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Abstract. Semi-supervised relational learning methods aim to classify
nodes in a partially-labeled graph. While popular, existing methods using
Graph Neural Networks (GNN) for semi-supervised relational learning
have mainly focused on learning node representations by aggregating
nearby attributes, and it is still challenging to leverage inferences about
unlabeled nodes with few attributes—particularly when trying to exploit
higher-order relationships in the network efficiently. To address this, we
propose a Graph Neural Network architecture that incorporates patterns
among the available class labels and uses (1) a Role Fquivalence atten-
tion mechanism and (2) a mini-batch importance sampling method to
improve efficiency when learning over high-order paths. In particular, our
Role Equivalence attention mechanism is able to use nodes’ roles to learn
how to focus on relevant distant neighbors, in order to adaptively reduce
the increased noise that occurs when higher-order structures are consid-
ered. In experiments on six different real-world datasets, we show that
our model (REGNN) achieves significant performance gains compared
to other recent state-of-the-art baselines, particularly when higher-order
paths are considered in the models.

Keywords: Node classification + Label propagation

1 Introduction

Semi-supervised relational learning methods aim to classify unlabeled nodes in
a partially-labeled graph by leveraging information about both the labeled and
unlabeled nodes, and their connectivity. In particular, the methods exploit rela-
tional dependencies in the graph to jointly make predictions about unlabeled
nodes. Prior work on semi-supervised learning in graphs has typically defined
relational features via aggregation over the features of neighboring nodes, and
then unknown class labels are inferred iteratively using approximate inference
algorithms (e.g., Label Propagation (LP) [22], Gibbs sampling [15]). However,
many previous methods are limited in their ability to leverage complex neigh-
borhood patterns for learning and inference. For example, while LP works well
in simple scenarios, it only exploits direct edges to make predictions on unla-
beled examples. While information can propagate across the graph, messages are
© Springer Nature Switzerland AG 2020
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Fig. 1. Examples of capturing roles: (a) by High-order paths (b) by Similarity-based
attention. (Color figure online)

only passed among direct neighbors, which can be inadequate in complex, sparse
graphs with few labels. Recently, Graph Convolution Networks (GCNs) [10] were
proposed to exploit message passing functions to aggregate nearby neighbors and
learn a latent representation of each node, which is then used for predicting node
labels. However, GCN mainly aims to learn neighbors’ attribute patterns—they
are not typically used in partially-labeled graphs with few attributes. In this case,
collective inference is needed during learning, so that patterns among neighbor
class labels can also be used in the model. In this work, we propose REGNN, a
graph neural network architecture for enhancing the accuracy of label propaga-
tion, which uses a role equivalence attention mechanism to facilitate reasoning
with higher-order relationships among labeled nodes.

To move beyond direct neighbors and exploit longer range information in
sparse graphs, recent work has effectively incorporated higher-order relationships
and paths into relational models (e.g., high-order GCNs [1] and GraRep [2]).
Our proposed approach REGNN, considers high-order (or k" order) proximity
matrices and extends the existing high-order-based GCNs to leverage inferences
about unlabeled nodes via neighborhood at various distances. Since reasoning
with higher-order paths (i.e., large k) increases the computational complexity of
learning', we propose a more efficient mini-batch learning method.

Incorporating higher-order paths can increase the relational signal by consid-
ering nearby but not directly linked nodes, however, it can also increase noise due
to spurious connections as neighborhood size increases. To account for this and
enable the model to learn which distant nodes are more relevant, we propose a
novel attention mechanism based on role equivalence, a social network property
that quantifies similarity among nodes based on their relational context. The
attention mechanism is used to merge the multiple node representations learned
from the set of high-order-based GCNs. Our experiments show that attention
based on role equivalence works significantly better in the context of label prop-
agation.

