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Abstract. In this article, we investigate the existence of positive solutions of a boundary
value problem for a system of fractional differential equations. The resilience of a
fractional compartment system is also studied to demonstrate the application of the
result.
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1 Introduction

In this paper, we consider the boundary value problem (BVP) consisting of a system of n
fractional order compartment models

ul +aiD8‘3rui = fi(uy ..., up,t), 0<t<l, (1.1)
and the boundary conditions (BCs)
u,'(O) = biui(l), i= 1,...,71, (12)

where 0 < o; < 1 and Dg;ui denotes the &;-th left Riemann-Liouville fractional derivative of
u; defined by

(PR 0 = gy y 0= "t

provided the right-hand side exists with I' being the Gamma function. We further assume
that foranyi=1,...,n,

(H1) a; > 0,b; >0, f; € C(R" x [0,1]), and f;(0,...,0,t) Z 0 on [0,1].
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Fractional differential equations have been an active research area for decades and at-
tracted extensive attention from scholars in both applied and theoretic fields. Due to the
superior capability of capturing long term memory and/or long range interaction, fractional
models have been successfully developed to investigate problems on fractal porous media,
social media networks, epidemiology, finance, control, etc. Those models were further gener-
alized and studied both analytically and numerically. The reader is referred to [1-11,13-16]
and references therein for some recent advances.

This paper is mainly motivated by the study of a fractional compartment system for a bike
share system. In [7], the station inventory, i.e., the number of bikes at a station, is modeled by

v =q;(t) — wi(t)y; — @,’(t)ci_ﬁiDé;ﬁ" (g;) , t>0,i=1,...,n (1.3)
1

The resilience of station inventory, i.e., the capability that the station inventory will restore
to certain level without extra interference, was further studied in [10, 16] by converting the
resilience of Eq. (1.3) to a special case of BVP (1.1), (1.2) with n = 1 (the scalar case). Intuitively,
it is more sensible to investigate BVP (1.1), (1.2) with n > 1 as the interactions among multiple
stations are inevitable. From the practical perspective, we are particularly interested in finding
conditions that guarantee the existence of positive solutions of BVP (1.1), (1.2). However, the
extension from scalar to system is not trivial and it will require new auxiliary results to study
the existence of positive solutions of the resulting system.

In this paper, a framework consisting of an appropriate Banach space and the associated
operator will be proposed so that the fixed point theory can be applied to study the existence
of positive solutions of BVP (1.1), (1.2). This framework will also be applicable to other fixed
point theorems. Our result will be further applied to establish the sufficient conditions for the
resilience of a fractional bike share inventory model. These conditions will provide guidance
for the development of operational policy. Therefore, our work will make contributions in
both theoretic and application aspects.

The paper is organized as follows: After this introduction, the main theoretic result and
its proof will be presented in Section 2. The resilience of a bike share model will then be
considered in Section 3 to demonstrate the application of our result.

2 Main results

We first introduce some needed notations and definitions. For any x = (x1,...,%,) € R", let
[x[1 = ity [xi] and

Ki={xeR": |[x|1 <r, x;>0,i=1,...,n}. (2.1)

For any u = (u1,...,u,) € IT[L,C[0,1], let [[ul| = max,jo iy |ui(t)[- By a solution of BVP
(1.1), (1.2), we mean a vector-valued function u € IT' ;C[0,1] that satisfies (1.1) and (1.2).
Furthermore, u is said to be a positive solution of BVP (1.1), (1.2) if u;(t) > 0,i=1,...,n, and
[[ul[ > 0.

Let E,(t) be the Mittag-Leffler function defined by

Ea() =), I’(noi—i—l)

n=0
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and A;(t) be defined by
Ai(t) = Ep_g (—a;t' =), i=1,...,n. (2.2)
Throughout this paper, we assume

(H2) biAi(1) <1,i=1,...,n

Define
= biNi(t)  biNi(E)Ai(1 —t)
&= mex {1 bAm ! 22
and
. At AN — 1) } |
G; = d , , =1,...,n. 2.4
G fé}éﬂ‘}{l—bim(n 1 bA() 1 " @4

Then we have the following result.

Theorem 2.1. Let K, and G;, i = 1,...,n, be defined in (2.1) and (2.3), respectively. Assume that
(H1) and (H2) hold and that there exist r > 0 and y; > 0,1 =1,...,n, such that

(@) Yy Gy < r;and
(b) forany t € [0,1] and x € K;, 0 < fi(x,8) <y, i=1,...,n.

Then BVP (1.1), (1.2) has at least one positive solution u with ||u|| < r.

The following lemma plays an important role in the proof of Theorem 2.1.

