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ABSTRACT
Graph neural networks (GNNs) have achieved tremendous success
on multiple graph-based learning tasks by fusing network structure
and node features. Modern GNN models are built upon iterative
aggregation of neighbor’s/proximity features by message passing.
Its prediction performance has been shown to be strongly bounded
by assortative mixing in the graph, a key property wherein nodes
with similar attributes mix/connect with each other. We observe
that real world networks exhibit heterogeneous or diverse mixing
patterns and the conventional global measurement of assortativity,
such as global assortativity coefficient, may not be a representative
statistic in quantifying this mixing. We adopt a generalized con-
cept, node-level assortativity, one that is based at the node level to
better represent the diverse patterns and accurately quantify the
learnability of GNNs. We find that the prediction performance of a
wide range of GNN models is highly correlated with the node level
assortativity. To break this limit, in this work, we focus on trans-
forming the input graph into a computation graph which contains
both proximity and structural information as distinct type of edges.
The resulted multi-relational graph has an enhanced level of assor-
tativity and, more importantly, preserves rich information from the
original graph. We then propose to run GNNs on this computation
graph and show that adaptively choosing between structure and
proximity leads to improved performance under diverse mixing.
Empirically, we show the benefits of adopting our transformation
framework for semi-supervised node classification task on a variety
of real world graph learning benchmarks.
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1 INTRODUCTION
A wide variety of complex systems spanning social, chemical, tech-
nological and biological domains are modelled using graphs (net-
works) where nodes represent concrete or abstract entities and
edges symbolize pairwise node interactions. As more data are col-
lected, many machine learning problems on graphs emerge, such as
(semi-supervised) node classification, link prediction, graph classifi-
cation and graph sampling [2, 6], which post us new computational
challenges to develop graph-based machine learning models to
address these problems. In recent years, graph neural networks
(GNNs) [16, 51] with a message passing architecture [14] have
gained significant attention from the research community due to
their promising results on various graph related ML tasks.

In GNNs, the standard message passing works by propagating
node features across edges and followed by aggregation viz. sum,
mean or attention for a number of rounds [15, 20, 44]. The central
idea is to utilize the neighbourhood information to construct a rep-
resentation that can be beneficial for downstream learning tasks.
Looking through the lens of graph signal processing, this operation
of GNN could be viewed as a non-linear form of smoothing oper-
ation on the neighborhood or a low-pass graph filtering which is
invariant to graph isomorphism. Clearly, one fundamental assump-
tion made here is that similar nodes (w.r.t node attributes and labels)
have a higher tendency to connect to each other compared to nodes
that are far away. In other words, the philosophy followed is that
proximity information from the surroundings of a node is a useful
descriptor for predicting its labels. In network science, the concept
assortative mixing is defined to quantify the degree of similar node
attributes/labels aggregated on local network regions [29, 33]. For
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Figure 1: An input graph with diverse mixing pattern. Our
pipeline uses both proximity and structural information to
build a computation graph on which a GNN is run.

instance, in social networks, people with similar habits and ideals
form friendships with each other [26]. In citation networks, papers
from a similar area tend to cite each other. These can be recognized
as assortative mixing nodes. In the opposite, disassortative mixing
nodes can be found in technological networks where node hier-
archy exists, heterosexual dating networks based on gender and
ecological food webs where predator and prey tend to be dissimilar.

In this work, we aim to study the relationships between the limits
of prediction performance of GNN and different mixing patterns in
a graph. Quantifying mixing patterns in graphs has conventionally
been done using a global binary notion of homophily/heterophily
or assortative/disassortative mixing. These global summary statis-
tics capture the average mixing patterns in the graph as an entire
entity and are meaningful only when the mixing patterns of a
whole network are centered around the mean. However, most real
world graphs show heterogeneous and diverse mixing patterns
wherein certain parts of the graph are assortative while others
disassortative [5, 35]. For instance, Figure 2 demonstrates the distri-
butions of assortativity on several real world graphs in which both
multimodal distributions and long tail distributions are observed.
Apparently, the global metrics will fail to measure this diversity
on these complicated real world graphs. Recently, there has been a
growing interest in designing new GNN models utilizing the na-
ture of assortativity in graphs [8, 18, 27, 36, 52]. However, some
of the representatives are based on heuristics leveraging node at-
tributes [36] or intermediate node representations [27] to address
disassortative nodes in the graph. Others simply incorporate node
features from multi-hop neighbors [52] which might help improve
predictions of disassortative nodes but at the same time suffer the
over-smoothing problem of GNN [13, 25, 34]. GPR-GNN [8] may
overcome the above issue using generalized graph diffusion [23]
but loses model expressivity [7].

We reason that for GNNs to achieve good performance on graphs
with diverse mixing, one has to provide sufficient inductive bias
that lets the model adaptively choose either proximity, structural
information or both for predicting node labels. This is based on
the key observation that disassortative nodes (potentially far apart)
may share similar structural features while assortative nodes tend

to share similar features within their proximity. Consider the input
graph G in Figure 1 and two nodes colored red i.e. 1 and 2 having
same labels as each other but different from the labels of their own
neighbourhoods. Based on the theory of mixing patterns, these
two nodes are disassortative. Even though they are far apart, their
local connecting pattern is quite similar. For instance, by comparing
degree sequences of nodes 1 and 2 in G at various neighbourhoods,
we can see that at 0-hop both have similar degree of 5 and 5 respec-
tively, their 1-hop neighbours all have the same degree of 1 or 5
and so on. This shows nodes 1 and 2 are structurally quite similar
and therefore, we can make use of their structural equivalences
to construct a new graph in which nodes like 1 and 2 have a con-
nection with large weight. On the other hand, consider node like
5 and 6. They mix assortatively and their surroundings/proximity
can provide enough information to infer their labels. Further, we
could still benefit from the fact that nodes 5 and 6 have similar local
structure. In all, our idea is to construct a transformed computation
graph that encodes both structure and proximity information w.r.t
each node and the GNN is run on this computation graph instead of
the original graph. Note that because similar (either structurally or
proximity) nodes have large weight in the computation graph it has
an enhanced level of assortativity and this can boost the prediction
performance of GNNs.

