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Abstract—We develop a communication-efficient distributed
learning algorithm that is robust against Byzantine worker
machines. We propose and analyze a distributed gradient-descent
algorithm that performs a simple thresholding based on gradient
norms to mitigate Byzantine failures. We show the (statistical)
error-rate of our algorithm matches that of Yin et al. (2018),
which uses more complicated schemes (coordinate-wise median,
trimmed mean). Furthermore, for communication efficiency, we
consider a generic class of δ-approximate compressors from
Karimireddi et al. (2019) that encompasses sign-based compres-
sors and top-k sparsification. Our algorithm uses compressed
gradients and gradient norms for aggregation and Byzantine
removal respectively. We establish the statistical error rate for
non-convex smooth loss functions. We show that, in certain range
of the compression factor δ, the (order-wise) rate of conver-
gence is not affected by the compression operation. Moreover,
we analyze the compressed gradient descent algorithm with error
feedback (proposed in Karimireddi et al. 2019) in a distributed
setting and in the presence of Byzantine worker machines.
We show that exploiting error feedback improves the statisti-
cal error rate. Finally, we experimentally validate our results
and show good performance in convergence for convex (least-
square regression) and non-convex (neural network training)
problems.

Index Terms—Distributed optimization, communication
efficiency, Byzantine resilience, error feedback.

I. INTRODUCTION

IN MANY real-world applications, the size of training
datasets has grown significantly over the years to the point

that it is becoming crucial to implement learning algorithms
in a distributed fashion. A commonly used distributed learning
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framework is data parallelism, in which large-scale datasets are
distributedovermultipleworkermachines forparallelprocessing
in order to speed up computation. In other applications such
as Federated Learning [3], the data sources are inherently
distributed since the data are stored locally in users’ devices.

In a standard distributed gradient descent framework, a set
of worker machines store the data, perform local computa-
tions, and communicate gradients to the central machine (e.g.,
a parameter server). The central machine processes the results
from workers to update the model parameters. Such distributed
frameworks need to address the following two fundamental
challenges. First, the gains due to parallelization are often
bottlenecked in practice by heavy communication overheads
between workers and the central machine. This is especially
the case for large clusters of worker machines or for mod-
ern deep learning applications using models with millions
of parameters. Moreover, in Federated Learning, communi-
cation from a user device to the central server is directly
tied to the user’s upload bandwidth costs. Second, mes-
sages from workers are susceptible to errors due to hardware
faults or software bugs, stalled computations, data crashes,
and unpredictable communication channels. In scenarios such
as Federated Learning, users may as well be malicious and
act adversarially. The inherent unpredictable (and potentially
adversarial) nature of compute units is typically modeled as
Byzantine failures. Even if a single worker is Byzantine, it can
be fatal to most learning algorithms [4].

Both these challenges, communication efficiency and
Byzantine-robustness, have recently attracted significant
research attention, albeit mostly separately. In particular, sev-
eral recent works have proposed various quantization or
sparsification techniques to reduce the communication over-
head [5], [6], [7], [8], [9], [10], [11], [12]. The goal of these
quantization schemes is to compute an unbiased estimate of
the gradient with bounded second moment in order to achieve
good convergence guarantees. The problem of developing
Byzantine-robust distributed algorithms has been considered
in [1], [13], [14], [15], [16], [17], [18], [19].

A notable exception to considering communication over-
head separately from Byzantine robustness is the recent work
of [20]. In this work, a sign-based compression algorithm
signSGD of [21] is shown to be Byzantine fault-tolerant. The
main idea of signSGD is to communicate the coordinate-wise
signs of the gradient vector to reduce communication and
employ a majority vote during the aggregation to mitigate
the effect of Byzantine units. However, signSGD suffers from
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two major drawbacks. First, sign-based algorithms do not con-
verge in general [2]. In particular, [2, Sec. 3] presents several
convex counter examples where signSGD fails to converge
even though [20, Th. 2] shows convergence guarantee for non-
convex objective under certain assumptions. Second, signSGD
can handle only a limited class of adversaries, namely blind
multiplicative adversaries [20]. Such an adversary manipu-
lates the gradients of the worker machines by multiplying it
(element-wise) with a vector that can scale and randomize the
sign of each coordinate of the gradient. However, the vector
must be chosen before observing the gradient (hence ‘blind’).
In a very recent work [22], authors address the problem of
stochastic and compression noise in the presence of Byzantine
machines and propose BROADCAST, a variance reduction
method with gradient difference compression scheme.

In this work, we develop communication-efficient and
robust learning algorithms that overcome both these draw-
backs.1 Specifically, we consider the following distributed
learning setup. There are m worker machines, each storing n
data points. The data points are generated from some unknown
distribution D. The objective is to learn a parametric model
that minimizes a population loss function F : W → R, where
F is defined as an expectation over D, and W ⊆ R

d denotes
the parameter space. We choose the loss function F to be
non-convex. With the rapid rise of the neural networks, the
study of local minima in non-convex optimization framework
has become imperative [23], [24]. For gradient compression at
workers, we consider the notion of a δ-approximate compres-
sor from [2] that encompasses sign-based compressors like
QSGD [11], �1-QSGD [2] and top-k sparsification [6]. We
assume that 0 ≤ α < 1/2 fraction of the worker machines are
Byzantine. In contrast to blind multiplicative adversaries, we
consider unrestricted adversaries.

Our key idea is to use a simple threshold (on local gra-
dient norms) based Byzantine resilience scheme instead of
robust aggregation methods such as coordinate wise median or
trimmed mean of [1]. We mention that similar ideas are used
in gradient clipping, where gradients with norm more than a
threshold is truncated. This is used in applications like train-
ing neural nets [25] to handle the issue of exploding gradients,
and in differentially private SGD [26], to limit the sensitivity
of the gradients.2

1We compare our algorithm with signSGD in Section VIII.
2Note that although gradient clipping and norm based thresholding have

some similarities, they are not identical. In gradient clipping, although we
scale down (clip) the gradients, we retain them. On the other hand, in norm
based thresholding, we aim to identify the Byzantine machines and remove
them. Note that in our learning framework, we have α fraction of Byzantine
workers, and an estimate of α is known to the learning algorithm. When α is
very close to 0, our learning algorithm does not trim worker machines, and
the effect of all gradients are considered. If we employ gradient clipping in
this regime, depending on the threshold used in the clipping operation, some
gradients may be scaled back. As a result, the convergence rate will suffer.
On the other hand, suppose α is large. In this regime, our algorithm tend to
identify and remove the influence of the Byzantine workers, where gradient
clipping would scale them down, but retain term in the learning process. This
could potentially slow down the learning as the Byzantine machines may send
any arbitrary updates, which are different for the actual gradient norms and
directions. Hence, in both the regimes, the knowledge of α helps our algorithm
to handle the Byzantine workers graciously compared to the gradient clipping
operation.