Figure 1a—b show examples that high-order path and attention can help to
capture roles in the label propagation scenarios. Each node and edge indicate a
user and an interaction during a semester, respectively. Note that colors represent

! When considering direct links in sparse graphs, complexity is O(|E|) ~ O(|V]).
However, as higher-order paths connect distant nodes, complexity becomes O(|V?|).
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class labels, yellow for student, blue for faculty, and green for staff. In Figure la,
we are trying to predict the label of a user D, who is a faculty. When we use
just direct neighbors, it is not possible to predict the true label of node D by
label propagation. However, as the high-order paths from 2"¢ order neighbors
are considered, the label of D could be successfully predicted. Like this example,
high-order paths are potentially useful to learn the underlying hierarchical roles
such as advisor-student in a citation network and admin-member relationships in
a University group on Facebook. When we just stack a GCN layer multiple times,
it is also difficult to learn this kind of information because their aggregation is
always from direct neighbors. Meanwhile, if a user is surrounded by nodes with
diverse class labels, the magnitude of nearby labels can often mislead prediction.
In this case, if latent representations are known/estimated, the model can put
more importance on neighbors with similar representations. In Fig.1b, we are
trying to predict the label of node F, who is also a faculty member. Although
the node F has more students or staffs as neighbors, node G and H are likely to
have similar representations to the representation of node F in the latent space,
so that they can be weighted more heavily when aggregating. Our aim is to have
REGNN exploit both these ideas, by combining high-order paths with a role
similarity-based attention layer.

2 Related Work

Semi-Supervised Node Classification. Previous semi-supervised node classifica-
tion algorithms learn a model to predict unknown class labels in a partially
labeled graph. For example, LP [22] and ICA [15] estimate labels of unlabeled
nodes using the local inference. Recently, graph embedding methods have been
proposed to learn low-dimensional representations of nodes by leveraging many
relational properties such as random walk (e.g., Node2Vec [8]), high-order paths
(e.g., GraRep [2] and NEU [19]), structural similarities (e.g., Struc2Vec [13]).

Graph Neural Networks (GNN). In addition, graph neural networks architec-
tures (e.g., GCN [10]) also have attracted a lot of attention. Recently, high-order
path information was also incorporated into GCNs. HA-GCN [23] and N-GCN
[1] proposed joint graph neural network architectures that take attributed high-
order proximity matrices. However, while high-order GCNs show more robust
performance on node classification, computing the high-order paths from the
proximity matrices can be quite inefficient.

Attention-Based GNNs. Graphs are often complex and noisy, so many
researchers have incorporated the concept of “attention” into semi-supervised
classification. For example, GAT [18] proposed a self-attention-based graph neu-
ral network, which decides importance using an edge-wise weighted sum by lever-
aging rich attributes. However, this attention mechanism has been shown to not
be very effective when the data contain attributes with low homophily or there
are no attributes. Meanwhile, VAIN [9] proposed kernel-based attention mech-
anisms for multi-agent modeling. However, they exploit the similarity between
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nodes along with direct edges only in an attributed graph. In contrast, we design
a novel similarity-based kernel based on the concept of role equivalence atten-
tion and extend it to incorporate neighbors at various distances (thus, high-order
paths) in the setting of label propagation.

3 Role Equivalence

First, we include the mathematical definitions of structural equivalence [11] and
regular equivalence [5] below. Let N (u) refer to the neighbors of node w.

Definition 1. (Structural Equivalence) A pair of nodes u and v are structurally
equivalent, if the neighbors of node u and v are the same. Thus, u and v are
structurally equivalent iff N'(u) = N (v).

Definition 2. (Regular Equivalence) A pair of nodes uw and v are regularly
equivalent if the roles of their neighbors are the same. Let r(i) be the role of node
1. Thus, u and v are reqularly equivalent iff {’." )i € N(u } {r‘ )7 € N(U)}

Regular equivalence states that nodes play the same role if they have connections
to nodes with similar roles [6]. There can be many valid ways of grouping nodes
into equivalence role sets for a given graph, and regular equivalence is often
defined recursively. Based on the above definitions, we can approximate the
notion of regular equivalence based on positions in latent space.

Definition 3. (Role Equivalence in latent (embedding) space) A pair of nodes
u and v are role equivalent in latent space if their set of neighbors in latent space
are the same. If neighbors are defined by distance in latent space, then u and v
will have the same neighbors if their representations are equal. Let f(i) be the
latent representation of node i. Thus, u and v are role equivalent in latent space

iff f(u) = f(v).

Using Definition 3, we propose a graph neural network architecture with the
attention layer based on role equivalence among nodes in the following section.
Note that the term, role (or structural)-equivalence, has been also used in many
different ways (e.g., similarities in triangles, betweenness, k-paths, k-stars, k-
cliques, subgraph patterns/graphlets, and feature-based MF). In this paper, we
use the term role-equivalence to refer to Definition 3.