Lemma 2.2. Assume (H2) holds. Fori = 1,...,n, let A;, G, G; be defined by (2.2), (2.3), (2.4),
respectively, and

bii(t)Ai(1 —s)

+Ai(t—s), 0<s<t<1,

1—biAi(1)
Gi(t,s) = (2.5)
bl'A,‘(t)Ai(l —S)
< < 1.
1= biA (1) , 0<t<s<1

Then Gj(t,s) is the Green’s function for the scalar BVP

uj +a;Dy’ u; =0, 0<t<l,
u;(0) = bu(1),

and satisfies
0<G <G <G, i=1...,n (2.6)

Proof. Let Ry := [0,00). By [7, Lemma 3.1], for any # € C(R4,R) and i = 1,...,n, the
equation
u; 4+ a;Dy,u; = h(t), t>0
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has a unique solution given by

wlt) = [ Adlt = h(s)ds + m(0)Av(r).

Then BC (1.2) implies

[P bhiAi(1 =)
1;(0) = /0 A s

Hence by (2.5) we have

. t 1 b,‘Ai(l — S)
wi(t) = /O At = s)h(s)ds + ( /0 1_biAi(1)h(s)ds) Ai() 2.7)
1
- / Gi(t, s)h(s)ds.
0
It is notable that when «; € (0,1), we have A’(t) < 0on (0,00), A;(0) = 1, limy_,c0 Aj(t) =0,
and 0 < A;(t) < 1; see for example [12]. Then by (2.5), for any ¢ € [0,1],
9G;
— 0 on (0,t)U(t1)
Hence
Ai(t) biNi(H)Ai(1—t)
— < G < <s<
T—oa) = G S A L 0ssst
bii(H)Ai(1—t) biAi(t)
< G; < ——- <
1-biA(1)  — Gill:s) < 9= biAi(1) sl
Therefore, (2.6) holds. O

Remark 2.3. It is clear that G; defined by (2.5) is discontinuous at t = s. However, by (2.7), u;
is continuous on [0,1] when h € C[0,1],i=1,...,n.

With Lemma 2.2, we are able to construct a needed operator on an appropriate Banach
space. In the sequel, we choose the Banach space X = II? ,C[0,1] with the norm |ju|| =
max;cio1] Lieq |4i(t)]|, where u = (u1(t),...,un(t)) € X. Define an operator T : X — X by

(Tu);(t) = /01 Gi(t,s) fi(ui(s),..., un(s),s)ds, tel01],i=1,...,n, (2.8)

where G; is defined by (2.5). By Lemma 2.2, it is easy to see that u is a solution of BVP (1.1),
(1.2) if and only if u is a fixed point of T.

Proof of Theorem 2.1. First of all, it is obvious that (0,...,0) is not a fixed point of T. By
Remark 2.3, we have T(X) C X. We need to prove that T : X — X is a compact operator. For
any u,v € X, t€[0,1],andi=1,...,n,

1 1
|(Tu);(t) — (Tv);(t)| = '/0 Gi(t,s)fi(ui(s), ..., un(s),s)ds —/0 Gi(t,s)fi(vi(s),...,vn(s),s)ds

< E’srgﬁ)ﬁ lfi(ui(s), ..., un(s),s) — fi(vi(s),...,va(s),s)|.

Hence T is continuous by the continuity of f;, i =1,...,n.
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LetQ={ueX : ||lul| <B}.Foranyu e Q,t€[0,1],andi=1,...,n,

1
[(Tu);(t)| = ‘/0 Gi(t,s)fi(ui(s),..., uu(s),s)ds

< G: : )
<Gi _max 101 0u(s),9)

Hence T is uniformly bounded. For any 0 < t; < t, <1, by (2.7),
[(Tu)i(t1) — (Tu)i(t2)|
1 1
— ‘/0 Gi(tr, s) fi(u1(s), ..., n(s), s)ds —/0 (b2, 8) Fi(u1(5), - ., ttn(s), 8)ds

= ’/tl Ai(ty — ) fi(ui(s), ..., uu(s),s)ds

(o 1—b1/\_i§f1( 1(8),--- U n(S),S)dS> Ai(t)
Atz =) fi(ui(s), ..., un(s),s)ds

)

(1)

< 0 1—b1/\_i fz( () U n(S),S>dS> Ai(tz)
< [ 1ilh =) = Atz = 105, ), ) s
+/2|Ai(t2—5>Hfi(141(5),---,Mn(s),s)\ds

o\,

[ ) ma(s) )l (1)~ ()
S ohax | (Ifi(01(s), - ., oa(s),8)[[Ai(tr = 5) = Ai(t2 —5)|)
+ |t —t2|ve(r2nlsa€>[<oll] |fi(v1(s),-., ou(s),$)]

biNi(1—s)

+ [Ai(t1) — Ai(t2)|  max (1—51\()

ve,s€(0,1]

(@1(5) 09,9 )

Then T is equicontinuous on () since A; is uniformly continuous on [0,1]. By Arzela—Ascoli
Theorem, we can prove T is a compact operator.
Let K, be defined by (2.1) and K C X be defined by

K={ueX: ult)ek, telo1]}

It is easy to see that K is a nonempty, closed, bounded, and convex subset of X. We claim that
T(K) C K.
In fact, by (2.8), forany u € Kandi=1,...,n,

1
[(Tu);(t)| = ‘/0 Gi(t,s)fi(ui(s), ..., uu(s),s)ds

1 _ _
§/ Gifi(ui(s), ..., uu(s),s)ds < Ginids < Gin;.
0 0

Then we have
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So ||Tu|| < r. Moreover, it is easy to see that (Tu);(t) > 0 on [0,1], i = 1,...,n. Hence
T(K) C K.