Our main result is to show that, for a wide range of com-
pression factor δ, the statistical error rate of our proposed
threshold-based scheme is (order-wise) identical to the case
of no compression considered in [1]. In fact, our algorithm
achieves order-wise optimal error-rate in parameters (α, n, m).
Furthermore, to alleviate convergence issues associated with
sign-based compressors, we employ the technique of error-
feedback from [2]. In this setup, the worker machines store
the difference between the actual and compressed gradient and
add it back to the next step so that the correct direction of the
gradient is not forgotten. We show that using error feedback
with our threshold based Byzantine resilience scheme not only
achieves better statistical error rate but also improves the rate
of convergence. We outline our specific contributions in the
following.

Our Contributions: We propose a communication-efficient
and robust distributed gradient descent (GD) algorithm. The
algorithm takes as input the gradients compressed using a
δ-approximate compressor along with the norms3 (of either
compressed or uncompressed gradients), and performs a sim-
ple thresholding operation based on gradient norms to discard
β > α fraction of workers with the largest norm values. We
establish the statistical error rate of the algorithm for arbi-
trary smooth population loss functions as a function of the
number of worker machines m, the number of data points on
each machine n, dimension d, and the compression factor δ. In
particular, we show that our algorithm achieves the following
statistical error rate4 for the regime δ > 4β +4α −8α2 +4α3:

Õ
(

d2
[
α2

n
+ 1 − δ

n
+ 1

mn

])
. (1)

We first note that when δ = 1 (uncompressed), the error rate
is Õ(d2[α2

n + 1
mn ]), which matches [1]. Notice that we use a

simple threshold (on local gradient norms) based Byzantine
resilience scheme in contrast with the coordinate wise median
or trimmed mean of [1]. We note that for a fixed d and the
compression factor δ satisfying δ ≥ 1−α2, the statistical error
rate become Õ(α2

n + 1
mn ), which is order-wise identical to the

case of no compression [1]. In other words, in this parameter
regime, the compression term does not contribute (order-wise)
to the statistical error. Moreover, it is shown in [1] that, for
strongly-convex loss functions and a fixed d, no algorithm
can achieve an error lower than �̃(α2

n + 1
mn ), implying that

our algorithm is order-wise optimal in terms of the statistical
error rate in the parameters (α, n, m).

Furthermore, we strengthen our distributed learning algo-
rithm by using error feedback to correct the direction of
the local gradient. We show (both theoretically and via
experiments) that using error-feedback with a δ-approximate
compressor indeed speeds up the convergence rate and attains
better (statistical) error rate. Under the assumption that the
gradient norm of the local loss function is upper-bounded by

3We can handle any convex norm.
4Throughout the paper O(·) hides multiplicative constants, while Õ(·)

further hides logarithmic factors.
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σ , we obtain the following (statistical) error rate:

Õ
(

d2
[
α2

n
+ (1 − δ)σ 2

d2 δ
+ 1

mn

])

provided a similar (δ, α) trade-off.5 We note that in the no-
compression setting (δ = 1), we recover the Õ(α2

n + 1
mn )

rate. In experiments (Section VIII), we see that adding error
feedback indeed improves the performance of our algorithm.

We experimentally evaluate our algorithm for convex and
non-convex losses. For the convex case, we choose the lin-
ear regression problem, and for the non-convex case, we train
a ReLU activated feed-forward fully connected neural net.
We compare our algorithm with the non-Byzantine case and
signSGD with majority vote, and observe that our algorithm
converges faster using the standard MNIST dataset.

A major technical challenge of this paper is to handle com-
pression and the Byzantine behavior of the worker machines
simultaneously. We build up on the techniques of [1] to control
the Byzantine machines. In particular, using certain distribu-
tional assumption on the partial derivative of the loss function
and exploiting uniform bounds via careful covering arguments,
we show that the local gradient on a non-Byzantine worker
machine is close to the gradient of the population loss function.

Note that in some settings, our results may not have an
optimal dependence on dimension d. This is due to the
norm-based Byzantine removal schemes. Obtaining optimal
dependence on d is an interesting future direction.

Organization: We describe the problem formulation
in Section II, and give a brief overview of δ-
compressors in Section III. Then, we present our proposed
algorithm in Section IV. We analyze the algorithm, first, for a
restricted (as described next) adversarial model in Section V,
and in the subsequent section, remove this restriction. In
Section V, we restrict our attention to an adversarial model in
which Byzantine workers can provide arbitrary values as an
input to the compression algorithm, but they correctly imple-
ment the same compression scheme as mandated. In Section VI,
we remove this restriction on the Byzantine machines. As a
consequence, we observe (in Theorem 2) that the modified algo-
rithm works under a stricter assumption, and performs slightly
worse than the one in restricted adversary setting. In Section VII,
we strengthen our algorithm by including error-feedback at
worker machines, and provide statistical guarantees for non-
convex smooth loss functions. We show that error-feedback
indeed improves the performance of our optimization algorithm
in the presence of arbitrary adversaries.

A. Related Work

1) Gradient Compression: The foundation of gradi-
ent quantization was laid in [27], [28]. In the work
of [9], [10], [11] each co-ordinate of the gradient vector is
represented with a small number of bits. Using this, an unbi-
ased estimate of the gradient is computed. In these works,
the communication cost is �(

√
d) bits. In [8], a quantiza-

tion scheme was proposed for distributed mean estimation.
The tradeoff between communication and accuracy is studied

5See Theorem 3 for details.

in [29]. Variance reduction in communication efficient stochas-
tic distributed learning has been studied in [30]. Sparsification
techniques are also used instead of quantization to reduce
communication cost. Gradient sparsification has beed studied
in [5], [6], [7] with provable guarantees. The main idea is
to communicate top components of the d-dimensional local
gradient to get good estimate of the true global gradient.

