
Active Learning a Convex Body in Low Dimensions∗

Sariel Har-Peled† Mitchell Jones‡ Saladi Rahul§

May 20, 2022

Abstract

Consider a set P ⊆ R
d of n points, and a convex body C provided via a separation oracle. The

task at hand is to decide for each point of P if it is in C using the fewest number of oracle queries.
We show that one can solve this problem in two and three dimensions using O(9P log n) queries,
where 9P is the largest subset of points of P in convex position. Furthermore, we show that in
two dimensions one can solve this problem using O(�(P,C) log2 n) oracle queries, where �(P,C)
is a lower bound on the minimum number of queries that any algorithm for this specific instance
requires.

1. Introduction

1.1. Background

Active learning. Active learning is a subfield of machine learning, in which at any time, the learning
algorithm is able to query an oracle for the label of a particular data point. One model for active
learning is the membership query synthesis model [Ang87]. Here, the learner wants to minimize the
number of oracle queries, as such queries are expensive—they usually correspond to either consulting
with a specialist, or performing an expensive computation. In this setting, the learning algorithm is
allowed to query the oracle for the label of any data point in the instance space. See [Set09] for a more
in-depth survey on the various active learning models.

PAC learning. A classical approach for learning is using random sampling, where one gets labels
for the samples (i.e., in the above setting, the oracle is asked for the labels of all items in the random
sample). PAC learning studies the size of the sample needed. For example, consider the problem of
learning a halfplane for n points P ⊂ R

2, given a parameter ε ∈ (0, 1). The first stage is to take a labeled
random sample R ⊆ P . The algorithm computes any halfplane that classifies the sample correctly (i.e.,
the hypothesis). The misclassified points lie in the symmetric difference between the learned halfplane,
and the (unknown) true halfplane, see Figure 1.1. In this case, the error region is a double wedge, and

∗Research on this work was partially supported by NSF AF award CCF-1907400.
†Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;

sariel@illinois.edu; http://sarielhp.org/.
‡Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;

mfjones2@illinois.edu; http://mfjones2.web.engr.illinois.edu/.
§Department of Computer Science and Automation; Indian Institute of Science; Mathikere, Bengaluru, Karnataka

560012, India; saladi@iisc.ac.in; https://www.csa.iisc.ac.in/~saladi/.

1

Figure 1.2: (I) A set of points P . (II) The unknown convex body C. (III) Classifying all points of P as
either inside or outside C.

here is to develop algorithms that are instance sensitive—if the given instance is easy, they work well.
If the given instance is hard, they might deteriorate to the naive algorithm that queries all points.

Natural inputs where one can hope to do better, are when relatively few points
are in convex position. Such inputs are grid points, or random point sets, among
others. However, there are natural instances of the problem that are easy, despite
the input having many points in convex position. For example, consider when
the convex body is a triangle, with the input point set being n/2 points spread
uniformly on a tiny circle centered at the origin, while the remaining n/2 points
are outside the convex body, spread uniformly on a circle of radius 10 centered at
the origin. Clearly, such a point set can be classified using a constant number of
oracle queries (in the best case). See Figure 3.1 for some related examples.

Additional motivation & some previous work.
(A) Separation oracles. The use of separation oracles is a common tool in optimization (e.g., solving

exponentially large linear programs) and operations research. It is natural to ask what other
problems can be solved efficiently when given access to this specific type of oracle.

(B) Other types of oracles. Various models of computation utilizing oracles have been previously
studied within the community. Examples of other models include nearest-neighbor oracles (i.e.,
black-box access to nearest neighbor queries over a point set P) [HKMR16], and proximity probes
(which given a convex polygon C and a query q, returns the distance from q to C) [PASG13]. It
is reasonable to ask what classification-type problems can be solved with few oracle queries when
using separation oracles.

Furthermore, other types of active learning models (in addition membership query model) have
also been studied within the learning community, see, for example, [Ang87].

(C) Active learning. As discussed, the problem at hand can be interpreted as active learning a convex
body in relation to a set of points P that need to be classified (as either inside or outside the
body), where the queries are via a separation oracle. We are unaware of any work directly on this
problem in the theory community, while there is some work in the machine learning community
that studies related active learning classification problems [CAL94, GG07, Set09]. Specifically,
Cohn et al. [CAL94] propose a similar problem to ours. For example, when the unknown body to
be learned is an axis-parallel rectangle in the plane, they use neural networks to both learn and
decide how to best query the oracle.

3

1.3. Our results

(A) We develop a greedy algorithm, for points in the plane, which solves the problem using O(9P log n)
oracle queries, where 9P is the largest subset of points of P in convex position. See Theorem 2.8.
It is known that for a random set of n points in the unit square, E[9P] = Θ(n1/3) [AB09], which
readily implies that classifying these points can be solved using O(n1/3 log n) oracle queries. A
similar bound holds for the

√
n×√

n grid. An animation of this algorithm is on YouTube [HJR18].
We also show that this algorithm can be implemented efficiently, using dynamic segment trees, see
Lemma 2.9.

(B) The above algorithm naturally extends to three dimensions, also using O(9P log n) oracle queries.
While the proof idea is similar to that of the algorithm in 2D, we believe the analysis in three
dimensions is also technically interesting. See Theorem 2.18.

(C) For a given point set P and convex body C, we define the separation price �(P,C) of an instance
(P,C), and show that any algorithm classifying the points of P in relation to C must make at
least �(P,C) oracle queries (Lemma 3.1).

As an aside, we show that when P is a set of n points chosen uniformly at random from the unit
square and C is a (fixed) smooth convex body, E[�(P,C)] = O(n1/3), and this bound is tight
when C is a disk (our result also generalizes to higher dimensions, see Lemma B.3). For randomly
chosen points, the separation price is related to the expected size of the convex hull of P ∩ C,
which is also known to be Θ(n1/3) [Wei07]. We believe this result may be of independent interest,
see Appendix B.

(D) In Section 3 we present an improved algorithm for the 2D case, and show that the number of
queries made is O(�(P,C) log2 n). This result is O(log2 n) approximation to the optimal solution,
see Theorem 3.7.

(E) We consider the extreme scenarios of the problem: Verifying that all points are either inside or
outside of C. For each problem we present a O(log n) approximation algorithm to the optimal
strategy. The results are presented in Section 4, see Lemma 4.2 and Lemma 4.4.

(F) Section 5 presents an application of the above results, we consider the problem of minimizing a
convex function f : R3 → R over a point set P . Specifically, the goal is to compute argminp∈P f(p).
If f and its derivative can be efficiently evaluated at a given a query point, then f can be minimized
over P using O(9P log2 n) queries to f (or its derivative) in expectation. We refer the reader to
Lemma 5.5.

