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A B S T R A C T 
In the currently fa v oured cosmological paradigm galaxies form hierarchically through the accretion of satellites. Since a satellite 
is less massive than the host, its stars occupy a smaller volume in action space. Actions are conserved when the potential of the 
host halo changes adiabatically, so stars from an accreted satellite would remain clustered in action space as the host evolves. 
In this paper, we identify recently disrupted accreted satellites in three Milky Way-like disc galaxies from the cosmological 
baryonic FIRE-2 simulations by tracking satellites through simulation snapshots. We try to reco v er these satellites by applying 
the cluster analysis algorithm Enlink to the orbital actions of accreted star particles in the z = 0 snapshot. Even with completely 
error-free mock data we find that only 35 per cent (14/39) satellites are well reco v ered while the rest (25/39) are poorly reco v ered 
(i.e. either contaminated or split up). Most (10/14 ∼70 per cent) of the well-reco v ered satellites hav e infall times < 7.1 Gyr ago 
and total mass > 4 × 10 8 M # (stellar mass more than 1.2 × 10 6 M #, although our upper mass limit is likely to be resolution 
dependent). Since cosmological simulations predict that stellar haloes include a population of in situ stars, we test our ability 
to reco v er satellites when the data include 10–50 per cent in situ contamination. We find that most previously well-reco v ered 
satellites stay well reco v ered ev en with 50 per cent contamination. With the wealth of 6D phase space data becoming available 
we expect that cluster analysis in action space will be useful in identifying the majority of recently accreted and moderately 
massive satellites in the Milky Way. 
Key words: methods: data analysis – methods: statistical – stars: kinematics and dynamics – galaxies: formation – galaxies: 
haloes. 

1  I N T RO D U C T I O N  
In the currently fa v oured cosmological paradigm galaxies form 
hierarchically through the accretion and merger of numerous satellite 
subhaloes. N -body simulations of galaxy formation make strong 
predictions about the number of dark matter subhaloes and their mass 
functions and the mass assembly rates of haloes. Using cosmological 
simulations, it has been shown that mass functions of subaloes (at 
different redshifts) is a strong discriminator between cold dark matter 
(CDM) and alternative forms of dark matter (e.g. Warm Dark Matter, 
Self-interacting Dark Matter). In particular, the number of subhaloes 
in present-day Milky Way (MW) mass haloes in the mass range 
10 6 –10 10 M # is sensitive to the nature of dark matter (for recent 
! E-mail: youjiawu@umich.edu 

re vie ws, see Bullock & Boylan-Kolchin 2017 ; Zavala & Frenk 2019 ). 
In addition, in " CDM the merger rate of dark matter haloes per unit 
mass ratio (relative to the host halo at the time of accretion), per 
redshift interval has a nearly universal functional form (Fakhouri & 
Ma 2008 ). 

Sev eral no v el methods are being used to detect dark (or nearly 
dark) subhaloes in the MW’s halo: modelling gaps in thin stellar 
streams that may have resulted from impact with a dark subhalo 
(e.g. Erkal et al. 2016 ; Price-Whelan & Bonaca 2018 ; Bonaca et al. 
2019 ), perturbations to the Galactic disc by dark matter subhaloes, 
which might produce bending modes or wiggles or corrugations in 
the density of the disc (Feldmann & Spolyar 2015 ) that may already 
have been detected in the solar vicinity (Widrow et al. 2012 ) and on 
slightly larger scales (Antoja et al. 2018 ). Dark matter subhaloes of 
masses ! 3 × 10 9 M # tend to be massive enough to retain their 
baryons and form stars (e.g. Lazar et al. 2020 ). Many of these 
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Clustering to constrain accretion history 5883 
subhaloes are currently detectable as satellites (dwarf spheroidal 
galaxies and ultra-faint dwarf galaxies) in the Local Group (LG). 
In addition, satellites that were accreted throughout the MW’s 
history have been tidally disrupted by the Galactic potential and 
now form much of the stellar halo of the MW. If it is possible 
to observationally dissect the stellar halo of the MW to reliably 
identify the stellar debris of such satellites, one could use the 
kinematics and chemical abundance signatures in the debris to 
determine properties (e.g. masses) of the progenitors. We would also 
be able to use this information to determine the accretion history 
of our Galaxy and possibly quantify the mass function of accreted 
satellites. 

Early work (e.g. Johnston, Hernquist & Bolte 1996 ; Tremaine 
1999 ; Helmi & de Zeeuw 2000 ; Harding et al. 2001 ) showed that 
merger remnants remain coherent in phase space (or integrals- 
of-motion space) long after the y hav e become so phase mixed 
that they are impossible to detect via their spatial distributions. 
Most early works have focused on finding coherent structures in 
energy, angular-momentum, or velocity space. Since stars in a 
galaxy are collisionless, the space of orbital actions, integrals- 
of-motion that are conserved even under adiabatic changes to 
the underlying gravitational potential, are particularly promising 
(for a detailed introduction, see Binney & Tremaine 2008 ). Since 
accreted substructures are much less massive than the host halo, 
they occupy a much smaller volume in the action space defined 
by the gravitational potential of the host halo, implying that stars 
from the same progenitor could still be clustered in the action 
space at z = 0, making it possible to detect these mergers 
events. 

The advent of Gaia (Perryman et al. 2001 ; G ́omez et al. 2010 ; 
F abricius et al. 2016 ; Linde gren et al. 2016 , 2018 ; Evans et al. 
2018 ) is making it possible to obtain 6D phase space information for 
hundreds of thousands to tens of millions of haloes stars. Numerous 
efforts are underway to automatically identify substructures in the 
phase space. With the SDSS- Gaia DR1 catalogue of ∼80 000 main- 
sequence turn-off halo stars in 7D phase space (3D position + 3D 
v elocity + metallicity), Belokuro v et al. ( 2018 ) showed that metal- 
rich halo stars were on significantly more radial orbits than metal poor 
stars. They inferred that this highly anisotropic velocity distribution 
was consistent with a single, head-on accretion event by a satellite 
with mass abo v e 10 10 M #. This satellite was named the ‘Gaia 
Sausage’ at that time. It was soon after re-disco v ered in Gaia - 
DR2 data based on chemistry, dynamics, and stellar population 
analysis, and was named ‘Gaia Enceladus’ (Helmi et al. 2018 ). 
Now, this satellite is referred to as ‘Gaia Enceladus Sausage’ 
(GES). 

Myeong et al. ( 2018b ) analysed the same SDSS- Gaia catalogue 
in action space ( { J r , J z , J φ} ) to show that the metal-rich stars were 
more extended towards high radial action J r and more concentrated 
around the J φ = 0, showing different patterns from metal-poor 
stars, in agreement with Belokurov et al. ( 2018 ). Myeong et al. 
( 2018a ) developed an algorithm to find o v erdensities in action space, 
and used the metallicity as a secondary check. They identified 21 
substructures in the SDSS- Gaia catalogue, and argued that five 
of them are associated with the accretion of the progenitor of ω 
Centauri, inferring the minimum mass of the ω Centauri progenitor 
to be 5 × 10 8 M #. Borsato, Martell & Simpson ( 2020 ) applied the 
clustering algorithm DBSCAN to search for streams in integrals of 
motion space. Roederer, Hattori & Valluri ( 2018 ) applied several 
clustering algorithms to energy + actions space coordinates for 35 
nearby r-process-enhanced field halo stars (obtained using Gaia 
proper motions, radial v elocities, and parallax es) and were able to 

identify eight separate clusters with statistically distinct 1 iron abun- 
dances, supporting the view that the 35 stars were likely to have been 
accreted in eight distinct satellites (clusters) in the action space. Yuan 
et al. ( 2020 ) searched for dynamical substructures in the LAMOST 
DR3 catalogue of very metal-poor stars cross-matched with Gaia 
DR2 by applying the self-organizing map algorithm StarGO. They 
identified 57 dynamically tagged groups, many of which belonged to 
previously identified accretion events. Limberg et al. ( 2021 ) applied 
the clustering algorithm HBSCAN to 4D energy-action data of 
around 1500 very metal poor stars based on spectroscopic data from 
the HK and Hamburg/ESO surv e ys, and found 38 dynamically tagged 
groups, with many of them corresponding to previously known 
substructures and 10 of them being new. Gudin et al. ( 2021 ) used 
HBSCAN on 4D energy-action data of 446 r-process-enhanced stars 
in the halo and the disc of the MW, and found 30 chemo-dynamically 
tagged groups (CDTGs), with stars from the same CDTG showing 
statistically significant similarities in their metallicities, indicating 
that stars from the same CDTG hav e e xperienced common chemical 
evolution histories in their parent substructures prior to entering 
the MW halo. Necib et al. ( 2020a , b ) used clustering algorithms 
to identify clusters in phase space (primarily position–velocity 
space) and have found debris of several previously known and 
newly disco v ered satellites, including evidence for the accretion of 
a prograde satellite close to the disc plane that they named ‘Nyx’. 
Recently, Zucker et al. ( 2021 ) have used chemical abundances and 
stellar parameters data from the GaLAH and APOGEE surv e ys to 
argue that the ‘Nyx’ stream is more consistent with a high-velocity 
component of the thick disc origin, rather than a dwarf galaxy origin. 