4 REGNN Architecture

Problem Formulation and Notation. Given an undirected graph G = (V, E),
where V is a set of vertices and F is a set of edges. A is an adjacency matrix
of G. V is composed of V, (labeled vertices) and Vi (unlabeled vertices). Y7, is
constructed as a |V| x C class label matrix. Again, for each labeled node ¢ € Y7,
with class label y; = ¢, we set Y [i,¢] = 1 and Y7 [i,:] = 0 otherwise. If node j is
in Vi7, we set Y1.[4,:] = 0. This Yz, will be fed to our REGNN with the adjacency
matrix A. Thus, the goal of REGNN is to estimate the class labels of V; from
Y:, and A, which is a transductive learning setting.
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4.1 kt* Order GCN Layers for Label Propagation

To learn high-order path-based GCN, we initially construct K different GCN
layers. For the layers, adjacency matrices, A, A%, ..., AKX which have different
orders, are fed as input. A is obtained by self-multiplying the adjacency matrix
A k-times. Then the (i, ) entry of A* is the number of k-hop paths from i to
j. With these high-order adjacency matrices, we can define K x M high-order
convolution operators. The node representations in mt” layer with an adjacency
matrix A* are formulated as

HD - RLU(A"H Wk), (1)

where A* =min (D;l/z (A*+1) D;l/z, 1) In Eq. (1), Hk Y=Yy, and Yi rep-
resents known class labels, which are fed to the first GCN layers. W[* is a train-
able weight matrix for the m®" layer in the k" order GCN, and Dy, is the degree
matrix of A¥ + I. The symmetric normalizing trick in A* takes the average of
neighboring nodes’ representation from each of high-order adjacency matrices.
Note that W € R*(m *tn+1) where s(,,,) is the input representation size at mth
layer and s, 1) is the size of output representation for the next layer. There-
fore, W} could be defined from RE*%() | where C is the number of class labels.
This indicates that propagated labels are transformed by the matrix multiplica-
tion. The representation of the last GCN layer, H ]EMH), is additionally passed
through another softmax function to normalize the latent representations.

4.2 Role Equivalence Attention Layers

The last layers of REGNN play an important role in jointly learning multiple
representations via different high-order paths. In this paper, our role equivalence
attention uniquely merges their characteristics in the following ways:

Concatenation Layer. Outputs from the previous high-order GCNs are
concatenated before they are fed into the self-attention layer. There are K
outputs, one from each of the high-order GCNs: H{VIH, vees H%H. The out-
puts are concatenated corresponding to the axis of the representation column.
Let qf € R°+1 be a latent representation of node ¢ from H,‘;V[H. Thus,

K
HM*1[i,:] = gF. After the concatenation, ¢f" is ¢{" = || g¢F.
k=1

Attention Layer. The self-attention layer measures the degree of role equiv-
alence (Definition 3) among nodes to place more importance on structurally
similar neighbors. The intermediate representations of the last high-order GCN
layers are used for defining the role, thus f(i) := ¢f°". In this layer, by con-
sidering role equivalence, we can incorporate structural information into node
classification. To measure the degree of role equivalence, we additionally define
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a quantitative measure of role equivalence in latent space with RE(f (i), f(4)),
and use it in the attention layer below. Our self-attention layer takes inputs from
the concatenation layer and produces a new vector ¢’; € RE #(+1 as:

¢i = ReLU (Zjem RE (45 45" - qum) 2)

where RE(f(3), f(4)) = (1/Z)el* (f(i)’f(j)), cos refers to cosine similarity, Z =

D ieN () eﬁcos(f (@)1 )), and 3 is a hyperparameter that moderates attention,
which we estimate during learning. Note that we do not consider self-loops when
computing similarity. ’R,é'( f(i), f(j)) measures how close nodes i and j are to
being role equivalent (i.e., if the latent representations are unit vectors, then the
two are equal when their cosine similarity is 1).

Final Softmax Layer. To predict node class labels, a final softmax function
is used. Here, 4; is the output of the softmax function, and each dimension of
i represents the predicted probability of the corresponding labels for the class
given inputs. Note that Wy € R 5+1)XC For learning, as in the original
GCN, we use a categorical cross-entropy loss.

c—-1

Loaten (L, Y)=— Z Z y;log(9;), where 3; =softmax (Wana1g'; + bana1)  (3)
V. 3=0

In Eq.(3), C is the number of class labels. Since all activation functions are
differentiable, learning is simple via back-propagation—all Ws (W™ and Wayga1),
banal, and 3 are trained. §j; is used to predict class labels for unlabeled nodes V;.