Given a set of n points P in R
d, the discrete geometric median of P is a point p ∈ P minimizing

the function
∑

q∈P ‖p− q‖2. As a corollary of Lemma 5.5, we obtain an algorithm for computing

the discrete geometric median for n points in the plane. The algorithm runs in O(n log2 n ·
(log n log log n+9P)) expected time. See Lemma 5.6. In particular, if P is a set of n points chosen
uniformly at random from the unit square, it is known E[9P] = Θ(n1/3) [AB09]—the discrete
geometric median can be computed in O(n4/3 log2 n) expected time.

While the discrete median is easy to approximate, we are unaware of any sub-quadratic algorithm
for the discrete case even in the plane.

4

Consider a line l passing through the point c. Let l+ be the closed halfspace bounded by l

containing r. Note that |P ∩ l+| ≥ n/3, since c is a centerpoint of P , and c ∈ l. Rotate l around c

until there are ≥ n/6 points on each side of rc in the halfspace l+. To see why this rotation of l exists,
observe that the two halfspaces bounded by the line spanning rc, have zero points on one side, and at
least n/3 points on the other side — a continuous rotation of l between these two extremes, implies the
desired property.

Observe that points in l+ and on opposite sides of the segment cr cannot see each other, as the
segment connecting them must intersect cr. Consequently, the number of induced segments that cr
intersects is at least n2/36.

Lemma 2.6. Let Gi be the intersection graph, in the beginning of the ith iteration, and let mi = |E(Gi)|.
After the ith iteration of the greedy algorithm, we have mi+1 ≤ mi − ω2/36, where ω = depth(Gi).

Proof: Recall that in the algorithm U+ = Ui ∩ l+ is the current set of unclassified points and l is the
line tangent to Bi, where l

+ is the closed halfspace that avoids the interior of Bi and contains the largest
number of unlabeled points of Ui. We have that ω = |U+|.

If a remove operation was performed in the ith iteration, then the number of points of U+ which
are discarded is at least ω/3. In this case, the oracle returned a separating line h between a centerpoint
c of U+ and the inner approximation. For the halfspace h+ containing c, we have ti = |U+ ∩ h+| ≥
|U+| /3 ≥ ω/3. Furthermore, all the points of U+ are pairwise mutually visible (in relation to the inner
approximation Bi). Namely, mi+1 = |E(Gi − (U+ ∩ h+))| ≤ mi −

(

ti
2

)

≤ mi − ω2/36.
If an expand operation was performed, the centerpoint c of U+ is added to the current inner

approximation Bi. Let r be a point in l∩ Bi, and let ci be the center point of Ui computed by the
algorithm. By Lemma 2.5 applied to r, c and U+, we have that at least ω2/36 pairs of points of U+ are
no longer mutually visible to each other in relation to Bi+1. We conclude, that at least ω2/36 edges of
Gi are no longer present in Gi+1.

Definition 2.7. A subset of points X ⊆ P ⊆ R
2 are in convex position , if all the points of X are

vertices of CH(X) (note that a point in the middle of an edge is not considered to be a vertex). The
index of P , denoted by 9P , is the cardinality of the largest subset of P of points which are in convex
position.

Theorem 2.8. Let C be a convex body provided via a separation oracle, and let P be a set of n points in
the plane. The greedy classification algorithm performs O

(

(9P +1) log n
)

oracle queries. The algorithm
correctly identifies all points in P ∩ C and P \ C.

Proof: By Lemma 2.1, the number of iterations (and also queries) in which the inner approximation is
empty is O(log n), and let z = O(log n) be the first iteration such that the inner approximation is not
empty. It suffices to bound the number of queries made by the algorithm after the inner approximation
becomes non-empty.

For i ≥ z, let Gi = (Ui, Ei) denote the visibility graph of the remaining unclassified points Ui in the
beginning of the ith iteration. Any independent set in Gi corresponds to a set of points X ⊆ P that do
not see each other due to the presence of the inner approximation Bi. That is, X is in convex position,
and furthermore |X| ≤ 9P .

For 0 ≤ t ≤ n, let s(t) be the first iteration i, such that depth(Gi) ≤ t. Since the depth of Gi is a
monotone decreasing function, this quantity is well defined. An epoch is a range of iterations between
s(t) and s(t/2), for any parameter t. We claim that an epoch lasts O(9P) iterations (and every iteration

8

issues only one oracle query). Since there are only O(log n) (non-overlapping) epochs till the algorithm
terminates, as the depth becomes zero, this implies the claim.

So consider such an epoch starting at i = s(t). We havem = mi = |E(Gi)| = O(9P t
2), by Lemma 2.4,

since 9P is an upper bound on the size of the largest independent set in Gi. By Lemma 2.6, as long as
the depth of the intervals is at least t/2, the number of edges removed from the graph at each iteration,
during this epoch, is at least Ω(t2). As such, the algorithm performs at most O(mi/t

2) = O(9P)
iterations in this epoch, till the maximum depth drops to t/2.

2.2.4. Implementing the greedy algorithm

With the use of dynamic segment trees [MN90] we show that the greedy classification algorithm can be
implemented efficiently.

Lemma 2.9. Let C be a convex body provided via a separation oracle, and let P be a set of n points in the
plane. If an oracle query costs time T , then the greedy algorithm can be implemented in O

(

n log2 n log log n+
T · 9P log n

)

expected time.

Proof: The algorithm follows the proof of Theorem 2.8. We focus on efficiently implementing the
algorithm once inner approximation is no longer empty. Let U ⊆ P be the subset of unclassified points.
By binary searching on the vertices of the inner approximation B, we can compute the collection of
visibility intervals V for all points in U in O(|U | logm) = O(n log n) time (recall that V is a collection
of circular intervals on the unit circle). We store these intervals in a dynamic segment tree T with
the modification that each node v in T stores the maximum depth over all intervals contained in the
subtree rooted at v. Note that T can be made fully dynamic to support updates in O(log n log log n)
time [MN90].

An iteration of the greedy algorithm proceeds as follows. Start by collecting all points U+ ⊆ U
realizing the maximum depth using T . When t = |U+|, this step can be done in O(log n + t) time by
traversing T . We compute the centerpoint of U+ in O(t log t) expected time [Cha04] and query the
oracle using this centerpoint. Either points of U are classified (and we delete their associated intervals
from T) or we improve the inner approximation. The inner approximation (which is the convex hull of
query points inside the convex body C) can be maintained in an online fashion with insert time O(log n)
[PS85, Chapter 3]. When the inner approximation expands, the points of U+ have their intervals shrink.
As such, we recompute I(p) for each p ∈ U+ and reinsert I(p) into T .

As defined in the proof of Theorem 2.8, an epoch is the subset of iterations in which the maximum
depth is in the range [t/2, t], for some integer t. During such an epoch, we make two claims:

(i) there are σ = O(n) updates to T , and
(ii) the greedy algorithm performs O(n/t) centerpoint calculations on sets of size O(t).

