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A B S T R A C T 
One of the most promising tracers of the Galactic potential in the halo region is stellar streams. Ho we ver, indi vidual stream fits 
can be limited by systematic biases. To study these individual stream systematics, we fit streams in Milky Way-like galaxies 
from Feedback In Realistic Environments cosmological galaxy formation simulations with an analytical gravitational potential 
by maximizing the clustering of stream stars in action space. We show that for coherent streams the quality of the constraints 
depends on the orbital phase of the observed stream stars, despite the fact that the phase information is discarded in action- 
clustering methods. Streams on intermediate phases give the most accurate results, whereas pericentre streams can be highly 
biased. This behaviour is tied to the amount of correlation present between positions and momenta in each stream’s data: weak 
correlation in pericentre streams prohibits efficient differentiation between potentials, while strong correlation in intermediate 
streams promotes it. Although simultaneous fitting of multiple streams is generally prescribed as the remedy to combat individual 
stream biases, we find that combining multiple pericentric streams is not enough to yield a bias-free result. We finally show that 
adopting the two-component St ̈ackel model does not fundamentally induce a biased mass estimate. With our full data set of two 
multiwrap streams, we reco v ered the true rotation curve of the simulated galaxy within 12 per cent o v er the entire range of radii 
co v ered by our set of stars (10–176 kpc) and within 6 . 5 per cent between the 5 and 95 percentile distance range (23–109 kpc). 
Key words: methods: numerical – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – dark matter. 
1  I N T RO D U C T I O N  
Stellar streams, relics of tidally disrupted globular clusters and dwarf 
galaxies, are one of the most promising probes of the gravitational 
field of the Milky Way at large Galactocentric distances. Since 
the first detections of streams in the Milky Way (Ibata, Gilmore 
& Irwin 1994 ; Grillmair et al. 1995 ; Helmi et al. 1999 ), many 
methods have been developed to constrain the Galactic mass profile 
using streams. Some of these make comparisons between predictions 
and data directly in position and velocity space such as the orbit- 
fitting technique (e.g. Koposov, Rix & Hogg 2010 ), particle ejection 
methods (e.g. the ‘streakline’ method of K ̈upper, Lane & Heggie 
2012 , the modified Lagrange Cloud Stripping method of Gibbons, 
Belokurov & Evans 2014 , the ‘particle-spray’ method of Fardal, 
Huang & Weinberg 2015 ), or full N -body simulations (e.g. Law & 
Majewski 2010 ), while others utilize the action-angle coordinates, 
such as the angle-frequency slope method (Sanders & Binney 2013 ) 
and action-clustering method (Sanderson, Helmi & Hogg 2015 ). 
These methods have thus far been applied to only a handful of 
streams, most commonly GD-1 (Koposov et al. 2010 ; Malhan & 
Ibata 2019 ), Pal 5 (K ̈upper et al. 2015 ), Sagittarius (Law & Majewski 
2010 ; Dierickx & Loeb 2017 ; Vasiliev, Belokurov & Erkal 2021 ), 
and Orphan (Newberg et al. 2010 ; Erkal et al. 2019 ). 
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To date, most of these studies have focused on measuring the 
potential with single streams (although see Bovy et al. 2016 ). 
Ho we ver, using a sample of streams evolved in the Via Lactea 
II simulation Bonaca et al. ( 2014 ) showed that constraints from 
individual streams can be highly biased. Only simultaneous fitting of 
a collection of streams would result in accurate potential reco v ery. 
They estimated that GD-1 and Pal 5-like streams could individually 
return up to 50 per cent biased mass estimates for the Milky Way. In 
Reino et al. ( 2021 ), we showed that this also holds true when using 
the action-clustering method. In particular, we saw a significant bias 
arise from the analysis of GD-1 compared to the constraints derived 
with a collection of streams. The strategy of simultaneous fitting 
of multiple streams to a v oid the pitfalls of a single stream fit was 
also advocated by Lux et al. ( 2013 ), Sanders & Binney ( 2013 ), and 
Sanderson, Hartke & Helmi ( 2017 ). 

Today, more than 60 streams have been discovered in the Milky 
Way (Newberg & Carlin 2016 ; Mateu, Read & Kawata 2018 ; Ibata, 
Malhan & Martin 2019 ; Koppelman et al. 2019 ; Myeong et al. 2019 ; 
Naidu et al. 2020 ; Malhan et al. 2021 ) and ideally we should seek a 
consensus fit. Ho we ver, the observ ational data required for Galactic 
potential inference is only available for a subset of these streams. 
Attaining the full 6D phase space information tends to be difficult and 
necessitates a cross-matching of information from different surv e ys, 
e.g. proper motions from Gaia (Gaia Collaboration 2016 ), distances 
of RR Lyrae from P anSTARRS1 surv e y (Sesar et al. 2017 ) or Gaia’s 
Specific Object Study catalogue (Clementini et al. 2019 ), and radial 
v elocities from RAVE (K under et al. 2017 ), WEAVE (Dalton et al. 
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2012 ), 4MOST de Jong et al. ( 2019 ), or DESI (Levi et al. 2019 ). Since 
steams are typically distant and faint, targeted follow-up surv e ys are 
often needed, such as the H3 surv e y (Conroy et al. 2019 ) targeting 
the stellar halo and the S5 surv e y (Li et al. 2019 ) targeting the stellar 
streams in the Southern Hemisphere. With this in mind, knowledge of 
which streams are the most useful for putting accurate constraints on 
the Galactic potential would be valuable for selecting which streams 
to focus both our modelling and observing efforts on. 

To gain this insight, Bonaca & Hogg ( 2018 ) explored the intrinsic 
information content in the tracks of 11 mock globular cluster stellar 
streams as a function of their properties using the Fisher-matrix 
approach. They found that angular length of the stream was the 
best predictor of the tightness of their parameter constraints and that 
streams on more eccentric orbits were the most sensitive to the halo 
shape. Ho we ver, while the Fisher-matrix approach allowed them to 
investigate the precision of the constraints the different streams were 
capable of reaching, they did not address the question of accuracy. 

In this paper, we aim instead to gauge the accuracy of the con- 
straints that arise from different streams using the action-clustering 
method. In particular, we explore the systematics of stream-driven 
constraints as a function of their orbital phase. To this end, we select 
two long spatially coherent streams from Feedback In Realistic Envi- 
ronments (FIRE) cosmological-hydrodynamical simulations (Hop- 
kins et al. 2018 ) for our analysis. First, we set the expectation for the 
accuracy obtainable with two full-length streams and then divide the 
streams into smaller sections based on their current orbital phase and 
analyse these segments independently. This approach is moti v ated, 
first, by the fact that in reality it is more likely to detect (or have the 
full 6D phase space information for) only a small nearby segment 
of the whole longer stream, or that associations between stream 
sections observed in different parts of the sky are uncertain. Second, 
the streams most commonly used for characterizing the potential of 
the Milky Way are from globular cluster origin, and therefore much 
shorter than the dwarf galaxy streams found in FIRE simulations. 
Since globular cluster streams do not intrinsically form in the FIRE 
simulations, we can instead approximate their length by treating each 
section as an independent stream. Third, this approach allows us to 
keep constant some properties of the streams we are working with 
(for instance eccentricity, inclination, apocentre distance), and to 
direct our focus on phase differences. Finally, with this framework 
we can easily apply our method to the full stream data to verify that 
our potential model does not induce severe systematic biases on these 
sectional results. As a by-product, this setup will give us an indication 
of whether, and how much, the constraints vary o v er the length of 
the full long stream. Another goal of our study is to investigate how 
accurately we can reco v er the true potential of the simulated galaxy 
when modelling the streams with a St ̈ackel potential. Although 
St ̈ackel potentials are generally considered inadequate for describing 
realistic galaxies, they have the great benefit of exact actions. This 
property was our incentive for adopting the St ̈ackel potential when 
analysing real Milky Way stellar streams in Reino et al. ( 2021 ). In 
this work, we will test whether this assumption can introduce any 
significant additional bias into our results. 

