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ABSTRACT: The quantification of pressure fields in the airflow over water waves is fundamental for understanding the
coupling of the atmosphere and the ocean. The relationship between the pressure field and the water surface slope and
velocity are crucial in setting the fluxes of momentum and energy. However, quantifying these fluxes is hampered by
difficulties in measuring pressure fields at the wavy air—water interface. Here we utilize results from laboratory experiments
of wind-driven surface waves. The data consist of particle image velocimetry of the airflow combined with laser-induced
fluorescence of the water surface. These data were then used to develop a pressure field reconstruction technique based on
solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of
both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an
independent bulk estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget
is closed to within approximately 5%. In the partitioning of the momentum flux between viscous and pressure drag com-
ponents, we find a greater influence of form drag at high wind speeds and wave slopes. An analysis of the various ap-
proximations and assumptions made in the pressure reconstruction, along with the corresponding sources of error, is also
presented.
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1. Introduction momentum is directly exchanged between the air and the
water either through surface viscous stresses or pressure-
induced form drag (e.g., Phillips 1977). The relative im-
portance of each of these viscous and form drag components
has been of interest for the past decades. Quantifying their
respective roles in the generation of ocean surface currents
and waves still remains a major challenge (Sullivan and
McWilliams 2010; Grare et al. 2013; Buckley et al. 2020).
Pressure measurements within the air-side boundary layer
over wind waves are sparse (e.g., Elliott 1972; Dobson 1971;
Hasselmann and Bosenberg 1991; Donelan et al. 2006), with
the most recent ones reported by Savelyev et al. (2011) and
Grare et al. (2013) from experiments in wind-wave flumes.
Particle image velocimetry (PIV) measurements within the
water-side (Banner and Peirson 1998) and air-side (Veron et al.
2007; Buckley et al. 2020) viscous sublayers of wind-generated
waves have given reliable estimates of viscous drag for labo-
ratory wind waves. Mean form drag contributions were esti-
mated using the law-of-the-wall, and it was suggested that the
relative contribution of viscous drag to the air—sea momentum
flux dominates over smooth nascent waves, but decreases with
increasing wave slope (Buckley et al. 2020). However, to the
best of our knowledge, both quantities have never been
measured simultaneously. While significant advances have
been recently made using both direct numerical simulations
' Denotes content that is immediately available upon publica- (DNS) and large-eddy simulations (LES) of wind-wave dy-
tion as open access. namics (see e.g., Husain et al. 2019, with matching airflow PTV
measurements), modeling efforts suffer from a number of
Corresponding author: J. R. Carpenter, jeff.carpenter@ drawbacks. Some of these limitations include either neglect-
hereon.de ing or not resolving viscous effects at the surface, incomplete

The vast majority of the mechanical energy exchange be-
tween the atmosphere and ocean occurs through the ocean
surface wave field (Wunsch and Ferrari 2004). Winds blowing
over the surface of the ocean generate surface gravity waves,
and a host of processes arising from the wavy surface then
modify the exchanges of momentum, energy, and gases in the
near-surface boundary layer between ocean and atmosphere.
The alterations in these fluxes due to surface waves are known
to have important implications for the climate system (Cavaleri
et al. 2012), as well as in weather prediction (Zhang et al. 2006)
and ocean circulation (Ardhuin et al. 2004).

A principal barrier to understanding and quantifying the
exchange of momentum and energy at the air-water inter-
face is the extreme difficulty in performing measurements
near a moving wavy interface. To quantify atmosphere—
ocean fluxes it is necessary to measure velocities, pressure,
and interface displacements simultaneously, at distances
very close to the moving air-water interface, and over scales
small enough to resolve wave phases. While a number of
coupled physical processes influence the air-water mo-
mentum budget (e.g., wave breaking, airflow separation),
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FIG. 1. Sketch of the experimental setup, placed at a fetch (i.e., distance down-wind from the
onset of wind-wave growth) of 22.7 m within University of Delaware’s large wind-wave-current
facility, along with examples of composite instantaneous two-dimensional LIF-PIV data

products, for the three wind speeds examined here (Ujo = 2.2, 5.0, and 9.4 m sfl).

air-water coupling physics, and restrictions to unrealistic
Reynolds numbers and wave fields (typically monochro-
matic) (e.g., Sullivan et al. 2000, 2018; Liu et al. 2010; Hao and
Shen 2019).

In the present study we use laboratory measurements to si-
multaneously estimate both the viscous tangential stress and
the pressure-induced form stress. This is done by using two-
dimensional velocity fields measured over wind-generated
waves through PIV, together with interface detection from
laser-induced fluorescence (LIF). This is necessarily done with
an extremely high spatial resolution that is capable of resolving
the viscous boundary layer along the air—water interface
(Buckley and Veron 2016, 2017). The velocity measurements
are then used to estimate an approximate reconstruction of the
pressure field based on a Poisson-solver approach (Murai et al.
2007; Van Oudheusden 2013). To our knowledge, the results
reported herein are the first spatially resolved pressure fields
directly measured above wind-generated waves. The assump-
tions involved in this method, such as approximate boundary
conditions and the limitations of two-dimensional velocity in-
puts, are systematically tested. We find that the form stress
calculated from the reconstructed pressure fields results in a
momentum budget that is closed to within 5%. The results
allow for a partitioning of momentum fluxes between viscous
and form stresses, and demonstrate the increasing importance
of form stress at high wind speeds and wave slopes. The
accurate reconstruction of pressure fields also opens new
possibilities for examination of the physical mechanisms of
wind-wave coupling.

