is lumpy, time-evolving
potentials in stark contrast to our smooth and static Stickel model.
The disruption of a dwarf galaxy in a realistic halo is a complex
process often taking several pericentre passages, which each produce
their own trailing and leading arms based on the evolving energy
and angular momentum distribution of the stars being stripped. This
naturally leads to different segments of the stream being on slightly
different orbits.

Despite this caveat, the orbits of stream A (top panels) align with its
star particles markedly well. The orbits of stream B (bottom panels),
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Figure 4. The binned z-accelerations of a slice of the simulated galaxy. The left-hand panel shows the z-accelerations of the real star particles, the middle panel
shows the predicted z-accelerations for the star particles based on our best-fitting Stickel model with the combined stream data set, and the right-hand panel
shows their relative residuals. The slice has a thickness of 2 kpc and is centred on galactocentric y-axis. The green circle in the right-hand panel marks the

minimum distance of the star particles in our two streams.
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FigureS. The orbits of streams A (top) and B (bottom) in their respective best-fitting potentials. The star particles whose orbits are shown (marked with a coloured
dot) were picked by eye to be near the centre of their section. The orbits are coloured based on the colour scheme of the section they belong to (see Table 1).

however, show some inconsistencies with the data. One of the main
mismatches is near the location of the progenitor, which is to be
expected, as leading and trailing tails by definition have a mismatch
in their orbits. The second inconsistency is between the orbits of 2B
and 3B. The rest of the orbits, especially those in the inner parts of
the stream, align well with the data.

The action space of each stream in their respective best-fitting
potentials is shown in Fig. 6. The colours of the star particles
once again correspond to the sections they belong to and reveal
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the structure of these streams in action space. As the stars get
stripped from the progenitor they settle either into leading or trailing
tails, which should form two slightly separated clusters in action
space. Here, we see this behaviour clearly: the section containing
the progenitor (gold-coloured dots) is near the centre of the action
space and the sections comprising the trailing tail are above it, while
the sections in the leading trail are below it. It is also noticeable that
the sections that have evolved further from the progenitor along the
tails, tend to be further from the progenitor also in action space. This
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Figure 6. The action space of stream A (left) and stream B (right) in their respective best-fitting potentials. The insets show the stream in x—z frame for reference.
The star particles are coloured based on their sections (see Table 1) with star particles not belonging to any section shown as grey. The centre of each section is
marked with an X’ in its respective colour, and the black line connects them in the order that they appear in phase space.

is because the least-bound stars, with the largest energy and action
difference from the progenitor, escape the progenitor first.

On the whole, we conclude that the action-clustering method and
the two-component Stickel potential can reproduce the true global
potential of the simulated galaxy fairly well and without obvious
biases.

5 SECTIONS OF STREAMS

With simulated streams it is convenient to utilize the full stream in our
analysis. However, we typically observe only the close-by segments
of whole streams or, even if multiple sections are observed, we may
not realize that they belong to the same larger structure (e.g. Bonaca
et al. 2021).

To investigate the possible consequences, we split our two streams
into sections (as specified in Table 1 and Fig. 1) and use them in our
analysis individually as if they were independent streams.

Fig. 7 shows the best-fitting results for all sections of stream A
(top panels) and stream B (bottom panels). There is considerable
variation in the global fit of the different sections, further evidence
that individual streams that span only a small region of the position-
velocity space can lead to biased estimates of the global galactic
potential. The majority of the sections do, however, give a good local
prediction of the potential. With two exceptions, the crosses that
signify the median distance of the star particles of that section, lie
within 25 kms~! of the true velocity curve as shown with the black
dash—dotted line.

The galactocentric radii at which each section gives the tightest
uncertainties correlates linearly with their median galactocentric
radius. The same relationship was found by Bonaca & Hogg (2018)
who further discovered that they could tighten this correlation by
adding flexibility to their potential model. In other words, the
more flexible a model, the more localized the best constraints
became. This demonstrates that streams (or stream sections) do not
contain information about the entire extent of their orbit but rather
are sensitive to the underlying potential at their current location.
Furthermore, Pefiarrubia et al. (2006) showed that the past history

of an evolving gravitational potential cannot be constrained using
present-day observables: the properties of stellar streams only reflect
the present-day galactic potential.

As streams recover best the current potential at their current
location, the variation we see in Fig. 7 is unsurprising — the sections
behave as if they were completely separate streams.