To implement this idea, we first use a local measure of assorta-
tivity that can quantify diverse mixing patterns introduced in [35].
This new metric, named local assortativity, is a node-centric mea-
sure of mixing patterns that calculates assortativity within a local
neighbourhood. We show that the representation capability of a
wide range of GNN models is highly correlated with the level of
local assortative mixing in the graph, which sets a limit to the
prediction performance for GNN models based on message pass-
ing (Sec. 4). To break this limit, we then develop a new algorithm
which can transform the input graph into a new one with higher
assortativity level and suitable for the deployment of GNN by lever-
aging both proximity and the local structural similarity of nodes at
multiple scales. (Sec. 5). Figure 1 shows the overall framework we
propose based on the idea of transforming the input graph to a new
computation graph on which the GNN is run. Lastly, we conduct
extensive experiments and provide analysis to show the benefits of
the proposed approach (Sec. 6). Our code and an easy to use tool
for evaluating GNNs w.r.t network local assortativity is provided
online 1.

2 PRELIMINARIES
A graph is defined as G = (V, E) in which V and E denote the
node set and edge set, respectively. An edge going from node𝑢 ∈ V
to node 𝑣 ∈ V is denoted as (𝑢, 𝑣) ∈ E. The adjacency matrix 𝑨 ∈
R |V |×|V | is a convenient way to represent G where, 𝑨[𝑢, 𝑣] = 1
if (𝑢, 𝑣) ∈ E otherwise 0. 𝑨 is a real valued matrix when there are
weighted edges. For multi-relational graphs, we extend the edge
notation with type as (𝑢, 𝑣, 𝜏) ∈ E to denote that the edge (𝑢, 𝑣)
belongs to type 𝜏 ∈ R. We represent the node attributes or features
as a matrix 𝑿 ∈ R |V |×𝑑 where 𝑑 is the feature dimension. The
feature of a particular node 𝑢 ∈ V is a vector 𝒙𝑢 ∈ R𝑑 . We denote
the neighbourhood around a given node 𝑢 which is a set of nodes

1https://github.com/susheels/gnns-and-local-assortativity
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exactly one hop/step away asN(𝑢) = {𝑣 : (𝑢, 𝑣) ∈ E}. We consider
the standard semi-supervised node classification task on G, where
each node𝑢 ∈ V has a class label 𝑦𝑢 . The goal is to learn a function
𝑓 : V → Y mapping the set of nodes to their class labels given
some labelled nodes {(𝑢1, 𝑦𝑢1 ), (𝑢2, 𝑦𝑢2 ), . . . } as training where
𝑢𝑖 ∈ V and𝑦𝑢𝑖 ∈ Y.NeuralMessage Passing is a framework that
encompasses a range of GNN techniques inspired by the classical
color refinement algorithm for graph isomorphism testing [14, 46].
During this refinement process, vectormessages are passed between
nodes across edges and updated using neural networks repeatedly
for 𝐾 rounds. The parameters are learned by defining a suitable
loss function and followed by back propagation. A simplified and
concrete working is given in the supplemental (Sec. A). The global
assortativity coefficient 𝑟global introduced by Newman [33] is used
to measureMixing in Networks which is the tendency of nodes
with similar attributes/labels to be connected to other nodes. To
characterize the mixing pattern, a quantity 𝑀𝑔ℎ is defined to be
the fraction of edges in a network that connect a node with label
𝑔 to one of label ℎ. This helps us define a mixing matrix 𝑴 whose
elements are𝑀𝑔ℎ . This matrix satisfies the following sum property∑
𝑔

∑
ℎ 𝑀𝑔ℎ = 1. Global assortativity is a summary statistic for the

whole network and is defined as,

𝑟global =

∑
𝑔𝑀𝑔𝑔 −

∑
𝑔 𝑎𝑔𝑏𝑔

1 −∑𝑔 𝑎𝑔𝑏𝑔 (1)

where 𝑎𝑔 and 𝑏𝑔 represent the number of outgoing and incoming
edges of all nodes of label 𝑔 as follows, 𝑎𝑔 =

∑
ℎ 𝑀𝑔ℎ and 𝑏𝑔 =∑

ℎ 𝑀ℎ𝑔 . The quantities 𝑎 and 𝑏 can be viewed as marginals that
describe the proportion of edges starting from and ending at each
of the attributes. For undirected graphs where ends of edges are of
same type, quantities 𝑎𝑔 and 𝑏𝑔 are equal and𝑴 is symmetric. This
allows us to write the elements of 𝑴 as,

𝑀𝑔ℎ =
1

2𝑚

∑
𝑖:𝜏𝑖=𝑔

∑
𝑗 :𝜏 𝑗=ℎ

𝐴𝑖 𝑗 (2)

where𝐴𝑖 𝑗 is an element of adjacency matrix,𝑚 = |E | is the number
of edges and 𝜏𝑖 represents the label of node 𝑖 .

3 RELATEDWORK
Graph Neural Networks (GNNs) have been successfully adopted for
many graph related tasks [3, 12, 14, 45, 50] and much effort in the
community has been in understanding the nature and working of
GNNs either with the lens of signal processing [10, 13, 30, 34] or the
combinatorial color refinement algorithm for graph isomorphism
[24, 31, 40, 48]. Li et al. [25] points out that GNNs essentially enforce
similarity of representations between adjacent nodes akin to some
sort of local smoothing. In line with this view, NT and Maehara
[34] shows that GNNs behave as “low-pass" filters filtering high
frequency noise components in the convolution step. Fu et al. [13]
theoretically characterize the behaviour of a number of GNNmodels
by proposing that they work by smoothing and de-noising node
features. All these results show that when node features and labels
vary smoothly or in other words when there is assortative mixing,
GNNs tend to work well.

Because the convolution operations are defined on neighbour-
hoods, the apparent local nature prohibits the use of higher-order

information in the graph. To alleviate this, Li et al. [25] tried to
stack multiple layers of GNNs but failed due to the over-smoothing
problem resulting from node representations becoming indistin-
guishable. This problem has also been acknowledged in Klicpera
et al. [21]. Another line of work proposes graph attention [18, 44]
computed using node features however, they are still enforcing
smoothing albeit adaptively making use of relevant information
from a node’s surrounding.

In light of these results, a few works propose to supplant the
basic message passing framework of GNNs with extra graph infor-
mation. PPNP [21] uses PageRank, GDC [22] utilizes graph diffusion
(e.g.,heat kernels) and Geom-GCN [36] extends graph convolution
with geometric aggregation derived by precomputing unsupervised
node embeddings. GPR-GNN [8] allows different hop neighbors be-
ing associated with different signs of scalar weights to model high
pass filters. Jumping Knowledge Networks [49] leverages different
neighborhood ranges for each node to enable better structure-aware
representations. Non-local GNNs [27] use attention to adaptively
get relevant long range graph information while H2GCN [52] and
MixHop [1] directly include information from higher order neigh-
bourhoods within each convolution step. A comprehensive review
of various graph neural networks can be found in [6, 51].