The paper is organized as follows. After a brief description
of the experimental setup, we describe the methods used in
reconstructing the pressure field. Then results of the pressure
field reconstruction are presented including a comparison of
viscous and form drag stresses for different wind speeds. In
the discussion section we test the various assumptions made
in our pressure reconstruction method utilizing a large-eddy

simulation of turbulent airflow over fixed sinusoidal wave
forms. Conclusions are summarized in the final section.

2. Laboratory experiments
a. Setup

The laboratory measurements used in this paper were ob-
tained at University of Delaware’s large wind-wave—current
facility. Since the experiments are described in detail in
Buckley and Veron (2017), we will offer here only a very brief
description. A multilaser, multicamera, optical wind-wave
measurement system was placed at a fetch of 22.7m, in the
wind-wave—current tank that is 42 m long, 1 m wide, and 1.25 m
high. The mean water depth was 0.70 m, with an airflow space
of 0.55m. A sketch of the experimental setup is presented in
Fig. 1, along with examples of instantaneous airflow velocity
fields obtained by PIV, embedded in larger LIF snapshots of
the wave field.

In this paper, measurements from three different wind/wave
conditions are used. Winds with mean 10-m equivalent speeds
of Uyg = 2.2, 5.0, and 9.4ms~! were generated by the re-
circulating wind tunnel. Wind waves were observed for all
three wind speeds and all waves studied here were wind-
generated (no paddle generated waves). The different experi-
mental conditions are summarized in Table 1.

Despite the limited domain of the laboratory channel, the
mean airflow characteristics within the first ~10-20 cm above
the surface, as well as the statistics of turbulent momentum
flux, are in good agreement with past in situ observations and
LES simulations of steady state conditions (see Fig. 11 of
Buckley and Veron 2016).

b. Data processing and phase averages

As mentioned above, the waves generated in these labora-
tory experiments are generated by the wind and are therefore
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TABLE 1. Summary of experimental conditions. Each experi-
ment is characterized by a friction velocity ux, and the 10-m ex-
trapolated velocity Ujo, computed by fitting the logarithmic part of
the averaged PIV velocity profile in the air. Peak wave frequencies
f» were obtained from laser wave gauge frequency spectra. The
phase speed ¢, and wavenumber k, were derived by applying linear
wave theory to f,,. The wave amplitude a,, was obtained from root-
mean-square amplitude @, = v2ams computed from the wave
gauge derived water surface elevation time series.

Uyo Us ¢p cplus a, Ap ayk, f»
(ms™) (ems™) (ms) (=) (em) (m) (—) (Hz)
2.2 73 0.47 6.5 0.15 0.14 0.07 33
5.0 17 0.62 3.7 05 025 013 2.5
9.4 31 0.78 2.5 1.20 039 0.19 2.0

not monochromatic waves. However, at short laboratory fetches,
the wave field is relatively narrow banded. Furthermore, it is
generally useful to examine the data and their variations relative
to the phase of an equivalent idealized periodic water wave. To do
so, we average our data relative to the local wave phase and height
above the water surface (see Fig. 2). Throughout the rest of the
paper, we refer to such an average as the phase average. In this
section, we describe our method of phase averaging the data.
The details of the wave phase averaging procedure are as
follows: first and foremost, phase averaging requires a method
of reliably determining wave phase along each part of the water
surface. This is done using the Hilbert transform of the water
surface profile, identical to the phase detection in Buckley and
Veron (2017). Figure 2 shows a typical wave profile in a PIV
image. We begin the phase averaging process by defining a new
coordinate system (¢, ¢) in the region above the wave,

d(x,2) =¢(x) and {(x,2)=2z—n(x). ey

In this coordinate system, the ¢» coordinate represents the wave
phase, and 7 the water surface elevation. A wave phase of 0
denotes the wave crest and a wave phase of *7 denotes the
wave trough (see abscissa in Fig. 2). The new vertical coordi-
nate { measures distance above the water surface.

To obtain phase-averaged fields, we bin data into 144 uni-
formly sized phase bins covering the interval —7 < ¢ = 7. We
average data from all PIV snapshots that are within the same
¢ and ¢ bin. The resultant phase average has the same vertical
resolution as the original data but only 144 grid points in the
horizontal direction (one per phase bin). The phase average of
an arbitrary field E (which can be a PIV velocity field or any
other derived product such as the vorticity) is denoted by (=).

3. Pressure reconstruction method

For incompressible flows in fluids of homogeneous density,
the pressure is related to gradients in velocity through the
following pressure Poisson equation

-V’p=f with f=pV-(u-V)u. )

Here, p is the deviation of pressure from its mean hydrostatic
level; p is the air density; and u = (u, v, w) is the velocity vector
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FIG. 2. Plot of the coordinate system used in the analysis. The
green lines indicate a constant phase (¢), as detected using the
Hilbert transform method. The blue lines indicate lines of constant
¢ and the black line is the water surface ({ = 0). The red region
exemplifies a bin as used in the phase averaging process, albeit
much bigger than those actually used. All values within the same
bin are averaged together.

in the standard Cartesian (x, y, z) coordinate system. We use
the = symbol to denote definitions. Equation (2) is derived by
taking the divergence of the Navier—Stokes equations. It has been
shown to yield reliable pressure fields from PIV data in engi-
neering applications (Murai et al. 2007; Van Oudheusden 2013).