Finally, single streams have been shown to produce biased esti-
mates of their host’s potential (see e.g. Lux et al. 2013; Bonaca et al.
2014). This serves to add even more complexity to the differences
we see in Fig. 7. In the next section, we will explore the underlying
causes for the variations we see in both the global and local results
between different streams.

6 ORBITAL PHASE

We now organize the sections of both streams into three groups
based on their orbital phase: pericentre, intermediate, and apocentre
sections. This allows us to, first, explore any systematic differences
in the section results based on the phase and, second, perform a
joint analysis of all the sections that belong to a particular phase
group using our action-clustering method. The interplay between the
section results and other stream properties is explored in Section 7.
Our findings are summarized in Fig. 8, where the top, middle, and
bottom panels present the results for pericentre, intermediate, and
apocentre sections, respectively. The right-hand panels show again
the individual stream section best-fitting Stickel potentials while the
left-hand panels show the confidence regions of these measurements
overlaid in semitransparent grey colour: the brightness of the grey
colour tells us where most of the confidence regions overlap. The
error bars show each section’s measurement at their median distance.
The left-hand panels also contain a red line which signifies the best-
fitting Stédckel potential of the joint data set of each respective phase.
The confidence region for that is shown with the red shaded region
in the right-hand panel.

The pericentre sections generally overestimate the mass of their
host galaxy both locally and globally, as evidenced by their best-
fitting potentials and the associated uncertainties. The lower edge of
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Figure 7. The best-fitting Stickel potentials for different sections of stream A (top panels) and stream B (bottom panels) shown in circular velocity and enclosed
mass profiles. The crosses mark the median distance of each section, while the thicker part of the lines corresponds to the full range of distances of star particles

in that section. The insets show the stream in x—z frame for reference.

their confidence regions typically just about covers the true circular
velocity curve at high radii, while only a few do so closer in: there
is a visible gap in the coverage of the true curve between about 40
and 60 kpc. This is confirmed by the joint phase results: the best-
fitting potential is consistently above that of the true potential and
the confidence region only barely reaches the true potential at high
radii, while being somewhat above it from about 30—100 kpc.

The intermediate sections, on the other hand, show a much better
agreement with the true velocity curve. Although there are still large
variations in the individual best-fitting potentials in a global sense, the
local measurements are better matched. The grey shaded regions now
also clearly envelope the true potential across all distance scales. The
joint best-fitting potential shows good agreement with the true po-
tential nearly everywhere: we recover the true velocity curve within
6 per cent over the range of radii covered by the data (19-100 kpc).

Finally, the apocentre sections again generally show good agree-
ment with the true velocity curve. The local measurements mostly
agree with the true velocities, without showing a preferred bias,
while the predicted velocity curves at high radii do mostly prefer
lower masses when compared to the true potential. This is also clear
when looking at the uncertainty regions: while at low distances the
agreement between the stream sections looks fairly chaotic, at high
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distances, most of the confidence regions overlap slightly below the
true velocity curve. The joint best-fitting curve echos these individual
results: at high distances we have a fairly good fit, while at low
distances the difference is quite large.

7 BIAS DEPENDENCE ON OTHER STREAM
PROPERTIES

In Fig. 9, we explore the dependence of the accuracy of our potential
fit on several stream section properties (see also Fig. B1 where further
stream properties are considered and Appendix B for the description
of how these properties were calculated). In the top left and bottom
left panels, we show the points with the section-specific colours as
per Table 1 while in the rest of the panels the points are coloured
based on their orbital phase. The top left panel shows for each section
the residuals between the best fit and the true velocity curve at the
distance of minimum uncertainty as a function of orbital phase (solid
data points). For comparison we also show, with empty markers
and lighter colours, the residuals at the median distance of each
section (this corresponds to the vertical difference between each of
the crosses and the dash—dotted line in Fig. 7). In the bottom left
panel, we show the residuals relative to their 1o uncertainty.
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Figure 8. The results of all stream A and stream B sections organized by orbital phase. The top panels show the pericentre sections, while the middle and
bottom panels show the intermediate and apocentre sections, respectively. The coloured lines in the right-hand panels show the best-fitting Stéckel potential
of the individual sections, with the error bar indicating the uncertainty at their median distance. These are coloured based on Table 1, with stream A sections
shown with solid lines and stream B sections shown with dashed lines. Their full confidence regions are shown as a function of radius in the left-hand panel as
grey semi-opaque regions. The red line in the left-hand panel shows the best-fitting Stiéickel potential of the joint phase data set, and the red shaded area in the
right-hand panel is its associated uncertainty. The true potential is shown with a black dash—dotted line in every panel.
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Figure 9. The residuals of the circular velocity curve at the distance of the smallest 1o uncertainty as a function of the sections’ properties. In the top left panel,
we also show the residuals at the sections’ median distance with lighter empty markers, for comparison. In the left-hand panels, we adopt our section-specific
colour scheme, while on the rest of the panels we indicate the pericentre, intermediate, and apocentre sections with teal, purple, and yellow colours, respectively.
A description of how the stream properties were computed is available in Appendix B.