Both of these claims imply that a single epoch of the greedy algorithm can be implemented in
expected time O(σ log n log log n+n log n+T ·9P). As there are O(log n) epochs, the algorithm can be
implemented in expected time O(n log2 n log log n+ T · 9P log n).

We now prove the first claim. Recall that we have a collection of intervals V lying on the circle of
directions. Partition the circle into k atomic arcs, where each arc contains t/10 endpoints of intervals in
V . Note that k = 20n/t = O(n/t). For each circular arc γ, let Vγ ⊆ V be the set of intervals intersecting
γ. As the maximum depth is bounded by t, we have that |Vγ| ≤ t+ t/10 = 1.1t. In particular, if G[Vγ]

is the induced subgraph of the intersection graph G, then G[Vγ] has at most
(

|Vγ |
2

)

= O(t2) edges.
In each iteration, the greedy algorithm chooses a point in an arc γ (we say that γ is hit) and edges

are only deleted from G[Vγ]. The key observation is that an arc γ can only be hit O(1) times before all

9

points of γ have depth below t/2, implying that it will not be hit again until the next epoch. Indeed,
each time γ is hit, the number of edges in the induced subgraph G[Vγ] drops by a constant factor

(Lemma 2.6). Additionally, when G[Vγ] has less than
(

t/2
2

)

edges then any point on γ has depth less
than t/2. These two facts imply that an arc is hit O(1) times.

When an arc is hit, we must reinsert |Vγ| = O(t) intervals into T . In particular, over a single epoch,
the total number of hits over all arcs is bounded by O(k). As such, σ = O(kt) = O(n).

For the second claim, each time an arc is hit, a single centerpoint calculation is performed. Since
each arc has depth at most t and is hit a constant number of times, there are O(k) = O(n/t) such
centerpoint calculations in a single epoch, each costing expected time O(t log t).

2.3. The greedy algorithm in 3D

Consider the 3D variant of the 2D problem: Given a set of points P in R
3 and a convex body C specified

via a separation oracle, the task at hand is to classify, for all the points of P , whether or not they are
in C, using the fewest oracle queries possible.

The greedy algorithm naturally extends, where at each iteration i a plane ei is chosen that is tangent
to the current inner approximation Bi, such that it’s closed halfspace (which avoids the interior of Bi)
contains the largest number of unclassified points from the set Ui. If the queried centerpoint is outside,
the oracle returns a separating plane and as such points can be discarded by the remove operation.
Similarly, if the centerpoint is reported inside, then the algorithm calls the expand and updates the 3D
inner approximation Bi.

2.3.1. Analysis

Following the analysis of the greedy algorithm in 2D, we (conceptually) maintain the following set of
objects: For a point p ∈ Ui, let di(p) be the set of all unit length directions v ∈ R

3 such that a plane
perpendicular to v separates p from Bi. Let Pi = {di(p) | p ∈ Ui}. A set of objects form a collection of
pseudo-disks if the boundary of every pair of them intersect at most twice. The following claim shows
that Pi is a collection of pseudo-disks on S, where S is the sphere of radius one centered at the origin.

Lemma 2.10. The set Pi = {di(p) ⊆ S | p ∈ Ui} is a collection of pseudo-disks.

Proof: Fix two points p, r ∈ Ui such that the boundaries of di(p) and di(r) intersect on S. Let l be the
line in R

3 passing through p and r. Consider any plane e such that l lies on e. Since l is fixed, e has
one degree of freedom. Conceptually rotate e until becomes tangent to Bi at point u′. The direction
of the normal to this tangent plane, is a point in X = ∂di(p) ∩ ∂di(r). Note that this works also in
the other direction — any point in X corresponds to a tangent plane passing through l. The family of
planes passing through l has only two tangent planes to C. It follows that |X| = 2. As such, any two
regions in Pi intersect as pseudo-disks.

We need the following two classical results that follows from the Clarkson-Shor [CS89] technique.

Lemma 2.11 (Proof in Appendix A.1). Let P be a collection of n pseudo-disks, and let V≤k(A) be the
set of all vertices of depth at most k in the arrangement A = A(P). Then |V≤k(A)| = O(nk).

Lemma 2.12 (Proof Appendix A.2). Let P be a collection of n pseudo-disks. For two integers 0 < t ≤
k, a subset X ⊆ P is a (t, k)-tuple if (i) |X| ≤ t, (ii) ∃p ∈ ∩d∈Xd, and (iii) depth(p,P) ≤ k. Let
L(t, k, n) be the set of all (≤ t, k)-tuples of P. Then |L(t, k, n)| = O(ntkt−1).

10

Lemma 2.13. Let Gi = (Pi, Ei) be the intersection graph of the pseudo-disks of Pi (in the ith iteration).
If A(Pi) has maximum depth k, then |Ei| = O(nk). Furthermore, α(Gi) = Ω(n/k), where α(Gi) denotes
the size of the largest independent set in Gi.

Proof: The first claim readily follows from Lemma 2.12 — indeed, |Ei| = L(2, k, n) = O(nk) — since
every intersecting pair of pseudo-disks induces a corresponding (2, k)-tuple.

For the second part, Turán’s Theorem states that any graph has an independent set of size at least
n/(davg(Gi) + 1), where davg(Gi) = 2 |Ei| /n ≤ ck is the average degree of Gi and c is some constant. It
follows that α(Gi) ≥ n/(ck + 1) = Ω(n/k).

The challenge in analyzing the greedy algorithm in 3D is that mutual visibility between pairs of points
is not necessarily lost as the inner approximation grows. As an alternative, consider the hypergraph
Hi = (Pi, Ei), where a triple of pseudo-disks d1,d2,d3 ∈ Pi form a hyperedge {d1,d2,d3} ∈ Ei ⇐⇒
d1 ∩ d2 ∩ d3 6= ∅ (this is equivalent to the condition that the corresponding triple of points span a
triangle which does not intersect Bi).

As in the analysis of the algorithm in 2D, we first bound the number of edges in Hi and then argue
that enough progress is made in each iteration.

Lemma 2.14. Let Hi = (Pi, Ei) be the hypergraph in iteration i, and let Gi be the corresponding inter-
section graph of Pi. If A(Pi) has maximum depth k, then |Ei| = O(α(Gi)k

3).

Proof: Lemma 2.13 implies that Gi has an independent set of size Ω(fi/k), where fi = |Pi|. Lemma 2.12
implies that |Ei| ≤ |L(3, k, fi)| = O(fik

2) = O(α(Gi)k
3).

The following is a consequence of the Colorful Carathéodory Theorem [Bár82], see Theorem 9.1.1 in
[Mat02].

Theorem 2.15. Let P be a set of n points in R
d and c be the centerpoint of P . Let S =

(

P
d+1

)

be the
set of all d+ 1 simplices induced by P . Then for sufficiently large n, the number of simplices in S that
contain c in their interior is at least cdn

d+1, where cd is a constant depending only on d.

