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ABSTRACT: The quantification of pressure fields in the airflow over water waves is fundamental for understanding the

coupling of the atmosphere and the ocean. The relationship between the pressure field and the water surface slope and

velocity are crucial in setting the fluxes of momentum and energy. However, quantifying these fluxes is hampered by

difficulties in measuring pressure fields at the wavy air–water interface. Here we utilize results from laboratory experiments

of wind-driven surface waves. The data consist of particle image velocimetry of the airflow combined with laser-induced

fluorescence of the water surface. These data were then used to develop a pressure field reconstruction technique based on

solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of

both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an

independent bulk estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget

is closed to within approximately 5%. In the partitioning of the momentum flux between viscous and pressure drag com-

ponents, we find a greater influence of form drag at high wind speeds and wave slopes. An analysis of the various ap-

proximations and assumptions made in the pressure reconstruction, along with the corresponding sources of error, is also

presented.
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1. Introduction

The vast majority of the mechanical energy exchange be-

tween the atmosphere and ocean occurs through the ocean

surface wave field (Wunsch and Ferrari 2004). Winds blowing

over the surface of the ocean generate surface gravity waves,

and a host of processes arising from the wavy surface then

modify the exchanges of momentum, energy, and gases in the

near-surface boundary layer between ocean and atmosphere.

The alterations in these fluxes due to surface waves are known

to have important implications for the climate system (Cavaleri

et al. 2012), as well as in weather prediction (Zhang et al. 2006)

and ocean circulation (Ardhuin et al. 2004).

A principal barrier to understanding and quantifying the

exchange of momentum and energy at the air–water inter-

face is the extreme difficulty in performing measurements

near a moving wavy interface. To quantify atmosphere–

ocean fluxes it is necessary to measure velocities, pressure,

and interface displacements simultaneously, at distances

very close to the moving air–water interface, and over scales

small enough to resolve wave phases. While a number of

coupled physical processes influence the air–water mo-

mentum budget (e.g., wave breaking, airflow separation),

momentum is directly exchanged between the air and the

water either through surface viscous stresses or pressure-

induced form drag (e.g., Phillips 1977). The relative im-

portance of each of these viscous and form drag components

has been of interest for the past decades. Quantifying their

respective roles in the generation of ocean surface currents

and waves still remains a major challenge (Sullivan and

McWilliams 2010; Grare et al. 2013; Buckley et al. 2020).

Pressure measurements within the air-side boundary layer

over wind waves are sparse (e.g., Elliott 1972; Dobson 1971;

Hasselmann and Bösenberg 1991; Donelan et al. 2006), with

the most recent ones reported by Savelyev et al. (2011) and

Grare et al. (2013) from experiments in wind-wave flumes.

Particle image velocimetry (PIV) measurements within the

water-side (Banner and Peirson 1998) and air-side (Veron et al.

2007; Buckley et al. 2020) viscous sublayers of wind-generated

waves have given reliable estimates of viscous drag for labo-

ratory wind waves. Mean form drag contributions were esti-

mated using the law-of-the-wall, and it was suggested that the

relative contribution of viscous drag to the air–sea momentum

flux dominates over smooth nascent waves, but decreases with

increasing wave slope (Buckley et al. 2020). However, to the

best of our knowledge, both quantities have never been

measured simultaneously. While significant advances have

been recently made using both direct numerical simulations

(DNS) and large-eddy simulations (LES) of wind-wave dy-

namics (see e.g., Husain et al. 2019, with matching airflow PIV

measurements), modeling efforts suffer from a number of

drawbacks. Some of these limitations include either neglect-

ing or not resolving viscous effects at the surface, incomplete
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air–water coupling physics, and restrictions to unrealistic

Reynolds numbers and wave fields (typically monochro-

matic) (e.g., Sullivan et al. 2000, 2018; Liu et al. 2010; Hao and

Shen 2019).

In the present study we use laboratory measurements to si-

multaneously estimate both the viscous tangential stress and

the pressure-induced form stress. This is done by using two-

dimensional velocity fields measured over wind-generated

waves through PIV, together with interface detection from

laser-induced fluorescence (LIF). This is necessarily done with

an extremely high spatial resolution that is capable of resolving

the viscous boundary layer along the air–water interface

(Buckley and Veron 2016, 2017). The velocity measurements

are then used to estimate an approximate reconstruction of the

pressure field based on a Poisson-solver approach (Murai et al.

2007; Van Oudheusden 2013). To our knowledge, the results

reported herein are the first spatially resolved pressure fields

directly measured above wind-generated waves. The assump-

tions involved in this method, such as approximate boundary

conditions and the limitations of two-dimensional velocity in-

puts, are systematically tested. We find that the form stress

calculated from the reconstructed pressure fields results in a

momentum budget that is closed to within 5%. The results

allow for a partitioning of momentum fluxes between viscous

and form stresses, and demonstrate the increasing importance

of form stress at high wind speeds and wave slopes. The

accurate reconstruction of pressure fields also opens new

possibilities for examination of the physical mechanisms of

wind–wave coupling.

The paper is organized as follows. After a brief description

of the experimental setup, we describe the methods used in

reconstructing the pressure field. Then results of the pressure

field reconstruction are presented including a comparison of

viscous and form drag stresses for different wind speeds. In

the discussion section we test the various assumptions made

in our pressure reconstruction method utilizing a large-eddy

simulation of turbulent airflow over fixed sinusoidal wave

forms. Conclusions are summarized in the final section.