We find that there is a clear correlation between the accuracy of
the fit and the orbital phase of the stream. The best-fitting results of
the intermediate sections show the least amount of scatter around the
true velocity curve, and do not appear to have a preferred bias. The
apocentre sections, although not exhibiting an obvious bias either,
have a lot more scatter around the true potential. The pericentre
sections, in contrast, consistently overestimate the mass. Moreover,
their uncertainties are small compared to the residuals, indicating a
systematic bias.

We do not see any clear trends with either the angular length
(bottom middle panel) or physical length (shown in Fig. B1) of
the stream sections. Indeed, the intermediate sections in our sample
tend to be quite short and nevertheless give better estimates than the
often longer pericentre sections. We also see no correlations with the
number of stars in each stream section, the median galactocentric
distance, the median distance from the galactic plane, width or
velocity dispersion in each section (all shown in Fig. B1) nor with
the angular momentum vector or the galactocentric distance range
covered by a certain stream section (not shown). All of this gives us
confidence that it is truly the effect of the orbital phase that causes
the variation in the quality of our constraints.

To explain this effect, we investigated the correlation between X
and p; in each stream section. The bottom right panel in Fig. 9 shows
that stream stars exhibit strong correlations between their motions
and positions during the intermediate phase. The pericentre streams
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meanwhile have the weakest correlations. In general, the stronger the
correlations between motions and positions of stream stars the better
the constraints from that stream tend to be. Fig. 10 illustrates this
concept. On the upper panel, we show a cartoon of a dwarf galaxy
stream near pericentre passage for a more radial orbit (top left panel)
and a more circular orbit (top right panel). The black points represent
stream stars, which have been created by selecting points along the
pericentre of a single orbit (the blue line) and adding scatter in both
A and p;. The light blue shaded regions approximate the ‘scatter’
in these orbits. The yellow line shows a fit to the black points and
is in both cases almost perfectly vertical, signifying no correlation
between A and p,. This in turn indicates lack of statistical power for
significant differentiation between different potential models.

The origin of the systematic error that we see arising with
pericentre streams therefore lies in this lack of correlation between
the positions and momenta of stream stars during pericentre passage.
As a consequence this data cannot differentiate between potentials
as successfully as intermediate and apocentre streams. In the case of
the action-clustering method, this property of the pericentric motion
manifests as overestimation of mass. Due to the lack of correlations
between motions and positions, it is possible to find a high-mass
potential that confines all the stream stars on to orbits with very little
radial motion. This potential is then selected as the best fit because
it forms a dense cluster near J, ~ 0. However, to accommodate this
configuration the stars have to be placed on a variety of different
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Figure 10. Schematic phase diagram of dwarf galaxy streams (top panels) and cold stellar streams (bottom panels) near pericentre passage for radial orbits
(left-hand panels) and circular orbits (right-hand panel). The black points represent stream stars created by selecting points along the pericentre of the orbit
shown with the blue line and adding scatter in both A and p;. This scatter is five times larger in both positions and momenta for the dwarf streams compared to
the cold stellar streams. The light blue shaded regions on top panels approximate the much larger ‘scatter’ in the orbits of dwarf galaxy streams. The yellow

lines show a fit to the black points on each panel.

phases on their respective orbits. This means that the ordering of the
stars along the stream, and in fact the spatial coherence of the stream
itself, breaks down in this potential (see also Buist & Helmi 2015).
We call this spurious reordering of the stream stars in the incorrect
potential ‘phase scrambling’.