Next, we argue that in each iteration of the greedy algorithm, a constant fraction of the edges in Hi

are removed. The following is the higher dimensional version of Lemma 2.5.

Lemma 2.16. Let P be a set of n points in R
3 lying above the xy-plane, c be the centerpoint of P and

T =
(

P
3

)

be the set of all triangles induced by P . Next, consider any point r on the xy-plane. Then the
segment cr intersects at least Ω(n3) triangles of T .

Proof: Let S =
(

P
d+1

)

be the set of all simplices induced by P . Theorem 2.15 implies that the centerpoint
c is contained in n4/c1 simplices of S for some constant c1 > 1. Let K be a simplex that contains c and
observe the segment cr must intersect at least one of the triangular faces τ of K. As K ∈ S, charge this
simplex K to the triangular face τ . Applying this counting to all the simplices containing c, implies
that at least n4/c1 charges are made. On the other hand, a triangle τ can be charged at most n − 3
times (because a simplex can be formed from τ and one other additional point of P). It follows that cr
intersects at least (n4/c1)/(n− 3) = Ω(n3) triangles of T .

Lemma 2.17. In each iteration of the greedy algorithm, the number of edges in the hypergraph Hi =
(Pi, Ei) decreases by at least Ω(k3), where k is the maximum depth of any point in A(Pi).

11

Proof: Recall that U+ = Ui ∩ e+ is the current set of unclassified points and e is the plane tangent to
Bi, where e+ is the closed halfspace that avoids the interior of Bi and contains the largest number of
unlabeled points. Note that |U+| ≥ k.

In a remove operation, arguing as in Lemma 2.6, implies that the number of points of U+ which
are discarded is at least k/4. Since all of the discarded points are in a halfspace avoiding Bi, it follows
that all the triples they induce are in Hi. Namely, at least

(

k/4
3

)

= Ω(k3) hyperedges get discarded.
In an expand operation, the centerpoint c of U+ is added to the current inner approximation Bi.

Since all of the points of U+ lie above the plane e, applying Lemma 2.16 on U+ with the centerpoint
c and a point lying on the plane e inside the (updated) inner approximation, we deduce that at least
Ω(k3) hyperedges are removed.

Theorem 2.18. Let C ⊆ R
3 be a convex body provided via a separation oracle, and let P be a set

of n points in R
3. The greedy classification algorithm performs O

(

(9P + 1) log n
)

oracle queries. The
algorithm correctly identifies all points in P ∩ C and P \ C.

Proof: The proof is essentially the same as Theorem 2.8. Arguing as in Lemma 2.1 implies that there
are at most O(log n) iterations (and thus also oracle queries) in which the inner approximation is empty.

Now consider the hypergraph H1 = (P1, E1) at the start of the algorithm execution. As the algorithm
progresses, both vertices and hyperedges are removed from the hypergraph. Let Hi = (Pi, Ei) denote
the hypergraph in the ith iteration of the algorithm. Recall that Pi is a set of pseudo-disks associated
with each of the points yet to be classified. Observe that any independent set of pseudo-disks in the
corresponding intersection graph Gi corresponds to an independent set of points with respect to the
inner approximation Bi, and as such is a subset of points in convex position. Therefore, the size of any
such independent set is bounded by 9P .

Let ki denote the maximum depth of any vertex in the arrangement A(Pi). Lemma 2.14 implies
that |Ei| = O(9Pk

3
i). Lemma 2.17 implies that the number of hyperedges in the ith iteration decreases

by at least Ω(k3
i). Namely, after O(9P) iterations, the maximum depth is halved. It follows that after

O(9P log n) iterations, the maximum depth is zero, which implies that all the points are classified. Since
the algorithm performs one query per iteration, the claim follows.

3. An instance-optimal approximation in two dimensions

Before discussing the improved algorithm, we present a lower bound on the number of oracle queries
performed by any algorithm that classifies all the given points. We then present the the improved
algorithm, which matches the lower bound up to a factor of O(log2 n).

3.1. A lower bound

Given a set P of points in the plane, and a convex body C, the outer fence of P is a closed convex
polygon Fout with minimum number of vertices, such that C ⊆ Fout and C∩P = Fout∩P . Similarly, the
inner fence is a closed convex polygon Fin with minimum number of vertices, such that Fin ⊆ C and
C ∩ P = Fin ∩ P . Intuitively, the outer fence separates P \ C from ∂C, while the inner fence separates
P ∩ C from ∂C. The separation price of P and C is

�(P,C) = |Fin|+ |Fout| ,

where |F | denotes the number of vertices of a polygon F . See Figure 3.1 for an example.

12

Figure 3.1: The separation price, for the same point set, is different depending on how “tight” the body
is in relation to the inner and outer point set.

Lemma 3.1. Given a point set P and a convex body C in the plane, any algorithm that classifies the
points of P in relation to C, must perform at least �(P,C) separation oracle queries.

Proof: Consider the set Q of queries performed by the optimal algorithm (for this input), and split it,
into the points inside and outside C. The set of points inside, Qin = Q ∩ C has the property that
Qin ⊆ C, and furthermore CH(Qin) ∩ P = C ∩ P — otherwise, there would be a point of C ∩ P that
is not classified. Namely, the vertices of CH(Qin) are vertices of a fence that separates the points of P
inside C from the boundary of C. As such, we have that |Qin| ≥ |CH(Qin)| ≥ |Fin|.

Similarly, each query in Qout = Q \Qin gives rise to a separating halfplane. The intersection of the
corresponding halfplanes is a convex polygon H which contains C, and furthermore contains no point of
P \C. Namely, the boundary of H behaves like an outer fence. As such, we have |Qout| ≥ |H| ≥ |Fout|.

Combining, we have that |Q| = |Qin|+ |Qout| ≥ |Fin|+ |Fout| = �(P,C), as claimed.

In Appendix B, we show that when P is a set of n points chosen uniformly at random from a square
and C is a smooth convex body, E[�(P,C)] = O(n1/3). Thus, when the points are randomly chosen,
one can think of �(P,C) as growing sublinearly in n. Of course, for much more contrived instances, one
would expect �(P,C) to be much smaller than 9P .

3.2. Useful operations

We start by presenting some basic operations that the new algorithm will use.

3.2.1. A directional climb

Given a direction v, a directional climb is a sequence of iterations, where in each iteration, the
algorithm finds the extreme line perpendicular to v, that is tangent to the inner approximation B. The
algorithm then performs an iteration with this line, as described in Section 2.2.2. See Figure 3.2 for
an illustration. The directional climb ends when the outer halfspace induced by this line contains no
unclassified point.

Claim 3.2. A directional climb requires O(log n) oracle queries.