This paper is organized as follows. We discuss the elements of 
our method in Section 2, introducing the St ̈ackel potential (2.1), the 
action coordinates (2.2), and our action-space clustering measure 
(2.3). We give an overview of the FIRE suite of simulations and our 
stream sample in Section 3. In Section 4, we present our results for 
the full streams, while the results for stream sections are shown in 
Section 5. Next, in Section 6 we explore the stream section results as a 
function of orbital phase. In Section 7, we explore the dependence of 
our result on other stream section properties and provide a reasoning 

for the orbital-phase effects. Finally, we discuss our results and make 
conclusions in Section 8. 
2  M E T H O D  
We follow the action-clustering method outlined in Sanderson et al. 
( 2015 ) and Reino et al. ( 2021 ) which aims to constrain the galactic 
potential by maximizing the clustering of stream stars in action space. 
We vary the potential used for converting the stars’ positions and ve- 
locities into action coordinates and adopt as the best-fitting potential 
the one that gives rise to the most clustered distribution of actions. 
2.1 St ̈ackel potential 
Analytical transformation of phase space coordinates ( x , v ) to action 
coordinates J is possible only for a small set of potentials for which 
Hamilton–Jacobi equations can be solved by separation of variables. 
Action estimation for general potentials requires the use of numerical 
approximation algorithms (see Sanders & Binney 2016 ), although 
repeated calculation of actions can be computationally costly in these 
cases. Analytical calculation, in contrast, is less e xpensiv e and as such 
allows both for a larger number of stream stars to be included in the 
fit and more potentials to be considered. 

The St ̈ackel potential, which separates in ellipsoidal coordinates, is 
the most general of the small group of separable potentials to describe 
a real galaxy, as it allows for arbitrarily flattened density profiles and 
construction of flat rotation curves with the two-component St ̈ackel 
model (Batsleer & Dejonghe 1994 ). 

Ho we ver, the applicability of St ̈ackel potentials is limited by the 
fact that all orbits are defined by the same foci. This restriction has 
been shown to be incorrect for real galaxies (Kuijken & Gilmore 
1989 ; Binney 2012 ) and therefore a perfect global fit is not possible. 
Many action-calculation methods still utilize its advantages and, for 
example, fit each orbit with a local St ̈ackel potential instead (Sanders 
2012 ) or apply the St ̈ackel formulae to another more complex 
potential of interest (Binney 2012 ). 

One of the aims of this work is to test the practicality of adopting 
a St ̈ackel potential to describe a realistic galaxy and to see whether, 
despite its known limits, it could still be utilized as a valuable tool. 
Discussion on the expected size of errors originating from our choice 
of the St ̈ackel potential model is included in Section 4. 

In this work, we consider oblate axisymmetric two-component 
St ̈ackel potentials described by spheroidal coordinates, a limiting 
case of ellipsoidal coordinates. Spheroidal coordinates ( λ, ν, φ) are 
related to cylindrical coordinates ( R , z, φ) by the following quadratic 
equation: 

R 2 
τ − a 2 + z 2 

τ − c 2 = 1 , (1) 
where τ = λ, ν are the roots. 

Parameters a and c are constants that determine the location of 
the foci & = √ 

a 2 − c 2 and define the axial ratio of the coordinate 
surfaces, e ≡ a 

c and therefore establish the shape of the coordinate 
system. For an oblate density distribution, we have a > c . Further 
details about this coordinate system can be found in de Zeeuw ( 1985 ) 
and Dejonghe & de Zeeuw ( 1988 ). 

A St ̈ackel potential, ' , in spheroidal coordinates can be written 
as 
' ( λ, ν) = −f ( λ) − f ( ν) 

λ − ν
, 

f ( τ ) = ( τ − c 2 ) G( τ ) , (2) 
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Systematics in constraints from stellar streams 5367 
where we set G( τ ) to be the K uzmin–K utuzo v potential 
G( τ ) = GM tot √ 

τ + c , (3) 
where M tot is the total mass and G is the gravitational constant. 

To construct a two-component St ̈ackel model, we combine two 
individual St ̈ackel potentials, ' outer and ' inner . The motivation for 
this is to add more flexibility to our potential model thereby allowing 
for a more realistic model of the galaxy (Batsleer & Dejonghe 1994 ; 
Reino et al. 2021 ). The two components are defined by different 
parameters a outer , c outer and a inner , c inner , and therefore each has a 
different scale and axial ratio but, crucially, they must have the same 
foci for the total potential to retain the St ̈ackel form (as defined by 
equation 2). It then follows that 
a 2 outer − a 2 inner = c 2 outer − c 2 inner = q, 
λouter − λinner = νouter − νinner = q, (4) 
where q > 0 is a constant. The total G( τ ) is now a combination of 
two parts, G outer ( τ ) and G inner ( τ ) 
G( τ ) = GM tot (1 − k) 

√ 
τouter + c outer + GM tot k √ 

τouter − q + c inner , (5) 
and the total two-component potential is 
' ( λouter , νouter , q) 

= −GM tot [ 1 − k √ 
λouter + √ 

νouter + k √ 
λouter − q + √ 

νouter 
]
, (6) 

where k is the ratio between the inner component and the outer 
component masses and M tot is the sum of the two-component masses. 

We define our two-component St ̈ackel potentials on a grid of 
five parameters ζ = ( M tot , a outer , e outer , a inner , k). We select the trial 
potentials by drawing 50 points for each of the shape parameters, 
from uniform distributions in log space, o v er the ranges: [0.7, 
1.8] in log 10 ( a outer / kpc), [log 10 (1.0), log 10 (2.0)] in log 10 ( e outer ), and 
[log 10 (0.), log 10 (0.7)] in log 10 ( a inner / kpc). Ho we ver, we only use a 
subset of these parameter combinations ( ∼8000) that constructs a 
mathematically valid potential according to equation (4); i.e. the 
parameter combinations which adhere to c 2 outer = e 2 outer 

a 2 outer > c 2 inner . We 
also draw 20 points for each mass parameter o v er the ranges: [11.5, 
12.5] in log 10 ( M / M %) and [log 10 (0.01), log 10 (0.3)] in log 10 ( k ). In 
total, our grid contains 3253 600 trial potentials. 

We further discard the potentials that cause any of the star particles 
in our sample to be unbound from the host galaxy. In Reino et al. 
( 2021 ), we showed that our results did not change appreciably if, 
instead of this strict condition, we allowed a small percentage of the 
stars to become unbound. Furthermore, in that work we were dealing 
with real stream data with measurement errors while here we know 
the true position and velocity of all our particles and do not need to 
worry about measurement errors causing unbound stars. 
2.2 Actions 
The action-angle coordinates are a set of canonical coordinates which 
considerably simplify the equations of motion of a bound star in a 
static or adiabatically time-evolving potential: the actions, J i , are 
integrals of motion that uniquely define the stellar orbit and the 
angles, θ i , are periodic coordinates that express the phase of the 
orbit. For the St ̈ackel potential, we define the actions J λ and J ν as 
J τ = 1 

2 π
∮ 

p τdτ , (7) 

where p τ is the conjugate momentum to the coordinate τ and the 
integral is over the full oscillation in τ . The third action J φ is equal to 
the z -component of the angular momentum, L z , and hence is constant 
in our axisymmetric potentials. 