Hamiltonian dynamics tells us that accretion events should remain 
coherent in the action space for a very long time, as long as the 
potential changes slowly enough. However, it is as yet uncertain how 
long one can expect structures to remain coherent in an MW-like 
galaxy that grows hierarchically. The disco v ery of fairly massive 
past mergers like the ‘Gaia Sausage’ and the ‘Sequoia’ (Myeong 
et al. 2019 ) galaxy, the ongoing mergers like the Sagittarius stream 
(Lynden-Bell & Lynden-Bell 1995 ) and future mergers like the LMC 
(Besla et al. 2007 , 2010 ) raises questions about how ‘adiabatic’ the 
evolution of the MW has been and therefore how well one might 
distinguish other individual merger events. Is there a boundary in 
infall time such that satellites that fell in before this time have 
experienced so much phase mixing, that we can no longer find them 
through cluster analysis in the action space? The average density of 
satellite within its tidal radius relative to the mean density of the 
host within the satellite’s orbit roughly determines its rate of tidal 
disruption. Ho we ver, the mass of the satellite also determines the 
initial dispersion of its stars in action space and hence its expected 
degree of clustering. Therefore, is there an optimal range of mass for 
satellites that can be detected via cluster analysis in phase space? The 
reliability of cluster analysis algorithms in finding substructures is 
also poorly understood: while numerous clusters are often identified 
by such algorithms, it is unclear how many of them correspond 
to discrete building blocks (individual satellites), how many are 
comprised of multiple satellites, how many are subcomponents of 
individual satellites and how many are spurious. The primary goal 
of this paper is to find a metric (or metrics) computed from cluster 
analysis that quantifies the correspondence between groups identified 
by cluster analysis and real galactic building blocks in the hierarchical 
1 The spread in iron abundance, σ [Fe/H] , in their clusters was significantly 
smaller than the spread for randomly drawn groups of halo stars of the same 
size, from their sample. 
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5884 Y. Wu et al. 
galaxy formation framework when we complete and error free data. 
In a future paper, we will consider how observational error and partial 
data on individual satellites affect the reco v ery process. 

The cosmological hydrodynamic zoom-in simulations of MW- 
mass galaxies from the Feedback In Realistic Environments (FIRE) 
project 2 (Hopkins et al. 2018 ) provide a great testbed for addressing 
these questions. We focus on three MW-mass galaxies from the Latte 
suite of FIRE-2 simulations that have different merger histories, 
ranging from one with a very quiescent recent history to one with 
a very active recent history. In Section 2, we describe how the 
simulation snapshots were analysed to identify the accreted stars 
in the three haloes at z = 0. In Section 3.1, we provide a brief 
introduction to the calculation of actions { J r , J z , J φ} in cylindrical 
coordinates using publicly available AGAMA code (Vasiliev 2018 ). 
In Section 3.2, we describe the density-based hierarchical cluster 
analysis algorithm Enlink (Sharma & Johnston 2009 ) that we use to 
perform the cluster analysis in 3D action space. In Section 4.1, we 
study the o v erlap between the real stellar building blocks (disrupted 
satellites) of the three MW-mass galaxies and the groups found 
by Enlink . We define several metrics that we use to e v aluate the 
accuracy of recovery of substructure with Enlink . We also use a binary 
classification tree to statistically determine boundaries in infall time 
( T infall ), total progenitor mass ( M tot ), and stellar mass at z = 0 ( M stellar ) 
for well-reco v ered and poorly reco v ered satellites. The stellar halo 
of the host galaxy contains both accreted stars and in situ stars. The 
in situ stars are formed in the host galaxy and are in the stellar halo of 
the host galaxy at z = 0. In Section 4.2, we include varying fractions 
of in situ star particles into our analysis and study the robustness 
of our results against contamination from these stars. Finally, in 
Section 5, we discuss how the boundaries (in T infall M tot and M stellar ) 
separating well-reco v ered and poorly reco v ered satellites depend 
on the dynamical history of the host MW-like galaxies. We then 
summarize our results and conclude. 
2  SIMULA  T I O N  DA  TA  
Our analysis uses cosmological baryonic zoom-in simulations of 
MW-mass galaxies from the FIRE project (Hopkins et al. 2018 ). 
These simulations are run with GIZMO (Hopkins 2015 ) that uses an 
optimized TREE + PM gravity solver and a Lagrangian mesh-free, 
finite-mass method for accurate hydrodynamics. Star formation and 
stellar feedback are also implemented. All haloes were simulated 
in " CDM cosmology at particle mass resolution of ∼7100 M # and 
spatial resolution of 1–4 pc for star/gas particles, and a particle mass 
resolution of ∼35 000 M # and spatial resolution of 40 pc for dark 
matter particles. The complete sample currently consists of eight 
MW-mass galaxies and three LG-like pairs. Wetzel et al. ( 2016 ) and 
Garrison-Kimmel et al. ( 2019 ) show that when baryonic physics is 
included, the properties of dwarf galaxies in the FIRE-2 simulations 
agree well with observations of LG satellites down to the resolution 
limit (just below classical dwarf mass of ∼10 6 M # in stellar mass). Of 
particular importance for this work, the simulations produce satellites 
with mass–size and mass–velocity dispersion relations consistent 
with observations of the MW and M31 (Garrison-Kimmel et al. 2019 ) 
distributed similarly with respect to their massive hosts (Samuel 
et al. 2020 , 2021 ). This implies that we e xpect the sizes and relativ e 
positions of the accreted structures in action space to resemble those 
in the MW. 
2 Website: ht tps://fire.nort hwestern.edu/. 

To assign the accreted star particles to particular progenitor 
galaxies, the dark matter particles in each snapshot of the simulations 
are first processed with ROCKSTAR to produce halo catalogues, which 
then are connected in time to form a merger tree (Behroozi, Wechsler 
& Wu 2013a ; Behroozi et al. 2013b ). ROCKSTAR computes the 
maximum circular velocity v max and the virial radius for each halo 
and subhalo identified in the dark matter distribution. A star particle 
is considered part of a halo or subhalo if it is within the virial radius 
and its velocity with respect to the centre of that halo or subhalo is 
less than 2 v max (Wetzel & Garrison-Kimmel 2020a , b ). Within the 
host halo, this selection does a good job in picking out star particles 
gravitationally bound to a subhalo rather than the host halo. 

One of the challenges with identifying substructure in the stellar 
halo is that there are indications from cosmological hydrodynamical 
simulations that some fraction of the stars in the halo of an MW-like 
galaxy were not accreted from satellites but were born in situ in 
the host galaxy, both at very early times before the disc was well 
established (e.g. Santiste v an et al. 2020 ) and in smaller proportions 
at later times, in gas propelled into the halo by star-forming winds 
(e.g. Yu et al. 2020 ). These stars then remain in the stellar haloes 
of these MW-like galaxies at z = 0, a generic prediction of multiple 
simulations using independent codes and differing star formation 
and feedback prescriptions (Zolotov et al. 2009 , 2012 ; Cooper et al. 
2010 ; Font et al. 2011 ; Tissera et al. 2013 ; Pillepich, Madau & Mayer 
2015 ; Monachesi et al. 2019 ). Ho we ver, these v arious cosmological 
simulations predict a wide range of values for the fraction of halo stars 
that were formed in situ , which probably varies with assembly history 
and likely also depends on the feedback prescriptions adopted by 
different codes. While some simulations predict that up to 80 per cent 
of the stellar halo was formed in situ , observations of the MW 
stellar halo (Bell et al. 2008 ; Naidu et al. 2020 ) find that almost 
all of it shows significant substructure, implying that a significant 
portion of the MW stellar halo was accreted (although in situ stars 
formed in outflows may also be clustered; Yu et al. 2020 ). Analysis of 
data from the cross-match between several stellar surv e ys like Gaia , 
RAVE, and APOGEE shows that a fraction of halo stars in the solar 
neighbourhood (within a few kpc from the Sun) are formed in situ in 
the MW galaxy (Bonaca et al. 2017 ; Haywood et al. 2018 ; Helmi 
et al. 2018 ; Di Matteo et al. 2019 ; Gallart et al. 2019 ; Belokurov 
et al. 2020 ). 

Recently, Ostdiek et al. ( 2020 ) showed that they were able to 
train and validate a deep learning neural network algorithm on 5D 
mock Gaia kinematical data (Sanderson et al. 2020 ) from the same 
simulations we use here (Wetzel et al. 2016 ; Hopkins et al. 2018 ) to 
separate in situ halo stars from accreted stars. They then applied this 
method to 72 million stars in the Gaia DR2 catalogue with parallax 
measurement errors of less than 10 per cent and were able to identify 
o v er 650 000 stars as accreted. They then used a cluster finding 
algorithm to identify clusters in phase space and their comparisons 
with other data sets allowed them to validate both robustness of their 
neural network algorithm for separating in situ stars, and identify 
se veral ne w structures (Necib et al. 2020a , b ). Based on the success 
of such algorithms to separate accreted and in situ stars, we assume 
in this paper that such separation is possible, and we use information 
derived from the analysis of simulation snapshots to identify accreted 
satellites in the simulations. 