4 GNNS AND LOCAL MIXING
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Figure 2: Observed distribution of node level assortativity in
various graphs. The blue dotted line indicates global assor-
tativity coefficient.

The global assortative coefficient 𝑟global defined in Eq. 1 captures
the average mixing pattern for the whole network but 𝑟global is only
meaningful if all nodes have mixing concentrated around the mean.
It has been studied that real world graphs exhibit high variation
in mixing patterns and we are essentially interested in how GNNs
perform under such a diverse mixing. For this we first utilize a node
level measure of assortativity 𝑟local introduced by Peel et al. [35]
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that is calculated w.r.t a local neighbourhood. This allows us to
interpolate the mixing from individual nodes to global graph level
by varying the size of the local neighbourhoods. Consider a simple
random walker on an undirected graph. It walks by selecting an
edge at 𝑖 with an equal probability of 𝐴𝑖 𝑗/𝑑𝑖 where 𝑑𝑖 is the degree
of node 𝑖 . Then, the stationary probability of being at node 𝑖 is given
by 𝜋𝑖 = 𝑑𝑖/2𝑚. This means each edge is traversed with a probability
of 𝜋𝑖𝐴𝑖 𝑗/𝑑𝑖 = 1/2𝑚. Based on this and noting that 𝐴𝑖 𝑗 ∈ {0, 1}, we
can rewrite Eq. 2 as,

𝑀𝑔ℎ =
∑
𝑖:𝜏𝑖=𝑔

∑
𝑗 :𝜏 𝑗=ℎ

𝜋𝑖
𝐴𝑖 𝑗

𝑑𝑖
(3)

Eq. 3 reinterprets the mixing 𝑴 from the point of view of using
random walk to visit the entire graph and thus reveals that the
global assortativity counts all edges in the graph equally. For the
local measure of assortativity the edges are weighted according to
how local they are to a node of interest 𝑙 by replacing the station-
ary distribution 𝜋𝑖 with an alternative distribution over the nodes
𝑤 (𝑖; 𝑙). Then Eq. 3 becomes,

𝑀𝑔ℎ (𝑙) =
∑
𝑖:𝜏𝑖=𝑔

∑
𝑗 :𝜏 𝑗=ℎ

𝑤 (𝑖; 𝑙)
𝐴𝑖 𝑗

𝑑𝑖
(4)

The personalized PageRank vector is utilized as a proxy for𝑤 (𝑖; 𝑙).
Concretely, it is simple random walk with restarts i.e. during a
simple random walk, the walker can return to the initial node of
interest 𝑙 with a probability of (1 − 𝛼). Varying 𝛼 allows us to
interpolate from the trivial local neighbourhood (when 𝛼 = 0 i.e.
walker never leaves the node) to the global assortativity (when 𝛼 =
1 i.e. no restarts). Finally, the local assortativity metric for a node 𝑙
parameterized by 𝛼 is,

𝑟𝛼 (𝑙) =
∑
𝑔𝑀𝑔𝑔 (𝑙) −

∑
𝑔 𝑎

2
𝑔

1 −∑𝑔 𝑎2𝑔 (5)

Note that we can recover the global assortativity metric from Eq. 5,
𝑟1 (𝑙) = 𝑟global because when (𝛼 = 1) no restarts happen, 𝑤𝛼 (𝑖; 𝑙)
falls back to 𝜋𝑖 . When calculating the 𝑟𝛼 (𝑙) in practice, instead of
choosing 𝛼 heuristically, inspired by TotalRank [4], the PageRank
vector is averaged over the entire range of 𝛼 ∈ [0, 1] as,

𝑤tt (𝑖; 𝑙) =
∫ 1

0
𝑤𝛼 (𝑖; 𝑙)𝑑𝛼 (6)

With𝑤𝑡𝑡 (𝑖; 𝑙) in place of𝑤 (𝑖; 𝑙) in Eq. 4 and finally using the resul-
tant mixing matrix in Eq. 5 gives us our local assortativity metric
𝑟local (𝑙).

In Figure 2, we examine various networks from different domains
for existence of diverse mixing patterns using 𝑟local. The details of
these networks are given in the supplemental (Sec. C). In almost
all of them we witness skewed and multimodal distributions. It is
interesting to note that the global assortativity coefficient 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 ≈
0 (Eq. 1) while nodes exhibit diverse mixing over the full spectrum
of 𝑟local. This observation highlights that 𝑟𝑔𝑙𝑜𝑏𝑎𝑙 is not necessarily
reliable as it doesn’t give a complete picture.

4.1 Analysis of GNNs Under Local Mixing
Given the observation in Figure 2, we are interested in studying the
behaviour of various leading GNN models such as GCN [20], GIN

Figure 3: GNNs vs Local Assortativity on various graphs.
Node classification is performed on various datasets (See Ta-
ble 3 for details).𝑌 -axis showsmean F1-Micro with standard
deviation over 10 runs.

[48] and GAT [44], when applied to graphs with diverse mixing
patterns. The task of semi-supervised node classification is used as
a proxy to understand the power of modelling graph data w.r.t dif-
ferent levels of local assortativity embedded in the graph. As shown
in Figure 3, the performance of GNN models are highly correlated
with the node-level local assortativity 𝑟local within the same graph
they are deployed. Across all the tested real world graphs, another
clear pattern is that most of the popular GNN methods perform
poorly for disassortative nodes 𝑙 with 𝑟local (𝑙) < 0. The reason is
that the features of disassortative nodes are vastly different from
their neighbourhoods’ and, GNN methods simply cannot create
useful node representations based on the information provided by
their neighbours through conventional node smoothing operation
(alluded in theoretical works [13, 34]). We further characterize our
reasoning below with the help of two definitions.

Definition 4.1 (Neighbourhood Label Smoothness). Anode𝑢 ∈ V
with class label 𝑦𝑢 ∈ Y has label smoothness parameter defined on
the neighbourhood N(𝑢) as, 𝜖𝑢 = 1

|N (𝑢) |
∑
𝑖∈N(𝑢) 𝑃 (𝑦𝑖 = 𝑦𝑢 |𝑦𝑢 )

Definition 4.2 (Neighbourhood Feature Smoothness). A node 𝑢 ∈
V with feature vector 𝒙𝑢 ∈ R𝑑 has a smoothness parameter defined
on the neighbourhood N(𝑢) as, 𝜆𝑢 = | |𝒙𝑢 − 1

|N (𝑢) |
∑
𝑖∈N(𝑢) 𝒙𝑖 | |2

Labels of disassortative nodes and their neighbours have high
probability of being different whichmeans their labels tend to be not
smooth in that neighbourhood, which is quite clear from Def. 4.1
(their 𝜖𝑢 ’s tends to be low). Then, it is also likely that features
of such nodes are not smooth either (high 𝜆𝑢 ). This is based on
a reasonable assumption that features 𝒙𝑢 and class labels 𝑦𝑢 are
correlated. However, GNNs try to smooth the node features in the
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latent space which in turn smooth out the class label predictions.
Thus, performing poorly in a disassortative regime. On the flip
side for neighbourhoods mixing assortatively, owing to smooth
labels all across, 𝜖𝑢 will be large, which also means high feature
smoothness (low 𝜆𝑢 ), a regime that is very beneficial to GNNs. A
key take away is that 𝜖𝑢 ∝ 1/𝜆𝑢 and this characterization explains
the observations we witness in Figure 3.