Although the pericentre streams are likely to yield potentials that
are highly biased, the confidence regions can nevertheless be small.
This is due to the fact that to calculate the uncertainty, we compare
the action-space distribution of the best-fitting potential to that of all
other trial potentials, and draw the error contours so that they mark
the boundary where the action-distributions begin to significantly
differ. The weakness of this technique is that even if there were
other potentials that produced a highly clustered action-space (i.e.
had a high KLD1) there is no guarantee that they would be included
in the uncertainty region if their action-space looks significantly
different from that of the best fit, e.g. when clusters simply form
at a sufficiently different locations in action-space. So our set-up is
reliant on having managed to determine the ‘correct’ potential as the
best fit, while the uncertainty just measures the variation around it.

Finally, in the top right panel, we show the goodness of fit as
a function of the difference in median J; between the best-fitting
potentials of individual sections and that of the combined full streams
(green line in Fig. 3). The further the individual results are from the
true potential, the bigger this change in J;. Although it is expected
that a greater difference between two potentials results in a greater
change in the action-space, we do not see such a trend with J,,.

To confirm that the quality of our results is indeed determined
by the phase of the stream, we looked at the two stream sections
with the highest difference between the true and estimated velocity
curves — pericentre sections 1B and 4B — in a simulation snapshot

corresponding to redshift z = 0.038, when both of these stream
sections occupied the intermediate phase. We reapplied the action-
clustering algorithm for the stars in each section but now using their
past positions and velocities from snapshot z = 0.038. The results of
this test are presented in Fig. 11, where with the blue line we show the
result of the analysis of the current day (pericentre phase) positions of
the stream stars, and with the yellow line the past (intermediate phase)
positions of the same stars. In both cases, the results originating from
the past positions, when the stars were at intermediate phase, perform
markedly better.

8 CONCLUSIONS AND DISCUSSION

In this work, we have shown that with two whole dwarf galaxy
streams we recovered the true rotation curve of the simulated galaxy
within 12 per cent over the entire range of radii covered by our set
of star particles (10-176 kpc) when adopting the two-component
Stidckel model. However, this accuracy is much improved over the
distances where we have the most data, recovering the true rotation
curve within 6.5 per cent between the 5 and 95 percentile distance
range (23—109 kpc). This leads us to conclude that using the Stéckel
potential does not introduce a significant bias into our results, at least
not more so than any other axisymmetric, parametrized potential
model would.

Bonaca et al. (2014) explored the accuracy of smooth analytical
potentials in representing realistic — lumpy and time-evolving —
dark matter haloes. Using a collection of streams evolved (using
the streakline method) in the Via Lactea II simulation, they esti-
mated the galactic mass by comparing these ‘observed’ streams to
models generated in trial analytical potentials and showed that just
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Figure 11. Comparison of the results from analysis of the present day
and past (z = 0.038) positions of the stars in sections 1B (top panel)
and 4B (bottom panel). The solid coloured lines represent the best-fitting
Stickel potential and the error bar shows the 1o uncertainty at the median
galactocentric distance for each data set. The black and red dash—dotted lines
represents the true galactic potential at z = 0 and z = 0.038, respectively.

assuming an analytical potential limits the measurement accuracy to
5—20 per cent. This limit was reached only with the full collection
of 256 streams in their sample, while individually the streams were
much less accurate (only 40—60 per cent of the individual streams
could recover the true parameters within 10 per cent). A similar
exploration was performed by Sanderson et al. (2017) who fitted
analytical potentials to the streams occurring natively in the Aquarius
A simulation using the action-clustering method.! They found that
with simultaneous fitting of 15 streams they could recover Mg
within 10 per cent.

The tight constraints we achieve here with just two streams are
remarkable considering that, in contrast to Via Lactea Il and Aquarius
simulations, both of which are dark matter-only simulations, we
model a galaxy from a fully cosmological-baryonic simulation which
contains a stellar and gas disc shaped by star formation in addition to
a time-evolving dark matter halo. Yet we obtain this precision using

! Although mostly similar to the action-clustering method described here,
Sanderson et al. (2017) used the product of the marginal distributions of p
instead of the uniform distribution as the comparison distribution ¢, gave
equal weight to all stars, and did not separate different streams during the
process of density estimation.