4.3 Importance Sampling for Scalability

Calculating Eq. (3), requires the loss to be summed over all the nodes labeled
together. A batch algorithm cannot handle large-scale datasets due to the diffi-
culty of fitting the full graph in GPU memory and slow convergence. Even worse,
the dense neighbors from high-order paths reduce the scalability of the model
with respect to both time and space. To overcome the limitation, we propose an
efficient sampling-based learning method. Consider the representation of a node
u in the m* GCN layer with k** order paths from Eq. (1):

(A =iy Wlk fu, o] H™ [v, (4)

We use the same importance distribution as in [3] to approximate Eq. (4) with
|S| samples for node u as follows:

(B~ Tl ST s A o )
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with the importance distribution g(v) = ||A[:,v]||2/zv,ev \|A[:,v’]\|2. Note the
distribution ¢ is only calculated once (i.e., before training) given the normalized
aggregated graph, and the input label matrix, H jgl), should be updated accord-
ing to S via H ,(cl) = H ,(61)[8, :]. Our overall mini-batched training procedure is
described in Algorithm 1. At every epoch, all nodes are randomly divided to
create a mini-batch set B, which is composed of multiples of v nodes. We set

= 1024. B provides a candidate node set for sampling |S| later. When it
comes to a new mini-batch, A¥ is induced from A¥ according to S. Similarly,
when REGNN gets neighboring nodes at the attention layer for (i) in Eq. (2),
A¥=1 ig used. As a result, the new loss function for the mini-based training will
be Lmini-baten (L, Y) = ZSL ZJ a yjlog(yj) St is defined from {v € SNV}

4.4 Relationship to Label Propagation (LP)

Assume that Y7, € RIVI%C is a label input matrix. For each labeled node i € Vp,
with class label y; = ¢, we set Yy, [¢,¢] =1 and Y [i,.] = O otherwise. If node j is
in Vi, we set ¥[j,:] = 0. Let Y be a prediction matrix, and YTi,:] for each node
i € Vy will be used for actual prediction. The prediction is from arg maxj?[i, il
According to [22], the prediction will converge as Y, p = (I — a(I—L))""

« is a parameter in (0, 1) and specifies the relative amount of the information
from its neighbors and the initial label information. Regarding an input graph,
The normalized Laplacian matrix L of A is decomposed as L = ®#Ad~! and
could be modified using the frequency response [14] as L' = &p(A)®~! where
p(+) is called the frequency response function of the graph. p(A) can further be
written as diag(p(A1),...,p(An)). The graph L' is linear shift-invariant, if and
only if there exist a function p(-) : R — R. At last, the prediction of LP [22],
‘?LP, can be reformulated from the perspective of eigen-decomposition and is
shown as:

Yip=U-a(-L) 'Y, =((1-a)l +al) 'Y,

6
= &((1—a)I 4 ad) 'Yy, = F(pLp(A), Y1) ©

In this ‘?Lp, pLr(Ai), the frequency response function of LP, is equal to
1

(I—a)+ar; *

Algorithm 1. REGNN’s mini-batched training (one epoch)

Generate a mini-batch set B from V'

for each mini-batch € B do
Sample |S| vertices, v1, ..., v|s|, according to distribution ¢ from mini-batch
Assign HV = Hm[S ]
For k = [1, K], assign A* = A*[S, §]
Compute the categorical cross-entropy in Lmini-batch (L, Y)
Update W™, 3, Wanal, and bgna)

end for
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Similarly, we can reformulate the GCN. Denote D;; = > ; (A+I);;. Then,
A=D"'V*(A+1)D~'/? = [-D-YV2LD~'/? = [ L,, where L is the Laplacian
matrix of A+I. We denote L, = #A®~!. Using the above notation, a two-layered
GCN can be characterized as follows, where W° and W' are trainable weight
matrices in the first and second GCN layers, respectively:

Ycon = A ReLU (A, WO w!

