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Abstract—With the increasing demand for wireless sensors due 

to the growing Internet of Things (IoT) industry, it becomes 

desirable to use existing technologies to realize new sensing 

functions. As wireless power transfer (WPT) becomes a standard 

feature in smartphones, this paper studies the non-invasive 

classification of liquid solutions with different concentrations, 

based on the WPT technology already deployed in mobile devices. 

Average accuracies of up to 97.6% were achieved utilizing 

supervised machine learning for the classification of milk 

adulterated with different water volumes. For these experiments, 

milk concentrations of 100%, 80%, 60%, and 40% were used for 

classification. Additionally, singular value decomposition and 

boxplot analysis were used to reduce the radio frequency 

bandwidth needed for classification to 9.45 MHz, leading to a 

drastic reduction in hardware complexity and computational cost.  

Keywords—sensor, singular value decomposition, supervised 

machine learning, wireless power transfer. 

I. INTRODUCTION 

Wireless power transfer (WPT) is enhancing the 
development of wireless sensing technologies due to its 
capability of sensing changes in the electrical properties of 
objects that approach the WPT coils [1]. As WPT grows more 
common in smart devices (e.g., smartphones, laptops, cars, and 
smart house appliances), it becomes cost-effective to use the 
WPT coils already embedded in smartphones for sensing 
applications [2]. For instance, a WPT coil was used for human-
machine interaction, detecting human hand gestures with high 
sensitivity and fast response [1]. Moreover, healthcare 
applications have also been reported. In [3], human 
cardiorespiratory activity was successfully monitored using tiny 
probing pads and coils.  

Recently, radio frequency sensing of food quality and safety 
has caught the attention of the research community and food 
industry, since the electrical properties of food and beverage 
change along with the chemical reactions that occur when they 
get spoiled. Recent studies have proposed an immersible split-
ring resonator to determine the concentration of water in 
commercially available adulterated alcoholic beverages [4]. 
Moreover, Radio Frequency Identification (RFID) stickers 
attached inside the food containers have been proposed for food 
quality and safety sensing [5]. Nevertheless, these sensors 
require direct contact with the food, which is not ideal for 
massive deployment, due to the increased cost and electronic 
waste. Additionally, it is undesirable from a sanitary point of 
view. To overcome this issue, a non-invasive method for milk 

freshness detection using a WPT coil was proposed in [2]. 
However, the feasibility of using a WPT coil for non-invasive 
liquid concentration characterization has not been explored yet. 
When an object approaches a WPT coil, a change in the coil 
impedance is induced, since inductive and capacitive links are 
formed between the object and the coil [1], [2]. The strength of 
these links and the changes in the coil’s impedance are highly 
dependent on the object’s electrical properties. Therefore, by 
measuring the induced changes in the coil’s impedance, objects 
with different electrical properties can be classified. In this 
paper, a WPT technology for non-invasive milk adulteration 
detection compatible with smartphones is proposed. 
Furthermore, using singular value decomposition (SVD) and 
box plot analysis, the bandwidth (BW) needed for classification 
was reduced to 9.45 MHz, which results in a more appealing 
technology for mobile applications due to a lower hardware 
complexity and computational cost.  

II. MILK ADULTERANT DECTECTION THEORY 

An electromagnetic field is established around a coil when a 
variable voltage/current is applied to it. Therefore, if a 
conductive material approaches the coil, an induced eddy 
current and electromotive force will be formed inside the object, 
leading to a change in the coil impedance [1].  These changes 
are due to the different electrical properties of the object and the 
air. Then, if a change in the concentration of a certain liquid 
disturbs the electrical properties of a liquid solution, it is 
possible to perform non-invasive liquid solution 
characterization by measuring the impedance changes induced 
to the coil. 