2) Byzantine Robust Optimization: In the distributed learn-
ing context, a generic framework of one shot median based
robust learning has been proposed in [15]. In [16] the issue
of Byzantine failure is tackled by grouping the servers in
batches and computing the median of batched servers. Later
in [1], [17], co-ordinate wise median, trimmed mean and
iterative filtering based algorithm have been proposed and
optimal statistical error rate is obtained. Also, [31], [32]
considers adversaries may steer convergence to bad local
minimizers. In this work, we do not assume such adversaries.

Gradient compression and Byzantine robust optimization
have simultaneously been addressed in a recent paper [20].
Here, the authors use signSGD as compressor and majority
voting as robust aggregator. As explained in [2], signSGD can
run into convergence issues. Also, [20] can handle a restricted
class of adversaries that are multiplicative (i.e., multiply each
coordinate of gradient by arbitrary scalar) and blind (i.e., deter-
mine how to corrupt the gradient before observing the true
gradient). In this paper, for compression, we use a generic
δ approximate compressor. Also, we can handle arbitrary
Byzantine worker machines.

Very recently, [2] uses error-feedback to remove some of
the issues of sign based compression schemes. In this work,
we extend the framework to a distributed setting and prove
theoretical guarantees in the presence of Byzantine worker
machines.

3) Notation: Throughout the paper, we assume
C, C1, C2, . . . , c, c1, . . . as positive universal constants,
the value of which may differ from instance to instance. [r]
denotes the set of natural numbers {1, 2, . . . , r}. Also, ‖.‖
denotes the �2 norm of a vector and the operator norm of a
matrix unless otherwise specified.

II. PROBLEM FORMULATION

In this section, we formally set up the problem. We con-
sider a standard statistical problem of risk minimization. In a
distributed setting, suppose we have one central and m worker
nodes and the worker nodes communicate to the central node.
Each worker node contains n data points. We assume that the
mn data points are sampled independently from some unknown
distribution D. Also, let f (w, z) be the non-convex loss func-
tion of a parameter vector w ∈ W ⊆ R

d corresponding to data
point z, where W is the parameter space. Hence, the popula-
tion loss function is F(w) = Ez∼D[f (w, z)]. Our goal is to
obtain the following:

w∗ = argmin
w∈W

F(w),

where we assume W to be a convex and compact subset of Rd

with diameter D. In other words, we have ‖w1 − w2‖ ≤ D for
all w1, w2 ∈ W . Each worker node is associated with a local
loss defined as Fi(w) = 1

n

∑n
j=1 f (w, zi,j), where zi,j denotes
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the j-th data point in the i-th machine. This is precisely the
empirical risk function of the i-th worker node.

We assume a setup where worker i compresses the local
gradient and sends to the central machine. The central machine
aggregates the compressed gradients, takes a gradient step to
update the model and broadcasts the updated model to be used
in the subsequent iteration. Furthermore, we assume that α

fraction of the total workers nodes are Byzantine, for some
α < 1/2. Byzantine workers can send any arbitrary values
to the central machine. In addition, Byzantine workers may
completely know the learning algorithm and are allowed to
collude with each other.

Next, we define a few (standard) quantities that will be
required in our analysis.

Definition 1 (Sub-Exponential Random Variable): A zero
mean random variable Y is called v-sub-exponential if
E[eλY ] ≤ e

1
2 λ2v2

, for all |λ| ≤ 1
v .

Definition 2 (Smoothness): A function h(.) is LF-smooth if
h(w) ≤ h(w′) + 〈∇h(w′), w − w′〉 + LF

2 ‖w − w′‖2 ∀ w, w′.
Definition 3 (Lipschitz): A function h(.) is L-Lipschitz if

‖h(w) − h(w′)‖ ≤ L‖w − w′‖ ∀ w, w′.

III. COMPRESSION AT WORKER MACHINES

In this section, we consider a generic class of compressors
from [6] and [2] as described in the following.

Definition 4 (δ-Approximate Compressor): An operator
Q(.) : Rd → R

d is defined as δ-approximate compressor on
a set S ⊆ R

d if, ∀ x ∈ S ,

‖Q(x) − x‖2 ≤ (1 − δ)‖x‖2,

where δ ∈ (0, 1] is the compression factor.
Furthermore, a randomized operator Q(.) is δ-approximate

compressor on a set S ⊆ R
d if,

E

(
‖Q(x) − x‖2

)
≤ (1 − δ)‖x‖2

holds for all x ∈ S , where the expectation is taken with respect
to the randomness of Q(.). In this paper, for the clarity of
exposition, we consider the deterministic form of the com-
pressor (as in Definition 4). However, the results can be easily
extended for randomized Q(.).

Notice that δ = 1 implies Q(x) = x (no compression). We
list a few examples of δ-approximate compressors (including
a few from [2]) here:

1) topk operator, which selects k coordinates with largest
absolute value; for 1 ≤ k ≤ d, (Q(x))i = (x)π(i) if
i ≤ k, and 0 otherwise, where π is a permutation of
[d] with (|x|)π(i) ≥ (|x|)π(i+1) for i ∈ [d − 1]. This is a
k/d-approximate compressor.

2) k-PCA that uses top k eigenvectors to approximate a
matrix X [9].

3) Quantized SGD (QSGD) [11], where Q(xi) = ‖x‖ ·
sign(xi)·ξi(x), where sign(xi) is the coordinate-wise sign
vector, and ξi(x) is defined as following: let 0 ≤ li ≤ s,
be an integer such that |xi|/‖x‖ ∈ [li/s, (li + 1)/s].
Then, ξi = li/s with probability 1 − |xi|

c‖x‖√d
+ li and

(l + 1)/s otherwise. Reference [11] shows that it is a
1 − min(d/s2,

√
d/s)-approximate compressor.