2. Laboratory experiments

a. Setup

The laboratory measurements used in this paper were ob-

tained at University of Delaware’s large wind-wave–current

facility. Since the experiments are described in detail in

Buckley and Veron (2017), we will offer here only a very brief

description. A multilaser, multicamera, optical wind-wave

measurement system was placed at a fetch of 22.7m, in the

wind-wave–current tank that is 42m long, 1m wide, and 1.25m

high. The mean water depth was 0.70m, with an airflow space

of 0.55m. A sketch of the experimental setup is presented in

Fig. 1, along with examples of instantaneous airflow velocity

fields obtained by PIV, embedded in larger LIF snapshots of

the wave field.

In this paper, measurements from three different wind/wave

conditions are used. Winds with mean 10-m equivalent speeds

of U10 5 2.2, 5.0, and 9.4m s21 were generated by the re-

circulating wind tunnel. Wind waves were observed for all

three wind speeds and all waves studied here were wind-

generated (no paddle generated waves). The different experi-

mental conditions are summarized in Table 1.

Despite the limited domain of the laboratory channel, the

mean airflow characteristics within the first ;10–20 cm above

the surface, as well as the statistics of turbulent momentum

flux, are in good agreement with past in situ observations and

LES simulations of steady state conditions (see Fig. 11 of

Buckley and Veron 2016).

b. Data processing and phase averages

As mentioned above, the waves generated in these labora-

tory experiments are generated by the wind and are therefore

FIG. 1. Sketch of the experimental setup, placed at a fetch (i.e., distance down-wind from the

onset of wind-wave growth) of 22.7mwithinUniversity of Delaware’s large wind-wave-current

facility, along with examples of composite instantaneous two-dimensional LIF–PIV data

products, for the three wind speeds examined here (U10 5 2.2, 5.0, and 9.4m s21).
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not monochromatic waves. However, at short laboratory fetches,

the wave field is relatively narrow banded. Furthermore, it is

generally useful to examine the data and their variations relative

to the phase of an equivalent idealized periodic water wave. To do

so, we average our data relative to the local wave phase and height

above the water surface (see Fig. 2). Throughout the rest of the

paper, we refer to such an average as the phase average. In this

section, we describe our method of phase averaging the data.

The details of the wave phase averaging procedure are as

follows: first and foremost, phase averaging requires a method

of reliably determining wave phase along each part of the water

surface. This is done using the Hilbert transform of the water

surface profile, identical to the phase detection in Buckley and

Veron (2017). Figure 2 shows a typical wave profile in a PIV

image.We begin the phase averaging process by defining a new

coordinate system (f, z) in the region above the wave,

f(x, z)5f(x) and z(x, z)5 z2h(x) . (1)

In this coordinate system, thef coordinate represents the wave

phase, and h the water surface elevation. A wave phase of 0

denotes the wave crest and a wave phase of 6p denotes the

wave trough (see abscissa in Fig. 2). The new vertical coordi-

nate z measures distance above the water surface.

To obtain phase-averaged fields, we bin data into 144 uni-

formly sized phase bins covering the interval2p , f# p. We

average data from all PIV snapshots that are within the same

f and z bin. The resultant phase average has the same vertical

resolution as the original data but only 144 grid points in the

horizontal direction (one per phase bin). The phase average of

an arbitrary field J (which can be a PIV velocity field or any

other derived product such as the vorticity) is denoted by hJi.

3. Pressure reconstruction method

For incompressible flows in fluids of homogeneous density,

the pressure is related to gradients in velocity through the

following pressure Poisson equation

2=2p5 f with f [ r= � (u � =)u . (2)

Here, p is the deviation of pressure from its mean hydrostatic

level; r is the air density; and u5 (u, y,w) is the velocity vector

in the standard Cartesian (x, y, z) coordinate system. We use

the [ symbol to denote definitions. Equation (2) is derived by

taking the divergence of the Navier–Stokes equations. It has been

shown to yield reliable pressure fields from PIV data in engi-

neering applications (Murai et al. 2007; Van Oudheusden 2013).

The quantity f will be referred to as the forcing function of

the system. It is proportional to the second-order invariant

of the velocity gradient tensor, and because it is independent of

the frame of reference, it can be meaningfully interpreted. In

fact, f can be split into two different contributions, strain and

vorticity (or enstrophy):

f [ r= � (u � =)u5 r

�
S :S2

1

2
q � q

�
, (3)

where S[ (1/2)[=u1 (=u)T] is the strain tensor, and q[ =3 u

the vorticity. This comes from the fact that = � (u � =)u 5
(u � =)(= � u)1 =u:=u, with the first term vanishing, and the second

rewritten as S :S2 (1/2)q � q (see Davidson 2015, p. 45). The

strain component is positive since S :S 5 a2 1 b2 1 g2 . 0,

with a, b, g the principal rates of strain. Also, the enstrophy

component is always negative, i.e.,2(1/2)q � q, 0. Therefore, f

gives a local measure of the relative importance of strain and

vorticity. If f , 0, the flow is dominated by vorticity (i.e., has

high enstrophy), whereas if f . 0 it is dominated by strain.