In the coil and liquid solution interaction, both inductive and 
capacitive links are coexisting and consequently affecting the 
coil’s impedance. The inductive link can be modeled as a mutual 
inductance coupling. If the disturbing object has a low 
resistivity, a large eddy current is induced, which leads to a 
strong inductive link. On the other hand, the capacitive link is 
related to the intrinsic capacitance present on every coil [2]. 
When an object perturbs the electric fields established among 
the turns of the coil, a change in the coil’s intrinsic capacitance 
is observed, since the object dielectric constant is different from 
the air. A coil with a large number of turns (e.g., strong electric 
fields) will show a strong capacitive coupling. In [1], a circuit 
model including both, inductive and capacitive couplings was 
proposed, this model will be adopted in this paper. The coil’s 
combined circuit model that includes both inductive and 
capacitive couplings is shown in Fig. 1, where ��  and �� 
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correspond to the intrinsic inductance and parasitic capacitance 
of the coil,  ��� is the reflected impedance due to inductive link, 
ΔC is the coil’s intrinsic capacitance variation due to coil-object 
interaction, and R1 is the coil’s parasitic resistance. The changes 
in ��� and ΔC consequently produce a change in coil impedance 
as  

               ��� =

	
� + 
��� + ���� ∙
1


�	�� + ∆��

	
� + 
��� + ���� +
1


�	�� + ∆��

               	1� 

As shown in (1), when a liquid solution approaches the WPT 
coil, the total coil’s impedance is determined by the liquid’s 
solution electric properties. By measuring the coil’s impedance 
variations, liquid solutions with different electrical properties 
can be potentially classified. When milk is adulterated with 
water, it not only reduces the nutritional values but also reduces 
the quality of the milk [6] [7]. As shown in [6], the water alters 
the electrical properties of the milk (i.e., dielectric constant and 
loss factor). For instance, milk concentration of 70% has a 
dielectric constant of 76.4 and a dielectric loss of 233.8 while 
raw milk (i.e., 100% concentration) has 75.8 and 282.1 
respectively, at a frequency of 27 MHz. Thus, diluted milk, at 
different percentage levels, contains different electrical 
properties that can be used to classify its adulteration status. 

III. DATA COLLECTION AND ANALYSIS 

A. Data Collection 

The experimental setup is depicted in Fig. 2(a), an Agilent 
8722ES vector network analyzer (VNA) was used to measure 
the reflection coefficient of the WPT coil (TKD-WT505090). 
To perform the measurements, a bottle filled with the desired 
liquid solution was placed on the WPT coil, as depicted in Fig. 
2(a). Additionally, box A in Fig. 2(b) indicates the area where 
the coil can be placed without significant variation in the 
measurement results. A surface-mounted SMA connector was 
used to interface the VNA with the coil terminals. The 
measurement BW was set from 50 MHz to 1000 MHz, since the 
WPT operating frequency is in the MHz range. A total of 201 
evenly spaced frequency points were measured along with the 
selected BW, for both, magnitude and phase. Therefore, a total 
of 402 features were recorded in each measurement. 

For the experiments, different concentrations of milk/water 
solutions were used. Ten empty plastic bottles were filled with 
whole milk up to a certain percentage of their maximum volume 
(355 ml). Then, the remaining volume was filled up with water, 
so each bottle reached its maximum capacity. Milk 
concentrations of 100%, 80%, 60%, and 40% were used for the 

experiments. For instance, to achieve a milk concentration of 
80%, the bottle was filled using 284 mL of whole milk and 71 
mL of water. For each category, 2 bottles were used, and 10 
measurements were taken per bottle. During the measurement 
process, the sensor was placed at different locations along with 
the bottle. Additionally, 20 measurements were taken when 
nothing, but the air was in front of the coil. Therefore, a dataset 
composed of 100 observations, 5 classes, and 402 features was 
obtained. 

B. Analysis 

The recorded data were analyzed applying SVD and boxplot 
analysis. Singular value decomposition (SVD) is a matrix 
decomposition of the form � = �Σ�∗, where U is an � ×  �  
matrix, Σ  is a � ×  �  diagonal matrix, and V is an � ×  � 
matrix. V and U return the left- and right-hand singular vectors 
of M, and Σ returns the singular values of M.  

To narrow down the data’s most meaningful components, 
SVD was applied to the recorded data. Then, the first right-hand 
singular vector values were used to find the most meaningful 
frequencies (MMFs) present on the measured BW (e.g., the 
higher the value, the more important the frequency component). 
As in [2], the superior performance of phase-detection was 
evidenced. Therefore, the data analysis was performed using 
only the recorded phase features.  Fig. 3 shows the phase MMFs 
were found around 449 MHz, outside the resonance region. 