The conjugate momenta, p τ , can be found by solving the 
Hamilton–Jacobi equation by separation of variables. In addition to 
the momenta, the separation of variables introduces three isolating 
integrals: I 2 , I 3 , and the total energy E . The integrals I 2 and I 3 are 
defined as (Dejonghe & de Zeeuw 1988 ) 
I 2 = L 2 z 

2 , 
I 3 = 1 

2 (L 2 x + L 2 y ) + ( a 2 − c 2 ) [1 
2 v 2 z − z 2 G( λ) − G( ν) 

λ − ν

]
. (8) 

The solution to the Hamilton–Jacobi equation then allows the 
momenta, p τ , to be expressed as a function of the τ coordinate 
and the three isolating integrals: 
p 2 τ = 1 

2( τ − a 2 ) 
[
G( τ ) − I 2 

τ − a 2 − I 3 
τ − c 2 + E ] , (9) 

which can then be used in equation (7) and integrated numerically. 
2.3 Clustering measurement 
An intrinsic element of the action-clustering method is the procedure 
of quantifying and comparing the degree of clustering present in the 
action space of dif ferent potentials. Follo wing Sanderson et al. ( 2015 ) 
and Reino et al. ( 2021 ), we measure this degree of clustering with the 
K ullback–Leibler div ergence (KLD). The KLD is a measure of the 
divergence between two probability distributions p( x ) and q( x ). For 
a discrete sample [ x i ] with i = 1 , ... , N drawn from a distribution 
p( x ), the KLD can be calculated as 
KLD ( p || q ) ≈ 1 

N 
N ∑ 
i log p( x i ) 

q ( x i ) , if q ( x i ) '= 0 ∀ i. (10) 
The value of KLD increases with increasing difference between p( x ) 
and q( x ) and is equal to 0 when p( x ) = q( x ). 

Since we are looking to measure the amount of clustering in action 
space, irrespective of the cluster locations, we proceed with the idea 
of comparing the distribution of actions in a particular trial potential 
to a completely unclustered, featureless distribution. In other words, 
we set q( x ) to a uniform distribution in the actions, u ( J ), and p( x ) to 
a probability distribution of actions, p( J | ζ , ω ), found by mapping 
the phase space coordinates ω to action space J with a trial potential 
parametrized by ζ . The difference between the two distributions is 
greater the more clustered the action distribution. 

Our goal is to maximize the difference, and therefore the KLD 
value, between these probability distributions as we vary the trial 
potential and explore the parameter space. The trial potential with 
the highest KLD value is adopted as the best-fitting potential, with 
parameters ζ 0 , for that particular data set, ω . 

The standard KLD gives equal weight to each star particle in the 
sample and as a consequence, when multiple streams (or stream 
sections) are analysed simultaneously, streams (or stream sections) 
containing more star particles have stronger influence o v er the results. 
Since stream membership in this case is known, we can make the 
best use of the data by giving equal weight to all streams instead, by 
weighting the contribution of each star particle with 
w j = 1 

N s × 1 
N j , (11) 
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5368 S. Reino et al. 
where N s is the number of streams and N j is the number of star 
particles in stream j . 

This weighted KLD is thus calculated as follows: 
KLD1 ( ζ ) = N s ∑ 

j 
N j ∑ 
i w j log p( J | ζ , ω ) 

u ( J ) 
∣∣∣∣

J = J ij ζ

, (12) 
where J ij ζ = J ( ζ , ω ij ) and ω ij are the phase space coordinates for 
star i in stream j . 

Although the function p( J | ζ , ω ) is not known a priori, it can 
be constructed using the observed points J via a density estimator. 
Here, we obtain p( J | ζ , ω ) using the Enlink algorithm developed 
by Sharma & Johnston ( 2009 ). u ( J ), on the other hand, is constant 
across all trial potentials and does not have an impact on the results. 
It can therefore be set to any preferred value. 

Finally, the method will work best if the different streams do 
not o v erlap with each other in action space. Since in this case, 
as in Reino et al. ( 2021 ), we know which stars belong to which 
stream, we can ensure this absence of o v erlap by calculating the 
probability distributions for each stream independently. So, instead 
of estimating p( J | ζ , ω ) with the full set of sample points J , 
we construct a probability density function p j ( J j | ζ , ω j ) for each 
stream j individually from points J j . To keep the p j at the correct 
relative size between the different streams, we normalize each p j with 
N j 
N . In practice, the KLD equation that we use is therefore 

KLD1 ( ζ ) = N s ∑ 
j 

N j ∑ 
i w j log N j 

N p j ( J j | ζ , ω j ) 
u ( J ) 

∣∣∣∣
J = J ij ζ

. (13) 
It is important to note that neither the weighing nor the separation 

of streams in action space is critical for the action-clustering method 
to work, as we have shown in previous works (Sanderson et al. 2015 ; 
Reino et al. 2021 ). 

The goal of this procedure, as already stated abo v e, is to determine 
the set of St ̈ackel potential parameters that maximize the KLD1 
value. As a second step in our procedure, we calculate the confidence 
intervals on these best-fitting parameters, by comparing the action 
distribution of the best-fitting potential, p( J | ζ 0 , ω ), to the action 
distributions of the other trial potentials, p( J | ζ trial , ω ) using again 
the Kullback–Leibler divergence. 

The KLD defined in such a way can be interpreted as the 
relative probability of the potential parameters ζ trial to the best- 
fitting potential parameters ζ 0 (Kullback & Leibler 1951 ; Kullback 
1959 ). As we mo v e further from the best-fitting parameter values, the 
difference between the two action distributions grows and so does the 
KLD value. In other words, we can measure how far from the best- 
fitting parameters we can mo v e before the action distribution starts 
to significantly differ from that of the best-fitting action distribution. 
The confidence intervals can then be drawn based on the value of 
KLD that we deem to correspond to significant difference. The 
interpretation of KLD as the expectation value of the difference 
in the log of two posterior probabilities allows us to determine the 
value of KLD that corresponds to any preferred level of significance. 
F or e xample, the significance of 1 σ corresponds to KLD = 0.5. 
An in-depth deri v ation of the relation between the KLD values and 
the confidence levels can be found in Reino et al. ( 2021 ) and a full 
discussion of this interpretation of KLD in Sanderson et al. ( 2015 ). 

As with KLD1 ( ζ ) in equation (13), this version of KLD will 
incorporate weights and a separate density estimation for different 

streams. It is defined as follows: 
KLD2 ( ζ ) = N s ∑ 

j 
N j ∑ 
i w j log N j 

N p i ( J i | ζ 0 , ω i ) 
p i ( J i | ζ trial , ω i ) 

∣∣∣∣
J i = J ij 0 . (14) 

Once again, we use Enlink to estimate the probability density 
functions p i ( J i | ζ 0 , ω i ) and p i ( J i | ζ trial , ω i ) using the two sets 
of actions. Both functions are then e v aluated at J 0 = J ( ζ 0 , ω ), the 
actions computed with the best-fitting potential parameters ζ0 . 

Finally, throughout the rest of the paper we discuss the un- 
certainties of our measurements as 1 σ confidence intervals. This 
corresponds to the subset of trial potentials with KLD2 ( ζ ) ≤ 0 . 5. 
The individual parameter confidence intervals are determined as the 
full range of parameter values in this subset of potentials. 
3  SIMULA  T I O N  DA  TA  
In this work, we make use of streams formed from the tidal disruption 
of dwarf galaxies in cosmological-baryonic simulations of Milky 
Way-like galaxies from the Latte suite (Wetzel et al. 2016 ) and 
ELVIS on FIRE suite (Garrison-Kimmel et al. 2019 ) of the FIRE 
project (Hopkins et al. 2018 ). All haloes were simulated in , CDM 
cosmology at particle mass resolution of 3500–7100 M % and spatial 
resolution of 1–4 pc for star/gas particles; 18 000–35 000 M % and 
40 pc for DM particles. The resolution of this suite of simulations 
allows both luminous and dark subhaloes to be resolved well even 
near each Milky Way-like galaxy, and follows the formation of tidal 
streams from dwarf galaxies down to slightly below the mass of 
the Milky Way’s ‘classical‘ dSphs: around 10 8 M % in total mass or 
10 6 M % in stellar mass (at z = 0). 