Therefore by the Schauder Fixed-Point Theorem [17, Theorem 2.A], T has a fixed point
u € K. O

Remark 2.4. It is notable that the Banach space (X, || - ||) and the operator T defined by (2.8)
form a general framework to study the existence of solutions for BVP (1.1), (1.2). Other fixed
point theorems can also be applied to obtain more results on the existence and/or uniqueness
of solution or positive solutions, see for example [4,9,15,17].

3 Resilience of a bike share inventory model

In this section, we consider the resilience of a bike share inventory model involving multiple
stations. We first revisit the inventory model proposed in [7]. Let y;(t) be the inventory at
time t at Station i, i = 1,...,n. Then y; satisfies

yi = ai(t) — wi(t)y; — Oi(t)c; P Dy P (é) , t>0,i=1,...,n (3.1)
Fori=1,...,n,
e g,(t) represents the arrival flux at a station;
* w;(t)y; represents a Markov removal process that is independent of the history;

e Bi € (0,1) is a parameter relating to the bike waiting time distribution at a station; and

. @i(t)ci_ﬁ ’Dé;ﬁ i (%) represents a non-Markov removal process that relates to the bike

waiting time at a station with

O;(t) = exp (— /Otw(s)ds> :

All the terms above are nonnegative. The reader is referred to [7] for the details of the terms.

To reflect the interactions among stations, we will extend Eq. (3.1) by modifying the arrival
flux term gq;. Assume the total number of bikes in the entire bike share system is a constant Y.
Clearly (Y — Y yj) represents the total number of bikes in use at time t. Let p;(y;, t) € [0,1]
be the return rate of in-use bikes to Station 7 at time t with

n

pilyit) 20, Y pi(yit) <1,  t>0,i=1,...,n. (3.2)
i=1

Then the inventory y; satisfies
Y ~pipl-pi (Vi
y;: Y—Zy] pi(yi,t)—wi(t)yi—(ai(t)ci ID(H_ ! (®), t>0,i=1,...,n. (33)
j=1 !
If the inventory will restore at some time 77 > 0, then y; must satisfy
yl(O) Zyi(Tl), i:l,...,n. (34)

Therefore, the resilience problem can be described by BVP (3.3), (3.4).
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Remark 3.1. Since Eq. (3.3) models the rate of changes of y; at Station i, we assume the units
of both p; and w; in (3.3) are 1/[unit of time| so that the units on both sides of the equation
are consistent.

The following result is obtained by applying Theorem 2.1.

Theorem 3.2. Let K, and G; be defined by (2.1) and (2.3), respectively. If for any x = (x1,...,x,) €
Ky and t € [0,1], the return rates p;, i = 1,...,n, satisfy

1 7T1pi(@i(1'1t)x,',t)
; GZ @l(Tlt) — 1/ (3 5)

then BVP (3.3), (3.4) has at least one positive solution y with ||y|| <.

Proof. By an idea similar to [7], i.e., making a change of variables and rescaling [0, ;] to [0, 1],
BVP (3. 3) (3.4) can be converted to BVP (1.1), (1.2) with u;(t) = y;(nit)/O;(nit), & =1 — B;,
a=c; bi ,bi = 0;(1y), and

fi(ul,...,un,t):Tl”f(g:é;lg”i't) <Y—JX;(®j(T1t)uj)>, i=1,...,n.  (36)

Let Ky be defined by (2.1) with » = Y. By (3.2) and (3.6), it is easy to see that for any
x€Kyandi=1,...,n, wehave fj(x,f) > 0 and

T1t =1

Tit)x;, t
(Tlt

T1p1( )Y.

s ) = B2ASODD) (Y— i(@;(nt)x;))
(n)
)

Therefore, all the conditions of Theorem 2.1 are satisfied. The conclusion then follows imme-
diately from Theorem 2.1. O

Remark 3.3. Based on our assumption, the return rates p;, i = 1,...,n, depend on both time
t and current station inventory. Theorem 3.2 shows that it is feasible to manage the station
inventory by adjusting the return rates based on real-time status at each station. Therefore,
new operational policies may be developed based on Theorem 3.2 by monitoring the return
rates so that (3.5) is satisfied all the time.
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