Equivalently, regions of high vorticity (strain) lead to =2p . 0

(=2p , 0) such that there is forcing toward a local minimum

(maximum) in the pressure field.

Due to the limitations of the PIV data in measuring only

two-dimensional, x–z planar flows, it is not possible to use the

full f to force the pressure Poisson equation. We will therefore

proceed by tentatively assuming that the deviations from pla-

narity cancel out over long time averages. This assumption is

discussed in section 5, in which turbulence-resolving numerical

simulations are used to demonstrate that accurate average

pressure fields and form drag estimates are obtained. Utilizing

only the planar terms, the forcing function simplifies to

TABLE 1. Summary of experimental conditions. Each experi-

ment is characterized by a friction velocity u*, and the 10-m ex-

trapolated velocityU10, computed by fitting the logarithmic part of

the averaged PIV velocity profile in the air. Peak wave frequencies

fp were obtained from laser wave gauge frequency spectra. The

phase speed cp andwavenumber kpwere derived by applying linear

wave theory to fp. The wave amplitude ap was obtained from root-

mean-square amplitude ap 5
ffiffiffi
2

p
arms computed from the wave

gauge derived water surface elevation time series.

U10

(m s21)

u*
(cm s21)

cp
(m s21)

cp/u*
(—)

ap
(cm)

lp
(m)

apkp
(—)

fp
(Hz)

2.2 7.3 0.47 6.5 0.15 0.14 0.07 3.3

5.0 17 0.62 3.7 0.5 0.25 0.13 2.5

9.4 31 0.78 2.5 1.20 0.39 0.19 2.0 FIG. 2. Plot of the coordinate system used in the analysis. The

green lines indicate a constant phase (f), as detected using the

Hilbert transformmethod. The blue lines indicate lines of constant

z and the black line is the water surface (z 5 0). The red region

exemplifies a bin as used in the phase averaging process, albeit

much bigger than those actually used. All values within the same

bin are averaged together.
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f 522r

�
›u

›x

›w

›z
2
›u

›z

›w

›x

�
. (4)

Alternate forms of f are possible with the same assumptions on

the airflow (see, e.g., Van Oudheusden 2013). These formula-

tions are identical for perfectly two-dimensional flows, but may

lead to slightly different results when deviations from planarity

exist. We have chosen the above formulation because it gives

an unbiased estimate of f when there is random noise in the

velocity gradient data. Once f is determined from the PIV

measurements, the pressure field is readily estimated.

a. Numerical procedure

To solve the pressure Poisson equation (2), we use a finite

difference scheme.On the interior of the domain, at coordinate

indices (i, j),

p
i11, j

2 2p
i, j
1p

i21, j

(Dx)2
1
p
i, j11

2 2p
i, j
1p

i, j21

(Dz)2
52f

i,j
, (5)

where Dx and Dz are the grid spacings in the horizontal (x) and

vertical (z) directions. The finite differences algorithm is im-

plemented on a square grid (with Dx5Dz) coinciding with the

experimental measurements.

The computational domain is rectangular except that the

bottom boundary is taken as the wavy water surface, and is

identical to the PIV measurement domain. Boundary condi-

tions on the bottom water surface are implemented using a

combination of the numerical methods described by Fox

(1944), Noye and Arnold (1990), and Morton and Mayers

(2005). Wave-height measurements, described previously in

Buckley and Veron (2016), are used to determine the position

and slope of the bottom boundary over subgrid scales. The key

results presented in this paper do not change significantly when

simpler boundary approximations involving the discretization

of the bottom water surface are used [see Noye and Arnold

(1990) for a description of the standard method]. Thus, the

results presented here are independent of the interpolation

scheme used at the bottom boundary. The side and top

boundaries are located at the edges of the PIV field.

b. Boundary conditions

For each PIV field, instantaneous pressure fields are com-

puted. At the air–water interface, we use the Neumann con-

dition where

=pj
0
� n52r

Du

Dt

����
0

� n1 rn=2uj
0
� n , (6)

with n the kinematic viscosity, along the air side of the water

surface, denoted by the subscript 0. This condition is derived by

taking the dot product between the unit vector normal to the

water surface, n, pointing into the air, and the Navier–Stokes

equations by evaluating the equations in the limit as the air–

water interface is approached from above.

The acceleration of the water surface [first term on the

right-hand side of Eq. (6)] is computed by decomposing the

surface measurements into spatial Fourier components. We

assume that each individual wave component propagates with

an angular frequency given by the deep water gravity–

capillary wave dispersion relationship

v5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

�
g1

sk2

r
w

�s
. (7)

Here, k is the wavenumber; g is the acceleration due to gravity;

rw is the water density; and s 5 0.074Nm21 is the surface

tension. Note that alterations in this dispersion relation due to

interaction with wind are small, of the order of the ratio of the

air to water densities, and are therefore neglected (e.g., Young

and Wolfe 2014). The acceleration of the water surface is then

computed by calculating and summing accelerations of indi-

vidual wave components using linear wave theory. At every

step throughout the calculation, the surface profiles (dis-

placement, velocity, and acceleration) are smoothed using a

second-order low-pass Butterworth filter with a cutoff wave-

length of 1 cm.

