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Abstract

Long-read sequencing technology enables significant progress in de novo genome assembly. However, the high error rate and
the wide error distribution of raw reads result in a large number of errors in the assembly. Polishing is a procedure to fix
errors in the draft assembly and improve the reliability of genomic analysis. However, existing methods treat all the regions
of the assembly equally while there are fundamental differences between the error distributions of these regions. How to
achieve very high accuracy in genome assembly is still a challenging problem. Motivated by the uneven errors in different
regions of the assembly, we propose a novel polishing workflow named BlockPolish. In this method, we divide contigs into
blocks with low complexity and high complexity according to statistics of aligned nucleotide bases. Multiple sequence
alignment is applied to realign raw reads in complex blocks and optimize the alignment result. Due to the different
distributions of error rates in trivial and complex blocks, two multitask bidirectional Long short-term memory (LSTM)
networks are proposed to predict the consensus sequences. In the whole-genome assemblies of NA12878 assembled by
Wtdbg2 and Flye using Nanopore data, BlockPolish has a higher polishing accuracy than other state-of-the-arts including
Racon, Medaka and MarginPolish & HELEN. In all assemblies, errors are predominantly indels and BlockPolish has a good
performance in correcting them. In addition to the Nanopore assemblies, we further demonstrate that BlockPolish can also
reduce the errors in the PacBio assemblies. The source code of BlockPolish is freely available on Github
(https://github.com/huangnengCSU/BlockPolish).
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Introduction
Long-read sequencing technology, such as Oxford Nanopore
Technologies and Pacific Biosciences, can produce long reads
up to 106 bases. The long reads have dramatically advanced the
genomics research field [1–4] because they can span repetitive
regions and anchor repeat copies to a unique position in the
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genome. However, except for PacBio HiFi reads, the other long
reads have high error rates. In particular, with the development
of chemistry and base callers [5–7], Oxford Nanopore sequencing
still has read error rates in the range of 5–15%. The errors in
the reads usually lead to errors in assembly, which cause the
downstream genome analysis [8–10] to be unreliable. In a de novo
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genome assembly, one can perform read error correction at the
beginning of the process, or use reads-to-assembly alignment to
improve the quality of assembly at the end of the process. The
latter approach is called polishing.

The two strategies currently used for long-reads error
correction are ‘hybrid methods’ and ‘non-hybrid methods’.
The hybrid error correction methods, including Hercules [11],
HALC [12], Nanocorr [13], Nas [14], proovread [15], MaSuRCA [16]
and PacBioToCA [17], take advantage of high accuracy of short
reads. Errors in long reads are corrected based on the alignment
between short reads and long reads. An obvious requirement
of hybrid error correction methods is to have both short-read
and long-read sequencing data of the same sample. The other
strategy performs self-correction using long reads alone. The
non-hybrid methods including FLAS [18], LoRMA [19], Canu error
correction module [20] usually generate consensus sequences
by constructing a graph representation from pairwise alignment
of raw long reads.