MNRAS 509, 5365-5381 (2022)

only a global, two-component Stéckel potential to represent the entire
complexity of this galaxy. This is likely due to the good orbital phase
coverage of these two streams: both streams have several wraps
around the host galaxy and as such cover each orbital phase multiple
times.

Both Bonaca et al. (2014, using streakline) and Sanderson et al.
(2017, using action clustering) demonstrated that an oversimplifica-
tion of the potential model does not intrinsically produce a biased
mass profile when fitting a collection of streams. Our findings agree
with this: our results with the full streams show no presence of
systematic bias (Section 4).

We next split each of the two streams into 11 smaller sections based
on their orbital phase (Section 5) and analysed them independently.
We find that the quality of the constraints on the mass profile
depends on the orbital phase of the stream (Section 7). There is
a clear systematic bias when using only the pericentre streams in
our analysis: this data overestimates the mass of the host galaxy
at all galactocentric radii (see Fig. 8, top panel and Fig. 9, lower
left panel). This systematic error stems from the fact that during
pericentre passage the positions and momenta of stream stars are
not correlated (see Fig. 9, bottom right panel). Although a joint fit
of multiple streams is usually recommended to get a better fix on
the potential, this bias remains even when all pericentre sections are
analysed jointly. We find that streams on the intermediate phase are
the most likely to give bias-free local mass estimates individually,
and a bias-free and accurate global mass profile in combination (see
Fig. 8, middle panel and Fig. 9, left-hand panels).

In Reino et al. (2021), we showed that when analysed with the
action-clustering method GD-1 data produced a mass estimate that
was considerably larger than those from Pal 5, Orphan, and the
combination of all three streams. We explored the range of orbital
phases the GD-1 stars were on with the best-fitting GD-1 potential
and found that the stars were all placed on very different orbital
phases on their respective orbits. We briefly discussed that the cause
for this, and therefore the high mass that GD-1 recovers, is likely due
to the natural energy gradient along the stream not being reproduced.
This is another symptom of the phase scrambling we discussed above
and, since GD-1 is believed to be a pericentre stream, it aligns with
our results here.

This inability of pericentre streams to distinguish robustly between
potential models can manifest in other ways for different methods.
Previously, Sanders & Binney (2013) remarked on having more
difficulty constraining the potential with streams observed at their
pericentre. They analysed a mock stream with their angle-frequency
slope method both during its apocentre and the subsequent pericentric
passage and found that they could not recover the true potential
parameters as successfully in the pericentric case. However, despite
several local minima in their likelihood surface, they do not calculate
a large systematic bias. The cause for such a behaviour could be that
streams cover a smaller angle space near their pericentres making
the determination of the slope more prone to errors.

Similarly, Koposov et al. (2010) found that they could not constrain
all the parameters in their three-component potential model with six-
dimensional GD-1 data using the orbit-fitting method and noted that,
due to being near its pericentre, GD-1 might not have sufficient
phase coverage to differentiate between orbits produced in different
potentials, resulting in a poor fit.

Pericentre streams therefore lead to either biased results or weak
constraining power irrespective of the applied method. Although our
position in the Galaxy and the increased stellar density of streams
near pericentre makes detecting streams near their pericentres the
easiest, their relative accessibility does not lead to an appreciable
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improvement in our understanding of the Galactic potential or the
field of near-field cosmology.

Although in this work we have made use of dwarf galaxy type
streams, the conclusions drawn here are also applicable to most cold
stellar streams of globular cluster origin. This is because the cause
for the weak constraining power in pericentre streams is not unique
to dwarf type streams. In the bottom panels of Fig. 10, we show the
cartoon versions of two cold stellar streams to provide comparison
with the dwarf galaxy streams in the top panels. Both cartoon streams
in the left-hand panels were created from the same original orbit (the
blue line), however, the cold stellar stream stars are five times less
scattered both in A and in p;. The same holds true for the streams in
the right-hand panels: the stars were created from the same original
orbit but with five times more scatter added to the dwarf galaxy
stream stars. Although with considerably less scatter, the positions
and momenta of stars in cold stellar streams on more radial orbits
(bottom left panel) would still be uncorrelated during pericentre
passage and therefore result in poor constraining power. However, in
contrast with dwarf galaxy streams, a cold stellar stream on a more
circular rather than radial orbit (bottom right panel) can potentially
have sufficient curvature in the pericentre part of the phase diagram
to constrain a model potential.