Proof: Consider the tangent to B in the direction of v. At each iteration, we claim the number of points
in this halfplane is reduced by a factor of 1/3. Indeed, if the query (i.e., centerpoint) is outside C then at
least a third of these points got classified as being outside. Alternatively, the tangent halfplanes moves
in the direction of v, since the query point is inside C. But then the new halfspace contains at most 2/3
fraction of the previous point set — again, by the centerpoint property.

13

Υ

B B

q

lq

Figure 3.5: Vertical pocket splitting. The figure on the right is somewhat misleading — none of the
unclassified points in the new pockets are mutually visible to each other after the line cleaning operation
was done on the separating line.

into two sub-pockets. Crucially, since q was a centerpoint for UΥ, the number of points in each of the
two sub-pockets is at most 2 |UΥ| /3. See Figure 3.5.

3.3. The algorithm

The algorithm starts in the same way as the greedy algorithm of Section 2.2.2, until we obtain a non-
empty inner approximation. The algorithm also maintains the convex hull of the unclassified points
together with the inner approximation.

Next, the algorithm performs two directional climbs in the positive and negative directions of the
x-axis. This uses O(log n) oracle queries and results in a computed segment vv′ ⊆ C, where v, v′ are
vertices of the inner approximation B, such that all unclassified points lie in the vertical strip induced
by these two points.

The algorithm now handles all points of U lying above vv′ (the points below the line are handled
in a similar fashion). Let B+ be the set of vertices of B in the top chain. Note that B+ consists of at
most O(log n) vertices. For each vertex v of B+, the algorithm performs line cleaning on the vertical
line going through v. This results in O(log n) vertical pockets, where all vertical lines passing originally
through B+ are now clean.

The algorithm repeatedly picks a vertical pocket. If the pocket contains less three points the al-
gorithm queries the oracle for the classification of these points, and continues to the next pocket.
Otherwise, the algorithm performs a vertical pocket splitting operation, as described in Section 3.2.3.
The algorithm stops when there are no longer any pockets (i.e., all the points above the segment vv′ are
classified). The algorithm then runs the symmetric procedure below this segment vv′.

3.4. Analysis

Lemma 3.4. Given a point set P , and a convex polygon σ that is an inner fence for P ∩ C; that is,
P ∩ C ⊆ σ ⊆ C. Then, there is a convex polygon π, such that
(A) P ∩ C ⊆ π ⊆ σ.
(B) |π| ≤ 2 |σ| (where |Q| denotes the number of vertices of the polygon Q).
(C) Every edge of π lies on a line of L(P), see Eq. (3.1).

Proof: Any edge e of σ that does not contain any point of P on it can be moved parallel to itself into
the polygon until it passes through a point of P . Next, split the edges that contain only a single point
of P , by adding this point as a vertex.

16

U ′ and q ∈ C. Now q is inside a triangle induced by three points of U ′. Namely, there are (at least) two
points outside C in this pocket that are not mutually visible to each other with respect to C. But this
implies that Fout must have a vertex somewhere inside the vertical pocket Υ, which is a contradiction.

Hence, all oracle queries made by the algorithm are outside C. Each such query results in a constant
reduction in the size of U , since the query point is a centerpoint of the unclassified points. It follows
that after O(log |U |) = O(log n) queries, all points in Υ are classified.

Theorem 3.7. Let C be a convex body provided via a separation oracle, and let P be a set of n points in
the plane. The improved classification algorithm performs O

([

1 + �(P,C)
]

log2 n
)

oracle queries. The
algorithm correctly identifies all points in P ∩ C and P \ C.

Proof: The initial stage involves two directional climbs and O(log n) line cleaning operations, and thus
requires O(log2 n) queries.

A vertical pocket that contains a vertex of V is charged arbitrarily to any such vertex. Since the
number of points in a pocket reduces by at least a factor of 1/3 during a split operation, this means
that a vertex of V is charged at most O(log n) times. Each time a vertex gets charged, it has to pay
for the O(log n) oracle queries that were issued in the process of creating this pocket, and later on for
the price of splitting it. Thus, we only have to account for queries performed in vertical pockets that
do not contain a vertex of V . By Lemma 3.6, such a pocket will have all points inside it classified after
O(log n) oracle queries.

However, the above implies that there are at most O([1 + �(P,C)] log n) vertical pockets with no
vertex of V throughout the algorithm execution. Since handling such a pocket requires O(log n) queries,
the bound follows.

4. On emptiness variants in two dimensions

Here, we present two instance-optimal approximation algorithms for solving the following two variants:

(A) Emptiness: Find a point p ∈ P ∩ C, or using as few queries as possible, verify that P ∩ C = ∅.

(B) Reverse emptiness: Find a point p ∈ P \ (P ∩ C), or using as few queries as possible, verify that
P ∩ C = P .

For both variants we present O(log n) approximation (the algorithm for emptiness is randomized), im-
proving over the general approximation algorithm of Section 3 which provides a O(log2 n) approximation.

4.1. Emptiness: Are all the points outside?

Here we consider the problem of verifying that all the given points are outside the convex body.

Algorithm. The algorithm is a slight modification of the algorithm of Section 2.2.2. At each iteration
the point set U+ is the largest set of currently unclassified points in P contained in some halfspace
tangent to the current inner approximation B. Let ω = |U+|. We make the following changes: If
ω = O(1), test the membership of each point individually. Otherwise, choose a random point q ∈ U+. If
q is found to be inside C, we are done, as q is our witness. Otherwise q is outside, and a remove operation
is performed. The algorithm then performs a regular iteration on U+, as described in Section 2.2.2.

18

Analysis. Let Gi be the intersection graph (see Definition 2.2) over the points outside C in the
beginning of the ith iteration. We need the following technical Lemma.

Lemma 4.1 (Proof in Appendix A.3). Suppose P ∩ C = ∅. Then at any iteration i, the largest inde-
pendent set in the visibility graph Gi is at most |Fout|.

Lemma 4.2. Let C be a convex body provided via a separation oracle, and let P be a set of n points in
the plane. The randomized greedy classification algorithm for emptiness performs O

(

(|Fout|+ 1) log n
)

oracle queries with high probability. The algorithm always correctly verifies that P ∩ C = ∅ or finds a
witness point of P inside C.

Proof: Suppose P ∩C = ∅. Then Lemma 4.1 along with the proof of Theorem 2.8 implies the result, by
replacing the quantity 9P with |Fout|. If P ∩ C 6= ∅, let U+ be a set of points in the current iteration,
U+
in = U+ ∩ C, and U+

out = U+
out \ U+

in . Observe that U+
in remains the same throughout the algorithm

execution, while U+
out shrinks. If

∣

∣U+
out

∣

∣ > |U+| /2, then by Lemma 2.6 the number of edges removed from

Gi is Ω
(

∣

∣U+
out

∣

∣

2
)

(though the hidden constants will be smaller). Thus, after at most O
(

(|Fout|+1) log n
)

iterations, we must encounter an iteration in which there is a set of points U+ with
∣

∣U+
out

∣

∣ < |U+| /2.
Now the probability that our randomly sampled point lies in U+

in is at least 1/2. In particular, after
an additional O(log n) iterations, the probability that we fail to find a witness point is at most 1/nΩ(1),
thus implying the bound on the number of queries.