5 OUR FRAMEWORK
In Section 4 we showed that real world graphs contain diverse
mixing patterns and experimental results demonstrate that current
GNN methods based on message passing are unable to provide
good representations for nodes that show disassortative mixing.
To break the limit introduced by the original graph structure, we
design a graph transformation algorithm which can generate a new
graph with higher assortativity. The central idea is to leverage the
structural and proximity information in the original graph. Ideally,
the resulted new graph should have the following properties: (1)
Constructed from the original input graph using the same set of
nodes without the class label information. (2) Encode the structural
equivalences in the original input graph in a model free manner.
(3) Encode proximity information as seen in the original graph.

These properties requires the construction of a new graph to be
solely based on structural and proximity regularities of the origi-
nal graph. Traditionally, GNN methods define convolutions on the
original input graph and various design choices are made. Different
from them, our framework aims to apply such GNN models on a
transformed graph which we dub as the “computation graph" for
the same machine learning task. Note that our framework consists
of 2 stages. Stage (1) transforms the original input graph to a com-
putation graph and in Stage (2) GNN methods are applied on the
computation graph for learning. In the next section, we introduce
one approach for graph transformation and later define message
passing on the transformed graph.

5.1 Computation Graph
One obvious choice to encode structural equivalences between
nodes is to compare ordered degree sequences at various hierarchies
[37]. The rationale is that any two nodes with same degree are
structurally similar, and if their one hop neighbours also have
same degree, then they are even more structurally similar and so
on. Therefore, a key observation is that the structural similarity
between two nodes monotonically increases when their degree
sequences get progressively similar. More formally, letN𝜏 (𝑔) denote
the set of neighbouring nodes at exactly 𝜏 hops away from node 𝑔
in graph G. Let 𝑠 (𝑉 ) represent a non-increasing (ordered) sequence
of degrees of a set𝑉 ⊂ V of nodes. The goal is to compare ordered
degree sequences at various neighbourhoods for every pair of nodes
(𝑔, ℎ) in G. The notion of structural distance [37] is recursively
defined as follows,

𝑓𝜏 (𝑔, ℎ) = 𝑓𝜏−1 (𝑔, ℎ) + D(𝑠 (N𝜏 (𝑔)), 𝑠 (N𝜏 (ℎ))) (7)

where D(𝑆1, 𝑆2) ≥ 0 measures the distance between ordered de-
gree sequences 𝑆1 and 𝑆2 and 𝑓−1 (·) = 0. 𝑓𝜏 (𝑔, ℎ) is defined for
𝜏 ≥ 0 and |N𝜏 (𝑔) |, |N𝜏 (ℎ) | > 0 i.e. only when neighbourhoods at
𝜏 exist. The cost function D(·, ·) should ideally give small values

for similar ordered degree sequences while provide large values for
vastly different ones. Following [37], we make use of Fast Dynamic
Time Warping (DTW) [39] that is best suited for loosely comparing
sequences of different sizes. The recursive definition of structural
distance in Eq. 7, makes sure that 𝑓𝜏 (·, ·) can only increase as we
successively progress through 𝜏 . So, for nodes 𝑔 and ℎ, that are
structurally similar, structural distance is low.

Algorithm 1: Construction of computation graph
Input: Original Input Graph G = (V, E);
Hyper-Params. :No. of structural relations 𝑇 < 𝑑𝑖𝑎(G)
Output: Computation graph C

1 begin
2 E ′ ← ∅; 𝑛 ← |V|;
3 𝑤𝜏 ∈ R𝑛×𝑛 ← 0,∀𝜏 ∈ {0, 1 · · ·𝑇 }; 𝑤𝑝 ∈ R𝑛×𝑛 ← 0;
4 𝑓−1 ← 0;
5 for (𝑔, ℎ) ∈ V2 do
6 for 𝜏 ∈ {0, 1 · · ·𝑇 } do
7 𝑓𝜏 (𝑔, ℎ) ← 𝑓𝜏−1 (𝑔, ℎ) + D(𝑠 (N𝜏 (𝑔)), 𝑠 (N𝜏 (ℎ)));
8 𝑤𝜏 (𝑔, ℎ) ← 𝑒−𝑓𝜏 (𝑔,ℎ)

9 E ′ ← E ′ ∪ (𝑔, ℎ, 𝜏);
10 end
11 end
12 for (𝑔, ℎ) ∈ E do
13 E ′ ← E ′ ∪ (𝑔, ℎ, 𝑝); 𝑤𝑝 (𝑔, ℎ) ← 1

14 end
15 R ← {0, 1 · · ·𝑇 } ∪ 𝑝;
16 return C =

(
V, E ′,R, {𝑤𝜏 ,∀𝜏 ∈ R}

)
17 end

5.1.1 Graph construction. We construct aweightedmulti-relational
computation graph C which encodes the structural distances at var-
ious hierarchies between pairs of nodes and proximity information
available in the original input graph G. Let 𝑇 denote a number less
the diameter of the graph G and 𝑛 = |V| the number of nodes. To
construct the new graph C, we first add the original node set V
and for each pair of nodes (𝑔, ℎ) we create 𝑇 + 1 different types of
edges where each type corresponds to the 𝜏-hop neighbourhoods
on which we calculated structural distance in G. To encode struc-
tural equivalence between nodes we define edge weights𝑤𝜏 (𝑔, ℎ)
between 𝑔 and ℎ with structural relation type 𝜏 to vary inversely
with structural distance 𝑓𝜏 (𝑔, ℎ) as follows:

𝑤𝜏 (𝑔, ℎ) = 𝑒−𝑓𝜏 (𝑔,ℎ) , 𝜏 = 0, 1, . . .𝑇 (8)

The edge weight for type 𝜏 between 𝑔 and ℎ is large when their
𝜏-hop neighbors have similar network structure properties (low
structural distance).