Algorithm 1 Robust Compressed Gradient Descent
1: Input: Step size γ , Compressor Q(.), q > 1, β < 1. Also

define,

C(x) =
{

{Q(x), ‖x‖q} ∀x ∈ R
d Option I

Q(x) ∀x ∈ R
d Option II

2: Initialize: Initial iterate w0 ∈ W
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine:
– Computes ∇Fi(wt); sends C(∇Fi(wt)) to the cen-

tral machine,
• Byzantine:

– Generates � (arbitrary), and sends C(�) to the
central machine: Option I,

– Sends � to the central machine: Option II,
end for

6: Central Machine:
• Sort the worker machines in a non decreasing order

according to
– Local gradient norm: Option I,
– Compressed local gradient norm: Option II,

• Return the indices of the first 1 − β, fraction of
elements as Ut,

• Update model parameter: wt+1 = wt −
γ

|Ut|
∑

i∈Ut
Q(∇Fi(wt)).

7: end for

4) Quantized SGD with �1 norm [2], Q(x) = ‖x‖1
d sign(x),

which is
‖x‖2

1
d‖x‖2 -approximate compressor. In this paper,

we call this compression scheme as �1-QSGD.
Apart from these examples, several randomized compres-

sors are also discussed in [6]. Also, the signSGD compressor,
Q(x) = sign(x), where sign(x) is the (coordinate-wise) sign
operator, was proposed in [21]. Here the local machines send
a d-dimensional vector containing coordinate-wise sign of the
gradients.

IV. ROBUST COMPRESSED GRADIENT DESCENT

In this section, we describe a communication-efficient
and robust distributed gradient descent algorithm for
δ-approximate compressors. The optimization algorithm we
use is formally given in Algorithm 1. Note that the algorithm
uses a compression scheme Q(.) to reduce communication
cost and a norm based thresholding to remove Byzantine
worker nodes. The idea being norm based thresholding is
quite intuitive. Note that, if the Byzantine worker machines
try to diverge the learning algorithm by increasing the norm
of the local gradients; Algorithm 1 can identify them as out-
liers. Furthermore, when the Byzantine machines behave like
inliers, they can not diverge the learning algorithm since they
are only a few (α < 1/2) in number. It turns out that this
simple approach indeed works.
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As seen in Algorithm 1, robust compressed gradient descent
operates under two different setting, namely Option I and
Option II. Option I and II are analyzed in Sections V and VI
respectively. For Option I, we use a δ-approximate compres-
sor along with the norm information. In particular, the worker
machines send the pair denoted by C(x) = {Q(x), ‖x‖q, }
where6 we have q ≥ 1, to the center machine. C(x) is com-
prised of a scalar (norm of x) and a compressed vector Q(x).
For compressors such as QSGD [11] and �1-QSGD [2], the
quantity Q(.) has the norm information and hence sending the
norm separately is not required.

As seen in Option I of Algorithm 1, worker node i com-
presses the local gradient ∇Fi(.) sends C(∇Fi(.)) to the central
machine. Adversary nodes can send arbitrary C(�) to the cen-
tral machine. The central machine aggregates the gradients,
takes a gradient step and broadcasts the updated model for
next iteration.

For Option I, we restrict to the setting where the Byzantine
worker machines can send arbitrary values to the input of the
compression algorithm, but they adhere to the compression
algorithm. In particular, Byzantine workers can provide arbi-
trary values, � to the input of the compression algorithm, Q(.)

but they correctly implement the same compression algorithm,
i.e., computes Q(�).

We now explain how Algorithm 1 tackles the Byzantine
worker machines. The central machine receives the com-
pressed gradients comprising a scalar ( ‖x‖q, q ≥ 1) and a
quantized vector (Q(x)) and outputs a set of indices U with
|U | = (1−β)m. Here we employ a simple thresholding scheme
on the (local) gradient norm.

Note that, if the Byzantine worker machines try to diverge
the learning algorithm by increasing the norm of the local gra-
dients; Algorithm 1 can identify them as outliers. Furthermore,
when the Byzantine machines behave like inliers, they can
not diverge the learning algorithm since α < 1/2. In the
subsequent sections, we show theoretical justification of this
argument.

With Option II, we remove this restriction on Byzantine
machines at the cost of slightly weakening the convergence
guarantees. This is explained in Section VI. With Option II, the
i-th local machine sends C = {Q(∇Fi(wt)), ‖Q(∇Fi(wt))‖q}
to the central machine, where q ≥ 1. Effectively, the i-
th local machine just sends Q(∇Fi(wt)) since its norm can
be computed at the central machine. Byzantine workers just
send arbitrary (�) vector instead of compressed local gradient.
Note that the Byzantine workers here do not adhere to any
compression rule.

The Byzantine resilience scheme with Option II is similar
to Option I except the fact that the central machine sorts the
worker machines according to the norm of the compressed
gradients rather than the norm of the gradients.

V. DISTRIBUTED LEARNING WITH RESTRICTED

ADVERSARIES

In this section, we analyze the performance of Algorithm 1
with Option I. We restrict to an adversarial model in which

6Throughout the paper, we use q = 2. However, any norm, i.e., q ≥ 1 can
be handled.

Byzantine workers can provide arbitrary values to the input of
the compression algorithm, but they adhere to the compression
rule. Though this adversarial model is restricted, we argue that
it is well-suited for applications wherein compression happens
outside of worker machines. For example, Apache MXNet,
a deep learning framework designed to be distributed on
cloud infrastructures, uses NVIDIA Collective Communication
Library (NCCL) that employs gradient compression (see [33]).
Also, in a Federated Learning setup the compression can be
part of the communication protocol. Furthermore, this can hap-
pen when worker machines are divided into groups, and each
group is associated with a compression unit. As an exam-
ple, cores in a multi-core processor [34] acting as a group of
worker machines with the compression carried out by a sepa-
rate processor, or servers co-located on a rack [35] acting as a
group with the compression carried out by the top-of-the-rack
switch.

A. Main Results

We analyze Algorithm 1 (with Option I) and obtain the rate
of the convergence under non-convex loss functions. We start
with the following assumption.