Panithanpaisal et al. ( 2021 ) search these simulated galaxies for 
accreted structures that are spatially coherent and stream-like at 
present day. They identify 100 such streams across 13 simulations 
(see their table 1) and confirm that the progenitor galaxies of 
these coherent streams are consistent with the mass–size–velocity 
dispersion relationship of observed present-day Milky Way satellites. 
This implies that the streams’ phase-space volumes, and therefore 
their sizes and densities in action space, are representative of real 
streams from satellite galaxies. 

In this work, we focus on two of the nine coherent tidal streams 
found in the halo of the isolated galaxy simulation m12i . This 
simulated galaxy has had a quiet recent accretion history involving 
mostly quite low-mass galaxies, as the Milky Way’s is expected to 
have been since the Gaia–Enceladus merger (e.g. Bonaca et al. 2017 , 
2020 ; Belokurov et al. 2018 , 2020 ; Haywood et al. 2018 , Di Matteo 
et al. 2019 , Naidu et al. 2020 ). Specifically, m12i experiences no 
mergers with mass ratios more similar than 1:3 after z = 1.7 (about 
9.5 Gyr ago; Santiste v an et al. 2020 ). Its thin disc stabilizes in its 
current configuration more than 5 Gyr before present day (Garrison- 
Kimmel et al. 2018 ), and has a stellar mass and surface density at the 
Solar circle comparable to the Milky Way (Sanderson et al. 2020 ). 

We select two long streams identified in m12i , which each have 
multiple wraps around their host galaxy and contain between 2000 
and 4000 star particles. Although they are far longer than nearly 
e very kno wn Milky Way stream, this length is ideal for our purposes 
as it allows us to divide each stream into many sections that are 
each comparable to most known stream lengths, and to select several 
instances of the same orbital phase from each stream. Throughout 
the paper, we use the error-free present-day positions and velocities 
of the star particles that belong to these streams and assume complete 
and contamination-free knowledge of stream membership for each 
star particle. 
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Figure 1. Streams A (top) and B (bottom) in galactocentric coordinates. Each stream section is identified by a given colour throughout the whole paper (see 
Table 1 for a summary). Star particles not belonging to any section are shown as grey. 

We define 11 sections in each stream by eye using a combination of 
the position, velocity, and orbital phase information. Fig. 1 shows the 
two streams in the galactocentric reference frame with each section 
highlighted using a different colour (the velocities of the streams 
are shown in Fig. A1 ). Throughout this paper, we consistently use 
the same colour to represent a particular section of each stream, the 
legend for this section-specific colour scheme is given in Table 1 . 
Gold-coloured points represent the progenitor-containing section in 
both streams. The star particles that do not belong to any section 
are shown in light grey. In Fig. 2 , we show the streams after we 
have unwound them using angle coordinates. The angle coordinates 
were computed using the AGAMA library (Vasiliev 2019 ) in a low- 
order multipole (dark matter and hot gas distribution) and cylindrical 
spline (stellar and cold gas distribution) model fit to the potential 
of m12i (Arora et al., in preparation). To unwind each stream, we 
utilized the Hough transform (Duda & Hart 1972 ), a line detection 
algorithm, to identify line o v erdensities in the θ r versus θφ projection 
(Pearson et al. 2021 ; Shih et al. 2021 ). All the lines identified were 
then connected by exploiting the periodic boundary condition in 
the angle projection (i.e. if a line terminates at ( θr , θφ) = (2 π, ˜ θφ), 
it will reappear at ( θr , θφ) = (0 , ˜ θφ)). Starting from the line with 
the most members as the stem, we progressively connected more 
lines to both sides, shifting ( θ r , θφ) of the members of the newly 
attached lines with suitable offsets, until all the lines are used. A more 
detailed explanation of the unwinding process will be presented in 
Panithanpaisal et al. (in preparation). 

Fig. 2 thus allows for clear identification of the phase that 
each section is on, which we have also summarized in Table 1 . 
Although we define for both streams the section which contains the 

remaining progenitor (4A and 6B), we do this purely for visualization 
purposes and do not make use of these sections individually. In 
total, discounting the progenitor-containing sections, we identify six 
apocentre sections, seven pericentre sections, and seven intermediate 
sections between the two streams. The sizes of the sections vary 
from 30 to 318 star particles, with a total of 973 star particles within 
apocentre sections, 984 within pericentre sections, and 1176 within 
intermediate sections. 
4  FULL  STREAM  RESULTS  
In this section, we discuss the results of our action-clustering method 
when applied to the two streams as a whole, both independently and 
in combination. Fig. 3 compares our reco v ered St ̈ackel potential 
with the true potential in two projections: the circular velocity 
curve (left) and enclosed mass profile (right). The true potential 
which is derived from the spherically binned total mass profile of 
the simulation snapshot is shown with the black dash–dotted line. 
The solid lines show the best-fitting St ̈ackel potential of a particular 
data set. Both stream A (solid green line) and stream B (solid blue 
line) reco v er the true potential relativ ely accurately, especially at the 
galactocentric distances where most of their star particles are. Stream 
A, whose star particles lie between ∼10 and ∼96 kpc, reco v ers 
the true potential more accurately at lower radii than Stream B, 
whose median distance is twice as large. The best-fitting velocity 
curve lies within 32 km s −1 of the true v elocity curv e across all the 
distances of its star particles, with ∼10 km s −1 at the median distance 
( ∼38 kpc). Stream B, co v ering the range of distances from ∼20 to 
∼176 kpc, on the other hand reco v ers the true potential better at 
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5370 S. Reino et al. 
Table 1. Sections defined in our streams. The upper portion lists the sections from stream A and the lower portion 
contains those of stream B, each with their respective full stream details on top. The columns give for each stream 
their signifier, number of stars N ∗, median galactocentric distance r , approximate orbital phase, the colour scheme 
(which is used to mark the corresponding sections throughout the paper), length, width, and velocity dispersion. 
Discussion on how these properties were computed is included in Appendix B. 

Figure 2. Phase information of streams A (left) and B (right). The progenitor-containing section (in gold) is at θ r = 0. Colour scheme as in Fig. 1 (see also 
Table 1 ). 
larger radii. Its best-fitting velocity curve is within 20 km s −1 of 
the true velocity curve across its radial range, with 2.6 km s −1 at 
the median distance ( ∼79 kpc). The largest differences between 
the predicted and true velocity curves occur at the shortest and the 
largest radii for both streams. The true potential at galactocentric 
distances less than ∼20 kpc cannot be well reproduced by either 
stream likely due to the small number of star particles within that 
range (only ∼2 per cent of the stars in our full sample). A further 
discrepancy might arise also due to the lack of flexibility in the 
St ̈ackel potential but this possibility cannot be explored with the 
current data. 

Unsurprisingly, the uncertainties of these best-fitting measure- 
ments (shows as the shaded regions) are also the tightest where each 
stream contains the most data: the median distance of star particles 

in each stream (marked with a cross) correlates with the distance at 
which the uncertainty region has reduced to its minimum extent over 
all distances. 