For proximity information, we simply use the original edges
of G and add it to C with weight one. In total, this construction
creates C which has V nodes and at most E + (𝑇 + 1) (𝑛2) edges.
The algorithm for the construction of this new graph is detailed in
Algorithm 1. Naively using the above graph construction results
in a large number of edges being introduced. For practicality, pair-
wise structural similarity calculations are restricted to 𝑂 (log𝑛) for
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each node at each 𝜏-hop neighbourhood. We thus have 𝑂 (𝑛 log𝑛)
edges for each 𝜏 instead of𝑂 (𝑛2). For completeness we provide the
efficient practical implementation in the supplement (Sec. D).

In this work, we provide one specific implementation of our gen-
eral idea of using both structure and proximity information from
the original graph into the computation graph. Other structural
techniques viz. RolX [17], GraphWave [11] and generalized prox-
imity inspired methods viz. Graph Diffusion [22], PageRank [21]
can also be adopted.

5.2 Message Passing on the Multi-relational
Computation Graph

The constructed multi-relational graph C and the original graph
G share the same node set V and can be defined as (V, E ′,R).
Each edge in C going from node 𝑢 to 𝑣 of type 𝜏 is represented as a
triplet (𝑢, 𝑣, 𝜏) ∈ E ′. Recall that there are𝑇 +1 structural type edges
and one proximity type edge. Thus, the total number of relations
|R | = 𝑇 + 1 + 1. We now define the message passing procedure on
C following the standard GNN formulation (Sec. A ).

To account for the different relation types in C, following [41],
we introduce a relation specific transformation matrix𝑾𝜏 for each
type 𝜏 ∈ R of edge and specify the AGGREGATE function as
follows,

𝒎𝑢 =
∑
𝜏 ∈R

∑
𝑣∈N𝜏

1 (𝑢)
𝑾𝜏 𝒉𝑣 𝑤𝜏 (𝑢, 𝑣) 𝛼𝜏 (𝑢, 𝑣) (9)

where 𝑤𝜏 (𝑢, 𝑣) is the 𝜏 type specific edge weight between nodes
𝑢 and 𝑣 defined in Algo. 1. In line with our motivation of letting
the model adaptively choose between structural and proximity
information, we make use of an attention mechanism [44] defined
using attention coefficients 𝑒𝜏 (𝑢, 𝑣) that indicates the importance
of node 𝑣 ’s feature to node 𝑢 w.r.t a particular relation type 𝜏 .

𝑒𝜏𝑢,𝑣 = 𝑎𝜏 (𝑾𝜏𝒉𝑢 ,𝑾𝜏𝒉𝑣) = 𝒂𝑇 [𝑾𝜏𝒉𝑢 | |𝑾𝜏𝒉𝑣] (10)

where 𝑎 : R𝑑 ×R𝑑 → R is a shared attention mechanism parameter-
ized by a learnable attention weight vector 𝒂 ∈ R2𝑑 , ·𝑇 is transpose
operation and | | is concatenation operation. We inject the available
computation graph information as follows,

𝛼𝜏 (𝑢, 𝑣) =
exp(LeakyReLU(𝑒𝜏𝑢,𝑣))∑

𝑥 ∈N𝜏
1 (𝑢)

exp(LeakyReLU(𝑒𝜏𝑢,𝑥 ))
(11)

Finally, The UPDATE function is defined as,

𝒉′𝑢 = 𝜎

(
𝑾self 𝒉𝑢 + 𝑾neig 𝒎𝑢

)
(12)

We name our general model as WRGNN (weighted relational GNN)
and from the above definitions, we select two model variants viz.
WRGAT and WRGCN for experimental analysis which specifies
if attention mechanism is used or not respectively. Algorithm 2
provides a procedure for applying such a 𝐾 layer WRGNN on the
computation graph for semi-supervised node classification.

6 EXPERIMENTS AND RESULTS
In this section, we evaluate the performance of our framework
against other methods under semi-supervised node classification
setting. Note that our framework is quite flexible so any GNN

model based on message passing could be adopted on our compu-
tation graph. To evaluate the performance of our method, we use
real world graphs from different domains viz. Hyperlinked Web
Pages [36], Citation Networks [32], Air Traffic Networks [37] and
Internet’s Inter-Domain Routing Network [18, 28]. These graphs
are know to exhibit diverse mixing as we showed in Sec. 4 and thus
provides us with the means to assess GNN based methods. Statistics
and brief descriptions are provided in Table 3 and Sec. C.

6.1 Baseline Methods and Experiment Setup
We primarily consider methods that utilize GNN models which
adopted messaging passing operation as their main backbones.
GCN [20] and GraphSage [15] are methods where convolutions are
strictly based on first order neighbour aggregation scheme for each
layer. GCN-Cheby [9] generalizes convolutions with the help of
k-hop localized spectral filters. GAT [44] adaptively aggregates im-
mediate neighbour information using attention coefficients which
are also derived from node features. MixHop [1] and H2GCN [52]
generalize the node aggregation beyond the first order neighbour-
hoods and dynamically considers node features 𝑘-hops away. It is
important to note that all baseline methods operate on the original
graph and thus have access to only proximity information albeit in
different forms.

We perform semi-supervised node classification and use the
classification accuracy and F1-Micro scores as performance metrics
to evaluate different approaches. The training/validation/testing
data splits for all the methods to be compared is shown in Table 3.
For Hyperlinked Web Page and Citation Networks, we report the
performance of mean ± std. dev. on 10 random splits provided by
Pei et al. [36] which is available on their GitHub 2. Reported values
for Air Traffic Networks and BGP Networks are based on 20 and 10
random splits respectively. All the implemented methods including
our own are all trained until the loss function converges and the
final models are selected based on the prediction performance on
the validation sets. The sensitivity analysis and hyper-parameter
search is performed on the validation set and more details are
provided in the supplement (Sec. F).