To estimate the spatial velocity gradients in the viscous term

of Eq. (6), the instantaneous velocities measured by PIV were

first fitted with cubic smooth spline shells, and gradients were

subsequently estimated using analytical derivatives of the spline

fits [for additional details, see Buckley and Veron (2017), and

references therein]. Since the wind-wave conditions are within

the transitionally rough regime in all three experiments (with

Reynolds roughness numbers greater than 0.2, see for example

the classification proposed by Kitaigorodskii and Donelan 1984;

Donelan 1998), the near-surface instantaneous velocities fluc-

tuate significantly in the vertical and streamwise directions, and

higher-order spatial derivatives are expected to show significant

variability. However, the spatial resolution of themeasurements

used here is such that the viscous sublayer is fully resolved in all

wind speed conditions. A sensitivity analysis is performed in

section 5 to examine any errors arising in the treatment of the

viscous term [second term on the right-hand side of Eq. (6)].

On the side boundaries, we use the Neumann condition =p �
n 5 0. This boundary condition may lead to a distortion of the

pressure field near the side of the computational domain. As a

result, when doing subsequent pressure calculations, we only

include pressure values on the interior 60% of the domain. The

improvement in doing so is discussed in section 5.

On the top boundary, we use the boundary condition p5 0.

This Dirichlet condition ensures that the Poisson problem is

well posed. Pressure perturbations caused by the waves decay

away from the water surface, making the approximation a

good one for small amplitude waves, and relatively large

domain sizes.

4. Results

a. Instantaneous fields

Figure 3 shows u, w, f, and p for a single PIV field in the

U10 5 5.0m s21 wind speed experiment. The figure highlights

the different steps used to compute pressure fields. First, the

PIV data yields u and w velocity fields. As suggested from the

u field, and confirmed by an analysis of the vorticity field (not

shown; see Buckley et al. 2020), airflow separation occurs
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starting at the wave crest and extends down the entire leeward

face of the wave (Fig. 3a). Figure 3b shows that variability in

the vertical velocity, w, is strongest at the boundary between

the free stream and the separated flow on the leeward side of

the wave crest. The high variability in w indicates that turbu-

lence is strongest in this region, which is characterized by a

separated shear region (Buckley and Veron 2016). Slight

trends of upward (downward) airmotion exist on thewindward

(leeward) side of the wave. In general, wave-coherent veloci-

ties of the surface waves are difficult to distinguish in the in-

stantaneous velocity fields of the airflow, but become apparent

once suitable averaging is performed. For time average wave-

coherent motions, see Buckley and Veron (2019).

Next, we estimate the forcing function f from the PIV ve-

locity fields using (4). As can be seen, f has large variability

over the entire PIV field (Fig. 3c, top). Since f is computed from

spatial gradients in (u,w), it highlights the small-scale turbulent

variability that is present. This variability is strongest on the

leeward side of the wave, reflecting the fact that the flow is

most turbulent in this region. The bottom panel of Fig. 3c

shows f vertically integrated over the first 3 cm above the

water surface, then smoothed using a 3.5 cm width-at-half-

maximum Gaussian filter. This curve will be denoted as Fsm

and gives an estimate of the net f forcing close to the water surface,

without the turbulent variability. As can be seen, Fsm is positive on

thewindward side of thewavewhere the surface shear ismaximum.

In contrast, Fsm tends to be negative in the separated region on the

leeward side of the wave, indicating that this is a region of high

vorticity. Despite the high f variability present, the small-

scale regions of strong turbulent strain and vorticity largely

cancel one another in the separated lee of the wave, and the

smoothed near-surface distribution of Fsm exhibits compa-

rable amplitudes on the windward and leeward wave faces.

Finally, from the forcing function we estimate the instanta-

neous pressure field using the procedure described above.

The pressure field (Fig. 3d) obtained from the Poisson solver

resembles the smoothed, integrated version of the forcing func-

tion. High pressure is located on the strain-dominated windward

face of the wave. On the other hand, low pressure is located on

the vorticity-dominated leeward side of the wave crest. The

overall pressure response is comparable inmagnitude on both the

windward and leeward sides. The large turbulent variability in f is

responsible for creating localized eddy structures, most clearly

visible on the leeward side of the wave (Fig. 3d).

The instantaneous pressure field shown here is primarily

intended to demonstrate the method of computing pressure

FIG. 3. Plot of (a) horizontal velocity u, (b) vertical velocity w, (c) pressure forcing f, and

(d) pressure p, for one sample PIVfield of theU105 5.0m s21 wind speed case. The upper panel

of (c) shows the instantaneous f, while the lower panel shows Fsm, obtained from f vertically

integrated over the first 3 cm above the water surface, then smoothed using a Gaussian filter

with 3.5-cm half power width. The wind is flowing from the left and the wave is propagating

rightwards. The forcing function f was computed from the u and w fields using (4). The in-

stantaneous pressure field was then calculated from f using the method described in section 3.
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fields. Due to nonplanar turbulent structures in the flow (i.e.,

with an out-of-plane y component), the instantaneous fields

obtained in the Poisson solver are expected to depart sub-

stantially from actual instantaneous pressure fields.We show in

section 5, however, that once the instantaneous fields are

suitably phase-averaged, the resulting form drag shows rela-

tively small error, indicating that the pressure field is also a

relatively unbiased estimate. For the remainder of the paper,

we therefore focus only on phase-averaged quantities.

b. Phase-averaged pressure fields

The pressure fields obtained by phase averaging instanta-

neous pressure fields (such as those above) are shown in Fig. 4,

with each panel corresponding to a different wind speed case.