We focus on three MW-mass galaxies: m12i, m12f, and m12m. 
For each galaxy there are 600 snapshots from z = 99 to z = 0, 
with a time difference between snapshots of approximately 25 Myr 
at late times. This relatively high ‘framerate’ allows us to track the 
time-evolution of accreted structures in much of the host galaxy 
with ∼10–100 snapshots per dynamical time. Since it takes several 
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Clustering to constrain accretion history 5885 
dynamical times for a self-bound satellite to be tidally disrupted and 
turn into a stream, we select luminous haloes that are self-bound 
between 2.7 to 6.5 Gyr ago and that are within the virial radius of the 
host galaxy at present day. These time-scales correspond to redshift 
z ≈ 0.25–0.75. During this time window, these luminous haloes can 
either be inside (bound) or outside (unbound) the virial radius of the 
host galaxy. We follow each substructure throughout its evolution to 
reco v er most of the star particles that once belonged to the satellite. 
These star particles are then tracked forward to z = 0. The stellar 
mass of each substructure at z = 0 is summed up to get M stellar . 
From z = 0, star particles belonging to a particular substructure are 
also traced back in time until the substructure is no longer bound 
to the host halo. This time is defined as the infall time T infall of the 
substructure, and all the mass belonging to this substructure at T infall is 
summed up to get the total mass of the satellite (stars, gas, and dark 
matter) M tot . Extending the sampling time window to a time beyond 
6.5 Gyr ago might help detect satellites that are tidally disrupted 
very early on. Ho we ver, these additional satellites are less likely to 
be clustered in action space because the evolution of the host galaxy 
potentials are non-adiabatic until ∼5 Gyr ago, which is the end of the 
bursty phase of star formation in these simulations (Yu et al. 2020 ). 
The satellites disrupted prior to this epoch will be studied in Horta 
et al. (in preparation). Moreo v er, for z ! 2–4, there is no clear ‘host’ 
galaxy in terms of mass (Santiste v an et al. 2020 ), and the disc of what 
eventually becomes the most massive galaxy is not usually formed 
yet at that point (Garrison-Kimmel et al. 2018 ), so the question of 
what is accreted on to what is not well defined. 

Starting with the star particles assigned to each accreted structure, 
we make three selections on both real space and velocity space 
to identify disrupted satellites, both phase-coherent (streams) and 
phase-mixed satellites. In the first selection, we choose satellites 
with stellar mass between M ! ≈ 10 6 M # and 10 9 M # at z = 0. In 
the second selection, we use the fact that the ‘size’ of disrupted 
substructures in physical space is larger than that of satellite galaxies 
that are still self-gravitating at z = 0. In practice, we define the 
‘size’ of a substructure as the maximum value of the pairwise 
distance between two star particles in a substructure at z = 0. To 
take advantage of this fact and rule out the self-gravitating satellite 
galaxies in the z = 0 snapshots, we require the ‘size’ of each 
substructure we tracked to be greater than 120 kpc, as 120 kpc is much 
larger than the characteristic size of self-gravitating dwarf galaxies, 
as well as dwarf galaxies that are only slightly tidally deformed but 
without prominent tails (see fig. 2 from Panithanpaisal et al. 2021 ). 

The remaining accreted structures are classified by eye into two 
categories, coherent streams and phase-mixed debris, by viewing 
their configuration in position and velocity space. Panithanpaisal 
et al. ( 2021 ) show that this by-eye classification corresponds to a 
selection in the space of stellar mass and local velocity dispersion, 
where ‘local’ velocity dispersion is defined for each particle using 
nearest neighbours in phase space rather than position (at fixed stellar 
mass, phase-mixed satellites have higher local velocity dispersion 
compared to coherent streams). Although this classification is mildly 
resolution-dependent, the o v erall results when this classification is 
applied to the full sample of streams from all 13 analysed systems 
in Panithanpaisal et al. ( 2021 ) demonstrate the mass- and time- 
dependence expected from theory for the relative abundance of 
phase-mix ed v ersus coherent debris, implying that resolution effects 
do not dominate our classification of coherent streams and phase- 
mixed structures that are accreted. 

In this work, we are interested in the action space clustering 
of tidally disrupted systems. Self-bound dwarf galaxies at z = 0 
are already spatially clustered. Therefore, in this manuscript, the 

terms ‘satellites’ and ‘accreted satellites’ refer to disrupted satellites, 
including both present-day coherent streams and phase-mixed debris. 
Fig. 1 shows the tidally disrupted satellites in galaxy m12f in position 
space (left column), velocity space (middle column, velocities are 
shown in cylindrical coordinates) and r versus v r phase space (right 
column), where ρ is the radial coordinate, φ is the angular coordinate, 
and z is the height in cylindrical coordinate system. Star particles 
from different satellites are coloured differently. For similar plots of 
the satellites in the other two galaxies, see Appendix A 
3  M E T H O D S  
The orbits in a galactic potential are largely quasi-periodic and 
regular. Therefore, the orbits of most satellites and individual stars 
in the halo of a galaxy can be described by an elegant set of 
variables – the action-angle variables. Orbital actions are particularly 
powerful for understanding the evolution of a galaxy since they are 
conserved under adiabatic evolution of the potential. Section 3.1 
gives a brief introduction to action-angle variables. We then use 
a publicly available dynamical modeling toolbox AGAMA (Vasiliev 
2018 ), to numerically compute actions (under the assumption of 
axisymmetry) for the accreted star particles in the three MW-like 
galaxies in FIRE-2 described in Section 2. 

The initial actions of all the stars in a satellite as it orbits a larger 
galaxy have a small spread compared to the range of possible actions 
in the Galactic potential. Because actions are adiabatically invariant 
by construction, star particles from the same progenitor are expected 
to remain clustered in the action space at z = 0 if the gravitational 
potential of the host halo has changed only adiabatically (i.e. slowly 
enough) following their infall. Therefore, the accreted satellites found 
in Section 2 should be reco v erable through cluster analysis in the 
action space. In Section 3.2, we feed the cluster analysis algorithm 
Enlink with the 3D orbital actions of accreted star particles, and 
find several groups. To measure how well the groups found by 
Enlink reco v er the satellites tracked in Section 2, we define various 
metrics in Section 3.3. 
3.1 Action evaluation with AGAMA 
In order to compute actions from the positions and velocities of star 
particles at z = 0 one needs an estimate of the gravitational potential. 
In the case of the real MW, this is derived using a multitude of 
observational tracers that provide the masses of the various stellar 
components (the bulge, thin and thick disc, and stellar halo) and 
kinematics of disc stars and halo objects to derive the mass and 
density profile of the dark matter halo. 

In this paper, we study three simulated disc galaxies from the 
FIRE-2 simulations with different accretion histories. We use the 
masses and positions of all the particles (dark matter, gas, stars) 
within 600 kpc from the centre of galaxy to compute the gravitational 
potential of each galaxy at z = 0. This is done using AGAMA 
(Vasiliev 2018 ) that approximates the gravitational potential via an 
axisymmetric multipole expansion on a hybrid cylindrical-polar grid 
(to compute the potential of the flattened stellar disc) and spherical 
polar grid (to compute the potential of the dark matter halo). The 
potential generated by dark matter and hot gas in the dark matter 
halo is represented by an expansion in spherical harmonics with l max 
= 4; the potential from stars and cold gas in the disc is expanded in 
azimuthal-harmonics up to m max = 4. The star, gas, and dark matter 
particles within 600 kpc of the galactic centre are used to calculate 
the potential (for a detailed introduction to how these expansions 
work, see Vasiliev 2018 ). 
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5886 Y. Wu et al. 

Figure 1. Tidally disrupted satellites in galaxy m12f are plotted in position space (left column), velocity space (middle column), and r versus v r phase 
space (right column). Star particles are coloured differently according to different satellites they are assigned to by the tracking process. The well-reco v ered 
satellites are indicated with bold and underlined IDs in the legend. The well-recovered satellites outside T infall < 7.1 Gyr ago and M tot > 4 . 0 × 10 8 M #
( M stellar > 1 . 2 × 10 6 M #) are marked by bold and underlined IDs with a star ( ∗) in the legend. We will explain the terms well-reco v ered, T infall , M tot , and M stellar 
in Section 4.1. 