6.2 Local Assortativity Distribution Shift
We first perform a quick study to confirm our graph transforma-
tion algorithm indeed enhances the level of local assortativity in
comparison to the original input graph. To achieve this, we focus
on all the disassortative nodes (𝑟local < 0) from the input graph
G and track how they mix in the transformed computation graph
C. From Figure 4, a clear distribution shift of local assortativity
could be observed. That is, the previously disassortative nodes in𝐺 ,
are more assortative in the new computation graph after transfor-
mation. This empirically verifies the claim we raised earlier about
similar structural regularities between a pair of nodes being cap-
tured in the computation graph as a result of our transformation
(hence the increased assortativity). In addition, we have a reason
to believe that performance improvement of our relational GNN
model variants WRGCN and WRGAT are rooted in the increase
of local assortativity for disassortative nodes in the original graph.
This is clearly witnessed in Figure 3 (shown in red).
2https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/splits
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Figure 5: Overall perf. rank of various methods for datasets
in Table 1 & 2. Lower rank signifies better performance

6.3 Performance of Node Classification
HyperlinkedWeb Page and Citation Networks. Table 1 shows
the evaluation of our framework against other GNN based baselines
on the node classification task for these datasets. Mean test accu-
racy and standard deviation numbers are reported for each method.
Values for H2GCN [52]and Geom-GCN [36] are taken from the re-
spective papers. We use the same train/val/test splits as [36, 52] for
comparability. We find that our framework consistently performs
well for the Hyperlinked Web Page Networks owing to the rich
structural regularities that our computation graph captures. On
Citation Networks which predominantly have assortative mixing,
our framework gives comparable performance to baselines. H2GCN
and MixHop utilize higher order neighbourhoods in each convo-
lution which does help over standard GNN methods, but can also
be a lot harder to train and they also suffer from oversmoothing
problem. Our framework makes it possible to define computation
graphs that can directly tap into the structural regularities thereby
making effective use of graph information, while the message pass-
ing defined on such a computation graph takes care of adapting
to node features. Overall performance rank of various methods in
Table 1 on both disassortative and assortative datasets is shown in
Figure 5. It is clear that our model variant WRGAT run on the com-
putation graph achieves the lowest rank overall hence supporting
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Figure 6: Sensitivity w.r.t structure relations. Baseline is us-
ing only proximity information.

Figure 7: Sensitivity w.r.t structure relations. Baseline is us-
ing only proximity information.

our claim of achieving superior performance in both disassortative
and assortative regime.
Air Traffic and BGP Networks. Table 2 gives comparisons of our
framework against other GNN methods for node classification on
multiple Air Traffic Networks (ATNs) and the Internet Domain Net-
work (BGP). It is clear from the table that, our framework achieves
strong performance compared to other baselines. ATNs don’t have
node attributes and baseline GNN methods perform poorly while
our framework utilizing structure is better suited for the task. Strong
performance is seen because our construction of the computation
graph explicitly looks at different neighbourhoods that is very ben-
eficial in air traffic networks. Major hubs connect to local airports
(disassortative) while they also mix with other hubs (assortative).
Structure alone is capable of capturing this diversity and our com-
putation graph takes a step in that direction. The BGP network also
exhibits diverse mixing and we believe that the strong performance
is due to the adaptive selection of both proximity and structural
information.

6.4 Sensitivity Analysis
We provide sensitivity analysis based on validation split w.r.t the
number of structural relations used in our computation graph,
which is our main hyper-parameter. Figure 6 shows the analysis
for disassortative networks and is quite clear that adding structural
information at various scales significantly improves validation per-
formance when compared to baseline of just using proximity infor-
mation. Figure 7 shows an interesting picture for highly assortative
networks. Here, the take away is that structure alone is not useful
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Table 1: Semi-supervised node classification showing mean test accuracy ± std. over 10 runs. Club Suit [♣] denotes result
obtained from the best model variant of respective papers.

Chameleon Squirrel Actor Cornell Texas Wisconsin Cora Citeseer Pubmed
GCN 59.82 ± 2.58 36.89±1.34 30.26±0.79 57.03±4.67 59.46±5.25 59.80±6.99 87.28±1.26 76.68±1.64 87.38±0.66
GraphSage 58.73±1.68 41.61±0.74 34.23±0.99 75.95±5.01 82.43±6.14 81.18±5.56 86.90±1.04 76.04±1.30 88.45±0.50
GAT 54.69±1.95 30.62±2.11 26.28±1.73 58.92±3.32 58.38±4.45 55.29±8.71 86.37±1.69 75.46±1.72 87.62±0.42
GCN-Cheby 55.24±2.76 43.86±1.64 34.11±1.09 74.32±7.46 77.30±4.07 79.41±4.46 86.86±0.96 76.25±1.76 88.08±0.52
MixHop 60.50±2.53 43.80±1.48 32.22±2.34 73.51±6.34 77.84±7.73 75.88±4.90 83.10±2.03 70.75±2.95 80.75±2.29
Geom-GCN ♣ 60.90 38.14 31.63 60.81 67.57 64.12 85.27 77.99 90.05
H2GCN ♣ 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69 87.67±1.42 76.72±1.50 88.50±0.64
Ours (WRGAT) 65.24±0.87 48.85±0.78 36.53±0.77 81.62±3.90 83.62±5.50 86.98±3.78 88.20±2.26 76.81±1.89 88.52±0.92

Table 2: Node classification onAir TrafficNetworks and BGP
Network. Mean test acccuracy ± std. is shown over 20 runs.

Brazil Europe USA BGP
GCN 64.55±4.18 54.83±2.69 56.58±1.11 53.33±0.18
GraphSage 70.65±5.33 56.29±3.21 50.85±2.83 65.19±0.28
GIN 71.89±3.60 57.05±4.08 58.87±2.12 49.51±1.52
Struc2vec 70.88±4.26 57.94±4.01 61.92±2.61 48.40±1.39
Ours 76.92±5.45 57.12±2.81 63.02±1.87 66.54±0.48
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Figure 8: Ablation w.r.t different model and graph informa-
tion choices. Baseline (proximity only) is shown in paren-
thesis. Numbers indicate gain over baseline.

(blue line), while an adaptive structure+proximity with attention
model i.e. usingWRGAT (green line) is able to give better consistent
performance over proximity only baseline.

6.5 Ablation Analysis
Figure 8 provides ablation analysis for a number of networks and
shows test performance gains over proximity only baseline for our
model variants (WRGCN andWRGAT) in y-axis and against the use
of either proximity, structure or both kinds of information in x-axis.
For the top row consisting of predominantly disassortative net-
works, the take away is that structure only information is capable
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Figure 9: Ablation w.r.t graph info and local assortativity

of providing better performance over proximity only information,
but when both kinds of information is available, the attention model
is best suited. For the bottom row consisting of highly assortative
networks, clearly structure only information hurts performance
compared to baseline. We reason that structure becomes less impor-
tant for graphs with high assortativity however, when both kinds
of information is available and attention is used we witness the
best gains. These results further supports our model choices.

The previous ablation study shows test performance gains for
the whole dataset. We now study how these different model config-
urations behave w.r.t node level local assortativity we introduced
earlier. With Figure 9 we are able to study their behaviour in finer
detail due to the notion of local assortativity. It supports our hy-
pothesis that in the high local assortativity regime, proximity in-
formation dominates in discriminatory power and structure only
information leads to worsened performance as it becomes irrele-
vant. However when using both kinds with an adaptive mechanism
we can see increased performance over the full spectrum.