The results from combined data (solid green line) show impro v ed 
accuracy and precision along the whole range of galactocentric 
distances probed by our streams. The uncertainty region no longer 
has a specific galactocentric distance where it is the tightest, instead 
we are able to reco v er the true v elocity curv e within 12 per cent o v er 
the range of radii co v ered by all the star particles (10–176 kpc). As 
is the case with the individual stream results, the best-fitting rotation 
curve most deviates from the true rotation curve at very short and 
very large distances: between 23 and 109 kpc, the 5–95 percentile 
galactocentric distance range of the star particles, we reco v er the true 
rotation curve within 6 . 5 per cent . 
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Figure 3. Results for stream A, stream B, and their combined data. We compare the results from these data sets to the true potential (black dash–dotted 
line) in circular velocity and enclosed mass. The solid coloured lines show the best-fitting St ̈ackel potential of each data set and the shaded regions show the 
corresponding 1 σ uncertainty regions. The median distance of the star particles in the stream A and stream B data sets is marked with a cross (see Table 1 ). 

To confirm that this accuracy is typical of all streams in the 
simulation, we randomly selected three of the other nine coherent 
streams present in the simulation and applied the action-clustering 
method to each whole stream separately. We find that all three streams 
reco v er the true potential very well – within 13 per cent, 3 per cent, 
and 10 per cent between the 5 and 95 percentile galactocentric 
distance range co v ered by their respective star particles. 

These full stream results, for which we used all the star particles 
of the two streams, are virtually unaffected if we remo v e the sections 
that contains the progenitors (4A and 6B). Stream B identifies the 
exact same potential as best fit with or without the progenitor, while 
stream A finds a best-fitting potential with a somewhat lower mass 
across all radii in the without-progenitor-section case compared to the 
full stream case. Ho we ver, this lo wer mass profile is still well within 
the uncertainty region of both stream A and the combined streams 
(shown in Fig. 3 ). The extent of the uncertainty regions between 
the with-progenitor and no-progenitor results only show very minor 
differences for both streams. 

To address the question whether the difference between the best- 
fitting St ̈ackel potentials and the true potential might largely be 
attributed to our adoption of the St ̈ackel model, we performed 
a least-squares fit to the true velocity curve over the range of 
galactocentric distances where we have stellar data (10–176 kpc) 
using only our set of trial potentials. The potential that minimizes the 
least squares can be considered the best possible St ̈ackel potential 
approximation to the true potential in terms of circular velocity. 
We find that this St ̈ackel potential approximates the true potential 
extremely well: it recovers the true velocity curve within 2.8 km s −1 
or 1.2 per cent o v er this distance range. Therefore, we expect the 
bias due to adopting the St ̈ackel model to be ne gligible ev en for 
the innermost stream sections in our sample, and well within our 
uncertainties. 

Fig. 4 shows the comparison of the vertical acceleration (i.e. 
acceleration in z -direction) field of the simulated galaxy (left-hand 
panel) and that of our best-fitting potential model of the combined 
stream data set (middle panel). The relative residuals are shown in the 
right-hand panel. In general, the two acceleration fields are consistent 
with each other. It is not surprising that the greatest difference 

between the true and model z -accelerations occur near the plane 
of the galaxy. Part of the reason lies in the fact that the simulated 
galaxy is dynamic and the accelerations are not perfectly symmetric 
around the mid-plane (see e.g. Beane et al. 2019 ). In addition to 
this m12i has a warp in its outer disc, that our model, or any other 
axisymmetric model, is not designed to reproduce. This warping is 
likely the cause for such pronounced differences just abo v e the z -axis 
on the positive x -direction and just below the z -axis on the ne gativ e 
x -direction. Another reason for the mismatch lies in the fact that, 
like most parametrized, axisymmetric potentials, the St ̈ackel model 
has limited flexibility when used as a global model of the potential 
of a realistic galaxy. This is likely because the disc is flatter than 
our St ̈ackel model can account for, causing it to underestimate the 
maximum density in the plane. In particular, as is clear from Fig. 3 , it 
does not deliver a good match to the galaxy at small radii. Ho we ver, 
this is also the region where the uncertainties in our best-fitting model 
are the largest, and where we have no data. The green circle in the 
right-hand panel of Fig. 4 shows the minimum radius of the star 
particles in our sample. 

We compare the alignment between the streams and the predicted 
orbits in Fig. 5 . The figure shows the orbits of a single representative 
star particle per each stream section, selected to lie near the centre 
of its respective section. These stars have then been integrated 
backwards and forwards in time in the best-fitting potential of their 
respective full stream. We do not expect to see perfect alignment 
between the star particles and the integrated orbits for several reasons: 
there is a natural small misalignment between streams and orbits due 
to the range of energies in the stream stars, but more importantly 
in this situation, these streams have evolved is lumpy, time-evolving 
potentials in stark contrast to our smooth and static St ̈ackel model. 
The disruption of a dwarf galaxy in a realistic halo is a complex 
process often taking several pericentre passages, which each produce 
their own trailing and leading arms based on the evolving energy 
and angular momentum distribution of the stars being stripped. This 
naturally leads to different segments of the stream being on slightly 
different orbits. 

Despite this caveat, the orbits of stream A (top panels) align with its 
star particles markedly well. The orbits of stream B (bottom panels), 
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Figure 4. The binned z -accelerations of a slice of the simulated galaxy. The left-hand panel shows the z -accelerations of the real star particles, the middle panel 
shows the predicted z -accelerations for the star particles based on our best-fitting St ̈ackel model with the combined stream data set, and the right-hand panel 
shows their relative residuals. The slice has a thickness of 2 kpc and is centred on galactocentric y -axis. The green circle in the right-hand panel marks the 
minimum distance of the star particles in our two streams. 

Figure 5. The orbits of streams A (top) and B (bottom) in their respective best-fitting potentials. The star particles whose orbits are shown (marked with a coloured 
dot) were picked by eye to be near the centre of their section. The orbits are coloured based on the colour scheme of the section they belong to (see Table 1 ). 
ho we ver, sho w some inconsistencies with the data. One of the main 
mismatches is near the location of the progenitor, which is to be 
expected, as leading and trailing tails by definition have a mismatch 
in their orbits. The second inconsistency is between the orbits of 2B 
and 3B. The rest of the orbits, especially those in the inner parts of 
the stream, align well with the data. 

The action space of each stream in their respective best-fitting 
potentials is shown in Fig. 6 . The colours of the star particles 
once again correspond to the sections they belong to and reveal 

the structure of these streams in action space. As the stars get 
stripped from the progenitor they settle either into leading or trailing 
tails, which should form two slightly separated clusters in action 
space. Here, we see this behaviour clearly: the section containing 
the progenitor (gold-coloured dots) is near the centre of the action 
space and the sections comprising the trailing tail are abo v e it, while 
the sections in the leading trail are below it. It is also noticeable that 
the sections that ha ve ev olved further from the progenitor along the 
tails, tend to be further from the progenitor also in action space. This 
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Figure 6. The action space of stream A (left) and stream B (right) in their respective best-fitting potentials. The insets show the stream in x –z frame for reference. 
The star particles are coloured based on their sections (see Table 1 ) with star particles not belonging to any section shown as grey. The centre of each section is 
marked with an ‘X’ in its respective colour, and the black line connects them in the order that they appear in phase space. 
is because the least-bound stars, with the largest energy and action 
difference from the progenitor, escape the progenitor first. 

On the whole, we conclude that the action-clustering method and 
the tw o-component St ̈ack el potential can reproduce the true global 
potential of the simulated galaxy fairly well and without obvious 
biases. 
5  SECTION S  O F  STREAMS  
With simulated streams it is convenient to utilize the full stream in our 
analysis. Ho we v er, we typically observ e only the close-by segments 
of whole streams or, even if multiple sections are observed, we may 
not realize that they belong to the same larger structure (e.g. Bonaca 
et al. 2021 ). 

To investigate the possible consequences, we split our two streams 
into sections (as specified in Table 1 and Fig. 1 ) and use them in our 
analysis individually as if they were independent streams. 