For theU105 2.2m s21 wind speed case, the pressure field is

approximately 908 out of phasewith thewater surface displacement.

This configuration of the pressure field, with high pressure on the

windward side and low pressure on the leeward side of the wave

crest, is optimal for transferringmomentumto thewater (seebelow).

For the two higher wind speed cases, the pressure field shifts

upwind and becomes nearly in phase with the water wave el-

evation. Nonetheless, a small phase shift is present, with

maximum and minimum pressures located slightly leeward of

the wave trough and crest, respectively. Note that the ampli-

tude of the pressure field variations increases by roughly one

order of magnitude with each successive wind speed case.

c. Momentum flux

The average flux of momentum across the water surface is

determined by the sumof both a viscous stress acting tangential

to the water surface, and a pressure-induced form drag acting

normal to it. The horizontal component of these two stresses

can be calculated as

t
y
5 rn

�
›u

›z
1
›w

›x
2 2

›u

›x

›h

›x

�����
0

, (8)

and

t
f
5pj

0

›h

›x
, (9)

for the viscous and form drags, respectively. In these equations

the overbar refers to an ensemble average for all measure-

ments in an experiment. These equations are derived from

the stress tensor for incompressible Newtonian fluids (see

appendix A for details). Due to difficulties in measuring ve-

locity gradients directly at the water surface, and to reduce

measurement noise, we use all PIV measurements within the

viscous sublayer when calculating the viscous stress. The vis-

cous sublayer thickness is defined here as five wall units, n/u*,

from the water surface. Here, u* refers to the friction velocity.

In Fig. 4, we also plot the pressure-slope correlations,

hpj0›h/›xi, below each phase-averaged pressure field. Here again,

the subscript j0 denotes the surface values. To a good approxima-

tion, the average value of this curve yields the value of tf , quanti-

fying the mean pressure-induced flux of horizontal momentum

across the water surface. The exact calculation of tf requires

the average to be weighted slightly in order to accommodate a

nonuniform phase distribution of data points, due to deviations

of the observed waveforms from perfect sinusoids. The tf
values estimated in this way are listed in Table 2.

For the U10 5 2.2m s21 experiment, the optimal 908 phase
shift between the pressure field and the surface elevation in-

deed leads to a pressure-slope correlation that is positive at

nearly every phase. The form drag curve has twomaxima along

the wave profile. The first maximum occurs windward of the

wave trough and the second maximum is just leeward of the

wave crest. These are the regions where the pressure field most

strongly influences wave growth since the interface slope is a

maximum.Most of the transfer of horizontal momentum at the

air–sea interface is split evenly between the windward and lee-

ward sides of thewave, as evidenced by the fact that the pressure-

slope correlation curves are of a similar magnitude there.

For the two higher wind speed cases, the phase shift be-

tween the pressure field and the surface elevation is reduced

(less than 908). Yet, the pressure-slope correlation exhibits a

skew toward positive values indicating an overall momentum

transfer which leads to a positive form drag.

Summing together (8) and (9) we estimate the average total

stress on the water surface (i.e., the total flux of horizontal

momentum across the water surface) by

t
tot

5 t
f
1 t

y
. (10)

To validate the results, we also compute an independent esti-

mate of the total stress using law-of-the-wall theory as

t
tot
*5 ru2

* . (11)

The friction velocity u* can be estimated from dU/dz, the

mean flow shear within the logarithmic layer. Here U(z) de-

notes the ensemble mean of the air velocity at height z.

Values of u* for each wind speed were first reported and

described by Buckley and Veron (2016). In this analysis, we

use these reported values.

Table 2 shows the estimates of ttot, ty , and tf for each of the

wind speeds as calculated with Eqs. (8)–(10). For all three wind

speed cases, our estimated viscous and form stresses close the

momentum budget to within 5% of total stress. As wind speed

increases, the contribution of form drag to the total momentum

flux increases. For the U10 5 2.2m s21 wind speed, form con-

tributes only 15% to the total horizontal momentum flux across

the surface. However, at the largest wind speed of U10 5
9.4m s21, form drag is the dominant component contributing

65% of the momentum flux. Note that we cannot separate the

effects of wind speed (or wave age) variations from those of

TABLE 2. Table of bulk momentum budget components over

water waves for each wind speed. Mean viscous stress ty , form drag

tf , and total stress t*
tot

were calculated using Eqs. (8), (9), and (11).

U10 (m s21) u* (cm s21) ty /t*tot tf /t*tot ttot/t*tot

2.2 7.3 0.86 0.15 1.01

5.0 17 0.60 0.39 0.99

9.4 31 0.40 0.65 1.05
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wave slope variations since these are tightly related in these

experiments at fixed fetch.

In Fig. 5, we show our mean normalized form drag esti-

mates tf /t*tot, as a function of wave slope, alongside estimates

from previous laboratory pressure measurements (Grare

2009; Savelyev 2009), LES (Hara and Sullivan 2015), and

DNS (Sullivan et al. 2000; Yang and Shen 2010). Since wave

age is also suspected of influencing form drag (e.g., Sullivan

et al. 2000), only relatively young wave age conditions were

selected here (cp/u*, 8), including a stationarywave case from

Sullivan et al. (2000). We observe a good agreement in our

form drag estimates with previous studies, in spite of differ-

ences in fetch, wave age, and the mechanism of wind-wave

generation. The cited studies use a mix of wind-generated

waves, mechanical waves, and numerically imposed Airy

waves, and include wind speeds up to U10 5 26.9m s21

(Savelyev 2009; Savelyev et al. 2011).