~ A(AY, WOYW! = 22(Y, WOW' = (I — L,) (v, WO W'
(@1 — Dd 1) (VWO W = &(I — A)’ 61y, (WOW?)
= F(pGCN(/i)aYL)(WOWl)ﬂ

where pgon(A;) = (1 — A,-)z. When LP [22] uses the following frequency response
function, p(A\;) = (1 — X;)*, with two linear transformations, the new ?}J p will
be same as ?GGN. Thus, ?GCN ~ ?}JP(WDWI). In other words, GCN can
approximate LP, and as such we expect better accuracy in label propagation
with the help of additional linear transformations and a non-linear function.

When the k** order adgacency matrix A* is fed to the GCN, the response
function becomes (1 — Ai)2 , which means that we can estimate labels from the
different eigenvalue function by considering different paths. This analysis implies
that high-order GCN layers in our REGNN can get label-wise representations
of unknown nodes in latent space using different eigenvalue functions. Further-
more, they can learn a joint representation using our proposed role equivalence
attention layer.

4.5 Complexity Analysis

When batch size is considered, the time complexity of learning REGNN (before
importance sampling) is O(|E'| + ... + |EX|) = O(|EX]) due to the edge-wise
aggregations. We assume that the sizes of hidden nodes in REGNN are con-
stants and |E¥| > |E!|. Each |E¥| denotes the numbers of edges from the k"
order matrix A¥. After we apply importance sampling, the new time complexity
is O(|EE|), where each EX is the set of edges among the sampled |S| ver-
tices in AX. Thus, |EE| <« |E¥|. Regarding space complexity, we note that all
high-order matrices are preprocessed and do not need to be stored in the main
memory. Then (|.S| x |S|) matrices are indexed based on the selected sample S.
Therefore, the space complexity of (online) learning depends on at most O(]S |2),
where [S] is typically chosen from [32, 64, 128, 256].

5 Experimental Evaluation

Data and Experimental Setup. We use six real-world network datasets for eval-
uation. Cora, Citeseer, PubMed, and NELL are publicly available citation net-
work datasets [20]. Facebook (|V| = 4038, |E| = 65794,C = 2) is drawn from
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the Purdue University network [12], and the data were randomly sampled to
make its class labels’ proportion to 50/50. For Friendster [16] (|V|=43880, |E|=
145407, C = 4), only 30% of the training data is used to make the label ratio
equal. Additionally, we generated a mirrored-Karate network to verify how roles
are learned in our model. LR (Logistic Regression), LP [22], GhostEdge [7],
graph neural networks (GCN, N-GCN [1], and GAT [18]), and graph embedding
methods (Node2Vec [8], GraRep [2], NEU [19], Struc2Vec [13], and VERSE [17])
are used for comparison. We train the models on training/validation sets and
report results on the test set. Every reported result is the average of 10 trials
using randomly shuffled node sets, and 10% of the nodes are used for testing and
validation, respectively. The number of nodes for training is varied. For all neural
network models, we set max epochs =1000, dropout_rate=0.2, learn_rate =0.01,
and optimizer = adam. For GCN-based models, the size of hidden nodes (s(,,) if
m >1 for W) in GCNs is searched over [C, 8, 16, 32, 64], and all layers have
the same size of hidden nodes. REGNN considers K = [2,...,5] and selects the
best using validation loss. For importance sampling, |S| is chosen from [32, 64,
128, 256, 512]. For all embedding models, the size of representation was searched
in [32, 64, 128], and other parameters are set to their defaults. We use Ghost-
EdgeNL and N-GCNy.. All experiments were executed on an Intel Xeon Gold
6126 CPU@2.60 GHz server with 192 GB RAM.

(a) Input (b) GCN (c) REGNN (Our Model)

Fig. 2. Visualization of node representations from the mirrored Karate network.

5.1 Results: Synthetic Data

The Karate club network [21] is a graph that is composed of 34 members and 78
interactions among them. To interpret REGNN with respect to capturing roles,
we construct a mirrored network, which is composed of two copies of the network
connected between node 32 and 66, as in Fig. 2a. We can assume that each node
has its own structural role, which connects between different communities. The
colors in the graph are chosen according to community IDs after community
detection [4]. Every node that has the same color (i.e., role equivalent) should
have similar latent representation when their structural roles are properly cap-
tured. Figure 2b and Fig. 2¢ show the learned representations of nodes from GCN
and REGNN, respectively. Similar to the GCN experiment with the Karate net-
work [10], a hidden layer of size 2 was inserted before the final softmax layer
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for visualization of the latent representations. They are visualized in Fig. 2b and
Fig. 2c. Labels for training data were chosen from total 8 nodes (two nodes per
a community). In the result, GCN fails to distinguish red and green nodes (i.e.,
the communities overlap), while REGNN separated the nodes from the two com-
munities more effectively. This is evidence that that REGNN’s attention layer
successfully learned the structural roles by measuring role equivalence.