However, the pairwise alignment in reads error correction
is a time-consuming step accounting for around one-third of
the entire assembly process. The latest assemblers such as Flye
[21], Wtdbg2 [22] and Shasta [9] avoid the error correction step
and directly assemble from erroneous raw reads and finally use
a polishing workflow to increase the accuracy. Polishing is a
step to correct errors in assemblies, and its performance directly
affects the quality of the whole assembly result. The genome
assembly polishing methods can be divided into three main
categories. The first type of polishing tools, such as Pilon [23],
NextPolish [24], ntEdit [25] and POLCA [26], aligns highly accurate
short reads to the assembly and corrects the assembly result
from reads alignment. These approaches have high polishing
accuracy but require extra next-generation sequencing (NGS)
data for the same sample. In addition, short-read polishing can
be inaccurate in some repeats. The second type of polishing tools
combines long reads and short reads for correcting errors in the
assembly.Apollo [27] uses read sets fromall available sequencing
technologies to improve the accuracy of assembly with a profile
hidden Markov model. However, Apollo’s polishing speed is too
slow, which makes it impractical for large genomes. The third
type of polishing tools only requires long reads and usually
has a fast speed. As an example, Racon [28] has a highly effi-
cient polishing module. A partial-order alignment (POA) graph
[29] is constructed according to the reads-to-assembly align-
ment, and then a path with the maximum score is found as
the consensus sequence in the POA graph through dynamic
programming. Medaka (https://github.com/nanoporetech/meda
ka) is developed by Oxford Nanopore Technologies (ONT) for
creating consensus sequences and variant calls from Nanopore
sequencing data. For each column of a pileup of sequencing
reads against a draft assembly, Medaka counts the distribution
of different bases and a recurrent neural network is used to
predict the true nucleotide base at each position. In theworkflow
of Medaka, the draft assembly is polished by four rounds of
Racon followed by one round of Medaka. NeuralPolish [30] is
a polishing method based on alignment matrix construction
and orthogonal Bi-directional Gated Recurrent Unit (Bi-GRU)
networks. In the alignment matrix, each row stores a mapped
read and each column represents the aligned bases at each posi-
tion of the contig. Two orthogonal bidirectional GRU networks
process the matrix by row and column, respectively, and predict
the final polished sequence. MarginPolish & HELEN [9] is also
a deep neural network-based polishing pipeline for improving
the base-level quality of draft assembly. The pipeline is made
up of two modules, graph-based MarginPolish and deep neural

network-based HELEN. MarginPolish constructs a weighted run-
length encoding (RLE) POA graph to represent the potential alter-
native local assemblies from RLE alignment of reads against the
assembly. HELEN takes the weights of the MarginPolish RLE POA
graph and uses a multitask recurrent neural network to predict
a nucleotide base and the number of repetitions for each base.

The number of different nucleotide bases at each position
from the reads-to-assembly alignment result is an important
feature to determine the consensus sequence. However, since
the inserted fragments from multiple reads are not aligned, we
usually can not get an accurate number of nucleotide bases in
the insertion region. Frequent insertions make the reads-to-
assembly alignment more complex and reduce the polishing
accuracy. Thus, it is necessary to improve the alignment of
inserted fragments. However, the state-of-the-art polishing
tools do not take this fact into consideration, which limits the
polishing accuracy. In this paper, we present a novel polishing
approach, BlockPolish, which only uses error-prone raw long
reads. In BlockPolish, we divide each contig into trivial blocks
where there are few insertions and complex blocks where
there are frequent insertions. For complex blocks, we realign
the read fragments to improve the alignment result using
multiple sequence alignment (MSA) [31]. Then, two neural
network models with different parameters are applied to trivial
blocks and complex blocks, respectively. In the neural network,
we apply a two-task, four-layer Bi-LSTM network to predict
compressed consensus sequence and full-length consensus
sequence. The task predicting compressed sequence only
learns the order of different nucleotide bases that appear in
the consensus sequence. Another task predicting full-length
sequence learns not only the order of nucleotide bases but
also the number of repetitions of each nucleotide base. The
task predicting compressed sequence can help train the task
predicting full-length consensus sequence. During training, two
tasks are jointly trained. During inference, the final consensus
sequence comes from the output of the task predicting full-
length sequence. We compare BlockPolish with Racon, Medaka
and MarginPolish & HELEN on the human sample NA12878.
BlockPolish achieves more accurate assemblies than other
polishing algorithms, and the genome assembly corrected by
BlockPolish has higher gene completeness. For each assembly,
the errors are dominated by indels, and BlockPolish has a
significant improvement in solving indels compared with other
tools. We also test BlockPolish on the assemblies produced
by different base-callers and different assemblers, BlockPolish
shows a stable ability to improve the accuracy of assembly
results.