5. Error analysis

In this section we test each of the major assumptions used in

computing the pressure fields. We also use this to arrive at an

approximate estimate of the errors involved in the pressure

reconstruction. To do this we rely on comparisons with highly

resolved large eddy simulation (LES) data of airflow over a

fixed sinusoidal surface. The turbulent velocity and pressure

fields produced in this way are expected to approximate that

found at a fully coupled air–water interface (see Yang and

Shen 2010; Liu et al. 2010; Sullivan et al. 2000). Parameters and

boundary conditions in the LES are chosen to closely mimic

conditions in the lowwind speedwind-wave tank experiment. The

mean velocity in the LES, when averaged over a region of 8.0–

9.7 cm above the solid boundary, is 1.45m s21, close to the

1.33ms21 found in the laboratory experiment. The wave slope in

the LES of ak5 0.08 also compares well to laboratory conditions

of apkp5 0.07. See appendix B for details on the LES simulation.

When testing assumptions using the LES data, we input x–z

slices of the full, turbulent, three-dimensional LES flow into

our Poisson solver and compare the resulting output with the

exact pressure field output by the LES. In standard LES, the

subgrid-scale (SGS) stress terms contribute to the forcing

function f of the pressure field, and can produce a so-called

‘‘modified pressure’’ by contributing to normal stresses. However,

as described in appendix B, the resolution of our simulation is high

FIG. 4. Phase average pressure fields over wind-driven water waves for wind speeds

(a) U10 5 2.2 m s21, (b) U10 5 5.0 m s21, and (c) U10 5 9.4 m s21. The wind is flowing from

the left and the wave is propagating rightwards. The dashed gray lines indicate the location

of the wave crest (f 5 0). Below each pressure field is a plot showing the pressure–slope

correlation averaged by wave phase. Values of pressure slope correlation are normalized

by total stress, as estimated using (11).
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enough that these SGS terms can be neglected except within a

region very close to the bottom boundary. Therefore, in the vast

majority of the domain outside thenear-bottomboundary,wemay

refer to a pressure field (that does not include SGS terms) without

ambiguity. Form drags from the LES are computed through

eliminating the closest 5 grid points to the surface topography in f

in order to avoid numerical artifacts and SGS stresses close to the

bottom boundary. We also evaluate the pressure gradients at this

location to use as input to the solver as a bottom boundary con-

dition. Form drag is then computed using the resulting pressure

fields evaluated at the water/topography surface.

a. Top boundary condition

Figures 6a and 6b show that, as expected, the choice of the

top boundary influences the pressure fields near the top of the

PIV domain. Near the water surface, however, the amplitude

of the pressure field variations are comparable. When running

these trials, x–z slices are used that have the same height above

thewater surface as the smallest of the PIV fields.We therefore

conclude that the top boundary condition does not affect the

overall structure of the estimated pressure fields near the in-

terface, provided that the domain extends sufficiently far above

the interface. Note that it is the structure and variability of the

surface pressure field that is most important for themomentum

flux. The mean pressure has no influence on momentum or

energy transfers across the air–water interface. It can be that

errors in surface pressure are amplified by the surface slope

which may lead to larger errors in the estimates of the form

drag. In the LES simulations presented here, a 225% error in

the surface pressure amplitude yields a 226% error in the es-

timated form drag.

This error can be reduced by placing the top boundary fur-

ther from the water surface; however, we found a trade-off

between error due to the side boundary condition and the top

boundary condition as the height of the domain increases. In

larger vertical domains, the error due to the top boundary

decreases while the error in the side boundary approximation

increases. Optimization of these errors could be performed in

future studies, but was not done here.

b. Side boundary condition

Figure 6c shows how the approximate side boundary con-

ditions further impact the pressure solution from the LES.

Setting the side boundary conditions to=p � n5 0 introduces an

additional error of only 12% into the estimates of form drag

for the LES pressure field. The additional error in the surface

pressure is localized near the sides of the computational do-

main, and is largely neglected when only the central 60% of the

domain is selected for further analysis.

c. Bottom boundary condition

The bottom boundary condition (i.e., on the water surface)

relies on computing both the divergence of the surface viscous

stress, and the acceleration of the interface [see Eq. (6)]. We

discuss each of these in turn.

The sensitivity of the derived form drag to the viscous term

in the bottom boundary condition was tested by applying

various (artificial) amplifications of the term, corresponding to

two- and fivefold amplifications, as well as ignoring the term

completely. The results of this analysis are shown in Table 3,

and demonstrate that changes in the mean form drag in each

wind speed case are only larger than 4% of t*
tot

for the fivefold

amplification of the viscous term. We conclude that our re-

sults are not overly sensitive to errors in the computation

of the viscous term, with errors of only a couple percent of

total drag.

The acceleration of the airflow above the interface is due to

both the orbital velocity from the propagating surface waves

and to the acceleration and deceleration of the airflow (for

these young waves) over the windward and leeward face of the

waves, respectively. In the absence of wind, the pressure fluc-

tuation at the air side of the water surface has an amplitude of

agr, with a the wave amplitude, and g the acceleration due to

gravity (Kundu and Cohen 2002). Using values from Table 1

results in wave-induced pressure amplitudes of 0.018, 0.060,

and 0.14 Pa, for wind speeds of U10 5 2.2, 5.0, and 9.4m s21.