5.2 Results: Real-World Data

Tables1, 2, 3, 4 and 5 show REGNN node classification performance on the
Citeseer, Cora, Facebook, PubMed, and Friendster data as proportion of labeled
nodes is varied, compared to other baselines. For GCN, Node2Vec, GraRep,
Struct2Vec, VERSE, and NEU, we directly obtain results from official imple-
mentations. Classification results of all methods are averaged at each proportion.
Bold scores represent the corresponding model is significantly better than the
others by paired t-tests (p-value<0.05). In all datasets, REGNN has consistently
good results across all label proportions. On the other hand, N-GCN is similar to
GCN and LP in Citeseer and Cora, in particular. This indicates that the high-
order path information did not help to find better node representations, but
the attention over high-order paths helped to increase performance when only
known labels are given. Node2Vec and GhostEdge exhibit similar results in most
of the datasets, and both achieve good performance at lower label proportions.
However, their relative performance often decreases when more labels are avail-
able (e.g., in Cora). Struct2Vec and VERSE are not as good as Node2Vec. Since
Struct2Vec considers structural similarity only, it does not perform well on most
of the datasets. VERSE also learns similarities from Personalized PageRank,
which is not helpful for our citation and social network datasets. For PubMed and
Friendster, due to the heavy computation cost on the large edges, Struct2Vec,
and GhostEdgeNL are not included.

Table 6 shows classification performance on the NELL knowledge graph. The
result is from the same train/test/validation sets as in [20]. REGNN shows the

Table 1. Accuracy (%) on Citeseer Table 2. Accuracy (%) on Cora
% Labeled| 10 | 20 | 30 | 40 | 50 % Labeled| 10 | 20 | 30 | 40 | 50
REGNN 55.0359.05/63.18/66.84 68.74 REGNN |76.04 80.04/82.37|84.19|85.45
N-GCN |51.92 |56.84 60.62 |64.23 |66.07 N-GCN [72.31 |78.16 80.91 |81.55 |84.33
GCN  |51.47 |57.40 |61.75 |65.03 |67.36 GCN  |71.75 |77.60 80.93 |82.80 |84.89
LP  |53.80 57.78 61.37 63.98 66.33 LP  |73.55 |77.91 [80.32 82.81 |84.31
NEU  |49.29 |55.26 [57.54 [59.05 59.98 NEU |72.28 76.16 |79.72 81.55 [83.15
GraRep |50.08 |51.97 [52.59 |52.87 53.48 GraRep |72.85 74.71 75.02 |75.16 [75.26
VERSE |36.28 |39.63 [40.30 |40.66 40.63 VERSE [57.02 61.53 63.44 63.82 [64.32
Struct2Vec|36.65 [39.67 41.97 |43.35 |43.54 Struct2Vee|53.81 58.34 61.24 63.38 |63.95
Node2Vec 52.64 |54.50 56.05 |56.87 |57.49 Node2Vec [76.44|77.88 79.24 |80.20 |80.04
GEdgeNL 50.12 |53.94 |56.26 |58.39 |59.49 GEdgeNL [72.22 |75.16 77.19 |78.79 |79.39
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Table 3. Accuracy (%) on Facebook Table 4. Accuracy (%) on Pubmed
% Labeled| 10 20 30 40 50 % Labeled| 10 20 | 40 60 80
REGNN |59.85 60.75/61.53 61.39/62.05 REGNN |79.95/82.00/83.2183.30/84.10
N-GCN [58.27 59.87 [60.31 |60.49 |61.62 N-GCN |78.24 |81.04 [81.41 82.72 (83.23
GON  |55.72 |56.47 |59.06 |59.17 |59.87 GCN  |77.94 80.73 |83.33/83.77|84.36
LP  |56.25 57.36 |58.45 |59.54 |59.83 LP  |78.97 80.62 |82.12 82.75 |83.28
NEU |56.29 58.52 |59.94 |60.23 [60.88 NEU |75.59 |76.71 |77.52 |77.94 |77.86
GraRep |57.48 58.09 [59.73 59.50 [59.71 GraRep |79.14 |79.68 |79.90 |80.04 |80.07
VERSE |53.94 56.67 |57.09 |56.89 |57.40 VERSE (80.44/81.01 |81.15 |81.29 |81.18
Struct2Vec 53.32 |54.47 |54.75 |54.86 |53.56 Node2Vec |79.42 |80.28 [80.86 80.82 [81.03
Node2Vec [57.20 58.07 [59.95 |59.70 |60.36
GEdgeNL [56.28 |57.54 |58.99 |59.61 |59.83

