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Abstract—With the increasing demand for wireless sensors due
to the growing Internet of Things (IoT) industry, it becomes
desirable to use existing technologies to realize new sensing
functions. As wireless power transfer (WPT) becomes a standard
feature in smartphones, this paper studies the non-invasive
classification of liquid solutions with different concentrations,
based on the WPT technology already deployed in mobile devices.
Average accuracies of up to 97.6% were achieved utilizing
supervised machine learning for the classification of milk
adulterated with different water volumes. For these experiments,
milk concentrations of 100%, 80%, 60%, and 40% were used for
classification. Additionally, singular value decomposition and
boxplot analysis were used to reduce the radio frequency
bandwidth needed for classification to 9.45 MHz, leading to a
drastic reduction in hardware complexity and computational cost.

Keywords—sensor, singular value decomposition, supervised
machine learning, wireless power transfer.

I. INTRODUCTION

Wireless power transfer (WPT) is enhancing the
development of wireless sensing technologies due to its
capability of sensing changes in the electrical properties of
objects that approach the WPT coils [1]. As WPT grows more
common in smart devices (e.g., smartphones, laptops, cars, and
smart house appliances), it becomes cost-effective to use the
WPT coils already embedded in smartphones for sensing
applications [2]. For instance, a WPT coil was used for human-
machine interaction, detecting human hand gestures with high
sensitivity and fast response [1]. Moreover, healthcare
applications have also been reported. In [3], human
cardiorespiratory activity was successfully monitored using tiny
probing pads and coils.

Recently, radio frequency sensing of food quality and safety
has caught the attention of the research community and food
industry, since the electrical properties of food and beverage
change along with the chemical reactions that occur when they
get spoiled. Recent studies have proposed an immersible split-
ring resonator to determine the concentration of water in
commercially available adulterated alcoholic beverages [4].
Moreover, Radio Frequency Identification (RFID) stickers
attached inside the food containers have been proposed for food
quality and safety sensing [5]. Nevertheless, these sensors
require direct contact with the food, which is not ideal for
massive deployment, due to the increased cost and electronic
waste. Additionally, it is undesirable from a sanitary point of
view. To overcome this issue, a non-invasive method for milk
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freshness detection using a WPT coil was proposed in [2].
However, the feasibility of using a WPT coil for non-invasive
liquid concentration characterization has not been explored yet.
When an object approaches a WPT coil, a change in the coil
impedance is induced, since inductive and capacitive links are
formed between the object and the coil [1], [2]. The strength of
these links and the changes in the coil’s impedance are highly
dependent on the object’s electrical properties. Therefore, by
measuring the induced changes in the coil’s impedance, objects
with different electrical properties can be classified. In this
paper, a WPT technology for non-invasive milk adulteration
detection compatible with smartphones is proposed.
Furthermore, using singular value decomposition (SVD) and
box plot analysis, the bandwidth (BW) needed for classification
was reduced to 9.45 MHz, which results in a more appealing
technology for mobile applications due to a lower hardware
complexity and computational cost.

II. MILK ADULTERANT DECTECTION THEORY

An electromagnetic field is established around a coil when a
variable voltage/current is applied to it. Therefore, if a
conductive material approaches the coil, an induced eddy
current and electromotive force will be formed inside the object,
leading to a change in the coil impedance [1]. These changes
are due to the different electrical properties of the object and the
air. Then, if a change in the concentration of a certain liquid
disturbs the electrical properties of a liquid solution, it is
possible to perform non-invasive liquid  solution
characterization by measuring the impedance changes induced
to the coil.