Many studies have shown that in general longer streams have more
constraining power. When investigating the information content in
the tracks of stellar streams Bonaca & Hogg (2018) found that longer
streams (in degrees) achieve the highest precision in recovering the
potential parameters. We do not find any correlation between either
angular or physical distance with the accuracy of the constraints or
the precision of our confidence regions. In fact, our intermediate
phase streams often tend to be the shortest and the pericentre streams
the longest. However, our shortest streams are around ~50 deg while
only 1 of the 11 streams Bonaca & Hogg (2018) studied reaches this
length, the rest being considerably shorter. It could be that the trend
with length is no longer as relevant as other factors when it comes
to longer streams. Alternatively, the effect could be related to the
difference in our methods. Bonaca & Hogg (2018) made comparisons
between the tracks of stream data and models in position and velocity
space, so longer streams will allow the comparisons to be made over
a larger extent and thus enhance the results. Conversely, the length
of the stream has no direct impact on the constraints derived with the
action-clustering method as we are only measuring the density of the
stars in action space.

We summarize our findings as follows:

(i) Although individual streams are likely to deliver accurate
estimations of the local galactic profile, they should not be relied
on for yielding good global fits.

(ii)) We have shown that the pericentre streams can lead to
significant systematic errors when used to constrain the potential
of their host galaxy.

(iii) Meanwhile apocentre and, especially, intermediate phase
streams lead to accurate inference.

For accurate high-confidence constraints on the Galactic potential,
we therefore advocate targeting streams that are likely at intermediate
or apocentre phases.
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APPENDIX A: STREAM VELOCITIES

In Fig. A1, we show the galactocentric velocities for our two streams
with each section highlighted in the colour as specified by Table 1.
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Figure Al. Galactocentric velocities of streams A (top) and B (bottom). Each stream section is identified by the colour given in Table 1 and a label. Star
particles not belonging to any section are shown as grey.
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APPENDIX B: BIAS AS A FUNCTION OF
FURTHER STREAM PROPERTIES

In this section, we show in Fig. B1 the accuracy of our potential fit
as a function of some further stream section properties. As already
remarked in Section 7, none of these stream section characteristics
are sufficient to explain the variation that we see in the quality of our
potential constraints.

To measure the stream length, width, and velocity dispersion,
we first convert to stream-aligned coordinates. This is a spherical
coordinate system (r, &, n) where the equator, n = 0, is defined
by a great circle best fitting the stream data centred on the galactic
centre and the radius, r is the median galactocentric radius of the
stream stars. The angular length of the stream is then defined as

A&. The physical length is found by computing the arc length
of the circle subtended by the stream, i.e. r x A&. To estimate

the width of the stream, we fit the galactocentric x, y, and z
coordinates of stream stars as a function of the angle along the
stream, &, with a quadratic polynomial. The distance of each star
from this stream ‘axis’ can then be calculated at their respective
£, e di = /(i —x(E)? + (i — y(E)? + (2 — 2(5)% We then
define the width as the root mean square of these distances. An
analogous technique is employed to calculate the velocity dispersion,
0, except now the polynomial is fitted to the galactocentric vy, vy,
v, as a function of &. Correlation between A and p;, for each stream
is defined as the absolute value of the Pearson correlation coefficient
between these coordinates.
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Figure B1. The residuals of the circular velocity curve at the distance of the smallest 1o uncertainty as a function of the sections’ properties. We indicate the
pericentre, intermediate, and apocentre sections with teal, purple, and yellow colours, respectively.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

MNRAS 509, 5365-5381 (2022)

220z Aepy 0z uo Jasn saueiqi elueAjksuuad Jo Alsianiun Aq 26Z0Z¥9/S9ES/v/60S/3101e/SBIuUW/ /W02 dno dlwapeoe//:sdiy Wol) papEojuMo(]


art/stab3176_fB1.eps

	1 INTRODUCTION
	2 METHOD
	3 SIMULATION DATA
	4 FULL STREAM RESULTS
	5 SECTIONS OF STREAMS
	6 ORBITAL PHASE
	7 BIAS DEPENDENCE ON OTHER STREAM PROPERTIES
	8 CONCLUSIONS AND DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: STREAM VELOCITIES
	APPENDIX B: BIAS AS A FUNCTION OF FURTHER STREAM PROPERTIES