Table 5. Accuracy (%) on Friendster Table 6. Accuracy (%) on NELL
% Labeled| 10 15 | 20 | 25 30 Method Accuracy|Execution time (Secs)
REGNN |34.62(36.18/36.7 36.93 37.02 REGNN 85.6 740.45
N-GCN (28.93 |28.54 |32.03/32.55 31.89 N-GCN with IS/84.22  |682.23
GCN 297 [29.74 30.2 30.18 31.82 GON 79.56  |528.27
LP 82.67 1445.41

LP 27.13 |26.32 |25.74|24.43 24.43
NEU 30.28 [30.75 |31.0931.13 |31.4

GraRep 79.25 2339.96

GraRep (33.53 |33.93 |34.22|34.53 34.72 VERSE 85.43 1908.54

VERSE 32.41 |33.33 |34.01|33.9 34.32 Node2Vee  |84.41 2501.8*

NEU 81.25 2787.72"

Node2Vec 31.81 [32.58 |32.8 |33.27 |33.36 * represents that we measure its execution time

excluding random walk generation time.

best performance but is almost on par with Node2Vec and VERSE. However,
the execution time for training was much faster than Node2Vec and VERSE.
In particular, Node2Vec and NEU incur a great deal of overhead to generate
random walks (4,327.43s), and their training time to learn embeddings after
the generation was also slower than REGNN. We also tested N-GCN with our
importance sampling but the accuracy was still lower than REGNN.

5.3 Effect of Attention Mechanism

REGNN uses role-based attention to leverage high-order paths. In this section,
we report how high-order paths or role-based attention contributes to increasing
REGNN’s performance. Figure 3 shows comparisons from an ablation study. We
compare REGNN (Order =4), which is the best performing order chosen dur-
ing parameter selection on the validation data, to REGNN (Order=1), which
denotes a simplified REGNN that still use the role-based attention but does not
consider high-order paths. N-GCN and GAT (Order =4) correspond to versions
of our model where the role equivalence attention is replaced by the mixing layer
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Fig. 3. Effect of attention mechanism (Y-axis: Accuracy). (Color figure online)

used in [1] and the edge-wise attention of [18], respectively. For the mixing layer,
column-wise concatenation is used. We also compared with the softmax atten-
tion of [1] in our experimental setting, but the concatenation-based mixing layer
was more accurate.

In the ablation experiments, REGNN (Order =4) again achieved the best
results across all datasets. Specifically, it performed significantly better (assessed
by paired t-tests) than REGNN (Order=1), GAT (Order=4), and GAT
(Order =1). In this ablation study, before computing the attentive weights, high-
order GCNs are used in the same way for the GAT for fair comparison, but the
result is still worse than REGNN (Order =4). We tested different numbers of
multi-headed attentions for GAT, but it did not help much. This means that our
attention mechanism can identify more meaningful neighbors than the one used
in GAT—at least in our application settings, which focus on label propagation
in graphs with few attributes. In addition, when high-order GCNs are not used,
REGNN (Order=1) is worse than the simple GCN (Order =1) in Citeseer and
Cora. This indicates that it is more effective when REGNN combines its latent
representations with high-order paths.

6 Conclusions

In this paper, we propose REGNN, a Graph Neural Network architecture that
uses a novel Role Equivalence attention mechanism with higher-order paths.
REGNN is able to exploit nodes roles to learn how to focus on relevant neigh-
bors from high-order paths, in order to adaptively reduce the increased noise
that occurs when higher-order structures are considered. In our experimental
results, REGNN showed significant performance gains compared to state-of-the-
art alternatives that use alternative attention mechanisms and/or higher-order
paths.
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