Assumption 1: For all z, the partial derivative of the loss
function f (., z) with respect to the k-th coordinate (denoted
as ∂kf (., z)) is Lk Lipschitz with respect to the first argument

for each k ∈ [d], and let L̂ =
√∑d

i=1 L2
k . The population loss

function F(.) is LF smooth.
We also make the following assumption on the tail behavior

of the partial derivative of the loss function.
Assumption 2 (Sub-Exponential Gradients): For all k ∈ [d]

and z, the quantity ∂kf (w, z)) is v sub-exponential for all
w ∈ W .

The assumption implies that the moments of the par-
tial derivatives are bounded. We like to emphasize that
the sub-exponential assumption on gradients is fairly
common [1], [14], [36]. For instance, [1, Proposotion 2] gives
a concrete example of coordinate-wise sub-exponential gra-
dients in the context of a regression problem. Furthermore,
in [17], the gradients are assumed to be sub-gaussian, which
is stronger than Assumption 2.

To simplify notation and for the clarity of exposition,
we define the following three quantities which will be used
throughout the paper.

ε1 = v
√

d

(
max

{
d

n
log
(

1 + 2nDL̂d
)
,

×
√

d

n
log
(

1 + 2nDL̂d
)})

+ 1

n
, (2)

ε2 = v
√

d

(
max

{
d

(1 − α)mn
log
(

1 + 2(1 − α)mnDL̂d
)
,

×
√

d

(1 − α)mn
log
(

1 + 2(1 − α)mnDL̂d
)})

,

(3)

ε = 2

(
1 + 1

λ0

)⎡
⎣
(

1 − α

1 − β

)2

ε2
2 +

(√
1 − δ + α + β

1 − β

)2

ε2
1

⎤
⎦.

(4)
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where λ0 is a positive constant. For intuition, one can think of
ε1 = Õ( d√

n
) and ε2 = Õ( d√

mn
) as small problem dependent

quantities. Assuming β = cα for a universal constant c > 1,
we have

ε = Õ
(

d2
[
α2

n
+ 1 − δ

n
+ 1

mn

])
. (5)

Assumption 3 (Size of Parameter Space W): Suppose that
‖∇F(w)‖ ≤ M for all w ∈ W . We assume that W contains
the �2 ball {w:‖w − w0‖ ≤ c[(2 − c0

2 )M + √
ε] F(w0)−F(w∗)

ε
},

where c0 is a constant, δ is the compression factor, w0 is the
initial parameter vector and ε is defined in equation (4).

We use the above assumption to ensure that the iterates of
Algorithm 1 stays in W . We emphasize that this is a standard
assumption on the size of W to control the iterates for non-
convex loss function. Note that, similar assumptions have been
used in prior works [1, Assumption 5], [17]. We point out
that Assumption 3 is used for simplicity and is not a hard
requirement. We show (in the proof of Theorem 1) that the
iterates of Algorithm 1 stay in a bounded set around the initial
iterate w0. Also, note that the dependence of M in the final
statistical rate (implicit, via diameter D) is logarithmic (weak
dependence), as will be seen in Theorem 1. Algorithm 1 for
T iterations with step size γ = 1

LF+λF
yields

We provide the following rate of convergence to a critical
point of the (non-convex) population loss function F(.).

Theorem 1: Suppose Assumptions 1, 2 and 3 hold, and
α ≤ β < 1/2. For sufficiently small constant c, we choose
the step size γ = c

LF
. Then, running Algorithm 1 for

T = C3
LF(F(w0)−F(w∗))

ε
iterations yields

min
t=0,...,T

‖∇F(wt)‖2 ≤ C ε,

with probability greater than or equal to 1 − c1(1−α)md
(1+nL̂D)d −

c2d
(1+(1−α)mnL̂D)d , provided the compression factor satisfies δ >

δ0 + 4α − 9α2 + 4α3, where δ0 = (1 − (1−β)2

1+λ0
) and λ0 is a

(sufficiently small) positive constant.
A few remarks are in order. In the following remarks, we

fix the dimension d, and discuss the dependence of ε on
(α, δ, n, m).

Remark 1 (Rate of Convergence): Algorithm 1 with T
iterations yields

min
t=0,.,T

‖∇F(wt)‖2 ≤ C1LF(F(w0) − F(w∗))
T + 1

+ C2ε

with high probability. We see that Algorithm 1 converges at a
rate of O(1/T), and finally plateaus at an error floor of ε. Note
that the rate of convergence is same as [1]. Hence, even with
compression, the (order-wise) convergence rate is unaffected.

Remark 2: We observe, from the definition of ε that the
price for compression is Õ( 1−δ

n ).
Remark 3: Substituting δ = 1 (no compression) in ε, we get

ε = Õ(α2

n + 1
mn ), which matches the (statistical) rate of [1]. A

simple norm based thresholding operation is computationally
simple and efficient in the high dimensional settings compared
to the coordinate wise median and trimmed mean to achieve
robustness and obtain the same statistical error and iteration
complexity as [1].

Remark 4: When the compression factor δ is large enough,
satisfying δ ≥ 1 − α2, we obtain ε = Õ(α2

n + 1
mn ). In this

regime, the iteration complexity and the final statistical error
of Algorithm 1 is order-wise identical to the setting with no
compression [1]. We emphasize here that a reasonable high
δ is often observed in practical applications like training of
neural nets [2, Fig. 2].

Remark 5 (Optimality): For a distributed mean estimation
problem, [1, Observation 1] implies that any algorithm will
yield an (statistical) error of �(α2

n + d
mn ). Hence, in the regime

where δ ≥ 1 − α2, our error-rate is optimal.
Remark 6: For the convergence of Algorithm 1, we require

δ > δ0 + 4α − 9α2 + 4α3, implying that our analysis will not
work if δ is very close to 0. Note that a very small δ does not
give good accuracy in practical applications [2, Fig. 2]. Also,
note that, from the definition of δ0, we can choose λ0 suffi-
ciently small at the expense of increasing the multiplicative
constant in ε by a factor of 1/λ0. Since the error-rate con-
siders asymptotic in m and n, increasing a constant factor is
insignificant. A sufficiently small λ0 implies δ0 = O(2β), and
hence we require δ > 4α + 2β (ignoring the higher order
dependence).

Remark 7: The requirement δ > 4α + 2β can be seen as a
trade-off between the amount of compression and the fraction
of adversaries in the system. As α increases, the amount of
(tolerable) compression decreases and vice versa.