The quantity f will be referred to as the forcing function of
the system. It is proportional to the second-order invariant
of the velocity gradient tensor, and because it is independent of
the frame of reference, it can be meaningfully interpreted. In
fact, f can be split into two different contributions, strain and
vorticity (or enstrophy):

prV-<u-V)u=p(S:S—%q~q), @)

where S = (1/2)[Vu + (Vu) "] is the strain tensor,and q =V X u
the vorticity. This comes from the fact that V - (u - V)u =
(u- V)(V - u) + Vu:Vu, with the first term vanishing, and the second
rewritten as S:8 — (1/2)q - q (see Davidson 2015, p. 45). The
strain component is positive since $:S = o® + B> + y* > 0,
with «, B, y the principal rates of strain. Also, the enstrophy
component is always negative, i.e., —(1/2)q - ¢ <0. Therefore, f
gives a local measure of the relative importance of strain and
vorticity. If f < 0, the flow is dominated by vorticity (i.e., has
high enstrophy), whereas if f > 0 it is dominated by strain.
Equivalently, regions of high vorticity (strain) lead to V?p > 0
(V?p < 0) such that there is forcing toward a local minimum
(maximum) in the pressure field.

Due to the limitations of the PIV data in measuring only
two-dimensional, x—z planar flows, it is not possible to use the
full fto force the pressure Poisson equation. We will therefore
proceed by tentatively assuming that the deviations from pla-
narity cancel out over long time averages. This assumption is
discussed in section 5, in which turbulence-resolving numerical
simulations are used to demonstrate that accurate average
pressure fields and form drag estimates are obtained. Utilizing
only the planar terms, the forcing function simplifies to
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Alternate forms of fare possible with the same assumptions on
the airflow (see, e.g., Van Oudheusden 2013). These formula-
tions are identical for perfectly two-dimensional flows, but may
lead to slightly different results when deviations from planarity
exist. We have chosen the above formulation because it gives
an unbiased estimate of f when there is random noise in the
velocity gradient data. Once f is determined from the PIV
measurements, the pressure field is readily estimated.

a. Numerical procedure

To solve the pressure Poisson equation (2), we use a finite
difference scheme. On the interior of the domain, at coordinate
indices (i, j),

Piv1; 2pi,j TPy, +pi.j+1 B zpi,j TP _

(Ax)? (Az)’ O

where Ax and Az are the grid spacings in the horizontal (x) and
vertical (z) directions. The finite differences algorithm is im-
plemented on a square grid (with Ax = Az) coinciding with the
experimental measurements.

The computational domain is rectangular except that the
bottom boundary is taken as the wavy water surface, and is
identical to the PIV measurement domain. Boundary condi-
tions on the bottom water surface are implemented using a
combination of the numerical methods described by Fox
(1944), Noye and Arnold (1990), and Morton and Mayers
(2005). Wave-height measurements, described previously in
Buckley and Veron (2016), are used to determine the position
and slope of the bottom boundary over subgrid scales. The key
results presented in this paper do not change significantly when
simpler boundary approximations involving the discretization
of the bottom water surface are used [see Noye and Arnold
(1990) for a description of the standard method]. Thus, the
results presented here are independent of the interpolation
scheme used at the bottom boundary. The side and top
boundaries are located at the edges of the PIV field.

b. Boundary conditions

For each PIV field, instantaneous pressure fields are com-
puted. At the air—water interface, we use the Neumann con-
dition where

~n-~-va2u\0 -m, (6)

with v the kinematic viscosity, along the air side of the water
surface, denoted by the subscript 0. This condition is derived by
taking the dot product between the unit vector normal to the
water surface, n, pointing into the air, and the Navier-Stokes
equations by evaluating the equations in the limit as the air—
water interface is approached from above.

The acceleration of the water surface [first term on the
right-hand side of Eq. (6)] is computed by decomposing the
surface measurements into spatial Fourier components. We
assume that each individual wave component propagates with
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an angular frequency given by the deep water gravity—
capillary wave dispersion relationship

o= k(g+"_"2). )

w

Here, k is the wavenumber; g is the acceleration due to gravity;
pw 1s the water density; and o = 0.074Nm™! is the surface
tension. Note that alterations in this dispersion relation due to
interaction with wind are small, of the order of the ratio of the
air to water densities, and are therefore neglected (e.g., Young
and Wolfe 2014). The acceleration of the water surface is then
computed by calculating and summing accelerations of indi-
vidual wave components using linear wave theory. At every
step throughout the calculation, the surface profiles (dis-
placement, velocity, and acceleration) are smoothed using a
second-order low-pass Butterworth filter with a cutoff wave-
length of 1 cm.