Fig. 7 shows the best-fitting results for all sections of stream A 
(top panels) and stream B (bottom panels). There is considerable 
variation in the global fit of the different sections, further evidence 
that individual streams that span only a small region of the position- 
velocity space can lead to biased estimates of the global galactic 
potential. The majority of the sections do, ho we ver, gi ve a good local 
prediction of the potential. With two exceptions, the crosses that 
signify the median distance of the star particles of that section, lie 
within 25 km s −1 of the true velocity curve as shown with the black 
dash–dotted line. 

The galactocentric radii at which each section gives the tightest 
uncertainties correlates linearly with their median galactocentric 
radius. The same relationship was found by Bonaca & Hogg ( 2018 ) 
who further disco v ered that the y could tighten this correlation by 
adding flexibility to their potential model. In other words, the 
more flexible a model, the more localized the best constraints 
became. This demonstrates that streams (or stream sections) do not 
contain information about the entire extent of their orbit but rather 
are sensitive to the underlying potential at their current location. 
Furthermore, Pe ̃ narrubia et al. ( 2006 ) showed that the past history 

of an evolving gravitational potential cannot be constrained using 
present-day observables: the properties of stellar streams only reflect 
the present-day galactic potential. 

As streams reco v er best the current potential at their current 
location, the variation we see in Fig. 7 is unsurprising – the sections 
behave as if they were completely separate streams. 

Finally, single streams have been shown to produce biased esti- 
mates of their host’s potential (see e.g. Lux et al. 2013 ; Bonaca et al. 
2014 ). This serves to add even more complexity to the differences 
we see in Fig. 7 . In the next section, we will explore the underlying 
causes for the variations we see in both the global and local results 
between different streams. 
6  O R B I TA L  PHASE  
We now organize the sections of both streams into three groups 
based on their orbital phase: pericentre, intermediate, and apocentre 
sections. This allows us to, first, e xplore an y systematic differences 
in the section results based on the phase and, second, perform a 
joint analysis of all the sections that belong to a particular phase 
group using our action-clustering method. The interplay between the 
section results and other stream properties is explored in Section 7. 
Our findings are summarized in Fig. 8 , where the top, middle, and 
bottom panels present the results for pericentre, intermediate, and 
apocentre sections, respectively. The right-hand panels show again 
the individual stream section best-fitting St ̈ackel potentials while the 
left-hand panels show the confidence regions of these measurements 
o v erlaid in semitransparent grey colour: the brightness of the grey 
colour tells us where most of the confidence regions overlap. The 
error bars show each section’s measurement at their median distance. 
The left-hand panels also contain a red line which signifies the best- 
fitting St ̈ackel potential of the joint data set of each respective phase. 
The confidence region for that is shown with the red shaded region 
in the right-hand panel. 

The pericentre sections generally o v erestimate the mass of their 
host galaxy both locally and globally, as evidenced by their best- 
fitting potentials and the associated uncertainties. The lower edge of 
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Figure 7. The best-fitting St ̈ackel potentials for different sections of stream A (top panels) and stream B (bottom panels) shown in circular velocity and enclosed 
mass profiles. The crosses mark the median distance of each section, while the thicker part of the lines corresponds to the full range of distances of star particles 
in that section. The insets show the stream in x –z frame for reference. 
their confidence regions typically just about covers the true circular 
v elocity curv e at high radii, while only a few do so closer in: there 
is a visible gap in the co v erage of the true curve between about 40 
and 60 kpc. This is confirmed by the joint phase results: the best- 
fitting potential is consistently abo v e that of the true potential and 
the confidence region only barely reaches the true potential at high 
radii, while being somewhat abo v e it from about 30–100 kpc. 

The intermediate sections, on the other hand, show a much better 
agreement with the true velocity curve. Although there are still large 
variations in the individual best-fitting potentials in a global sense, the 
local measurements are better matched. The grey shaded regions now 
also clearly envelope the true potential across all distance scales. The 
joint best-fitting potential shows good agreement with the true po- 
tential nearly everywhere: we recover the true velocity curve within 
6 per cent o v er the range of radii co v ered by the data (19–100 kpc). 

Finally, the apocentre sections again generally show good agree- 
ment with the true v elocity curv e. The local measurements mostly 
agree with the true velocities, without showing a preferred bias, 
while the predicted velocity curves at high radii do mostly prefer 
lower masses when compared to the true potential. This is also clear 
when looking at the uncertainty regions: while at low distances the 
agreement between the stream sections looks fairly chaotic, at high 

distances, most of the confidence regions overlap slightly below the 
true velocity curve. The joint best-fitting curve echos these individual 
results: at high distances we have a fairly good fit, while at low 
distances the difference is quite large. 
7  BI AS  DEPENDENCE  O N  OT H E R  STREAM  
PROPERTIES  
In Fig. 9 , we explore the dependence of the accuracy of our potential 
fit on several stream section properties (see also Fig. B1 where further 
stream properties are considered and Appendix B for the description 
of how these properties were calculated). In the top left and bottom 
left panels, we show the points with the section-specific colours as 
per Table 1 while in the rest of the panels the points are coloured 
based on their orbital phase. The top left panel shows for each section 
the residuals between the best fit and the true velocity curve at the 
distance of minimum uncertainty as a function of orbital phase (solid 
data points). For comparison we also show, with empty markers 
and lighter colours, the residuals at the median distance of each 
section (this corresponds to the vertical difference between each of 
the crosses and the dash–dotted line in Fig. 7 ). In the bottom left 
panel, we show the residuals relative to their 1 σ uncertainty. 
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Figure 8. The results of all stream A and stream B sections organized by orbital phase. The top panels show the pericentre sections, while the middle and 
bottom panels show the intermediate and apocentre sections, respectively. The coloured lines in the right-hand panels show the best-fitting St ̈ackel potential 
of the individual sections, with the error bar indicating the uncertainty at their median distance. These are coloured based on Table 1 , with stream A sections 
shown with solid lines and stream B sections shown with dashed lines. Their full confidence regions are shown as a function of radius in the left-hand panel as 
gre y semi-opaque re gions. The red line in the left-hand panel shows the best-fitting St ̈ackel potential of the joint phase data set, and the red shaded area in the 
right-hand panel is its associated uncertainty. The true potential is shown with a black dash–dotted line in every panel. 
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Figure 9. The residuals of the circular v elocity curv e at the distance of the smallest 1 σ uncertainty as a function of the sections’ properties. In the top left panel, 
we also show the residuals at the sections’ median distance with lighter empty markers, for comparison. In the left-hand panels, we adopt our section-specific 
colour scheme, while on the rest of the panels we indicate the pericentre, intermediate, and apocentre sections with teal, purple, and yellow colours, respectively. 
A description of how the stream properties were computed is available in Appendix B. 

We find that there is a clear correlation between the accuracy of 
the fit and the orbital phase of the stream. The best-fitting results of 
the intermediate sections show the least amount of scatter around the 
true velocity curve, and do not appear to have a preferred bias. The 
apocentre sections, although not exhibiting an obvious bias either, 
have a lot more scatter around the true potential. The pericentre 
sections, in contrast, consistently o v erestimate the mass. Moreo v er, 
their uncertainties are small compared to the residuals, indicating a 
systematic bias. 

We do not see any clear trends with either the angular length 
(bottom middle panel) or physical length (shown in Fig. B1 ) of 
the stream sections. Indeed, the intermediate sections in our sample 
tend to be quite short and nevertheless give better estimates than the 
often longer pericentre sections. We also see no correlations with the 
number of stars in each stream section, the median galactocentric 
distance, the median distance from the galactic plane, width or 
velocity dispersion in each section (all shown in Fig. B1 ) nor with 
the angular momentum vector or the galactocentric distance range 
co v ered by a certain stream section (not shown). All of this gives us 
confidence that it is truly the effect of the orbital phase that causes 
the variation in the quality of our constraints. 