With the gravitational potential in hand, we use the positions and 
velocities of all accreted halo star particles (at z = 0) to compute the 
three actions J r , J φ , and J z defined by, 
J q = 1 

2 π
∮ 

p q 
m d q, (1) 

where m is the mass of a star particle, q = r , φ or z, and p q is the 
canonical momentum corresponding to q . { J r , J φ , J z } is the most 
useful set of actions in cylindrical or spherical coordinate systems. 
F or conte xt, J φ is the same as angular momentum L z . J r and J z 
describe the extent of oscillations in spherical radius and z dimension, 
respectively. In AGAMA , the three actions are evaluated approximately 
using the St ̈ackel fudge method (Binney 2012 ). Ho we ver, the error in 
actions introduced by the St ̈ackel fudge approximation is smaller than 
the error from assuming axisymmetry in a potential that is actually 
triaxial (as is the case for the FIRE-2 galaxies). The assumption 
of oblate-axisymmetry is una v oidable since the current version of 
AGAMA ’s action-finder does not support triaxiality. 

In this work, we have assumed that all space coordinates for 
dark matter particles, gas particles and star particles are assumed 
known and without error when computing the potential. The main 
deviation from the potential used for computing the actions and 
the true gravitational potential comes from the spherical harmonic 
expansion. When computing the actions we further assume that the 
phase space coordinates for all accreted star particles are known 
perfectly (i.e. no errors are added). 

Fig. 2 shows three projections of the actions { J r , J φ , J z } for 
accreted star particles for each of the three MW-like galaxies m12f, 

m12i, and m12m in FIRE-2 simulation. The colour coding in Fig. 2 
corresponds to the individual satellites that are identified by analysing 
the snapshots from simulation data as described in Section 2 and is 
shown by the legend in the bottom row. 
3.2 Finding clusters with Enlink 
We apply algorithm Enlink (Sharma & Johnston 2009 ), a density- 
based hierarchical group finding algorithm capable of identifying 
structures of any shape and density in multidimensional data sets, 
to the action space variables { J r , J z , J φ} for the three galaxies from 
FIRE-2. Enlink is especially useful for astrophysical data as it can 
ef fecti vely detect groups that are not globular. Here, we summarize 
the basic principles behind Enlink . For more details, see Sharma & 
Johnston ( 2009 ). 

(i) Build a locally adaptive Mahalanobis (LAM) metric ! −1 (x) . 
The distance squared between two data points x i and x j is defined 
as: 
s 2 ( x i , x j ) = | ( ( x i , x j ) | 1 d ( x i − x j ) T ( −1 ( x i , x j )( x i − x j ) , (2) 
where d is the dimension of data, ( −1 ( x i , x j ) = 0 . 5( ( −1 ( x i ) + 
( −1 ( x j )). To build this LAM metric ( −1 ( x ), first divide the whole 
data set into regions with each region containing ( d + 1) data points, 
and the particles in each region are distributed as uniformly as 
possible. Then calculate the local covariance matrix (( x ) of the 
data points in each region and smooth it so that this local matrix 
changes continuously and smoothly from region to region. 
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Clustering to constrain accretion history 5887 

Figure 2. 2D projections of actions { J r , J z , J φ} for accreted star particles from 3 MW-like galaxies in FIRE-2 simulations. The three columns correspond to the 
three galaxies in FIRE-2 simulations: m12f, m12i, and m12m, from left to right. Each accreted satellite identified from analysing snapshots from the simulation 
is indicated by a different colour. The meaning of bold and underlined IDs, and IDs with stars ( ∗) is the same as that in Fig. 1 . 

(ii) Calculate a local density D ( x ) for each data point. For each 
data point, find k nearest neighbours to it based on distance squared 
defined in equation (2). The size of neighbourhood k has a pre-defined 
default value in Enlink : k = 10. We have tried k = 5–20, and the 
results are robust against the variation of k in this range. Calculate 
density as: 
D( x j ) = k ∑ 

i= 1 
m i 

h d | (( x j ) | 1 2 W ( √ 
( x i − x j ) T ( −1 ( x j )( x i − x j ) /h ) , (3) 

where h is the smoothing length corresponding to a given k , d is the 
dimensionality of data space, W is a kernel function to normalize the 
integral of density, and m i is the mass of each particle. 

(iii) Identify clusters based on density and preserve significant 
groups. We start building groups at local density peaks, and these 
groups grow by absorbing nearby points. Once two groups try to 
absorb a common particle, a saddle point is reached and the smaller 
group is absorbed into the bigger one as a subgroup (the subgroup 
is not canceled and still treated as a separate group). After all 
the (sub)groups are identified, the significance S of each group is 
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5888 Y. Wu et al. 
calculated: 
S = ln ( D max ) − ln ( D min ) 

σln ( D) , (4) 
where D max and D min are maximum and minimum densities in that 
group. σ ln ( D ) is the standard deviation of log of densities in one group. 
Significance measures how inhomogeneous a group is, and should 
not be confused with statistical significance. We define the size of 
a satellite as the number of star particles it contains. We denote the 
minimum size of satellites we tracked by N S . The minimum number 
of particles in a group, N min , is chosen to be of the same order of 
magnitude as N S . Then any group with number of particles lower 
than N min would have its significance set to 0. For two intersecting 
groups, we compare their values of significance to a pre-determined 
threshold S Th . If both groups have S > S Th , then keep both of them. 
Otherwise, the one with lower S is eliminated and its particles are 
absorbed into the group with higher S . 

As can be seen from the description abo v e, four parameters 
determine the result of cluster finding: size of neighbourhood k , 
threshold significance S Th , mass of each particle m i , and minimum 
size of group N min . In this work, we neglect the mass of star particles, 
so all the m i is set to 1. Three other parameters have their default 
values pre-defined in the Enlink program. During our runs, k and S Th 
are varied slightly around their default values and N min is chosen to 
be in the same order of magnitude as the minimum size of satellites, 
so that the number of groups that the algorithm yields is close to the 
number of accreted satellites in a galaxy. 

Groups that were identified by Enlink with k = 10, N min = 300, 
and S Th at its default value for the three galaxies from the FIRE- 
2 simulations are shown in Fig. 3 . The minimum number of star 
particles in each of the satellites in the three galaxies is around 150 
(corresponding to a minimum stellar mass of around 6 . 0 × 10 5 M #), 
so a reasonable value for N min would seem to be 150. With N min 
= 150, many small random groups emerge in all three galaxies. 
With N min = 300 the identification of large and clear satellites is not 
affected in m12f and m12m, but in m12i, a satellite with size 184 
(located in action space at around J φ = −12 000 kpc × km s −1 , J z = 
8000 kpc × km s −1 , J r = 2000 kpc × km s −1 ) cannot be identified. 
Ho we ver, when N min = 150, large coherent satellites are divided into 
several groups, which makes it harder to identify the large coherent 
satellites. Therefore, we keep N min = 300, which corresponds to a 
minimum stellar mass of around 1 . 2 × 10 6 M # for groups found by 
Enlink . 

In applications to observational data, since the sizes of data 
sets are expected to be much larger and the number of accreted 
satellites is completely unknown, these four parameters should be 
determined carefully. It is also likely that one satellite could be 
split into multiple groups by cluster analysis (Yuan et al. 2020 ). 
Adding additional information, such as metallicity or abundances 
of specific elements (e.g. Ca, N, Fe, Eu; Sanderson et al. 2017 ; 
Roederer et al. 2018 ) can help to confirm the identification of a 
satellite or identify subcomponents of a single satellite, but this is 
beyond the scope of this paper. In this paper, we are testing how well 
cluster analysis in the action space alone can perform under optimum 
conditions: perfect knowledge of all six phase space coordinates, 
accurate representation of the galactic potential, and prior insights 
into the optimum values of parameters like N min . We also assume 
that these perfect data are available throughout the halo (out to the 
radius of the furthest particles) and that all members of a given 
satellite are detected and in the data set. While these assumptions are 
not observationally justified, these assumptions allow us to assess 

how the hierarchical merger history of the galaxy affects our ability 
to reco v er accreted satellites. In a future paper, we will repeat this 
e x ercise imposing observational errors and selection functions for 
Gaia and upcoming surv e ys with the Rubin Observatory and the 
Roman Space Telescope. These simplifying assumptions enable us 
to assess how well cluster analysis can perform in the best-case 
scenario. 
3.3 Metrics to assess identification of satellites by clusters 
In order to quantify the ability of Enlink to identify accreted satellites 
in action space, we define three matrices: R ij , P ij , and M ij ; and 
four quantities based on these matrices: recovery , purity , merit , and 
contrast . We refer to the clusters identified by Enlink as ‘groups’. The 
number of star particles contained in a group is called the size of the 
group. In order to quantify the degree to which a group identified by 
Enlink matches one of the original accreted satellites we also define 
the ‘ best recovery group ’ (similarly for purity, merit ) and best fit 
group. Based on recovery , purity , merit and best fit group, we select 
out the ‘well-reco v ered satellites’. 

(i) Three matrices R ij , P ij , M ij : The ij component of these three 
matrices describes the similarity between satellite j and group i : 
R ij = number of particles shared by satellite j and group i 

number of particles in satellite j , 
P ij = number of particles shared by satellite j and group i 

number of particles in group i , 
M ij = R ij × P ij . 