To estimate the spatial velocity gradients in the viscous term
of Eq. (6), the instantaneous velocities measured by PIV were
first fitted with cubic smooth spline shells, and gradients were
subsequently estimated using analytical derivatives of the spline
fits [for additional details, see Buckley and Veron (2017), and
references therein]. Since the wind-wave conditions are within
the transitionally rough regime in all three experiments (with
Reynolds roughness numbers greater than 0.2, see for example
the classification proposed by Kitaigorodskii and Donelan 1984;
Donelan 1998), the near-surface instantaneous velocities fluc-
tuate significantly in the vertical and streamwise directions, and
higher-order spatial derivatives are expected to show significant
variability. However, the spatial resolution of the measurements
used here is such that the viscous sublayer is fully resolved in all
wind speed conditions. A sensitivity analysis is performed in
section 5 to examine any errors arising in the treatment of the
viscous term [second term on the right-hand side of Eq. (6)].

On the side boundaries, we use the Neumann condition Vp -
n = 0. This boundary condition may lead to a distortion of the
pressure field near the side of the computational domain. As a
result, when doing subsequent pressure calculations, we only
include pressure values on the interior 60% of the domain. The
improvement in doing so is discussed in section 5.

On the top boundary, we use the boundary condition p = 0.
This Dirichlet condition ensures that the Poisson problem is
well posed. Pressure perturbations caused by the waves decay
away from the water surface, making the approximation a
good one for small amplitude waves, and relatively large
domain sizes.

4. Results
a. Instantaneous fields

Figure 3 shows u, w, f, and p for a single PIV field in the
U,y = 5.0ms™ " wind speed experiment. The figure highlights
the different steps used to compute pressure fields. First, the
PIV data yields u and w velocity fields. As suggested from the
u field, and confirmed by an analysis of the vorticity field (not
shown; see Buckley et al. 2020), airflow separation occurs
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FIG. 3. Plot of (a) horizontal velocity u, (b) vertical velocity w, (c) pressure forcing f, and
(d) pressure p, for one sample PIV field of the U;y = 5.0 m's~ ! wind speed case. The upper panel
of (c) shows the instantaneous f, while the lower panel shows Fg,, obtained from f vertically
integrated over the first 3 cm above the water surface, then smoothed using a Gaussian filter
with 3.5-cm half power width. The wind is flowing from the left and the wave is propagating
rightwards. The forcing function f was computed from the u and w fields using (4). The in-
stantaneous pressure field was then calculated from f using the method described in section 3.

starting at the wave crest and extends down the entire leeward
face of the wave (Fig. 3a). Figure 3b shows that variability in
the vertical velocity, w, is strongest at the boundary between
the free stream and the separated flow on the leeward side of
the wave crest. The high variability in w indicates that turbu-
lence is strongest in this region, which is characterized by a
separated shear region (Buckley and Veron 2016). Slight
trends of upward (downward) air motion exist on the windward
(leeward) side of the wave. In general, wave-coherent veloci-
ties of the surface waves are difficult to distinguish in the in-
stantaneous velocity fields of the airflow, but become apparent
once suitable averaging is performed. For time average wave-
coherent motions, see Buckley and Veron (2019).

Next, we estimate the forcing function f from the PIV ve-
locity fields using (4). As can be seen, f has large variability
over the entire PIV field (Fig. 3c, top). Since fis computed from
spatial gradients in (u, w), it highlights the small-scale turbulent
variability that is present. This variability is strongest on the
leeward side of the wave, reflecting the fact that the flow is
most turbulent in this region. The bottom panel of Fig. 3c
shows f vertically integrated over the first 3cm above the
water surface, then smoothed using a 3.5 cm width-at-half-
maximum Gaussian filter. This curve will be denoted as Fp,

and gives an estimate of the net fforcing close to the water surface,
without the turbulent variability. As can be seen, Fyy, is positive on
the windward side of the wave where the surface shear is maximum.
In contrast, Fy, tends to be negative in the separated region on the
leeward side of the wave, indicating that this is a region of high
vorticity. Despite the high f variability present, the small-
scale regions of strong turbulent strain and vorticity largely
cancel one another in the separated lee of the wave, and the
smoothed near-surface distribution of Fg,, exhibits compa-
rable amplitudes on the windward and leeward wave faces.

Finally, from the forcing function we estimate the instanta-
neous pressure field using the procedure described above.
The pressure field (Fig. 3d) obtained from the Poisson solver
resembles the smoothed, integrated version of the forcing func-
tion. High pressure is located on the strain-dominated windward
face of the wave. On the other hand, low pressure is located on
the vorticity-dominated leeward side of the wave crest. The
overall pressure response is comparable in magnitude on both the
windward and leeward sides. The large turbulent variability in fis
responsible for creating localized eddy structures, most clearly
visible on the leeward side of the wave (Fig. 3d).

The instantaneous pressure field shown here is primarily
intended to demonstrate the method of computing pressure
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fields. Due to nonplanar turbulent structures in the flow (i.e.,
with an out-of-plane y component), the instantaneous fields
obtained in the Poisson solver are expected to depart sub-
stantially from actual instantaneous pressure fields. We show in
section 5, however, that once the instantaneous fields are
suitably phase-averaged, the resulting form drag shows rela-
tively small error, indicating that the pressure field is also a
relatively unbiased estimate. For the remainder of the paper,
we therefore focus only on phase-averaged quantities.

b. Phase-averaged pressure fields

The pressure fields obtained by phase averaging instanta-
neous pressure fields (such as those above) are shown in Fig. 4,
with each panel corresponding to a different wind speed case.