In the coil and liquid solution interaction, both inductive and
capacitive links are coexisting and consequently affecting the
coil’s impedance. The inductive link can be modeled as a mutual
inductance coupling. If the disturbing object has a low
resistivity, a large eddy current is induced, which leads to a
strong inductive link. On the other hand, the capacitive link is
related to the intrinsic capacitance present on every coil [2].
When an object perturbs the electric fields established among
the turns of the coil, a change in the coil’s intrinsic capacitance
is observed, since the object dielectric constant is different from
the air. A coil with a large number of turns (e.g., strong electric
fields) will show a strong capacitive coupling. In [1], a circuit
model including both, inductive and capacitive couplings was
proposed, this model will be adopted in this paper. The coil’s
combined circuit model that includes both inductive and
capacitive couplings is shown in Fig. 1, where L, and C,
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Fig. 1. Inductive and capacitive coupling for WPT-based milk adulteration
detection.

correspond to the intrinsic inductance and parasitic capacitance
of the coil, Z;; is the reflected impedance due to inductive link,
AC is the coil’s intrinsic capacitance variation due to coil-object
interaction, and R; is the coil’s parasitic resistance. The changes
in Z;;, and AC consequently produce a change in coil impedance
as

1
Jjw(Cy + AC)

Ry + joLy + Zyy) + —rmt

Jjw(Cy + AC)

As shown in (1), when a liquid solution approaches the WPT
coil, the total coil’s impedance is determined by the liquid’s
solution electric properties. By measuring the coil’s impedance
variations, liquid solutions with different electrical properties
can be potentially classified. When milk is adulterated with
water, it not only reduces the nutritional values but also reduces
the quality of the milk [6] [7]. As shown in [6], the water alters
the electrical properties of the milk (i.e., dielectric constant and
loss factor). For instance, milk concentration of 70% has a
dielectric constant of 76.4 and a dielectric loss of 233.8 while
raw milk (i.e., 100% concentration) has 75.8 and 282.1
respectively, at a frequency of 27 MHz. Thus, diluted milk, at
different percentage levels, contains different -electrical
properties that can be used to classify its adulteration status.

(Ry + jwLo + Zyy) -
Zy =

€y

III. DATA COLLECTION AND ANALYSIS

A. Data Collection

The experimental setup is depicted in Fig. 2(a), an Agilent
8722ES vector network analyzer (VNA) was used to measure
the reflection coefficient of the WPT coil (TKD-WT505090).
To perform the measurements, a bottle filled with the desired
liquid solution was placed on the WPT coil, as depicted in Fig.
2(a). Additionally, box A in Fig. 2(b) indicates the area where
the coil can be placed without significant variation in the
measurement results. A surface-mounted SMA connector was
used to interface the VNA with the coil terminals. The
measurement BW was set from 50 MHz to 1000 MHz, since the
WPT operating frequency is in the MHz range. A total of 201
evenly spaced frequency points were measured along with the
selected BW, for both, magnitude and phase. Therefore, a total
of 402 features were recorded in each measurement.

For the experiments, different concentrations of milk/water
solutions were used. Ten empty plastic bottles were filled with
whole milk up to a certain percentage of their maximum volume
(355 ml). Then, the remaining volume was filled up with water,
so each bottle reached its maximum capacity. Milk
concentrations of 100%, 80%, 60%, and 40% were used for the

132

Fig. 2. a) VNA experiment setup, and b) the area where a reliable
measurement can be performed is marked in box A.
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Fig. 3. First right singular vector values.

experiments. For instance, to achieve a milk concentration of
80%, the bottle was filled using 284 mL of whole milk and 71
mL of water. For each category, 2 bottles were used, and 10
measurements were taken per bottle. During the measurement
process, the sensor was placed at different locations along with
the bottle. Additionally, 20 measurements were taken when
nothing, but the air was in front of the coil. Therefore, a dataset
composed of 100 observations, 5 classes, and 402 features was
obtained.

B. Analysis

The recorded data were analyzed applying SVD and boxplot
analysis. Singular value decomposition (SVD) is a matrix
decomposition of the form M = UZV*, where U is anm X m
matrix, ¥ is a m X n diagonal matrix, and V is ann X n
matrix. V and U return the left- and right-hand singular vectors
of M, and Z returns the singular values of M.