7 CONCLUSION
The level of mixing plays a crucial role in characterizing real world
networks. In this work we have used the quantification of local
mixing patterns to study the predictive performance of graph neu-
ral networks. Our observations and results offer a new perspective
to study the limitations of GNNs. Motivated by the findings of our
analysis, we develop a graph transformation technique that has
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shown to experimentally improve assortativity owing to the use of
structural regularities in the input graph and there by increasing
GNN performance. Extensive experiments on various real world
networks from different domains supports our claim of running
GNNs on a transformed computation graph and adaptively choos-
ing between structure and proximity information rather than on
the original. The connections we find with mixing patterns and
GNN learnability provides motivation for future work to provide
possible theoretical claims relating the two. We also hope that this
study leads to the creation of other benchmark datasets with diverse
mixing patterns which can aid in the robust evaluation of future
GNN methods.
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A BACKGROUND
Neural Message Passing Concretely, during the 𝑘th iteration a
hidden representation 𝒉(𝑘−1)𝑢 corresponding to each node 𝑢 ∈ V is
updated using 𝑢’s neighbourhood information. Expressed as,

𝒎𝑘N(𝑢) = AGGREGATE𝑘
(
{𝒉(𝑘−1)𝑣 : 𝑣 ∈ N (𝑢)}

)
(13)

𝒉(𝑘)𝑢 = UPDATE𝑘
(
𝒉(𝑘−1)𝑢 , 𝒎𝑘N(𝑢)

)
(14)

where AGGREGATE(·) is a trainable differentiable function map-
ping sets of hidden node representations of 𝑢’s neighbours to an
aggregated message vector, UPDATE(·) is also a trainable differen-
tiable function that maps both 𝑢’s current hidden representation
and the aggregated message vector to 𝑢’s updated representation.
The initial representation 𝒉(0)𝑢 is initialized using the original node
feature 𝒙𝑢 . After a total of 𝐾 iterations following Eq. 13 and 14, we
obtain final representations 𝒛𝑢 = 𝒉𝐾𝑢 ,∀𝑢 ∈ V . To perform node
classification, we derive the class label of a node 𝑢 by decoding
it’s final representation via, 𝑦𝑢 = argmax(softmax(MLP𝜃 (𝒛𝑢 )))
where MLP is a neural network with trainable parameters 𝜃 and
the softmax function is used to get a probability distribution over
the classes.

B APPLYING GNN ON COMPUTATION
GRAPH

Algorithm 2: Procedure for Node Classification
Input: Computation Graph C =

(
V, E ′,R, {𝑤𝜏 ,∀𝜏 ∈ R}

)
;

Node Features {𝒙𝑢 ∈ R𝑑 ,∀𝑢 ∈ V};
1-hop 𝜏-relation specific Neighbourhood Function
on C as N𝜏1 (𝑢) = {𝑣 : (𝑢, 𝑣, 𝜏) ∈ E

′};
Output: Predicted node labels

1 begin
2 𝒉0𝑢 ← 𝒙𝑢 ,∀𝑢 ∈ V;
3 for 𝑘 = 1, . . . 𝐾 do
4 for 𝑢 ∈ V do
5 𝒎𝑘𝑢 ←

∑
𝜏 ∈R

∑
𝑣∈N𝜏

1 (𝑢)
𝑾𝑘
𝜏 𝒉𝑘−1𝑣 𝑤𝜏 (𝑢, 𝑣) 𝛼𝜏 (𝑢, 𝑣);

6 𝒉𝑘𝑢 ← 𝜎

(
𝑾𝑘

self 𝒉
𝑘−1
𝑢 + 𝑾𝑘

neig 𝒎𝑘𝑢

)
7 end
8 𝒉𝑘𝑢 ← 𝒉𝑘𝑢/| |𝒉𝑘𝑢 | |2, ∀𝑢 ∈ V;
9 end

10 𝒛𝑢 ← 𝒉𝐾𝑢 , ∀𝑢 ∈ V;
// Predict node labels

11 for 𝑢 ∈ V do
12 𝒑𝑢 ← softmax(MLP𝜃 (𝒛𝑢 ));
13 𝑦𝑢 ← argmax(𝒑𝑢 )
14 end
15 return 𝑦𝑢 ,∀𝑢 ∈ V
16 end

C DATASET
Table 3 provides the statistics of the datasets we use for evalua-
tion. We select a wide range of frequently evaluated datasets from
different domains and below we provide brief descriptions.
Chameleon and Squirrel collected by [38] are networks of hyper-
linked web pages on Wikipedia related to animal topics. The nodes
(here pages) are labelled from one of 5 classes based on the aver-
age traffic (views) they received. Node features are bag-of-words
representation of nouns in the respective pages. We download the
processed data from Pei et al. [36].
Actor is a co-occurrence network based on the film-director-actor-
writer network from [43]. In this dataset, nodes represent actor
web pages on Wikipedia and edges symbolize co-occurrence on the
same web page. Node features are bag-of-words representation of
the corresponding pages and labels are placed according to topics
on actor web page. The dataset is from Pei et al. [36].
Cornell, Texas and Wisconsin collected as part of CMU WebKB
project. Nodes are university web pages and edges are hyperlinks
between them. Node labels are one of student, project, course, staff
or faculty. Node features are bag-of-words representation of the
corresponding web pages. The dataset is also from Pei et al. [36].
Cora, Citeseer and Pubmed introduced by [32, 42] are citation
networks where node represent scientific papers and edges are cita-
tion relationships. Node features are bag-of-words representation
of the paper and labels are the scientific field they represent.
Air Traffic Networks from three regions Brazil, Europe and
USA is collected by the respective civil aviation agencies. Nodes
represent airports and edges mean the presence of commercial
routes between nodes. Nodes are labelled according to the traffic
(aircraft landings and takeoffs) or level of activity (by passenger
count) an airport witnesses. We get the data from Ribeiro et al. [37].
BGP Network collected by [28] represents the inter-domain struc-
ture of the Internet. Nodes represent autonomous systems and
edges indicate business relationships between nodes. Node features
contain categorical location and topology information and labels
are based on the type or tier of the autonomous system. We get the
processed data from Hou et al. [18].