For the Uy = 22ms ! wind speed case, the pressure field is
approximately 90° out of phase with the water surface displacement.
This configuration of the pressure field, with high pressure on the
windward side and low pressure on the leeward side of the wave
crest, is optimal for transferring momentum to the water (see below).

For the two higher wind speed cases, the pressure field shifts
upwind and becomes nearly in phase with the water wave el-
evation. Nonetheless, a small phase shift is present, with
maximum and minimum pressures located slightly leeward of
the wave trough and crest, respectively. Note that the ampli-
tude of the pressure field variations increases by roughly one
order of magnitude with each successive wind speed case.

¢. Momentum flux

The average flux of momentum across the water surface is
determined by the sum of both a viscous stress acting tangential
to the water surface, and a pressure-induced form drag acting
normal to it. The horizontal component of these two stresses
can be calculated as

J ad dud
7 o=pp I (8)
v Jdz  ox dax dx / |,
and
_ o
Tf:p|()a’ (9)

for the viscous and form drags, respectively. In these equations
the overbar refers to an ensemble average for all measure-
ments in an experiment. These equations are derived from
the stress tensor for incompressible Newtonian fluids (see
appendix A for details). Due to difficulties in measuring ve-
locity gradients directly at the water surface, and to reduce
measurement noise, we use all PIV measurements within the
viscous sublayer when calculating the viscous stress. The vis-
cous sublayer thickness is defined here as five wall units, v/ux,
from the water surface. Here, us refers to the friction velocity.

In Fig. 4, we also plot the pressure-slope correlations,
(plodm/dx), below each phase-averaged pressure field. Here again,
the subscript |, denotes the surface values. To a good approxima-
tion, the average value of this curve yields the value of 7, quanti-
fying the mean pressure-induced flux of horizontal momentum
across the water surface. The exact calculation of 7; requires
the average to be weighted slightly in order to accommodate a
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TABLE 2. Table of bulk momentum budget components over
water waves for each wind speed. Mean viscous stress 7,,, form drag
7r, and total stress T:n were calculated using Egs. (8), (9), and (11).

Uyp (m s’l) usx (cm s’l) ?,,/Tit ?f/q-:';t ?lm/q-zt
22 7.3 0.86 0.15 1.01
5.0 17 0.60 0.39 0.99
9.4 31 0.40 0.65 1.05

nonuniform phase distribution of data points, due to deviations
of the observed waveforms from perfect sinusoids. The 7f
values estimated in this way are listed in Table 2.

For the Uyp = 22ms™ ! experiment, the optimal 90° phase
shift between the pressure field and the surface elevation in-
deed leads to a pressure-slope correlation that is positive at
nearly every phase. The form drag curve has two maxima along
the wave profile. The first maximum occurs windward of the
wave trough and the second maximum is just leeward of the
wave crest. These are the regions where the pressure field most
strongly influences wave growth since the interface slope is a
maximum. Most of the transfer of horizontal momentum at the
air—sea interface is split evenly between the windward and lee-
ward sides of the wave, as evidenced by the fact that the pressure-
slope correlation curves are of a similar magnitude there.

For the two higher wind speed cases, the phase shift be-
tween the pressure field and the surface elevation is reduced
(less than 90°). Yet, the pressure-slope correlation exhibits a
skew toward positive values indicating an overall momentum
transfer which leads to a positive form drag.

Summing together (8) and (9) we estimate the average total
stress on the water surface (i.e., the total flux of horizontal
momentum across the water surface) by

(10)

Toot = Tf

+7,.
To validate the results, we also compute an independent esti-
mate of the total stress using law-of-the-wall theory as

TTm= pu. 11)
The friction velocity usx can be estimated from dU/dz, the
mean flow shear within the logarithmic layer. Here U(z) de-
notes the ensemble mean of the air velocity at height z.
Values of ux for each wind speed were first reported and
described by Buckley and Veron (2016). In this analysis, we
use these reported values.

Table 2 shows the estimates of T, 7, and 7y for each of the
wind speeds as calculated with Egs. (8)—(10). For all three wind
speed cases, our estimated viscous and form stresses close the
momentum budget to within 5% of total stress. As wind speed
increases, the contribution of form drag to the total momentum
flux increases. For the Uyo = 2.2ms ™! wind speed, form con-
tributes only 15% to the total horizontal momentum flux across
the surface. However, at the largest wind speed of Ujy =
9.4ms™!, form drag is the dominant component contributing
65% of the momentum flux. Note that we cannot separate the
effects of wind speed (or wave age) variations from those of
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FIG. 4. Phase average pressure fields over wind-driven water waves for wind speeds
(a) Ujg=22ms "', (b) Uy =5.0ms™ ', and (c) Uyg = 9.4ms~". The wind is flowing from
the left and the wave is propagating rightwards. The dashed gray lines indicate the location
of the wave crest (¢ = 0). Below each pressure field is a plot showing the pressure-slope
correlation averaged by wave phase. Values of pressure slope correlation are normalized

by total stress, as estimated using (11).

wave slope variations since these are tightly related in these
experiments at fixed fetch.