VI. DISTRIBUTED OPTIMIZATION WITH ARBITRARY

ADVERSARIES

In this section we remove the assumption of restricted adver-
sary (as in Section V) and make the learning algorithm robust
to the adversarial effects of both the computation and com-
pression unit. In particular, here we consider Algorithm 1
with Option II. Hence, the Byzantine machines do not need
to adhere to the mandated compression algorithm.

In Option II, the worker machines send Q(∇Fi(wt)) to the
center machine. The center machine computes its norm, and
discards the top β fraction of the worker machines having
largest norm. Note that it is crucial that the center machine
computes the norm of Q(∇Fi(wt)), instead of asking the
worker machine to send it (similar to Option I). Otherwise,
a Byzantine machine having a large ‖Q(x)‖q can (wrongly)
report a small value of ‖Q(x)‖q, gets selected in the trim-
ming phase and influences (or can potentially diverge) the
optimization algorithm. Hence, the center needs to compute
‖Q(x)‖q to remove such issues.

Although this framework is more general in terms of
Byzantine attacks, however, in this setting, the statistical error-
rate of our proposed algorithm is slightly weaker than that
of Theorem 1. Furthermore, the (δ, α) trade-off is stricter
compared to Theorem 1.

A. Main Results

We continue to assume that the population loss function
F(.) is smooth and non-convex and analyze Algorithm 1 with
Option II. We have the following result. For the clarity of
exposition, we define the following quantity which will be
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used in the results of this section:

ε̃ = 2

(
1 + 1

λ0

)⎛⎝
(

(1 + β)
√

1 − δ + α + β

1 − β

)2

ε2
1

+
(

1 − α

1 − β

)2

ε2
2

⎞
⎠.

Comparing ε̃ with ε, we observe that ε̃ > ε. Also, note that,

ε̃ = Õ
(

d2
[
α2

n
+ 1 − δ

n
+ 1

mn

])
, (6)

which suggests that ε̃ and ε are order-wise similar. We have
the following assumption, which parallels Assumption 3, with
ε replaced by ε̃.

Assumption 4 (Size of parameter space W): Suppose that
‖∇F(w)‖ ≤ M for all w ∈ W . We assume that W contains
the �2 ball {w:‖w − w0‖ ≤ c[(2 − c0

2 )M + √
ε̃] F(w0)−F(w∗)

ε̃
},

where c0 is a constant, δ is the compression factor and ε̃ is
defined in equation (6).

Theorem 2: Suppose Assumptions 1, 2 and 4 hold, and
α ≤ β < 1/2. For sufficiently small constant c, we choose
the step size γ = c

LF
. Then, running Algorithm 1 for

T = C3
LF(F(w0)−F(w∗))

ε̃
iterations yields

min
t=0,...,T

‖∇F(wt)‖2 ≤ C ε̃,

with probability greater than or equal to 1 − c1(1−α)md
(1+nL̂D)d −

c2d
(1+(1−α)mnL̂D)d , provided the compression factor satisfies δ >

δ̃0 + 4α − 8α2 + 4α3, where δ̃0 = (1 − (1−β)2

(1+β)2(1+λ0)
) and λ0

is a (sufficiently small) positive constant.
Remark 8: The above result and their consequences resem-

ble that of Theorem 1. Since ε̃ > ε, the statistical error-rate in
Theorem 2 is strictly worse than that of Theorem 1 (although
order-wise they are same).

Remark 9: Note that the definition of δ0 is different than in
Theorem 1. For a sufficiently small λ0, we see δ̃0 = O(4β),
which implies we require δ > 4β + 4α for the convergence of
Theorem 2. Note that this is a slightly strict requirement com-
pared to Theorem 1. In particular, for a given δ, Algorithm 1
with Option II can tolerate less number of Byzantine machines
compared to Option I.

Remark 10: The result in Theorem 2 is applicable for
arbitrary adversaries, whereas Theorem 1 relies on the adver-
sary being restrictive. Hence, we can view the limitation of
Theorem 2 (such as worse statistical error-rate and stricter
(δ, α) trade-off) as a price of accommodating arbitrary adver-
saries.

VII. BYZANTINE ROBUST DISTRIBUTED LEARNING WITH

ERROR FEEDBACK

We now investigate the role of error feedback [2] in dis-
tributed learning with Byzantine worker machines. We stick
to the formulation of Section I.

In order to address the issues of convergence for sign
based algorithms (like signSGD), [2] proposes a class of

Algorithm 2 Distributed Compressed Gradient Descent With
Error Feedback

1: Input: Step size γ , Compressor Q(.), parameter β(> α).
2: Initialize: Initial iterate w0, ei(0) = 0 ∀ i ∈ [m]
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: sends wt to all worker

for i ∈ [m] do in parallel
5: i-th non-Byzantine worker machine:

• computes pi(wt) = γ∇Fi(wt) + ei(t)
• sends Q(pi(wt)) to the central machine
• computes ei(t + 1) = pi(wt) − Q(pi(wt))

6: Byzantine worker machine:
• sends � to the central machine.

7: At Central machine:
• sorts the worker machines in non-decreasing order

according to ‖Q(pi(wt))‖.
• returns the indices of the first 1 − β fraction of

elements as Ut.
• wt+1 = wt − γ

|Ut|
∑

i∈Ut
Q(pi(wt))

8: end for

optimization algorithms that uses error feedback. In this set-
ting, the worker machine locally stores the error between the
actual local gradient and its compressed counterpart. Using
this as feedback, the worker machine adds this error term to
the compressed gradient in the subsequent iteration. Intuitively,
this accounts for correcting the direction of the local gradient.
The error-feedback has its roots in some of the classical com-
munication system like “delta-sigma” modulator and adaptive
modulator [37].

We analyze the distributed error feedback algorithm in the
presence of Byzantine machines. The algorithm is presented
in Algorithm 2. We observe that here the central machine sorts
the worker machines according to the norm of the compressed
local gradients, and ignore the largest β fraction.

Note that, similar to Section VI, we handle arbitrary
adversaries. In the subsequent section, we show (both theo-
retically and experimentally) that the statistical error rate of
Algorithm 2 is smaller than Algorithm 1.