(ii) Recovery , purity , merit: For satellite k , the maximum values 
of R ik , P ik , and M ik are called the recovery ( r k ), purity ( p k ), and merit 
( m k ) of this satellite: 
r k = max i { R ik } , for i in range of group indices 
p k = max i { P ik } , for i in range of group indices 
m k = max i { M ik } , for i in range of group indices . 

(iii) Best recovery , purity , merit group and best fit group: For 
satellite k , the group which yields r k is called the ‘best recovery 
group’, and likewise p k and m k define the ‘best purity group’ and 
‘best merit group’ of satellite k , respectively. If a group is both the 
‘best recovery group’ and the ‘best purity group’ of satellite k , then 
it is defined as the ‘best fit group’ of satellite k . 

(iv) Contrast : To compare the size of satellite k and its best fit 
group, we define contrast ( c k ) as: 
c k = r k − p k √ 

r k p k , (5) 
where r k and p k are recovery and purity of satellite k . Note contrast 
is only defined for a satellite with a best fit group. When c k is 
positive, satellite k is smaller than its best fit group (the group contains 
contaminants – i.e. stars that were not originally part of the satellite), 
and when c k is ne gativ e, satellite k is larger than its best fit group 
(not all of the members of the satellite have been identified as group 
members). 

(v) Well-reco v ered satellite: If the recovery, purity , and merit of a 
satellite are all greater than 0.5 and this satellite has a best fit group, 
then this satellite is called well-r ecover ed or is said to have a high 
identifiability score . A satellite that is not well-reco v ered is called 
poorly reco v ered. 
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Clustering to constrain accretion history 5889 

Figure 3. Same as Fig. 2 , but with substructures identified by Enlink to see how well Enlink can reproduce the actual satellites in the simulations as shown in 
Fig. 2 . Particles from different groups identified by Enlink are indicated by different colours. Results plotted here are obtained from Enlink runs with size of 
neighbourhood k = 10, minimum group size N min = 300 and significance threshold S Th at its default value. 
4  RESULTS  
We do a cluster analysis with Enlink on actions { J r , J z , J φ} of accreted 
star particles from three MW-like galaxies in FIRE-2 simulations. In 
Section 4.1, we calculate the values of recovery , purity , merit , and 
contrast for each satellite in three galaxies to e v aluate ho w well these 
satellites are reco v ered by Enlink . We study the distribution of well- 
reco v ered satellites on the M tot - T infall plane and M stellar - T infall plane, 
and find the boundaries in M tot M stellar and T infall values that separate 
well-reco v ered and poorly reco v ered satellites by the classification 
tree method. We also investigate the relation between significance of 
a group and the identification power of this group (that is, whether this 
group corresponds to a well-reco v ered satellite or not). In Section 4.2, 

we include certain percentages of in situ stars into the input data set 
for cluster analysis. We pick out the well-reco v ered satellites that are 
identified when in situ star particles are absent. Calculate the values 
of merit of these satellites under different in situ star contamination 
ratios and demonstrate the robustness of the identification of these 
satellites under the contamination of in situ star particles. 
4.1 Cluster analysis on accreted star particles 
We apply Enlink to the actions { J r , J z , J φ} for accreted star particles 
from the MW-like galaxies m12f, m12i, and m12m in FIRE-2 
simulations. In a manner similar to Fig. 2 , three projections of the 
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Figure 4. 39 satellites in three MW-like galaxies from the FIRE-2 simulations plotted on the M tot versus T infall plane. Data points are colour coded by the 
recovery (panel a), purity (panel b), merit (panel c), or contrast (panel d), with red points indicating better results in all panels. The white number on each 
symbol indicates the group ID (as shown in Fig. 3 ) of the ‘best recovery ’ (panel a), ‘best purity ’ (panel b), ‘best merit ’ (panel c), and ‘best fit’ (panel d) group 
corresponding to each satellite. The white letters associated with each data point indicate which galaxy each satellite is from: ‘f’ for ‘m12f’, ‘i’ for ‘m12i’, and 
‘m’ for ‘m12m’. Group 1 in all three galaxies is the ‘best’ group of many satellites because it is the largest group, as shown in Fig. 3 , and is generally considered 
as the ‘background’. A satellite is marked as a triangle if it has a ‘best fit group’ and as a circle otherwise. Satellites are from the analysis of simulation data in 
Section 2, and groups are identified by Enlink . In panel (d), only satellites with best fit groups are plotted, and shapes indicate whether the contrast is positive 
(diamond) or ne gativ e (square). Among the 39 satellites, 14 of them are well reco v ered and 25 of them are poorly reco v ered. The v ertical and horizontal dashed 
lines mark M tot = 4 . 0 × 10 8 M # and T infall = 7.1 Gyr ago, which are the boundaries identified by the classification tree method. 91 per cent (10/11) of the 
satellites with M tot greater than 4 . 0 × 10 8 M # and fell into the halo less than 7.1 Gyr ago are well reco v ered by Enlink . 
actions for accreted star particles { J r , J φ , J z } are shown in Fig. 3 , but 
now the colour coding corresponds to the individual groups that are 
identified by Enlink . The legend in the bottom row now indicates the 
colour coding for the individual groups identified. A comparison with 
Fig. 2 shows visually that while in m12i and m12m the number of 
groups identified is one larger than the number of satellites., in m12f 
only 15 groups (of 16 satellites) are identified. Overall, ho we ver, 
there is an excellent correspondence between the groups identified 
by Enlink and the original satellites seen in Fig. 2 . 

Fig. 4 shows the values of recovery , purity , merit , and contrast of 
39 satellites in the three simulated galaxies m12f, m12i, and m12m, 
on an M tot versus T infall plot. Each symbol corresponds to one accreted 
satellite and symbols are colour coded by the value of their recovery 
(panel a), purity (panel b), merit (panel c), and contrast (panel d), 
with red coloured points indicating better results. In panels a, b, and 
c, satellites are also shape coded by whether their best recovery group 

match their best purity group (triangle) or not (circle) [in other words, 
whether the satellite has a best fit group (triangle) or not (circle)]. 
White numbers indicate the group ID (as shown in Fig. 3 ) signifying 
best recovery (panel a), best purity (panel b), best merit (panel c), or 
best fit (panel d) for each satellite. A white letter associated with each 
data point indicates which galaxy this satellite is from: ‘f’ for ‘m12f’, 
‘i’ for ‘m12i’, and ‘m’ for ‘m12m’. Among the 39 satellites, 14 of 
them are ‘well-reco v ered’ (their values of recovery , purity , and merit 
are larger than 0.5 and the y hav e best fit groups), while 25 of them are 
poorly reco v ered. With T infall and log 10 ( M tot / M #) as inputs, we grow 
a classification tree to predict whether a satellite is well reco v ered 
or not. (For a brief introduction to classification tree method, see 
Appendix C.) The boundaries that the classification tree finds out 
are: T infall = 7.1 Gyr ago and M tot = 10 8 . 6 M #, which are shown as 
vertical and horizontal blue dashed lines in Fig. 4 . 91 per cent (10/11) 
of the satellites in the region bounded by M tot > 4 . 0 × 10 8 M # and 
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Clustering to constrain accretion history 5891 
T infall < 7.1 Gyr ago are ‘well-reco v ered’ satellites. Of the satellites 
outside this region, 86 per cent of the sample (24/28) are poorly 
reco v ered. Three satellites in galaxy m12i (marked by 3i, 4i, and 
7i on the plot) fell into the host galaxy far more than 7.1 Gyr ago 
( T infall = 9.08–10.33 Gyr ago), but are still well reco v ered. This can 
be attributed to the unique dynamic history of galaxy m12i. See 
Section 5 for more discussion. Group 1 in each galaxy is the ‘best’ 
group of many satellites, because Group 1 is the largest group and 
contains star particles from many ‘poorly recovered’ satellites. Group 
1 in each of the galaxies can be considered as the ‘background’ group. 
Panel (d) plots the contrast of satellites, shape coded by whether the 
contr ast is positiv e (diamond) or ne gativ e (square). Only the satellites 
with a best fit group are plotted in panel (d). Note that a positive 
contrast means that a satellite is smaller than its best fit group, and a 
ne gativ e contr ast means the opposite. Most of the values of contrast 
are close to 0, with a few extremely large values (abo v e 20). These 
extremely large values belong to satellites with Group 1 as best fit 
group, indicating that Group 1 is much larger than these satellites, 
consistent with the fact that Group 1 contains star particles from 
many satellites and is the background group. The values of contrast 
of ‘well-reco v ered’ satellites are close to 0, meaning the number of 
particles in these satellites is similar to that in their best groups. 

Similar to Fig. 4 , in Fig. 5 we plot the values of recovery , purity , 
merit , and contrast of 39 satellites in the three simulated galaxies 
m12f, m12i, and m12m, on the M stellar versus T infall plane. The colour 
code, shape code, and the meaning of the white numbers/letters 
are the same as those in Fig. 4 . The boundaries separating well- 
reco v ered and poorly reco v ered satellites found by the classification 
tree method in the M stellar versus T infall plane are: M stellar = 1 . 2 ×
10 6 M # and T infall = 7.1 Gyr ago, marked by the horizontal and 
vertical blue dashed lines in the four panels. The T infall boundaries 
found in M tot versus T infall and M stellar versus T infall planes agree with 
each other. 91 per cent (10/11) of the satellites with M stellar greater 
than 1 . 2 × 10 6 M # and fell into the halo less than 7.1 Gyr ago are 
well reco v ered by Enlink . 