In Fig. 5, we show our mean normalized form drag esti-
mates ?f/*r:’;t, as a function of wave slope, alongside estimates
from previous laboratory pressure measurements (Grare
2009; Savelyev 2009), LES (Hara and Sullivan 2015), and
DNS (Sullivan et al. 2000; Yang and Shen 2010). Since wave
age is also suspected of influencing form drag (e.g., Sullivan
et al. 2000), only relatively young wave age conditions were
selected here (¢,/us < 8),including a stationary wave case from
Sullivan et al. (2000). We observe a good agreement in our
form drag estimates with previous studies, in spite of differ-
ences in fetch, wave age, and the mechanism of wind-wave
generation. The cited studies use a mix of wind-generated
waves, mechanical waves, and numerically imposed Airy
waves, and include wind speeds up to Ujp = 269ms !
(Savelyev 2009; Savelyev et al. 2011).

5. Error analysis

In this section we test each of the major assumptions used in
computing the pressure fields. We also use this to arrive at an

approximate estimate of the errors involved in the pressure
reconstruction. To do this we rely on comparisons with highly
resolved large eddy simulation (LES) data of airflow over a
fixed sinusoidal surface. The turbulent velocity and pressure
fields produced in this way are expected to approximate that
found at a fully coupled air-water interface (see Yang and
Shen 2010; Liu et al. 2010; Sullivan et al. 2000). Parameters and
boundary conditions in the LES are chosen to closely mimic
conditions in the low wind speed wind-wave tank experiment. The
mean velocity in the LES, when averaged over a region of 8.0-
9.7cm above the solid boundary, is 1.45m s71, close to the
1.33ms ™! found in the laboratory experiment. The wave slope in
the LES of ak = 0.08 also compares well to laboratory conditions
of a,k, = 0.07. See appendix B for details on the LES simulation.

When testing assumptions using the LES data, we input x—z
slices of the full, turbulent, three-dimensional LES flow into
our Poisson solver and compare the resulting output with the
exact pressure field output by the LES. In standard LES, the
subgrid-scale (SGS) stress terms contribute to the forcing
function f of the pressure field, and can produce a so-called
“modified pressure” by contributing to normal stresses. However,
as described in appendix B, the resolution of our simulation is high
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enough that these SGS terms can be neglected except within a
region very close to the bottom boundary. Therefore, in the vast
majority of the domain outside the near-bottom boundary, we may
refer to a pressure field (that does not include SGS terms) without
ambiguity. Form drags from the LES are computed through
eliminating the closest 5 grid points to the surface topography in f
in order to avoid numerical artifacts and SGS stresses close to the
bottom boundary. We also evaluate the pressure gradients at this
location to use as input to the solver as a bottom boundary con-
dition. Form drag is then computed using the resulting pressure
fields evaluated at the water/topography surface.

a. Top boundary condition

Figures 6a and 6b show that, as expected, the choice of the
top boundary influences the pressure fields near the top of the
PIV domain. Near the water surface, however, the amplitude
of the pressure field variations are comparable. When running
these trials, x—z slices are used that have the same height above
the water surface as the smallest of the PIV fields. We therefore
conclude that the top boundary condition does not affect the
overall structure of the estimated pressure fields near the in-
terface, provided that the domain extends sufficiently far above
the interface. Note that it is the structure and variability of the
surface pressure field that is most important for the momentum
flux. The mean pressure has no influence on momentum or
energy transfers across the air-water interface. It can be that
errors in surface pressure are amplified by the surface slope
which may lead to larger errors in the estimates of the form
drag. In the LES simulations presented here, a —25% error in
the surface pressure amplitude yields a —26% error in the es-
timated form drag.

This error can be reduced by placing the top boundary fur-
ther from the water surface; however, we found a trade-off
between error due to the side boundary condition and the top
boundary condition as the height of the domain increases. In
larger vertical domains, the error due to the top boundary
decreases while the error in the side boundary approximation
increases. Optimization of these errors could be performed in
future studies, but was not done here.

b. Side boundary condition

Figure 6¢ shows how the approximate side boundary con-
ditions further impact the pressure solution from the LES.
Setting the side boundary conditions to Vp - n = 0 introduces an
additional error of only +2% into the estimates of form drag
for the LES pressure field. The additional error in the surface
pressure is localized near the sides of the computational do-
main, and is largely neglected when only the central 60% of the
domain is selected for further analysis.

c¢. Bottom boundary condition

The bottom boundary condition (i.e., on the water surface)
relies on computing both the divergence of the surface viscous
stress, and the acceleration of the interface [see Eq. (6)]. We
discuss each of these in turn.

The sensitivity of the derived form drag to the viscous term
in the bottom boundary condition was tested by applying
various (artificial) amplifications of the term, corresponding to
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FIG. 5. Mean normalized form drag estimated using 2D
pressure fields retrieved from 2D airflow PIV measurements
over laboratory wind waves, normalized by the total stress,
plotted vs wave slope (black symbols). Results from pressure
measurements above mechanically generated waves from
previous laboratory studies (Grare 2009; Savelyev 2009) are
also shown, as well as previous form drag estimates from LES
(Hara and Sullivan 2015) and DNS (Sullivan et al. 2000; Yang
and Shen 2010).

two- and fivefold amplifications, as well as ignoring the term
completely. The results of this analysis are shown in Table 3,
and demonstrate that changes in the mean form drag in each
wind speed case are only larger than 4% of 7::; for the fivefold
amplification of the viscous term. We conclude that our re-
sults are not overly sensitive to errors in the computation
of the viscous term, with errors of only a couple percent of
total drag.