To explain this effect, we investigated the correlation between λ
and p λ in each stream section. The bottom right panel in Fig. 9 shows 
that stream stars exhibit strong correlations between their motions 
and positions during the intermediate phase. The pericentre streams 

meanwhile have the weakest correlations. In general, the stronger the 
correlations between motions and positions of stream stars the better 
the constraints from that stream tend to be. Fig. 10 illustrates this 
concept. On the upper panel, we show a cartoon of a dwarf galaxy 
stream near pericentre passage for a more radial orbit (top left panel) 
and a more circular orbit (top right panel). The black points represent 
stream stars, which have been created by selecting points along the 
pericentre of a single orbit (the blue line) and adding scatter in both 
λ and p λ. The light blue shaded regions approximate the ‘scatter’ 
in these orbits. The yellow line shows a fit to the black points and 
is in both cases almost perfectly vertical, signifying no correlation 
between λ and p λ. This in turn indicates lack of statistical power for 
significant differentiation between different potential models. 

The origin of the systematic error that we see arising with 
pericentre streams therefore lies in this lack of correlation between 
the positions and momenta of stream stars during pericentre passage. 
As a consequence this data cannot differentiate between potentials 
as successfully as intermediate and apocentre streams. In the case of 
the action-clustering method, this property of the pericentric motion 
manifests as o v erestimation of mass. Due to the lack of correlations 
between motions and positions, it is possible to find a high-mass 
potential that confines all the stream stars on to orbits with very little 
radial motion. This potential is then selected as the best fit because 
it forms a dense cluster near J λ ∼ 0. Ho we ver, to accommodate this 
configuration the stars have to be placed on a variety of different 
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Figure 10. Schematic phase diagram of dwarf galaxy streams (top panels) and cold stellar streams (bottom panels) near pericentre passage for radial orbits 
(left-hand panels) and circular orbits (right-hand panel). The black points represent stream stars created by selecting points along the pericentre of the orbit 
shown with the blue line and adding scatter in both λ and p λ. This scatter is five times larger in both positions and momenta for the dwarf streams compared to 
the cold stellar streams. The light blue shaded regions on top panels approximate the much larger ‘scatter’ in the orbits of dwarf galaxy streams. The yellow 
lines show a fit to the black points on each panel. 
phases on their respective orbits. This means that the ordering of the 
stars along the stream, and in fact the spatial coherence of the stream 
itself, breaks down in this potential (see also Buist & Helmi 2015 ). 
We call this spurious reordering of the stream stars in the incorrect 
potential ‘phase scrambling’. 

Although the pericentre streams are likely to yield potentials that 
are highly biased, the confidence regions can nevertheless be small. 
This is due to the fact that to calculate the uncertainty, we compare 
the action-space distribution of the best-fitting potential to that of all 
other trial potentials, and draw the error contours so that they mark 
the boundary where the action-distributions begin to significantly 
differ. The weakness of this technique is that even if there were 
other potentials that produced a highly clustered action-space (i.e. 
had a high KLD1) there is no guarantee that they would be included 
in the uncertainty region if their action-space looks significantly 
different from that of the best fit, e.g. when clusters simply form 
at a sufficiently different locations in action-space. So our set-up is 
reliant on having managed to determine the ‘correct’ potential as the 
best fit, while the uncertainty just measures the variation around it. 

Finally, in the top right panel, we show the goodness of fit as 
a function of the difference in median J λ between the best-fitting 
potentials of individual sections and that of the combined full streams 
(green line in Fig. 3 ). The further the individual results are from the 
true potential, the bigger this change in J λ. Although it is expected 
that a greater difference between two potentials results in a greater 
change in the action-space, we do not see such a trend with J ν . 

To confirm that the quality of our results is indeed determined 
by the phase of the stream, we looked at the two stream sections 
with the highest difference between the true and estimated velocity 
curves – pericentre sections 1B and 4B – in a simulation snapshot 

corresponding to redshift z = 0.038, when both of these stream 
sections occupied the intermediate phase. We reapplied the action- 
clustering algorithm for the stars in each section but now using their 
past positions and velocities from snapshot z = 0.038. The results of 
this test are presented in Fig. 11 , where with the blue line we show the 
result of the analysis of the current day (pericentre phase) positions of 
the stream stars, and with the yellow line the past (intermediate phase) 
positions of the same stars. In both cases, the results originating from 
the past positions, when the stars were at intermediate phase, perform 
markedly better. 
8  C O N C L U S I O N S  A N D  DI SCUSSI ON  
In this work, we have shown that with two whole dwarf galaxy 
streams we reco v ered the true rotation curve of the simulated galaxy 
within 12 per cent o v er the entire range of radii co v ered by our set 
of star particles (10–176 kpc) when adopting the two-component 
St ̈ackel model. Ho we v er, this accurac y is much impro v ed o v er the 
distances where we have the most data, reco v ering the true rotation 
curve within 6.5 per cent between the 5 and 95 percentile distance 
range (23–109 kpc). This leads us to conclude that using the St ̈ackel 
potential does not introduce a significant bias into our results, at least 
not more so than any other axisymmetric, parametrized potential 
model would. 

Bonaca et al. ( 2014 ) explored the accuracy of smooth analytical 
potentials in representing realistic – lumpy and time-evolving –
dark matter haloes. Using a collection of streams evolved (using 
the streakline method) in the Via Lactea II simulation, they esti- 
mated the galactic mass by comparing these ‘observed’ streams to 
models generated in trial analytical potentials and showed that just 
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Figure 11. Comparison of the results from analysis of the present day 
and past (z = 0.038) positions of the stars in sections 1B (top panel) 
and 4B (bottom panel). The solid coloured lines represent the best-fitting 
St ̈ackel potential and the error bar shows the 1 σ uncertainty at the median 
galactocentric distance for each data set. The black and red dash–dotted lines 
represents the true galactic potential at z = 0 and z = 0.038, respectively. 
assuming an analytical potential limits the measurement accuracy to 
5 −20 per cent . This limit was reached only with the full collection 
of 256 streams in their sample, while individually the streams were 
much less accurate (only 40 −60 per cent of the individual streams 
could reco v er the true parameters within 10 per cent ). A similar 
exploration was performed by Sanderson et al. ( 2017 ) who fitted 
analytical potentials to the streams occurring natively in the Aquarius 
A simulation using the action-clustering method. 1 They found that 
with simultaneous fitting of 15 streams they could recover M 200 
within 10 per cent . 

The tight constraints we achieve here with just two streams are 
remarkable considering that, in contrast to Via Lactea II and Aquarius 
simulations, both of which are dark matter-only simulations, we 
model a galaxy from a fully cosmological-baryonic simulation which 
contains a stellar and gas disc shaped by star formation in addition to 
a time-evolving dark matter halo. Yet we obtain this precision using 
1 Although mostly similar to the action-clustering method described here, 
Sanderson et al. ( 2017 ) used the product of the marginal distributions of p 
instead of the uniform distribution as the comparison distrib ution q , ga ve 
equal weight to all stars, and did not separate different streams during the 
process of density estimation. 

only a global, two-component St ̈ackel potential to represent the entire 
complexity of this galaxy. This is likely due to the good orbital phase 
co v erage of these two streams: both streams have several wraps 
around the host galaxy and as such co v er each orbital phase multiple 
times. 

Both Bonaca et al. ( 2014 , using streakline) and Sanderson et al. 
( 2017 , using action clustering) demonstrated that an o v ersimplifica- 
tion of the potential model does not intrinsically produce a biased 
mass profile when fitting a collection of streams. Our findings agree 
with this: our results with the full streams show no presence of 
systematic bias (Section 4). 