For more plots showing values of reco v ery , purity , merit, and 
contrast against infall time, total mass, and stellar mass, see Ap- 
pendix B. To see where the well-reco v ered satellites are located in 
position space, velocity space, and action space, we mark the well- 
reco v ered satellites with bold and underlined IDs in the legends of 
Figs 1 , 2 , A1 , and A2 . The well-reco v ered satellites outside the 
M tot > 4 . 0 × 10 8 M #, M stellar > 1 . 2 × 10 6 M # and T infall < 7.1 Gyr 
ago ranges are marked by bold and underlined IDs with a star ( ∗) in 
those legends. 

In Section 3.2, we find that 150 star particles are corresponding to 
M stellar ≈ 6 × 10 5 M #, so setting N min = 300 is equi v alent to setting 
the lower bound of M stellar to be around 1 . 2 × 10 6 M # for groups 
found by Enlink . Any group with less stellar mass than 1 . 2 × 10 6 M #
(number of particles smaller than N min = 300) will not be found 
by Enlink under our choice of N min . This lower bound in M stellar 
agrees with the M stellar = 1 . 2 × 10 6 M # boundary for well-reco v ered 
satellites. This agreement raises a caveat that the boundary on M stellar 
(probably also on M tot ) might be an artefact due to a particular choice 
of N min . 

To appreciate how well the boundaries M tot = 4 . 0 × 10 8 M #, 
M stellar = 1 . 2 × 10 6 M #, and T infall = 7.1 Gyr ago work in separating 
out well-reco v ered satellites, we show three kernel density plots of 
39 satellites from three galaxies in M tot (left), M stellar (middle), and 
T infall (right) in Fig. 6 . In all three panels, the dotted density curve 
represents well-reco v ered satellites, while the solid curve represents 
poorly reco v ered satellites. The two curv es are normalized separately. 
The vertical dashed lines in three panels show the boundaries in Figs 4 

and 5 : M tot = 4 . 0 × 10 8 M #, M stellar = 1 . 2 × 10 6 M #, and T infall = 
7.1 Gyr ago. In the left-hand panel, the dotted curve peaks at a higher 
M tot than the solid curve, indicating that well-reco v ered satellites tend 
to be more massi ve. Ho we ver, the peaks of both curves are greater 
than 4 . 0 × 10 8 M #, indicating that the boundary in M tot alone cannot 
distinguish between well-reco v ered and poorly reco v ered satellites. 
In the middle panel, the solid curve peaks at a lower value than the 
dotted curve, indicating that well-recovered satellites tend to have 
more stellar mass than poorly reco v ered ones. The peak of the solid 
curve is close to the M stellar = 1 . 2 × 10 6 M # boundary, indicating 
that M stellar alone cannot distinguish well-reco v ered satellites and 
poorly reco v ered satellites either. In the right-hand panel, the peaks 
of dotted and solid density curves are on the two sides of the 
T infall boundary, justifying the boundary T infall = 7.1 Gyr ago. 

We have seen that massive satellites fell into MW-like galaxies 
relatively recently can be reliably reco v ered by cluster analysis in 
action space with Enlink . In future applications to observational 
data it will be necessary to use a statistical metric provided by 
Enlink to determine which groups are most likely to correspond 
to real satellites. The variable significance , assigned by Enlink to 
each group and calculated by equation (4), is a good indicator of 
whether a group corresponds to a real satellite or not. In Fig. 7 , we 
plot the values of significance of 34 non-background groups and 
3 background groups. The size of a data point is proportional to 
the number of particles in the group, while the shape shows which 
galaxy this group is from, and the colour indicates whether the group 
is a background group (salmon), identifies a satellite well (green) 
or does not identify a single satellite (blue). A kernel density plot 
is attached on the side of the scatter plot. The green curve showing 
the distribution of significance peaks at a higher significance than 
the blue curve. The black dashed line shows the valley between the 
green and blue peaks. This valley, located at significance = 11.4 or the 
66th percentile of the values of significance of the non-background 
population, is the cut-off in significance for groups corresponding 
to well-reco v ered satellites. Note the cut-off in significance here 
should not be confused with S Th in Section 3.2. Among 12 non- 
background groups with significance abo v e the cut-off, 11 of them 
are corresponding to ‘well-reco v ered’ satellites. This result implies 
that with the results of Enlink cluster analysis in action space alone 
(i.e. no other information on satellites, and ignoring the largest group 
identified by Enlink assuming it to be ‘background’), groups with 
higher significance than 66 per cent of groups found by Enlink are 
very likely to be corresponding to true satellites . 
4.2 The effect of in situ stars 
Besides accreted stars, cosmological hydrodynamical simulations 
predict that in situ stars may also contribute to a significant part of 
the halo star population in a galactic halo. As mentioned earlier, the 
fraction of in situ halo stars is highly uncertain, but estimates in the 
MW (Bell et al. 2008 ; Naidu et al. 2020 ) suggest that it could be 
as small as 5 per cent o v erall, while studies of resolved halo stellar 
populations in external galaxies find that the properties of these halo 
stars are consistent with being purely accreted (Harmsen et al. 2017 ) 
(beyond 30 kpc from the galactic centre). Recent work (Naidu et al. 
2020 ) shows that in the MW halo, the relative fraction of in situ stars 
drops below 0.5 when | Z gal | > 5 kpc , where | Z gal | is the distance from 
the disc plane. We also note that o v er 95 per cent of the accreted star 
particles in disrupted satellites in the three MW-like galaxies have 
| Z gal | > 5 kpc . We contaminate the data sets of accreted star particles 
with in situ star particles drawn from each of the three individual 
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Figure 5. Same as Fig. 4 , but the y-axes of these plots are labelling M stellar . The vertical and horizontal dashed lines mark M stellar = 1 . 2 × 10 6 M # and T infall = 
7.1 Gyr ago, which are the boundaries separating well-reco v ered and poorly reco v ered satellites identified by the classification tree method. 91 per cent (10/11) 
of the satellites with M stellar greater than 1 . 2 × 10 6 M # and fell into the halo less than 7.1 Gyr ago are well reco v ered by Enlink . 

Figure 6. Kernel density plots of 39 satellites from three galaxies in M tot (left), M stellar (middle), and T infall (right). The three blue vertical dashed lines label the 
boundaries in Figs 4 and 5 : M tot = 4 . 0 × 10 8 M # (left), M stellar = 1 . 2 × 10 6 M # (middle), and T infall = 7.1 Gyr ago (right). In all three panels, the dotted density 
curve labels the well-recovered satellites, while the solid curve labels the poorly reco v ered satellites. In the left-hand panel, both the dotted and solid density 
curv es peak abo v e M tot = 4 . 0 × 10 8 M #, with the dotted curve peaking at a higher M tot , indicating that well-reco v ered satellites tend to be more massive. In the 
middle panel, the dotted curve peaks at a higher M stellar , indicating that well-reco v ered satellites tend to be have more stellar mass. In the right-hand panel, the 
peaks of dotted and solid curves are on the two sides of T infall = 7.1 Gyr ago. 
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Clustering to constrain accretion history 5893 

Figure 7. The values of significance of 37 (34 non-background + 3 background) groups identified by Enlink in three MW-like galaxies (as shown in Fig. 3 ) 
are plotted. ‘Index’ is a number between 1 and 37 to label each group. The size of a data point is proportional to the number of particles in the group. Groups 
from galaxies m12f, m12i, and m12m are marked by circles, triangles, and squares, respectively. The colour of a data point indicates whether the groups is a 
background group (salmon), corresponds to a well-reco v ered satellite (green) or does not identify any satellite (blue). A kernel density plot is attached on the 
right-hand side of the scatter plot. The black dashed line labelling the valley between green and blue curve peaks shows the cut-off in significance for groups 
corresponding to well-reco v ered satellites. The cut-off value in significance for groups corresponding to well-reco v ered satellites is 11.4, the 66th percentile of 
the significance of non-background groups. 
galaxies. The in situ star particles in the three simulated galaxies 
are selected by applying the following three filters: (i) the distance 
between the birth place of a star particle and centre of host galaxy 
was required to be smaller than 30 kpc, (ii) the current distance of 
the star particle from the centre of galaxy is smaller than 300 kpc, 
and (iii) the star particle’s current | Z gal | > 5 kpc . Since our goal in 
this paper is to understand how well action space clustering works 
with complete, error-free data we do not impose additional spatial 
cuts. This selection yields around 5 × 10 5 in situ star particles in 
each of the three FIRE-2 galaxies, while only 1 × 10 5 star particles 
in each galaxy are from disrupted accreted satellites. We show the 
distribution of in situ star particles in { J r , J z , J φ} action space in 
Fig. 8 for each of the three galaxies. The fractions of in situ star 
particles in the simulated stellar haloes (beyond r ∼ 30 kpc and 
Z gal > 5 kpc) are much higher than is observed in the MW (Bell 
et al. 2008 ; Naidu et al. 2020 ). Therefore, to study the effects of 
in situ stars on the robustness of satellite identification by cluster 
analysis in the action space, we build numerous mock data sets 
with in situ contamination ratios equaling 0.1, 0.2, 0.3, 0.4, and 
0.5 (where contamination ratio of 0.5 implies that 50 per cent of 
the halo star sample consists of in situ stars) in three MW-like 
galaxies by randomly sampling the in situ star particles in the three 
galaxies from the FIRE-2 simulations with | Z gal | > 5 kpc . We then 
calculate the actions { J r , J z , J φ} and do cluster analysis with Enlink in 
the action space on these ‘contaminated’ data sets. We pick out 
the well-reco v ered satellites in Section 4.1 and study their values 