4.2. Reverse emptiness: Are all the points inside?

Here we consider the problem of verifying that all the given points are inside the convex body.

4.2.1. Algorithm

Initialization. Let D = CH(P). Define v, v′ ∈ P to be the extreme left and right vertices of D. Let
v1 and v2 be the vertices adjacent to v on D. Similarly define v′1 and v′2 for v′. The algorithm asks the
oracle for the status of v, v1, v2, v

′, v′1, and v′2. If any of them are outside, the algorithm halts and
reports the witness found. Otherwise, all points must lie either above or below the horizontal segment
vv′. We now describe how to handle the points above vv′ (the below case is handled similarly).

Let D+ be the polygonal chain which is D clipped inside region bounded by the segment vv′ and
two vertical lines passing through v and v′. Label the edges along D+ by f1, . . . , fk clockwise from v to
v′. For 1 ≤ i < j ≤ k, let D+

[i:j] be the polygonal chain consisting of the consecutive edges fi, . . . , fj.
The algorithm now invokes the following recursive procedure.

Recursive procedure. A recursive call is described by two indices (i, j), the goal is to verify that all
the points of P lying below D+

[i:j] are inside C.
For a given recursive instance (i, j), the algorithm proceeds as follows. Begin by computing the lines

li and lj through the edges fi and fj respectively. Let q = li ∩ lj be the point of intersection. The
algorithm asks the oracle for the status of q. If q is inside, then all points below D+

[i:j] must also be in C.
The algorithm classifies the appropriate points and returns. Otherwise q is outside, and generates two
recursive calls. Let ℓ = ⌊(i+ j)/2⌋ and fℓ = (x, y) be the middle edge in the chain D+

[i:j]. The algorithm
queries the oracle with x and y. If either x or y is outside, the algorithm returns the appropriate witness
found. Otherwise x and y are both inside. The algorithm recurses on the instances (i, ℓ) and (ℓ, j).

19

Definition 5.1. Let f : Rd → R be a convex function. For a number c ∈ R, define the level set of f as
Lf (c) =

{

p ∈ R
d
∣

∣ f(p) ≤ c
}

. If f is a convex function, then Lf (c) is a convex set for all c ∈ R.

Definition 5.2. Let f : Rd → R be a convex (and possibly non-differentiable) function. For a point
p ∈ R

d, a vector v ∈ R
d is a subgradient of f at p if for all q ∈ R

d, f(q) ≥ f(p) + 〈v, q − p〉. The
subdifferential of f at p ∈ R

d, denoted by ∂f(p), is the set of all subgradients v ∈ R
d of f at p.

It is well known that when the domain of f is R
d and f is a convex function, then ∂f(p) is a

non-empty set of all p ∈ R
d (for example, see [Fer13, Chapter 3]).

Let α = minp∈P f(p). We have that Lf (α) ∩ P = {p ∈ P | f(p) = α} and Lf (α
′) ∩ P = ∅ for all

α′ < α. Hence, the problem is reduced to determining the smallest value r such that Lf (r) ∩ P is
non-empty.

Lemma 5.3. Let P be a collection of n points in the plane. For a given value r, let Cr = Lf (r). The
set Cr ∩P can be computed using O(9P log n) evaluations to f or its derivative. If T is the time needed
to evaluate f or its derivative, the algorithm can be implemented in O(n log2 n log log n + T · 9P log n)
expected time.

Proof: The Lemma follows by applying Theorem 2.8. Indeed, let Cr = Lf (r) be the convex body of
interest. It remains to design a separation oracle for Cr.

Given a query point q ∈ R
2, first compute c = f(q). If c ≤ r, then report that q ∈ Cr. Otherwise,

c > r. In this case, compute some gradient vector v in ∂f(q). Using the vector v, we can obtain a line
l tangent to the boundary of Lf (c) at q. As Lf (r) ⊆ Lf (c), l is a separating line for q and Cr, as
desired.1 As such, the number of separation oracle queries needed to determine Cr ∩ P is bounded by
O(9P log n) by Theorem 2.8.

The implementation details of Theorem 2.8 are given in Lemma 2.9.

The algorithm. Let α = minp∈P f(p). For a given number r ≥ 0, set Pr = Lf (r) ∩ P . We develop a
randomized algorithm to compute α.

Set P0 = P . In the ith iteration, the algorithm chooses a random point pi ∈ Pi−1 and computes
ri = f(pi). Next, we determine Pri using Lemma 5.3. In doing so, we modify the separation oracle
of Lemma 5.3 to store the collection of queries Si ⊆ P which satisfy f(s) = ri for all s ∈ Si. We set
Pi+1 = Pri \ Si. Observe that all points p ∈ Pi+1 have f(p) < ri. The algorithm continues in this
fashion until we reach an iteration j in which |Pj+1| ≤ 1. If Pj+1 = {q} for some q ∈ P , output q as the
desired point minimizing the geometric median. Otherwise Pj+1 = ∅, implying that Prj = Sj, and the
algorithm outputs any point in the set Sj.

Analysis. We analyze the running time of the algorithm. To do so, we argue that the algorithm
invokes the algorithm in Lemma 5.3 only a logarithmic number of times.

Lemma 5.4. In expectation, the above algorithm terminates after O(log n) iterations.

Proof: Let V = {f(p) | p ∈ P} and N = |V |. For a number r, define Vr = {i ∈ V | i ≤ r}. Notice
that we can reinterpret the algorithm described above as the following random process. Initially set
r0 = maxi∈V i. In the ith iteration, choose a random number ri ∈ Vri−1

. This process continues until we
reach an iteration j in which

∣

∣Vrj

∣

∣ ≤ 1.

1Note that q lies on l. If we require that q lies in the interior of one of the halfspaces bounded by l, we can shift l

infinitesimally to properly separate q and Cr.

21

We can assume without loss of generality that V = {1, 2, . . . , N}. For an integer i ≤ N , let T (i) be
the expected number of iterations needed for the random process to terminate on the set {1, . . . , i}. We
have that T (i) = 1 + 1

i−1

∑i−1
j=1 T (i − j), with T (1) = 0. This recurrence solves to T (i) = O(log i). As

such, the algorithm repeats this random process O(logN) = O(log n) times in expectation.