We next split each of the two streams into 11 smaller sections based 
on their orbital phase (Section 5) and analysed them independently. 
We find that the quality of the constraints on the mass profile 
depends on the orbital phase of the stream (Section 7). There is 
a clear systematic bias when using only the pericentre streams in 
our analysis: this data o v erestimates the mass of the host galaxy 
at all galactocentric radii (see Fig. 8 , top panel and Fig. 9 , lower 
left panel). This systematic error stems from the fact that during 
pericentre passage the positions and momenta of stream stars are 
not correlated (see Fig. 9 , bottom right panel). Although a joint fit 
of multiple streams is usually recommended to get a better fix on 
the potential, this bias remains even when all pericentre sections are 
analysed jointly. We find that streams on the intermediate phase are 
the most likely to give bias-free local mass estimates individually, 
and a bias-free and accurate global mass profile in combination (see 
Fig. 8 , middle panel and Fig. 9 , left-hand panels). 

In Reino et al. ( 2021 ), we showed that when analysed with the 
action-clustering method GD-1 data produced a mass estimate that 
was considerably larger than those from Pal 5, Orphan, and the 
combination of all three streams. We explored the range of orbital 
phases the GD-1 stars were on with the best-fitting GD-1 potential 
and found that the stars were all placed on very different orbital 
phases on their respective orbits. We briefly discussed that the cause 
for this, and therefore the high mass that GD-1 reco v ers, is likely due 
to the natural energy gradient along the stream not being reproduced. 
This is another symptom of the phase scrambling we discussed abo v e 
and, since GD-1 is believed to be a pericentre stream, it aligns with 
our results here. 

This inability of pericentre streams to distinguish robustly between 
potential models can manifest in other ways for different methods. 
Previously, Sanders & Binney ( 2013 ) remarked on having more 
difficulty constraining the potential with streams observed at their 
pericentre. They analysed a mock stream with their angle-frequency 
slope method both during its apocentre and the subsequent pericentric 
passage and found that they could not reco v er the true potential 
parameters as successfully in the pericentric case. Ho we ver, despite 
several local minima in their likelihood surface, they do not calculate 
a large systematic bias. The cause for such a behaviour could be that 
streams co v er a smaller angle space near their pericentres making 
the determination of the slope more prone to errors. 

Similarly, Koposov et al. ( 2010 ) found that they could not constrain 
all the parameters in their three-component potential model with six- 
dimensional GD-1 data using the orbit-fitting method and noted that, 
due to being near its pericentre, GD-1 might not have sufficient 
phase co v erage to dif ferentiate between orbits produced in dif ferent 
potentials, resulting in a poor fit. 

Pericentre streams therefore lead to either biased results or weak 
constraining power irrespective of the applied method. Although our 
position in the Galaxy and the increased stellar density of streams 
near pericentre makes detecting streams near their pericentres the 
easiest, their relative accessibility does not lead to an appreciable 
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impro v ement in our understanding of the Galactic potential or the 
field of near-field cosmology. 

Although in this work we have made use of dwarf galaxy type 
streams, the conclusions drawn here are also applicable to most cold 
stellar streams of globular cluster origin. This is because the cause 
for the weak constraining power in pericentre streams is not unique 
to dwarf type streams. In the bottom panels of Fig. 10 , we show the 
cartoon versions of two cold stellar streams to provide comparison 
with the dwarf galaxy streams in the top panels. Both cartoon streams 
in the left-hand panels were created from the same original orbit (the 
blue line), ho we v er, the cold stellar stream stars are fiv e times less 
scattered both in λ and in p λ. The same holds true for the streams in 
the right-hand panels: the stars were created from the same original 
orbit but with five times more scatter added to the dwarf galaxy 
stream stars. Although with considerably less scatter, the positions 
and momenta of stars in cold stellar streams on more radial orbits 
(bottom left panel) would still be uncorrelated during pericentre 
passage and therefore result in poor constraining po wer. Ho we ver, in 
contrast with dwarf galaxy streams, a cold stellar stream on a more 
circular rather than radial orbit (bottom right panel) can potentially 
have suf ficient curv ature in the pericentre part of the phase diagram 
to constrain a model potential. 

Many studies have shown that in general longer streams have more 
constraining power. When investigating the information content in 
the tracks of stellar streams Bonaca & Hogg ( 2018 ) found that longer 
streams (in degrees) achieve the highest precision in reco v ering the 
potential parameters. We do not find any correlation between either 
angular or physical distance with the accuracy of the constraints or 
the precision of our confidence regions. In fact, our intermediate 
phase streams often tend to be the shortest and the pericentre streams 
the longest. Ho we ver, our shortest streams are around ∼50 deg while 
only 1 of the 11 streams Bonaca & Hogg ( 2018 ) studied reaches this 
length, the rest being considerably shorter. It could be that the trend 
with length is no longer as rele v ant as other factors when it comes 
to longer streams. Alternatively, the effect could be related to the 
difference in our methods. Bonaca & Hogg ( 2018 ) made comparisons 
between the tracks of stream data and models in position and velocity 
space, so longer streams will allow the comparisons to be made o v er 
a larger extent and thus enhance the results. Conversely, the length 
of the stream has no direct impact on the constraints derived with the 
action-clustering method as we are only measuring the density of the 
stars in action space. 

We summarize our findings as follows: 
(i) Although individual streams are likely to deliver accurate 

estimations of the local galactic profile, they should not be relied 
on for yielding good global fits. 

(ii) We have shown that the pericentre streams can lead to 
significant systematic errors when used to constrain the potential 
of their host galaxy. 

(iii) Meanwhile apocentre and, especially, intermediate phase 
streams lead to accurate inference. 

For accurate high-confidence constraints on the Galactic potential, 
we therefore advocate targeting streams that are likely at intermediate 
or apocentre phases. 
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APPENDI X  A :  STREAM  VELOCI TI ES  
In Fig. A1 , we show the galactocentric velocities for our two streams 
with each section highlighted in the colour as specified by Table 1 . 

Figure A1. Galactocentric velocities of streams A (top) and B (bottom). Each stream section is identified by the colour given in Table 1 and a label. Star 
particles not belonging to any section are shown as grey. 
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APPEN D IX  B:  BIAS  A S  A  F U N C T I O N  O F  
F U RT H E R  STREAM  PROPERTIES  
In this section, we show in Fig. B1 the accuracy of our potential fit 
as a function of some further stream section properties. As already 
remarked in Section 7, none of these stream section characteristics 
are sufficient to explain the variation that we see in the quality of our 
potential constraints. 

To measure the stream length, width, and velocity dispersion, 
we first convert to stream-aligned coordinates. This is a spherical 
coordinate system ( r , ξ , η) where the equator, η = 0, is defined 
by a great circle best fitting the stream data centred on the galactic 
centre and the radius, r is the median galactocentric radius of the 
stream stars. The angular length of the stream is then defined as 

&ξ . The physical length is found by computing the arc length 
of the circle subtended by the stream, i.e. r × &ξ . To estimate 
the width of the stream, we fit the galactocentric x , y , and z 
coordinates of stream stars as a function of the angle along the 
stream, ξ , with a quadratic polynomial. The distance of each star 
from this stream ‘axis’ can then be calculated at their respective 
ξ , i.e. d i = √ 

( x i − x( ξi ) 2 + ( y i − y( ξi ) 2 + ( z i − z( ξi ) 2 . We then 
define the width as the root mean square of these distances. An 
analogous technique is employed to calculate the velocity dispersion, 
σ v , except now the polynomial is fitted to the galactocentric v x , v y , 
v z as a function of ξ . Correlation between λ and p λ for each stream 
is defined as the absolute value of the Pearson correlation coefficient 
between these coordinates. 

Figure B1. The residuals of the circular velocity curve at the distance of the smallest 1 σ uncertainty as a function of the sections’ properties. We indicate the 
pericentre, intermediate, and apocentre sections with teal, purple, and yellow colours, respectively. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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