To narrow down the data’s most meaningful components,
SVD was applied to the recorded data. Then, the first right-hand
singular vector values were used to find the most meaningful
frequencies (MMFs) present on the measured BW (e.g., the
higher the value, the more important the frequency component).
As in [2], the superior performance of phase-detection was
evidenced. Therefore, the data analysis was performed using
only the recorded phase features. Fig. 3 shows the phase MMFs
were found around 449 MHz, outside the resonance region.

Boxplot analysis was performed to further analyze the
quality as a feature of the first eight phase-determined MMFs.
Fig. 4(a)-(b) depict the box plot analysis of the 1% and 6" phase-
determined MMFs. The central mark of each box represents the
median, the top and bottom edges indicate the 70™ and 25%
percentiles, and the whiskers extend to the most extreme data
points not considered outliers. To have a strong feature, it is
desirable for each class to have a different statistical distribution
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Fig. 5. Scatter plot of the three MMFs.

(e.g., the boxes do not overlap). By comparing Fig. 4(a)-(b), it
can be observed that the 6 phase-determined MMF has a more
desirable statistical distribution compared with 1% phase-
determined MMF. In other words, the boxes corresponding to
the 1% phase-determined MMF are more overlapped than the
ones corresponding to the 6" phase-determined MMF. After
applying this analysis to all the selected features, the 6, 7", and
8™ phase-determined MMFs were selected to perform the
classification.

The data were plotted using the selected features as depicted
in Fig. 5. As can be seen, a single class can be represented by
different clusters located at different intervals. This effect is
because the sensor was placed at a different location along the
bottle, which changes the measurement boundary conditions.
However, this presents a more challenging classification
scenario and adds robustness to the proposed system.

IV. CLASSIFICATION RESULTS

The selected features (i.e., 6th, 7th, and 8th phase-
determined MMFs) were used to train 24 machine learning
classifiers that were available in the R2020b MATLAB
Classification Learner application tool. Using this data set and a
25% holdout validation, an average accuracy of 97.6% was
obtained with a standard deviation of 3.67 for the best 10
classifiers as shown in Table I. Fig. 6 shows two confusion
matrices of these 10 classifiers to account for the best and worse
classifier result. These confusion matrices show the number of
false negatives, false positives, true negatives, and true positives
of the Linear Discriminant model shown in Fig. 6(a) as well as
the Fine Tree model shown in Fig. 6(b). As seen by the Fine Tree
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Fig. 6. a) Linear Discriminant confusion matrix, and b) Fine Tree confusion
matrix.

Table 1. Accuracy results for the 10 best classifiers.

Reflection Coefficient
Model Type Accuracy
Linear Discriminant 100 %
SVM: Fine Gaussian SVM 100 %
KNN: Fine KNN 100 %
. KNN: Weighted KNN 100 %
Analysis Ensemble: Bagged Trees 100 %
Ensemble: Subspace KNN 100 %
Quadratic Discriminant 96 %
KNN: Cosine KNN 96 %
Ensemble: Subspace Discriminant 96 %
Tree: Fine Tree 88 %
Average 97.6 %
Standard deviation 3.67

model, 2 of the 80% milk — 20% water was mistakenly classified
as 40% milk — 60% water, and 1 of the 60% milk — 40% water
was mistakenly classified as 100% milk. These classification
results are dependent on the 25% random holdout validation.

V. CONCLUSION

The WPT coil sensor is a promising technology in the food
quality and safety area because its wireless interaction facilitates
detection of adulteration in food without invading the
container’s food. Thus, the functionality of using a WPT coil to
classify adulterated milk has been experimentally proven in this
paper. Reduction of the BW to obtain the MMFs was acquired
by using SVD and boxplot analysis to the phase changes.
Models were effectively trained using supervised learning, and
an accuracy of 97.6% in the classification was achieved. This
technology opens new possibilities for WPT coil-based
smartphone applications to detect variation in the electrical
characteristics of samples.
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