of merit at different contamination ratios. To reduce the effect of 
the randomness in sampling the in situ star particles, for every 
contamination ratio in each galaxy, we repeat the selection of the 
in situ ‘contaminant’ population 100 times, randomly picking the 
same fraction of in situ stars each time. We then generate the value 
of merit for each well-reco v ered satellite from each data set. Each 
well-reco v ered satellite at a contamination ratio then has 100 values 
of merit . We calculate the average and standard deviation of those 
100 values. If the previously well-reco v ered satellite doesn’t have a 
best fit group in one data set (i.e. the best recovery group doesn’t 
match with the best purity group), then the merit of that satellite in 
that run is set to 0. 

Fig. 9 illustrates the change of values of merit of well-reco v ered 
satellites in three MW-like galaxies (as shown in Section 4.1) 
as the contamination ratio increases from 0 to 0.5. Each data 
point and error bar in the figure shows the average and stan- 
dard deviation of results of 100 runs, respectively. Lines of dif- 
ferent colours correspond to different well-reco v ered satellites. 
78 per cent (11/14) of the satellites are robust against the con- 
tamination from in situ star particles, as their values of merit 
are abo v e 0.5 at all contamination ratios. Other satellites become 
unidentifiable by Enlink ( merit < 0.5) as the contamination ratio 
increases. The standard deviation of the merit of these satellites 
is also higher than their more robust companions, showing that 
they are more vulnerable under the random draw of the in situ star 
particles. 
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Figure 8. In situ star particles in each simulated galaxy analysed in this research are plotted in { J r , J z , J φ} action space. Each column is corresponding to one 
galaxy. 
5  DISCUSSION  A N D  C O N C L U S I O N S  
Inspired by the principle of conservation of orbital actions, we use 
cluster analysis in action space to find accreted satellites with accreted 
star particles in three MW-like galaxies in the FIRE-2 cosmological 
hydrodynamical simulations. We summarize the main findings of our 
work below: 

(i) Classification tree method finds the boundaries separating well- 
reco v ered and poorly reco v ered satellites to be T infall = 7.1 Gyr ago 
and M tot = 4 . 0 × 10 8 M #(or M stellar = 1 . 2 × 10 6 M #) (see Figs 4 and 
5 ). We note ho we ver, that the boundary in M stellar coincides with the 
minimum mass of groups that Enlink is set-up to identify, determined 
by N min . This coincidence implies that the mass boundary could be 
an artefact of the choice of N min . 
The three galaxies have slightly different infall time and mass 
boundaries for reliable detection. F or e xample, galaxy m12i has 

three well-reco v ered satellites that fell into the hosting halo more 
than 7.1 Gyr ago. This difference could be due to the distinct 
dynamical/evolutionary histories of the galaxies. Fig. 10 shows the 
offset angle, )θ , between the angular momentum vector of the disc 
at a given look-back time and the present time ( z = 0) as a function of 
look-back time for each of the three galaxies analysed in this paper. 
The disc stars at each look-back time are defined as star particles that 
are within 30 kpc and also have formation distance within 30 kpc 
from the centre of the host galaxy. The graph shows that the direction 
of the angular momentum vector often changes suddenly and through 
large angles (presumably due to merger events) for look-back time 
> 8 Gyr ago. Santiste v an et al. ( 2021 ) show that many of the changes 
in this )θ correlate with major gas-rich mergers. In particular, 
galaxies m12f and m12m experienced numerous chaotic changes in 
)θ until 8 Gyr ago, after which )θ changed much more slowly and 
steadily. The slow change in )θ implies the gravitational potentials 
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Clustering to constrain accretion history 5895 

Figure 9. Values of merit of well-reco v ered satellites in three galaxies (m12f, m12i, m12m from left to right) at different in situ contamination ratios. Each 
differently coloured line corresponds to one well-reco v ered satellite in each galaxy (the well-reco v ered satellites in three galaxies are summarized in Fig. 4 ). 
The values of merit come from the average of 100 runs and the error bars show the standard deviations. A blue dashed line in 3 panels shows merit = 0.5, the 
threshold of ‘well-reco v ered’ objects. 78 per cent (11/14) of the well-reco v ered satellites hav e values of merit greater than 0.5 at all contamination ratios, being 
robust against the contamination from in situ star particles. As the contamination ratio increases, the values of merit of some satellites drop below 0.5. These 
‘vulnerable’ satellites have higher standard deviations in merit than other robust satellites, showing that they are more affected by the randomness of picking 
in situ star particles. The robustness of well-reco v ered satellites indicates that Enlink can reco v er most of the well-reco v ered satellites when in situ star particles 
are in the data set. 

Figure 10. The dynamical histories of the three MW-like simulated galaxies in FIRE-2. The angle )θ of the normal vector of the galaxy disc relative to its 
present-day direction is plotted versus look-back time. If )θ changes rapidly, then the evolution of the galaxy is chaotic; if )θ changes slowly, then the galaxy 
evolves smoothly. The disc orientations of galaxies m12f and m12m changed rapidly at the beginning and evolved more smoothly after 8 Gyr ago. Galaxy m12i 
evolved more smoothly than the other two galaxies before 8 Gyr ago, allowing massive satellites that fell into m12i up to 10.3 Gyr ago to remain clustered in 
action space at z = 0. A vertical line shows the time boundary for well-recovered satellites-7.1 Gyr ago. 
of these two galaxies have changed adiabatically over the last 8 Gyr, 
and therefore orbital actions of particles should be reasonably well 
conserved. The conservation of orbital actions implies that satellites 
accreted less than 8 Gyr ago should be found clustered in action space 
at z = 0. This ‘8 Gyr ago’ time limit for finding satellites clustered 
in action space is in agreement with the time boundary for good 
reco v ery that we found in Section 4. )θ of galaxy m12i changes more 
smoothly compared with the other two galaxies, so it is expected that 
satellites accreted a long-time ago would remain clustered in action 
space. This is in agreement with the fact that three satellites in this 
galaxy with T infall > 9 Gyr ago are still well reco v ered by Enlink . In 
our MW galaxy, Gaia Enceladus, which has T infall ≈ 10 Gyr ago and 

progenitor stellar mass 6 × 10 8 M # (Helmi et al. 2018 ), can still be 
reco v ered in phase space. The reco v ery of this massive substructure 
that fell into the MW a long-time ago indicates that the MW might 
evolve smoothly from relatively early on, like m12i in the FIRE-2 
simulations. 

(ii) The value of significance of a group shows a high correla- 
tion with the identification power of this group (see Fig. 7 ). Of 
the groups with high significance ( > 11.4, 66th percentile of the 
significance of non-background groups in three galaxies), most 
(92 per cent, 11/12) correspond to the well-reco v ered satellites. 
This implies that if cluster analysis in action space is applied to 
observational data, this significance assigned by Enlink can help us 
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determine which groups are most likely to correspond to true accreted 
satellites. 

(iii) Most of the well-reco v ered satellites are robust against con- 
tamination of in situ star particles (see Fig. 9 ). 78 per cent (11/14) 
of the well-reco v ered satellites in Section 4.1 stay well-reco v ered 
(with merit > 0.5) at five different contamination ratios (0.1, 0.2, 
0.3, 0.4, and 0.5), where contamination ratio is the percentage of 
in situ star particles in the data set of one galaxy. The satellites that 
fail to be identified by Enlink in the presence of contamination have 
higher standard deviations in merit , indicating that they are more 
sensitive to the randomness in picking in situ stars. This robustness 
against contamination from in situ star particles indicates that it will 
be possible to apply cluster analysis in action space to observation 
data, even if there is significant contamination from in situ stars. 
This is reassuring since the expected fraction of in situ stars in the 
MW (5 per cent) is at the low end of the contamination fractions we 
hav e e xperimented with. 