The acceleration of the airflow above the interface is due to
both the orbital velocity from the propagating surface waves
and to the acceleration and deceleration of the airflow (for
these young waves) over the windward and leeward face of the
waves, respectively. In the absence of wind, the pressure fluc-
tuation at the air side of the water surface has an amplitude of
agp, with a the wave amplitude, and g the acceleration due to
gravity (Kundu and Cohen 2002). Using values from Table 1
results in wave-induced pressure amplitudes of 0.018, 0.060,
and 0.14 Pa, for wind speeds of Uy, = 2.2, 5.0, and 9.4ms ™.
These values are 37%, 6%, and 3% of the amplitudes in the
phase average pressure fields shown in Fig. 4, respectively.
Thus, in all but the Ujp = 2.2ms ! experiment, the movement
of the surface is expected to have a minimal effect on the
pressure field. In addition, sensitivity tests similar to those
performed for the viscous term demonstrate that form drag
estimates are not sensitive to an amplification of this term.

d. The planar-f approximation

Finally, we test the accuracy in reconstructing the pressure
field using only the planar (x, z) terms in the forcing function
f as in (4). This is done using the three-dimensional LES by
comparing the form drags obtained directly from the sim-
ulated pressure field to those resulting from applying our
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FIG. 6. Effect of boundary conditions on the pressure solution. (a) Time average pressure field obtained directly
from the LES simulation; (b) pressure field obtained by using the flow output by the LES simulation in the Poisson
solver, with the top boundary condition, p = 0; (c) pressure field obtained by using the flow output by the LES
simulation in the Poisson solver, with the top boundary condition p = 0 and the side boundary condition Vp - n = 0;

(d) pressure variation along the water surface for each case: (a) red curve, (b) blue, (c) dashed green.

Poisson solver to planar x—z slices. We have taken 450 total
slices obtained from 150 different time steps over a 15-s
time window. The distributions of form drag obtained from
these samples are shown in Fig. 7. It can be seen that the
location of the means of the distributions are close to one
another, differing by —5%. However, the much greater
spread of the 7¢ obtained from making the planar-f ap-
proximation demonstrates that significant errors are pres-
ent for instantaneous pressure fields, with rms relative
errors for an instantaneous estimate of close to 300%.
Furthermore, it can be seen by the much smaller spread in
the exact 7, distribution (directly from the LES) that this is
not due to a natural turbulent variability, but results from
making the planar-f approximation. Averaging over many
fields is therefore required to produce an accurate estimate
of form drag, and even with the 450 fields analyzed herein,
the 95% bootstrapped confidence intervals give relative
errors between —33% and 22%. This planar-f approxima-
tion is therefore a significant source of error that requires
much averaging over many hundreds of fields. This con-
clusion is in broad agreement with previous studies that

separation is present. Analysis of these cases is, however,
difficult due to the increased resolution needed to eliminate
subgrid-scale effects of f.

e. Summary of error estimates

The major sources of error in reconstructed pressure fields
were identified to be due largely to two effects: the top
boundary condition, and the planar-f approximation. The es-
timated absolute errors in mean form drag associated with
all sources except the uncertain bottom boundary condition,
amount to roughly 31%. When converting these errors to
percentages of the total drag T:n, using the values of Ff/T:n
from Table 2, and taking a 4% error for the bottom boundary

TABLE 3. Table of changes in the form drag 7, expressed as a per-
cent of T:)t, obtained with various artificial amplifications of the viscous
term in the bottom boundary condition. A 1X denotes the boundary
condition as used throughout this analysis, and computed as described in
section 3, whereas 0X indicates the viscous term is set to zero.

Boundary amplification

have assessed the planar apprloximation in rep‘roducing in- Uyo (m s~ 0% 1% 2% 5%
stantaneous pressure fluctuations (Van der Kindere et al.
(o) o, 0y [»)
2019). Note also that we have tested this approximation 22 +20/° 00/0 _30/0 _9f’
only for a single wind speed and wave slope, there could be a >0 4% 0% 4% —16%
9.4 +4% 0% —3% -11%

dependence on these variables, particularly when airflow
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FIG. 7. Testing of the planar-f approximation using three-
dimensional LES of turbulent flow over stationary sinusoidal to-
pography. The two histograms indicate the distributions of form
drag 74, obtained directly from the LES pressure field (orange), and
those obtained from using the planar-f approximation. Means of
each distribution are indicated by the dashed lines, and the
sample size consists of 450 x—z slices. The means are located
at 77 =7.5, 7.1 X 107* Pa, for the exact LES and planar-f
approximation, respectively, and differ by 5%.

condition, we arrive at an absolute error in total drag of 9%—
24%. This is greater than the values reported in the final col-
umn of Table 2, and suggests that the errors could be somewhat
compensating. The largest unknown error source is likely to be
the planar-f approximation, which has large confidence inter-
vals, and no definite sign. Note that this discussion above ap-
plies only to mean pressure fields. Errors for instantaneous
fields are very large (i.e., hundreds of percent), and much av-
eraging is required to produce accurate means.