Lemma 5.5. Let P be a set of n points in R
2 and let f : R2 → R be a convex function. The point in P

minimizing f can be computed using O(9P log2 n) evaluations to f or its derivative. The bound on the
number of evaluations holds in expectation. If T is the time needed to evaluate f or its derivative, the
algorithm can be implemented in O(n log3 n log log n+ T · 9P log2 n) expected time.

Proof: The result follows by combining Lemma 5.3 and Lemma 5.4.

5.1. The discrete geometric median

Let P be a set of n points in R
d. For all x ∈ R

d, define the function f(x) =
∑

q∈P−x ‖x − q‖2. The
discrete geometric median is defined as the point in P minimizing the quantity minp∈P f(p).

Note that f is convex, as it is the sum of convex functions. Furthermore, given a point p, we can
compute f(p) and the derivative of f at p in O(n) time. As such, by Lemma 5.5, we obtain the following.

Lemma 5.6. Let P be a set of points in R
2. Then the discrete geometric median of P can be computed

in O(n log2 n · (log n log log n+ 9P)) expected time.

Remark 5.7. For a set of n points P chosen uniformly at random from the unit square, it is known that
in expectation 9P = Θ(n1/3) [AB09]. As such, the discrete geometric median for such a random set P
can be computed in O(n4/3 log2 n) expected time.

References

[AB09] G. Ambrus and I. Bárány. Longest convex chains . Rand. Struct. & Alg., 35(2): 137–162,
2009.

[Ang87] D. Angluin. Queries and concept learning . Machine Learning, 2(4): 319–342, 1987.

[Bár82] I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3): 141–152,
1982.

[CAL94] D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning .
Machine Learning, 15(2): 201–221, 1994.

[Cha04] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. Proc. 15th
ACM-SIAM Sympos. Discrete Algs. (SODA), 430–436, 2004.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geom-
etry, II . Discrete Comput. Geom., 4: 387–421, 1989.

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries . J.
Approx. Theory, 10(3): 227–236, 1974.

[Fer13] J. Ferrera. An introduction to nonsmooth analysis . Academic Press, 2013.

[GG07] Y. Guo and R. Greiner. Optimistic active-learning using mutual information. Proc. 20th
Int. Joint Conf. on AI (IJCAI), 823–829, 2007.

22

[HJR18] S. Har-Peled, M. Jones, and S. Rahul. An animation of the greedy classification algorithm
in 2D . https://www.youtube.com/watch?v=IZX0VQdIgNA. 2018.

[HKMR16] S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity
search. Discrete Comput. Geom., 56(2): 357–376, 2016.

[HW87] D. Haussler and E. Welzl. ε-nets and simplex range queries . Discrete & Computational
Geometry, 2: 127–151, 1987.

[KLPS86] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles . Discrete Comput. Geom., 1(1): 59–71,
1986.

[Mat02] J. Matoušek. Lectures on discrete geometry . Vol. 212. Grad. Text in Math. Springer, 2002.

[MN90] K. Mehlhorn and S. Näher. Dynamic fractional cascading . Algorithmica, 5(2): 215–241,
1990.

[MW03] J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. Proceedings of the
nineteenth annual symposium on Computational geometry, ACM. 129–135, 2003.

[PASG13] F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity probing
algorithm for metrology . Int. Conf. on Automation Science and Engineering, CASE 2013,
342–349, 2013.

[PS85] F. P. Preparata and M. I. Shamos. Computational geometry - an introduction. Texts and
Monographs in Computer Science. Springer, 1985.

[Rub18] N. Rubin. An improved bound for weak epsilon-nets in the plane. Proc. 59th Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS), 224–235, 2018.

[Set09] B. Settles. Active Learning Literature Survey . Tech. rep. #1648. Computer Science, Univ.
Wisconsin, Madison, Jan. 2009.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Appl., 16: 264–280, 1971.

[Wei07] Random Polytopes, Convex Bodies, and Approximation. Stochastic Geometry: Lectures
given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18,
2004. Ed. by W. Weil. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 77–118.

A. Missing proofs

A.1. Proof of Lemma 2.11

The following is a standard consequence of the Clarkson-Shor [CS89] technique.

Restatement of Lemma 2.11. Let P be a collection of n pseudo-disks, and let V≤k(A) be the set of
all vertices of depth at most k in the arrangement A = A(P). Then |V≤k(A)| = O(nk).

Proof: Let S ⊆ V be a random sample where each pseudo-disk is independently placed into S with
probability 1/k. For each p ∈ V≤k(A), let Ep be the event that p is a vertex in the union U(S) of this
random subset of pseudo-disks. The probability that p is part of the union is at least the probability

23

that both pseudo-disks defining p in A are sampled into S and the remaining k − 2 objects containing
p are not in S. Thus,

Pr[Ep] ≥
1

k2

(

1− 1

k

)k

≥ 1

e2k2
,

since 1 − 1/x ≥ e−2/x for x ≥ 2. If |U(S)| denotes the number of vertices on the boundary of the
union, then linearity of expectations imply E[|U(S)|] ≥ |V≤k(A)| /(e2k2). On the other hand, it is well
known the union complexity of a collection of n pseudo-disks is O(n) [KLPS86]. Therefore, E[|U(S)|] ≤
E[c |S|] ≤ cn/k, for some appropriate constant c. Putting both bounds on E[|U(S)|] together, it follows
that cn/k ≥ |V≤k(A)| /(e2k2) ⇐⇒ |V≤k(A)| = O(nk).

A.2. Proof of Lemma 2.12

The following is a (slightly less) standard consequence of the Clarkson-Shor [CS89] technique.

Restatement of Lemma 2.12. Let P be a collection of n pseudo-disks. For two integers 0 < t ≤ k, a
subset X ⊆ P is a (t, k)-tuple if (i) |X| ≤ t, (ii) ∃p ∈ ∩d∈Xd, and (iii) depth(p,P) ≤ k. Let L(t, k, n)
be the set of all (≤ t, k)-tuples of P. Then |L(t, k, n)| = O(ntkt−1).

Proof: Let R ⊆ P be a random sample, where each pseudo-disk is independently placed into R with
probability 1/k. Consider a specific (t, k)-tuple X, with a witness point p of depth ≤ k. Without loss
of generality, by moving p, one can assume p is a vertex of A(P).

Let EX be the event that p is of depth exactly t in A(R), and X ⊆ R. For EX to occur, all the
objects of X need to be sampled into R, and each of the at most k − t pseudo-disks containing p in its
interior are not in R. Therefore

Pr[EX] ≥
(1− 1/k)depth(p,P)−|X|

k|X|
≥ (1− 1/k)k

kt
≥ 1

e2kt
.

Note, that a vertex of depth ≤ k in A(R) corresponds to at most one such an event happening. We
thus have, by linearity of expectations, that

|L(t, k, n)|
e2kt

≤ E
[

|V≤t(A(R))|
]

= O(tn/k),

by Lemma 2.11.