A. Main Results

In this section we analyze Algorithm 2 and obtain the rate
of the convergence under non-convex smooth loss functions.
Throughout the section, we select γ as the step size and
assume that Algorithm 2 is run for T iterations. We start with
the following assumption.

Assumption 5: For all non-Byzantine worker machine i, the
local loss functions Fi(.) satisfy ‖∇Fi(x)‖2 ≤ σ 2, where x ∈
{wj}T

j=0, and {w0, . . . , wT} are the iterates of Algorithm 2.
Note that several learning problems satisfy the above

condition (with high probability). In Appendix in the sup-
plementary material we consider the canonical problem of
least squares and obtain an expression of σ 2 with high
probability.
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Note that since Fi(.) can be written as loss over data points
of machine i, we observe that the bounded gradient condi-
tion is equivalent to the bounded second moment condition
for SGD, and have featured in several previous works, see,
e.g., [38], [39]. Here, we are using all the data points and
(hence no randomness over the choice of data points) perform
gradient descent instead of SGD. Also, note that Assumption 5
is weaker than the bounded second moment condition since
we do not require ‖∇Fi(x)‖2 to be bounded for all x; just
when x ∈ {wj}T

j=0.
We also require the following assumption on the size of the

parameter space W , which parallels Assumption 3 and 4.
Assumption 6 (Size of Parameter Space W): Suppose that

‖∇F(w)‖ ≤ M for all w ∈ W . We assume that W contains
the �2 ball {w : ‖w − w0‖ ≤ γ r∗T}, where

r∗ = ε2 + M + 6β
(
1 + √

1 − δ
)

(1 − β)

(
ε1 + M +

√
3(1 − δ)

δ
σ

)

+
√

12(1 − δ)

δ
σ,

and (ε1, ε2) are defined in equations (2) and (3) respectively.
Similar to Assumption 3 and 4, we use the above assumption

to ensure that the iterates of Algorithm 2 stays in W , and we
emphasize that this is a standard assumption to control the
iterates for non-convex loss function (see [1], [17]).

To simplify notation and for the clarity of exposition, we
define the following quantities which will be used in the main
results of this section.

�1 = 9
(
1 + √

1 − δ
)2

2c(1 − β)2

[
α2 + β2 + (β − α)2

]

×
(

ε2
1 + 3(1 − δ)

δ
σ 2
)

+ 50

c
ε2

2 , (7)

�2 = L2

2

3(1 − δ)σ 2

cδ
+ 2Lε2

2

c
+
(

1

2
+ L

)
9
(
1 + √

1 − δ
)2

c(1 − β)2

×
[
α2 + β2 + (β − α)2

](
ε2

1 + 3(1 − δ)

δ
σ 2
)

, (8)

�3 =
(

L2

100
+ 25L2

)
3(1 − δ)σ 2

cδ
, (9)

where c is a universal constant.
We show the following rate of convergence to a critical

point of the population loss function F(.).
Theorem 3: Suppose Assumptions 1, 2, 5 and 6 hold, and

α ≤ β < 1/2. Then, running Algorithm 1 for T iterations with
step size γ yields

min
t=0,...,T

‖∇F(wt)‖2 ≤ F(w0) − F∗

cγ (T + 1)
+ �1 + γ�2 + γ 2�3,

with probability greater than or equal to 1 − c1(1−α)md
(1+nL̂D)d −

c2d
(1+(1−α)mnL̂D)d , provided the compression factor satisfies
(1+√

1−δ)2

(1−β)2 [α2 + β2 + (β − α)2] < 0.107. Here �1,�2 and
�3 are defined in equations (7), (8) and (9) respectively.

Remark 11 (Choice of Step Size γ ): Substituting γ =
1√

T+1
, we obtain

min
t=0,...,T

‖∇F(wt)‖2 ≤ F(w0) − F∗

c
√

T + 1
+ �1 + �2√

T + 1
+ �3

T + 1
,

with high probability. Hence, we observe that the quantity
associated with �3 goes down at a considerably faster rate
(O(1/T)) than the other terms and hence can be ignored, when
T is large.

Remark 12: Note that when no Byzantine worker machines
are present, i.e., α = β = 0, we obtain

�1 = 50

c
ε2

2 , �2 = L2

2

3(1 − δ)σ 2

cδ
+ 2Lε2

2

c
,

�3 =
(

L2

100
+ 25L2

)
3(1 − δ)σ 2

cδ
.

Additionally, if δ = �(1) (this is quite common in applica-
tions like training of neural nets, as mentioned earlier), we
obtain �2 = C(L2σ 2 + Lε2

2), and �3 = C1L2. Substituting
ε2 = O( d√

mn
) and for a fixed d, the upper bound in the

above theorem is order-wise identical to that of standard
SGD in a population loss minimization problem under similar
setting [40], [41], [2, Remark 4].

Remark 13 (No Compression Setting): In the setting, where
δ = 1 (no compression), we obtain

�1 = O
[

d2
(

α2

n
+ 1

mn

)]
,

and

�2 = O
[

d2L

(
α2

n
+ 1

mn

)]
,

and �3 = 0. The statistical rate (obtained by making T suf-
ficiently large) of the problem is �1, and this rate matches
exactly to that of [1]. Hence, we could recover the optimal
rate without compression. Furthermore, this rate is optimal in
(α, m, n) as shown in [1].

Remark 14 (Comparison With Algorithm 1): In numeri-
cal experiments (Section VIII), we compare the performance
of Algorithm 2 with the one without error feedback
(Algorithm 1). We keep the experiment setup (ex., learning
rate, compression) identical for both the algorithms, and com-
pare their performance (see Figure 2). We observe that the
convergence of Algorithm 2 with error feedback is faster than
Algorithm 1, which is intuitive since error feedback helps in
correcting the direction of the local gradient.

VIII. EXPERIMENTS

In this section we validate the correctness of our proposed
algorithms for linear regression problem and training ReLU
network. In all the experiments, we choose the following
compression scheme: given any x ∈ R

d, we report C(x) =
{‖x‖1

d , sign(x)} where sign(x) serves as the quantized vec-
tor and ‖x‖1

d is the scaling factor. All the reported results are
averaged over 20 different runs.