D PRACTICAL COMPUTATION GRAPH
CONSTRUCTION

Algo. 1 when naively run requires 𝑂 (𝑛2) structural similarity cal-
culations. However in practice we use an heuristic algorithm which
achieves𝑂 (𝑛 log𝑛) calculations. The intuition is that we don’t need
to look at node pairs with large degree differences. For instance,
given nodes𝑢 and 𝑣 with degree 1 and 20, we don’t have to compute
the similarity between 𝑢 and 𝑣 as their structural similarity will be
extremely small. We cap ourselves to a budget of𝑂 (log𝑛) nodes to
look at for each node. The budget is picked based on the heuristic
of most similar degrees. The complete practical procedure is shown
in Algorithm 3.

E COMPARISON AGAINST STRUCTURE
AWARE GNNS

We consider structure aware degree-based GNN models i.e. DEMO-
Net [47] as a baseline for node classification accuracy. DEMO-Net
uses an equal number of train/val/test nodes i.e. 33% each for the
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Table 3: Dataset statistics. Details of⋆ discussed in Sec. 6.1.

Hyperlinked Web Pages Network Citation Network Air Traffic Network Internet Network
Chameleon Squirrel Actor Cornell Texas Wisconsin Cora Citeseer Pubmed Brazil Europe USA BGP (small)

#Nodes |V| 2,277 5,201 7,600 183 183 251 2,708 3,327 19,717 131 399 1,190 10,176
#Edges |E | 31,421 198,493 26,752 280 295 466 5,429 4,732 44,338 1,038 5,995 13,599 206,799
#Classes |Y| 5 5 5 5 5 5 7 6 3 4 4 4 7
#Node Features 𝑑 2,325 2,089 931 1,703 1,703 1,703 1,433 3,703 500 1 1 1 287
Assortativity 𝑟global 0.0331 0.0070 0.0047 -0.0706 -0.2587 -0.1524 0.7710 0.6713 0.6860 0.0116 -0.0737 0.2629 0.0029
Train/Val/Test Splits⋆ 60/20/20 60/20/20 80/10/10 70/10/20

Algorithm 3: Efficient construction of computation graph
Input: Original Input Graph G = (V, E);

𝜏-hop Neighborhood Function on G
as N𝜏 (𝑢) : 𝑢 → 2V ; Ordered Degree Sequence
Function 𝑠 (𝑉 ), 𝑉 ⊂ V; Sequence Comparison Cost
Function D

Hyper-Params. :No. of structural relations 𝑇 < 𝑑𝑖𝑎(G)
Output: Computation graph C

1 begin
2 E ′ ← ∅; 𝑛 ← |V|;
3 𝑤𝜏 ∈ R𝑛×𝑛 ← 0,∀𝜏 ∈ {0, 1 · · ·𝑇 }; 𝑤𝑝 ∈ R𝑛×𝑛 ← 0;
4 𝑓−1 ← 0;
5 𝑆 ← [𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)] ∀𝑢 ∈ V ;
6 Sort S; // 𝑂 (𝑛 log𝑛)
7 for 𝑔 ∈ V do
8 𝑝𝑜𝑠 ← BinarySearch(𝑆, 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑔)); // 𝑂 (log𝑛)
9 𝑃 ← log(𝑛) positions left and right of 𝑝𝑜𝑠 in 𝑆 ;

10 for ℎ ∈ 𝑃 do
// P contains 𝑂 (log𝑛) nodes

11 for 𝜏 ∈ {0, 1 · · ·𝑇 } do
// Calculate structural dist. Eq. 7

12 𝑓𝜏 (𝑔, ℎ) ←
𝑓𝜏−1 (𝑔, ℎ) + D(𝑠 (N𝜏 (𝑔)), 𝑠 (N𝜏 (ℎ)));

// Calculate edge weights.

13 𝑤𝜏 (𝑔, ℎ) ← 𝑒−𝑓𝜏 (𝑔,ℎ) ; // Eq. 8

// Extend the edge set

14 E ′ ← E ′ ∪ (𝑔, ℎ, 𝜏);
15 end
16 end
17 end
18 for (𝑔, ℎ) ∈ E do
19 E ′ ← E ′ ∪ (𝑔, ℎ, 𝑝); 𝑤𝑝 (𝑔, ℎ) ← 1

20 end
21 R ← {0, 1 · · ·𝑇 } ∪ 𝑝;
22 return C =

(
V, E ′,R, {𝑤𝜏 ,∀𝜏 ∈ R}

)
23 end

original results (Table 5 of their paper) instead of our (80/10/10)
% split (as also done in struc2vec). For fair comparison we rerun
our model with the exact split and setup as demo-net. The results
in Table 4 show that our graph transformation followed by GNN
approach is superior compared to structure aware GNN baseline.

Table 4: Comparison against DEMO-Net with 33 % each
train/val/test split. Node classification accuracymean± stan-
dard variance (same metric as DEMO-Net [47])

Brazil Europe USA
DEMO-Net (hash) 0.614± 0.069 0.479±0.064 0.659±0.020
DEMO-Net (weight) 0.543±0.034 0.459±0.025 0.647±0.021
Ours 0.655±0.0055 0.539±0.0013 0.636±0.0043

Although DEMO-Net utilizes degree information in message pass-
ing, the architecture is quite similar to a GIN [48] model. In terms
of expressive power, degree comparisons are usually limited to 2-3
hops as going higher leads to over-smoothing problems. Our graph
transformation explicitly compares degrees at arbitrary hops and
thereby provides a more efficient means to improve the assortativity
of the graph.

F HYPER-PARAMETER SETTING
For all our experiments, we use Adam [19] algorithm with learning
rate of {1𝑒−2, 1𝑒−3} and weight decay of {0, 1𝑒−5, 5𝑒−4, 5𝑒−6} to
optimize our model. Our WRGNN model variants contains 2 layers
with an another fully connected MLP𝜃 on top of it. We select ReLU
as the nonlinear activation. For themodel with attentionmechanism
i.e. WRGAT, we use LeakyReLU with a negative input slope of 0.2.
We sweep all the hidden dimensions from {16, 32, 64, 128} for the
WRGNN layer and {32, 64, 128} for the final MLP𝜃 layer using
cross validation. We set the maximum learning epochs as 500 with
early stopping parameter 100. Specifically, for Hyperlinked Web
Page Networks (Table 1) dropout operation with a probability of 0.8
is applied on each WRGNN layer. For BGP Network our model uses
dropout of 0.5, learning rate as 1e-2 with weight decay of 0. Finally,
for Air Traffic Networks (Table 2), dropout is set to 0.6, learning
rate is 1e-3 with weight decay 5e-6 and 𝑇 is set to 5, 5 and 8 for
Brazil, Europe and USA datasets, respectively. The hyper-parameter
𝑇 related to structural similarity calculations is chosen based on the
validation set. Its sensitivity against validation accuracy for some
datasets are provided in Figures 6 and 7.
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