A.3. Proof of Lemma 4.1

Restatement of Lemma 4.1. Suppose P ∩ C = ∅. Then at any iteration i, the largest independent
set in the visibility graph Gi is at most |Fout|.
Proof: For the body C and point set P , define the set R ⊆ P to be the maximum set of points such
that no two points in R are visible with respect to C. Observe that R corresponds to the maximum
independent set in the visibility graph for P with respect to the body C. We claim |R| ≤ |Fout|. Suppose
that |R| > |Fout|. Given the polygon Fout, for each edge e of Fout consider the line le through e and
let h+

e be the halfspace bounded by le which does not contain C in its interior. Then {h+
e | e ∈ Fout}

covers the space R
2 \ int(C). By the hypothesis, one halfspace h+

e must contain at least two points of
R. But then these two such points are visible with respect to C, contradicting the definition of R.

We know that the size of the largest independent set (with respect to the current inner approximation
Bi) is monotone increasing over the iterations. Hence each independent set can be of size at most
|R| ≤ |Fout|.

24

B. Expected separation price for random points

We first extend the notion of separation price (see Section 3.1) to higher dimensions. For a closed convex
d-dimensional polytope F , we let fk(F) denote the number of k-dimensional faces of F .

Definition B.1 (Separation price in higher dimensions). Let P be a set of points and C be a convex body
in R

d. The inner fence Fin is a closed convex d-dimensional polytope with the minimum number of
vertices, such that Fin ⊆ C and C ∩ P = Fin ∩ P . Similarly, the outer fence Fout is a closed convex
d-dimensional polytope with the minimum number of facets, such that C ⊆ Fout and C ∩P = Fout ∩P .
The separation price is defined as �(P,C) = f0(Fin) + fd−1(Fout).

By extending the argument of Lemma 3.1 to use Definition B.1, one can prove the following.

Lemma B.2. Given a point set P and a convex body C in R
d, any algorithm that classifies the points

of P in relation to C, must perform at least �(P,C) separation oracle queries.

Informally, for any fixed convex body C and a set of n points P chosen uniformly at random from
the unit cube, the separation price is sublinear (approaching linear as the dimension increases).

Lemma B.3. Let P be a set of n points chosen uniformly at random from the unit cube [0, 1]d, and let
C be a convex body in R

d, with vol(C) ≥ c for some constant c ≤ 1. Then E[�(P,C)] = O(n1−2/(d+1)),
where O hides constants that depend on d and C.

Proof: It is known that for convex bodies C, the expected number of vertices of the convex hull of
P ∩ C is O(n1−2/(d+1)). Indeed, since vol(C) ≥ c, the expected number of points of P which fall
inside C is m = Θ(n) (and these bounds hold with high probability by applying any Chernoff-like
bound). It is known that for m points chosen uniformly at random from C, the expected size of the
convex hull of points inside C is O(m1−2/(d+1)) = O(n1−2/(d+1)) [Wei07]. This readily implies that

E[f0(Fin)] = O(n1−2/(d+1)).
To bound E[fd−1(Fout)], we apply a result of Dudley [Dud74] which states the following. Given a

convex body C and a parameter ε > 0, there exists a convex body D, which is a polytope formed
by the intersection of O(ε−(d−1)/2) halfspaces, such that C ⊆ D ⊆ (1 + ε)C, where (1 + ε)C =
{

p ∈ R
d
∣

∣ ∃q ∈ C : ‖p− q‖ ≤ ε
}

.
We claim that the number of points of P which fall inside D \ C, plus the number of halfspaces

defining D, is an upper bound on the size of the outer fence. Indeed, for each point p which falls in
inside D \ C, let q be its nearest neighbor in C (naturally q lies on ∂C). Let hp be the hyperplane
which is perpendicular to the segment pq and passing through the midpoint of pq. Next, let h+

p be the

halfspace bounded by hp such that C ⊆ h+
p . If H is the collection of O(ε−(d−1)/2) halfspaces defining

D, then it is easy to see that the polytope defined by





⋂

p∈P∩(D\C)

h
+
p





⋂

(

⋂

h+∈H

h
+

)

separates the boundary of C from P \ C (i.e., it is an outer fence). See the figure below.

25

We now bound the size of this inner fence. Since vol(D)− vol(C) ≤ vol((1 + ε)C)− vol(C) ≤ O(ε),
we have that E[|P ∩ (D \ C)|] = O(εn). Combining both inequalities,

E[fd−1(Fout)] ≤ E[|P ∩ (D \ C)|] +O(ε−(d−1)/2) = O

(

εn+
1

ε(d−1)/2

)

.

Choose ε = 1/n2/(d+1) to balance both terms, so that E[fd−1(Fout)] = O(n1−2/(d+1)).

The next Lemma shows that the bound of Lemma B.3 is tight in the worst case.

Lemma B.4. Let P be a set of n points chosen uniformly at random from the hypercube [−2, 2]d, and
let C be a unit radius ball centered at the origin. Then E[�(P,C)] ≥ E[f0(Fin)] = Ω(n1−2/(d+1)), where
Ω hides constants depending on d.

Proof: For a parameter δ to be chosen, let Q ⊆ ∂C be a maximal set of points such that:
(i) for any p ∈ ∂C, there is a point q ∈ Q such that ‖p− q‖ ≤ δ, and
(ii) for any two points p, q ∈ Q, ‖p− q‖ ≥ δ.

Note that |Q| = Ω(1/δd−1). For each p ∈ Q, we let γp be the spherical cap which is “centered” at p (in
the sense that the center of the base of γp, p, and the origin are collinear) and has base radius 2δ. Let
Γ = {γp | p ∈ Q}. By construction, the caps of Γ cover the surface of C.

By setting δ = 1/n1/(d+1), we claim that for each cap γ ∈ Γ, in expectation Ω(1) points of P fall
inside γ. This implies that there must be a vertex of the inner fence inside γ, and this holds for all caps
in Γ. As such, the size of the inner fence is at least |Q| = Ω(1/δd−1) = Ω(n1−2/(d+1)).

2δ

γ h

t

θ
1

To prove the claim, for all γ ∈ Γ, we show that vol(γ) = Ω(1/n), and hence E[|P ∩ γ|] = Ω(1).
By construction, the cap has a polar angle of θ = Ω(δ). Indeed, we have that θ ≥ sin(θ) = 2δ for
θ ∈ [0, π/2] (which holds when n is sufficiently large). Let t denote the distance from the origin to the
center of the base of γ. Then the height h of the spherical cap is h = 1− t = 1− cos(θ) ≥ θ2/6 = Ω(δ2)
(using the inequality cos(x) ≤ 1 − x2/6). Since the volume of the base of γ is Ω(δd−1), we have that
vol(γ) = Ω(hδd−1) = Ω(δd+1) = Ω(1/n), as required.

26