First we consider a least square regression problem w∗ =
argminw ‖Aw − b‖2. For the regression problem we gener-
ate matrix A ∈ R

N×d, vector w∗ ∈ R
d by sampling each
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Fig. 1. Comparison of Robust Compressed Gradient Descent with and without thresholding scheme in a regression problem (a,b). The plots show better
convergence with thersholding. Comparison of Robust Compressed Gradient Descent with majority vote based signSGD [20] in regression Problem. The plots
(c,d) show better convergence with thresholding in comparison to the majority vote based robustness of [20].

Fig. 2. Comparison of norm based thresholding with and without error feedback. The plots show that error feedback based scheme offers better convergence.

Fig. 3. Training (cross entropy) loss for MNIST image. Comparison with (a) Uncompressed Trimmed mean [1] (b) majority based signSGD of [20]. In
plot (a) show that Robust Gradient descent matches the convergence of the uncompressed trimmed mean [1]. Plot (b) show a faster convergence compared to
the algorithm of [20].

item independently from standard normal distribution and set
b = Aw∗. Here we choose N = 4000 and consider d = 1000.
We partition the data set equally into m = 200 servers. We
randomly choose αm (= 10, 20) workers to be Byzantine and
apply norm based thresholding operation with parameter βm
(= 12, 22) respectively. We simulate the Byzantine workers by
adding i.i.d N (0, 10Id) entries to the gradient. In our exper-
iments the gradient is the most pertinent information of the
worker server. So we choose to add noise to the gradient to
make it a Byzantine worker. However, later on, we consider
several kinds of attack models. We choose ‖wt − w∗‖ as the
error metric for this problem.

A. Effectiveness of Thresholding

We compare Algorithm 1 with compressed gradient descent
(with vanilla aggregation). Our method is equipped with
Byzantine tolerance steps and the vanilla compressed gra-
dient just computes the average of the compressed gradient
sent by the workers. From Figures 1 (a,b) it is evident that
the application of norm based thresholding scheme provides
better convergence result compared to the compressed gradient
method without it.

B. Comparison With signSGD With Majority Vote

Next, in Figures 1(c,d), we show the comparison of our
method with [20] in the regression setup described above. Our
method shows a better trend in convergence.

C. Error-Feedback With Thresholding Scheme

We demonstrate the effectiveness of Byzantine resilience
with error-feedback scheme as described in Algorithm 2.
We compare our scheme with Algorithm 1 (which does
not use error feedback) in Figure 2. It is evident that with
error-feedback, better convergence is achieved.

D. Feed-Forward Neural net With ReLU Activation

Next, we show the effectiveness of our method in training
a fully connected feed forward neural net. We implement the
neural net in pytorch and use the digit recognition dataset
MNIST [42]. We partition 60, 000 training data into 200
different worker nodes. The neural net is equipped with 1000
node hidden layer with ReLU activation function and we
choose cross-entropy-loss as the loss function. We simulate
the Byzantine workers by adding i.i.d N (0, 10Id) entries to
the gradient. In Figure 3 we compare our robust compressed
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Fig. 4. Training (cross entropy) loss for MNIST image. Different types of
attack (a) labels with deterministic shift (9 − label) (b) random labels. Plots
show thresholding scheme with different type of Byzantine attacks achieve
similar convergence as ‘no Byzantine’ setup.

Fig. 5. Convergence for (a) regression problem (b) training (cross entropy)
loss for MNIST image. Plots show convergence beyond the theoretical bound
on the number of Byzantine machine.

gradient descent scheme with the trimmed mean scheme of [1]
and majority vote based signSGD scheme of [20]. Compared
to the majority vote based scheme, our scheme converges
faster. Further, our method shows as good as performance
of trimmed mean despite the fact the robust scheme of [1]
is an uncompressed scheme and uses a more complicated
aggregation rules.

E. Different Types of Attacks

In the previous paragraph we compared our scheme with
existing scheme with additive Gaussian noise as a form of
Byzantine attack. We also show convergence results with the
following type of attacks, which are quite common [1] in neu-
ral net training with digit recognition dataset [42]. (a) Random
label: the Byzantine worker machines randomly replaces the
labels of the data, and (b) Deterministic Shift: Byzantine
workers in a deterministic manner replace the labels y with
9 − y (0 becomes 9, 9 becomes 0). In Figure 4 we show the
convergence with different numbers of Byzantine workers.

F. Large Number of Byzantine Workers

In Figures 5 and 6, we show the convergence results that
holds beyond the theoretical limit (as shown in Theorem 1
and 2) of the number of Byzantine servers in the regression
problem and neural net training. In Figure 5, for the regression
problem, the Byzantine attack is additive Gaussian noise as
described before and our algorithm is robust up to 40%(α =
0.4) of the workers being Byzantine. While training of the
feed-forward neural network, we apply a deterministic shift
as the Byzantine attack, and the algorithm converges even for
40%(α = 0.4) Byzantine workers.

Fig. 6. Convergence for (a) regression problem (b) training (cross
entropy) loss for MNIST image. Plots show convergence with an negative
Byzantine attack of −ε times the local gradient with high number of Byzantine
machines for ε = 0.9.

Another ‘natural’ Byzantine attack would be when a
Byzantine worker sends −εg where 0 ≤ ε ≤ 1 and g is the
local gradient making the algorithm ‘ascent’ type. We choose
ε = 0.9 and show convergence for the regression problem
for up to 40% Byzantine workers, and for the neural network
training for up to 33% Byzantine workers in Figure 6.

IX. CONCLUSION AND FUTURE WORK

We address the problem of robust distributed optimization
where the worker machines send the compressed gradient to
the central machine. We propose a first order optimization
algorithm, and consider the setting of restricted as well as
arbitrary Byzantine machines. Furthermore, we consider the
setup where error feedback is used to accelerate the learning
process. We provide theoretical guarantees in all these settings
and provide experimental validation under different setup. As
an immediate future work, it might also be interesting to
study a second order distributed optimization algorithm with
compressed gradients and Hessians. In this paper we did not
consider a few significant features in Federated Learning:
(a) data heterogeneity across users and (b) data privacy of
the worker machines. We keep these as our future endeavors.
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