Boxplot analysis was performed to further analyze the 
quality as a feature of the first eight phase-determined MMFs. 
Fig. 4(a)-(b) depict the box plot analysis of the 1st and 6th phase-
determined MMFs. The central mark of each box represents the 
median, the top and bottom edges indicate the 70th and 25th 
percentiles, and the whiskers extend to the most extreme data 
points not considered outliers. To have a strong feature, it is 
desirable for each class to have a different statistical distribution 

 
 

Fig. 1. Inductive and capacitive coupling for WPT-based milk adulteration 

detection. 

 
 

Fig. 2. a) VNA experiment setup, and b) the area where a reliable 
measurement can be performed is marked in box A. 
 

 
 

Fig. 3. First right singular vector values. 
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(e.g., the boxes do not overlap). By comparing Fig. 4(a)-(b), it 
can be observed that the 6th phase-determined MMF has a more 
desirable statistical distribution compared with 1st phase-
determined MMF. In other words, the boxes corresponding to 
the 1st phase-determined MMF are more overlapped than the 
ones corresponding to the 6th phase-determined MMF. After 
applying this analysis to all the selected features, the 6th, 7th, and 
8th phase-determined MMFs were selected to perform the 
classification.  

 The data were plotted using the selected features as depicted 
in Fig. 5. As can be seen, a single class can be represented by 
different clusters located at different intervals. This effect is 
because the sensor was placed at a different location along the 
bottle, which changes the measurement boundary conditions. 
However, this presents a more challenging classification 
scenario and adds robustness to the proposed system.    

IV. CLASSIFICATION RESULTS 

The selected features (i.e., 6th, 7th, and 8th phase-
determined MMFs) were used to train 24 machine learning 
classifiers that were available in the R2020b MATLAB 
Classification Learner application tool. Using this data set and a 
25% holdout validation, an average accuracy of 97.6% was 
obtained with a standard deviation of 3.67 for the best 10 
classifiers as shown in Table I. Fig. 6 shows two confusion 
matrices of these 10 classifiers to account for the best and worse 
classifier result. These confusion matrices show the number of 
false negatives, false positives, true negatives, and true positives 
of the Linear Discriminant model shown in Fig. 6(a) as well as 
the Fine Tree model shown in Fig. 6(b). As seen by the Fine Tree 

model, 2 of the 80% milk – 20% water was mistakenly classified 
as 40% milk – 60% water, and 1 of the 60% milk – 40% water 
was mistakenly classified as 100% milk. These classification 
results are dependent on the 25% random holdout validation.  

V. CONCLUSION 

The WPT coil sensor is a promising technology in the food 
quality and safety area because its wireless interaction facilitates 
detection of adulteration in food without invading the 
container’s food. Thus, the functionality of using a WPT coil to 
classify adulterated milk has been experimentally proven in this 
paper. Reduction of the BW to obtain the MMFs was acquired 
by using SVD and boxplot analysis to the phase changes. 
Models were effectively trained using supervised learning, and 
an accuracy of 97.6% in the classification was achieved. This 
technology opens new possibilities for WPT coil-based 
smartphone applications to detect variation in the electrical 
characteristics of samples.  
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Fig. 4. Boxplot analysis, a) 1st MMF b) 6th MMF. 

 
 

Fig. 5. Scatter plot of the three MMFs. 

 
 

Fig. 6. a) Linear Discriminant confusion matrix, and b) Fine Tree confusion 
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Table I. Accuracy results for the 10 best classifiers. 

Analysis 

Reflection Coefficient 

Model Type Accuracy 

Linear Discriminant 100 % 

SVM: Fine Gaussian SVM 100 % 
KNN: Fine KNN 100 % 

KNN: Weighted KNN 100 % 

Ensemble: Bagged Trees 100 % 

Ensemble: Subspace KNN 100 % 
Quadratic Discriminant 96 % 

KNN: Cosine KNN 96 % 

Ensemble: Subspace Discriminant 96 % 

Tree: Fine Tree 88 % 
Average 97.6 % 

Standard deviation 3.67 
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