6. Summary and conclusions

In this paper, we present a technique for reconstructing
pressure fields in the airflow over water waves from combined
PIV and LIF laboratory data. This is done through solving a
pressure Poisson equation with a forcing that is determined
through the relative strength of strain and vorticity (enstrophy)
in the airflow. The method relies on the application of various
approximate boundary conditions. Using the high resolution of
the PIV measurements, and the pressure field estimates, it is
possible to independently evaluate both the surface viscous
stress and the pressure-induced form drag, thus estimating the
total momentum flux at the interface. The results show that
pressure-induced form drag becomes the greater momentum
flux term at higher wind speeds (for 2.2 = U;p < 9.1ms™ ') and
steeper wave slopes (for 0.07 < a,k, = 0.19).

The agreement between the total stress, derived from the
pressure reconstruction, with an independent law-of-the-wall
bulk estimate, is within 5%. This suggests that the pressure
reconstruction technique is able to capture the wave-phase
coherent variations of the pressure field at the interface.
However, the analysis of the different approximations used in
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the reconstruction show that the two main sources of error,
which result from the top boundary condition and the planar
approximation, have larger magnitudes (with the sum of the
errors at 31% of total form drag), and may partially compen-
sate. It is not clear that these errors would still compensate in
different wind sea conditions (older wave ages for example),
and the errors in the pressure reconstruction may increase.
Particularly uncertain is the planar approximation, which could
exhibit bias due to out-of-plane components when wind and
waves are not aligned. We note, however, that larger PIV do-
mains that reach heights beyond the wave boundary layer will
reduce the errors associated with the top boundary condition.

The ability to directly estimate pressure fields in the vicinity
of the air-water interface using PIV-LIF measurements opens
up new possibilities for studying the mechanisms of momen-
tum and energy transfers between the atmosphere and the
ocean. Although such mechanisms have long been the subject
of numerous studies, direct measurements of the pressure field
have been lacking. This work therefore fills an important gap in
the physics of atmosphere—ocean coupling.
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APPENDIX A

Derivation of Momentum Fluxes

We denote the two dimensional stress tensor for incom-
pressible flows by

40 Ju 8u+()w
P “ax ® 0z  0x
7= : (A1)
ij
oW, w
" Jdz  ox p Mr’)z

with u the dynamic viscosity of the fluid (air, in the present
case). The total flux of horizontal momentum through the
water surface can then be calculated through

Tiot = JTU -nds, (A2)
using the sign convention that positive 7 corresponds to a
horizontal momentum loss by the air, and gain by the water.
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Here we define n as the upward pointing unit normal to the
water surface, represented by s. In practice, we evaluate this
integral using instantaneous measurements of the water sur-
face elevation, n(x, t), by substituting

SV R -
and using the relation
Jrteneeonas= frteae ol (22) +1] e can

This leads to the following form for total horizontal stress
_ u  ow dudn an

Tt = J,u(&+ —2——) dx + Jpadx

| S——

ox dx 0x
being composed of both pressure (form drag) and viscous
components, as indicated.

(AS)

viscous stress form drag

APPENDIX B

Description of the LES

The large-eddy simulation (LES) method is based on the
concept of the energy cascade, in which flow instabilities break
down large eddies into smaller eddies and so transfer their
energy to smaller scales. In LES, the contribution of the small
eddies is parameterized through a subgrid-scale (SGS) model,
whereas the large eddies are resolved. We use the Parallelized
Large-Eddy Simulation Model for atmospheric and oceanic
flows (PALM, version 6.0, revision 4901), developed at the
Institute of Meteorology and Climatology of the Leibniz
University of Hannover (Raasch and Schroter 2001; Maronga
et al. 2015).

The domain described for the simulations had dimensions of
0.768 m X 0.128 m X 0.256 m along x, y, and z, respectively. The
grid size was set to 1 mm in all directions. Two sinusoidal waves
of length 38.4cm and crest-to-trough height of 1.0cm were
prescribed along the mean flow x direction, giving a wave slope
of ak = 0.082. A horizontal mean pressure gradient was applied
to allow the mean flow to achieve a quasi-steady state.

The lateral boundaries of the domain were assigned periodic
conditions, with a velocity bottom boundary condition pre-
scribed by Monin—-Obukhov similarity using a nondimensional
roughness length of kzo = 1.1 X 10™*, which prescribes a re-
lationship between the surface momentum flux and the tan-
gential velocity at the first grid level. The roughness length was
chosen to match the value of the low wind speed experiment
(see Buckley et al. 2020). At the domain top, a stress-free, rigid
lid was used for the velocity. To initiate the development of
turbulence, random perturbations in the velocity field with a
magnitude of up to 0.02ms ! were imposed at the initial time.
A minimum level of subgrid-scale turbulent kinetic energy
(SGS-TKE) was set in order to limit the eddy viscosity to its
molecular value. This state of minimum SGS-TKE was found
throughout the majority of the domain during the quasi-steady
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period in which the analysis was performed. The simulations
are, in this respect, more representative of direct numerical
simulations, where the smallest turbulent eddies are resolved,
and there is no need for subgrid-scale momentum fluxes. This
also ensures that there is minimal influence of the SGS terms in
the pressure reconstruction.
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