These values are 37%, 6%, and 3% of the amplitudes in the

phase average pressure fields shown in Fig. 4, respectively.

Thus, in all but the U10 5 2.2m s21 experiment, the movement

of the surface is expected to have a minimal effect on the

pressure field. In addition, sensitivity tests similar to those

performed for the viscous term demonstrate that form drag

estimates are not sensitive to an amplification of this term.

d. The planar-f approximation

Finally, we test the accuracy in reconstructing the pressure

field using only the planar (x, z) terms in the forcing function

f as in (4). This is done using the three-dimensional LES by

comparing the form drags obtained directly from the sim-

ulated pressure field to those resulting from applying our

FIG. 5. Mean normalized form drag estimated using 2D

pressure fields retrieved from 2D airflow PIV measurements

over laboratory wind waves, normalized by the total stress,

plotted vs wave slope (black symbols). Results from pressure

measurements above mechanically generated waves from

previous laboratory studies (Grare 2009; Savelyev 2009) are

also shown, as well as previous form drag estimates from LES

(Hara and Sullivan 2015) and DNS (Sullivan et al. 2000; Yang

and Shen 2010).
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Poisson solver to planar x–z slices. We have taken 450 total

slices obtained from 150 different time steps over a 15-s

time window. The distributions of form drag obtained from

these samples are shown in Fig. 7. It can be seen that the

location of the means of the distributions are close to one

another, differing by 25%. However, the much greater

spread of the tf obtained from making the planar-f ap-

proximation demonstrates that significant errors are pres-

ent for instantaneous pressure fields, with rms relative

errors for an instantaneous estimate of close to 300%.

Furthermore, it can be seen by the much smaller spread in

the exact tf distribution (directly from the LES) that this is

not due to a natural turbulent variability, but results from

making the planar-f approximation. Averaging over many

fields is therefore required to produce an accurate estimate

of form drag, and even with the 450 fields analyzed herein,

the 95% bootstrapped confidence intervals give relative

errors between 233% and 22%. This planar-f approxima-

tion is therefore a significant source of error that requires

much averaging over many hundreds of fields. This con-

clusion is in broad agreement with previous studies that

have assessed the planar approximation in reproducing in-

stantaneous pressure fluctuations (Van der Kindere et al.

2019). Note also that we have tested this approximation

only for a single wind speed and wave slope, there could be a

dependence on these variables, particularly when airflow

separation is present. Analysis of these cases is, however,

difficult due to the increased resolution needed to eliminate

subgrid-scale effects of f.

e. Summary of error estimates

The major sources of error in reconstructed pressure fields

were identified to be due largely to two effects: the top

boundary condition, and the planar-f approximation. The es-

timated absolute errors in mean form drag associated with

all sources except the uncertain bottom boundary condition,

amount to roughly 31%. When converting these errors to

percentages of the total drag t*
tot
, using the values of tf /t*tot

from Table 2, and taking a 4% error for the bottom boundary

FIG. 6. Effect of boundary conditions on the pressure solution. (a) Time average pressure field obtained directly

from the LES simulation; (b) pressure field obtained by using the flow output by the LES simulation in the Poisson

solver, with the top boundary condition, p 5 0; (c) pressure field obtained by using the flow output by the LES

simulation in the Poisson solver, with the top boundary condition p5 0 and the side boundary condition =p � n5 0;

(d) pressure variation along the water surface for each case: (a) red curve, (b) blue, (c) dashed green.

TABLE 3. Table of changes in the form drag tf , expressed as a per-

cent of t*
tot
, obtained with various artificial amplifications of the viscous

term in the bottom boundary condition. A 13 denotes the boundary

condition asused throughout this analysis, and computedas described in

section 3, whereas 03 indicates the viscous term is set to zero.

U10 (m s21)

Boundary amplification

03 13 23 53

2.2 12% 0% 23% 29%

5.0 14% 0% 24% 216%

9.4 14% 0% 23% 211%
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condition, we arrive at an absolute error in total drag of 9%–

24%. This is greater than the values reported in the final col-

umn of Table 2, and suggests that the errors could be somewhat

compensating. The largest unknown error source is likely to be

the planar-f approximation, which has large confidence inter-

vals, and no definite sign. Note that this discussion above ap-

plies only to mean pressure fields. Errors for instantaneous

fields are very large (i.e., hundreds of percent), and much av-

eraging is required to produce accurate means.

6. Summary and conclusions

In this paper, we present a technique for reconstructing

pressure fields in the airflow over water waves from combined

PIV and LIF laboratory data. This is done through solving a

pressure Poisson equation with a forcing that is determined

through the relative strength of strain and vorticity (enstrophy)

in the airflow. The method relies on the application of various

approximate boundary conditions. Using the high resolution of

the PIV measurements, and the pressure field estimates, it is

possible to independently evaluate both the surface viscous

stress and the pressure-induced form drag, thus estimating the

total momentum flux at the interface. The results show that

pressure-induced form drag becomes the greater momentum

flux term at higher wind speeds (for 2.2#U10 # 9.1m s21) and

steeper wave slopes (for 0.07 # apkp # 0.19).