In this work, we have demonstrated, using simulation data, that it 
is possible to find accreted satellites using cluster analysis in action 
space. We have deliberately focused on a fairly idealized set of 
circumstances: (a) we assumed that phase space coordinates of all 
star particles were known with no error; (b) we assumed nearly 
perfect knowledge of the gravitational potential arising from stars, 
dark matter, and gas (although we approximated the potentials as 
axisymmetric even though they are triaxial); (c) we had perfect 
knowledge of the merger history of the galaxies and therefore the 
true masses and infall times of the satellites. In future applications 
of this method to observational data, the following impro v ements 
should be explored. 

(i) As with all cosmological-hydrodynamical simulations, despite 
being until very recently the highest resolution such simulations ever 
conducted of MW-mass haloes (Applebaum et al. 2021 ), resolution 
limits our results to accreted structures at the stellar mass of classical 
dwarf galaxies and higher, since each star particle in the FIRE-2 
simulations is 7100 M #. The total number of accreted star particles 
used in our analysis is also orders of magnitude smaller than the 
number of accreted stars with 6D phase space coordinates [from 
Gaia and future large ground-based surv e ys such as 4MOST (de Jong 
et al. 2012 ), WEAVE (Dalton et al. 2014 ), DESI (DESI Collaboration 
2016a , b )], which are expected to yield six phase space coordinates 
for 3–4 million stars. The performance of our clustering technique 
when scaled up by 3–4 orders of magnitude in particle number has 
yet to be tested. On the other hand, if we restrict ourselves to, e.g. RR 
Lyrae variables, then the conversion rate between the real data set 
and the simulation data set is about one star per star particle, and the 
analysis in this work can be more easily done. In addition, real data 
have observational errors and for this study we have assumed that all 
phase space coordinates are known perfectly. Additional studies with 
more realistic mock data sets like the ananke data set (Sanderson 
et al. 2020 ) are needed to assess how well Enlink performs under 
realistic conditions. Currently, the precise 6D kinematics data are 
available only for stars within tens of kpc from the Solar system, 
but the amount and precision of data for distant stars will increase 
significantly in the future. We are preparing another paper discussing 
the effects of errors from current and future observations, e.g. Gaia 
DR5, the Rubin observatory’s Le gac y Surv e y of and Space and Time, 
and Roman Space Telescope’s High Latitude surv e y, on the cluster 
analysis in action space results. 

(ii) It is necessary to find an objective way to determine N min , 
the parameter used by Enlink to determine a ‘reasonable’ size for a 
cluster (Section 3.2). In this study, N min was selected by trial and error 

in order to ensure that the number of groups that Enlink produced 
was close to the number of satellites that were known to have been 
accreted (as described in Section 2). An objective way to determine 
N min and the other parameters that are used in the Enlink cluster 
analysis algorithm, is needed to e v aluate the quality of clusters found. 
We found that the conventional silhouette plots (Rousseeuw 1987 ) 
are not useful here, since many satellites are irregularly shaped in the 
action space and could be incorrectly classified by silhouette values. 
The choice of parameters for cluster analysis has been largely ignored 
in previous papers, and should be investigated in future. 

(iii) Stellar metallicities and the abundance of individual elements 
in a star are also well conserved quantities that contain a substantial 
amount of information about the host satellite in which the star 
was born. Ho we v er, the stars in a satellite can hav e a range of 
[Fe/H] and α-element abundance ratios as well as gradients in 
the abundances of other elements. Sanderson et al. ( 2017 ) show 
that including the abundance of certain elements (e.g. N , Ca ) can 
impro v e the reco v ery of the Galactic mass model built through 
cluster analysis. Incorporating metallicities of stars as features into 
cluster analysis might impro v e the performance of current results 
from cluster analysis in action space. 

(iv) The inclusion of metallicities of stars can also help to 
determine the masses of individual satellites (through the mass- 
metallicity relationship) and hence action-space clustering can be 
used to determine the number of accreted satellites per unit mass 
N ( M ), a parameter that is a sensitive probe of the model of dark 
matter. 

(v) We have assumed in this work that the o v erall gravitational 
potential of each galaxy is axisymmetric rather than triaxial. This 
restriction was driven by the fact that the most efficient action 
finders available (e.g. AGAMA ) are restricted to oblate axisymmetric 
potentials. Triaxial action finders (Sanders & Binney 2015a , b ) exist 
but are currently not fast enough to be useful for analysis of large data 
sets. Development of fast triaxial action finders would be extremely 
helpful. 
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APPENDI X  A :  SATELLITE  DI STRI BUTI ONS  IN  
POSI TI ON  A N D  PHASE  SPAC E  
The disrupted satellites in galaxies m12i and m12m in position space 
(left column), velocity space (middle column), and r versus v r phase 
space (right column) are shown in Figs A1 and A2 , respectively. 

Figure A1. Same as Fig. 1 , but with satellites from galaxy m12i. 
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Figure A2. Same as Fig. 1 , but with satellites from galaxy m12m. 
APPEN D IX  B:  R E C OV E RY,  PURITY,  MERI T,  
A N D  C O N T R A S T  A S  F U N C T I O N S  O F  INFALL  
TIME,  TOTAL  MASS,  A N D  STELLAR  MASS  
The values of reco v ery , purity , merit, and contrast of 39 disrupted 
satellites in three MW-like galaxies from the FIRE-2 simulations 

are plotted against infall time (first row), total mass (second row), 
and stellar mass (third row) in Fig. B1 . Well-reco v ered satellites 
are marked as triangles and poorly reco v ered satellites are marked 
as circles. Blue dashed lines show the boundaries obtained in 
Section 4.1: T infall = 7.1 Gyr ago, M tot = 4 . 0 × 10 8 M #, and M stellar = 
1 . 2 × 10 6 M #. 
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Figure B1. The values of reco v ery , purity , merit, and contrast of 39 disrupted satellites in three MW-like galaxies from the FIRE-2 simulations are plotted 
as functions of infall time (first row), total mass (second row), and stellar mass (third row). Well-reco v ered satellites are marked as triangles and poorly 
reco v ered satellites are marked as circles. Blue dashed lines show the boundaries obtained in Section 4.1: T infall = 7.1 Gyr ago, M tot = 4 . 0 × 10 8 M # and 
M stellar = 1 . 2 × 10 6 M #. In contrast plots, only satellites with best fit groups are plotted. 
APPENDIX  C :  CLASSIFICATION  TREE  
M E T H O D  
We use a binary classification tree (Breiman et al. 1984 ) to objec- 
tively determine the boundaries between well-reco v ered and poorly 
reco v ered satellites in the T infall - M tot space and T infall - M stellar space. A 
classification tree tries to divide the multidimensional space co v ered 
by the input data into a series of regions, so that the data points 
inside each region are as pure (having the same label) as possible. 
To grow such a classification tree, we do several binary splits based 
on whether a feature is greater than or equal to ( ≥) or smaller than 
( < ) the split value. The rectangular region before a split is called 
a parent node, while the two sub-regions resulting from the binary 
split are called the children nodes. If a node has no children nodes, 
then it is called a leaf node. The impurity of a node indicates how 
diverse the labels of data points in a node are, and can be measured 
by cross-entropy, Gini-index or misclassification error. For details on 
these scales of impurity, see Hastie, Tibshirani & Friedman ( 2001 ). 
For one parent node with N parent data points and two children nodes 
with N left and N right data points resulting from a split at one feature f i 
= x , calculate the quality of split Q ( f i , x ): 

Q ( f i , x) = Impurity(parent node) 
− N left 

N parent Impurity(left child) 
− N right 

N parent Impurity(right child) . (C1) 
The feature f i and value x that maximize Q ( f i , x ) are the split 
feature and split value of a binary split. A tree can be grown by 
adding binary splits in this way until each terminal node is pure and 
cannot be further split. We then prune the tree by giving a penalty 
proportional to the size of the tree, until a balance between accuracy 
and size of tree is reached. Fig. C1 shows the diagram of tree 
generated from log 10 ( M tot / M #) and T infall in Gyr ago as input data. 
In each leaf node, a ‘well’ or ‘poorly’ indicates the prediction on the 
label of this node by majority vote. A red number in each leaf node 
is the number of satellites that are not well reco v ered in this node, 
while the blue number corresponds to the number of well-reco v ered 
satellites in this node. The tree with log 10 ( M stellar / M #) and T infall in 
Gyr ago as input is similar to the tree in Fig. C1 , except that the split 
in log 10 ( M stellar / M #) locates at 6.1. 
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Figure C1. A classification tree used in Section 4.1 to derive the boundaries 
between well-reco v ered and poorly reco v ered satellites. ‘T infall’ indicates 
T infall in Gyr ago, ‘lg mass’ represents log 10 ( M tot / M #). A ‘well’ or ‘poorly’ 
in each leaf node indicates the prediction of the label of data points in this node 
by majority vote, with ‘well’ corresponding to well reco v ered and ‘poorly’ 
corresponding to poorly reco v ered. The red and blue numbers in each leaf 
node indicate the numbers of poorly reco v ered and well-reco v ered satellites 
in this leaf node, respectively. The tree with log 10 ( M stellar / M #) and T infall in 
Gyr ago as input is similar, except that the split in log 10 ( M stellar / M #) is 
located at 6.1. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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