The agreement between the total stress, derived from the

pressure reconstruction, with an independent law-of-the-wall

bulk estimate, is within 5%. This suggests that the pressure

reconstruction technique is able to capture the wave-phase

coherent variations of the pressure field at the interface.

However, the analysis of the different approximations used in

the reconstruction show that the two main sources of error,

which result from the top boundary condition and the planar

approximation, have larger magnitudes (with the sum of the

errors at 31% of total form drag), and may partially compen-

sate. It is not clear that these errors would still compensate in

different wind sea conditions (older wave ages for example),

and the errors in the pressure reconstruction may increase.

Particularly uncertain is the planar approximation, which could

exhibit bias due to out-of-plane components when wind and

waves are not aligned. We note, however, that larger PIV do-

mains that reach heights beyond the wave boundary layer will

reduce the errors associated with the top boundary condition.

The ability to directly estimate pressure fields in the vicinity

of the air–water interface using PIV–LIF measurements opens

up new possibilities for studying the mechanisms of momen-

tum and energy transfers between the atmosphere and the

ocean. Although such mechanisms have long been the subject

of numerous studies, direct measurements of the pressure field

have been lacking. This work therefore fills an important gap in

the physics of atmosphere–ocean coupling.
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APPENDIX A

Derivation of Momentum Fluxes

We denote the two dimensional stress tensor for incom-

pressible flows by

t
ij
5

2
664

2p1 2m
›u

›x
m

�
›u

›z
1

›w

›x

�

m

�
›u

›z
1
›w

›x

�
2p1 2m

›w

›z

3
775 , (A1)

with m the dynamic viscosity of the fluid (air, in the present

case). The total flux of horizontal momentum through the

water surface can then be calculated through

t
tot

5

ð
t
1j
� nds , (A2)

using the sign convention that positive t corresponds to a

horizontal momentum loss by the air, and gain by the water.

FIG. 7. Testing of the planar-f approximation using three-

dimensional LES of turbulent flow over stationary sinusoidal to-

pography. The two histograms indicate the distributions of form

drag tf, obtained directly from the LES pressure field (orange), and

those obtained from using the planar-f approximation. Means of

each distribution are indicated by the dashed lines, and the

sample size consists of 450 x–z slices. The means are located

at tf 5 7:5, 7:1 3 1024 Pa, for the exact LES and planar-f

approximation, respectively, and differ by 5%.
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Here we define n as the upward pointing unit normal to the

water surface, represented by s. In practice, we evaluate this

integral using instantaneous measurements of the water sur-

face elevation, h(x, t), by substituting

n5

�
2
›h

›x
, 1

�,��
›h

›x

�2

1 1

�1/2
(A3)

and using the relation

ð
f [x,h(x, t)] ds5

ð
f [x,h(x, t)]

��
›h

›x

�2

1 1

�1/2
dx . (A4)

This leads to the following form for total horizontal stress

t
tot
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2 2
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viscous stress

1

ð
p
›h

›x
dx|fflfflfflfflffl{zfflfflfflfflffl}

form drag

(A5)

being composed of both pressure (form drag) and viscous

components, as indicated.

APPENDIX B

Description of the LES

The large-eddy simulation (LES) method is based on the

concept of the energy cascade, in which flow instabilities break

down large eddies into smaller eddies and so transfer their

energy to smaller scales. In LES, the contribution of the small

eddies is parameterized through a subgrid-scale (SGS) model,

whereas the large eddies are resolved. We use the Parallelized

Large-Eddy Simulation Model for atmospheric and oceanic

flows (PALM, version 6.0, revision 4901), developed at the

Institute of Meteorology and Climatology of the Leibniz

University of Hannover (Raasch and Schröter 2001; Maronga

et al. 2015).

The domain described for the simulations had dimensions of

0.768m3 0.128m3 0.256m along x, y, and z, respectively. The

grid size was set to 1mm in all directions. Two sinusoidal waves

of length 38.4 cm and crest-to-trough height of 1.0 cm were

prescribed along the mean flow x direction, giving a wave slope

of ak5 0.082. A horizontal mean pressure gradient was applied

to allow the mean flow to achieve a quasi-steady state.

The lateral boundaries of the domain were assigned periodic

conditions, with a velocity bottom boundary condition pre-

scribed by Monin–Obukhov similarity using a nondimensional

roughness length of kz0 5 1.1 3 1024, which prescribes a re-

lationship between the surface momentum flux and the tan-

gential velocity at the first grid level. The roughness length was

chosen to match the value of the low wind speed experiment

(see Buckley et al. 2020). At the domain top, a stress-free, rigid

lid was used for the velocity. To initiate the development of

turbulence, random perturbations in the velocity field with a

magnitude of up to 0.02m s21 were imposed at the initial time.

A minimum level of subgrid-scale turbulent kinetic energy

(SGS-TKE) was set in order to limit the eddy viscosity to its

molecular value. This state of minimum SGS-TKE was found

throughout the majority of the domain during the quasi-steady

period in which the analysis was performed. The simulations

are, in this respect, more representative of direct numerical

simulations, where the smallest turbulent eddies are resolved,

and there is no need for subgrid-scale momentum fluxes. This

also ensures that there is minimal influence of the SGS terms in

the pressure reconstruction.
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