Methods
Training data set and testing data set

We train the BlockPolishmodel on Nanopore reads of the human
sample HG002 chromosome 6–10. The raw reads of HG002
are basecalled with Guppy v3.4.4 and the ground-truth HG002
assembly is generated from Genome in a Bottle Consortium
(GIAB) high-confidence variant set [32] against the GRCh38
reference sequence. Both basecalled reads and truth assembly
are released on website https://console.cloud.google.com/sto
rage/browser/kishwar-helen. We assemble the raw reads with
Wtdbg2 and polish the initial assembly with one round of
Racon because graph-based polishing can help to solve long-
length structural errors in the draft assembly. Two state-of-
the-art Nanopore assembly polishing workflows, Medaka and
MarginPolish & HELEN, both adopt the similar framework, a
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Table 1. Details of data sets

Data set Accession Detail

HG002-ONT https://console.cloud.google.com/storage/browser/kishwar-helen 50X coverage, basecalled by Guppy 3.4.4
HG002-PacBio https://humanpangenome.org/hg002/ 44X coverage
HG002-Ground Truth https://console.cloud.google.com/storage/browser/kishwar-helen –
NA12878-ONT https://github.com/nanopore-wgs-consortium/NA12878 35X coverage, basecalled by rgb

0.141,0.161,0.18Guppy 2.3.8 HAC
NA12878-Ground Truth GenBank GCA_002077035.3 –
E. coli-PacBio http://sysbio.gzzoc.com/MECAT/ 84X coverage
E. coli-Ground Truth Genbank GCF_000005845.2 –
S. cerevisiae-PacBio http://sysbio.gzzoc.com/MECAT/ 115X coverage
S. cerevisiae-Ground Truth Genbank GCF_000146045.2 –
A. thaliana-PacBio http://sysbio.gzzoc.com/MECAT/ 155X coverage
A. thaliana-Ground Truth Genbank GCA_000835945.1 –
D. melanogaster-PacBio http://sysbio.gzzoc.com/MECAT/ 110X coverage
D. melanogaster-Ground Truth Genbank GCF_000001215.4 –

graph-based polishing followed by a neural network-based
polishing. Then, the assembly is aligned to the truth assembly
with minimap2 to obtain the label sequence. We divide the
assembly results into trivial blocks and complex blocks, and form
two training data sets. To evaluate the performance of different
polishing tools, we use another individual human sample
NA12878 as the testing data set. The Nanopore sequencing
data of NA12878(rel6) is posted online at https://github.co
m/nanopore-wgs-consortium/NA12878. The truth assembly
is from the publicly available PacBio high-quality assembly
NA12878_prelim_3.0,whichwas assembled using Falcon [33] and
corrected using Quiver [34] and Pilon. The NA12878_prelim_3.0
can be downloaded from GenBank with accession number
GCA_002077035.3. All of the raw data and ground truths are
available from public websites as shown in Table 1.

Overview of BlockPolish workflow

As shown in Figure 1A, the first few steps of BlockPolish are
similar to Medaka. BlockPolish performs one round of Racon as
the initial refinement for draft assembly. Then, the raw reads are
aligned to the assembly with minimap2 [35] to obtain the read-
to-assembly alignment. Besidesminimap2, BlockPolish supports
the other long-read aligners as long as the reads-to-assembly
alignment results are stored in the BAM file format. After the
two steps, BlockPolish scans the alignment result by column
and counts the number of different nucleotide bases, insertions
and deletions at each position of the contig to construct a con-
sensus table [36]. According to the consensus table, each contig
is divided into trivial blocks and complex blocks. To optimize
the alignment result in complex blocks, an MSA is performed
to realign the raw reads in complex blocks. Afterwards, the
feature tensors including the number of different nucleotide
bases, insertions and deletions extracted from trivial blocks and
rearranged complex blocks are fed into two neural networkmod-
els separately to generate consensus sequences of each block.
Finally, BlockPolish threads the consensus sequences of blocks
based on the positions in the contig and forms the polished
sequence.

Constructing a consensus table and dividing blocks

At one position of the contig, there may be multiple reads with
inserted fragments. However, there is no template sequence that
can be used to map all inserted fragments to this template.

The inserted fragments from multiple reads are not aligned
in the reads-to-assembly alignment. Thus, frequent insertions
can make the alignment result more complex and reduce the
polishing accuracy. In order to divide the blocks on the contig
with different alignment complexity, we construct a linear table
to store the number of different nucleotide bases, insertions
and deletions at each position. The number of different bases
represents the statistics of the nucleotide bases from multiple
reads at the current position of the contig. The number of inser-
tions indicates how many reads have inserted fragments at the
current position of the contig. The number of deletions indicates
howmany reads shownucleotidemissing at the current position
of the contig.

In this paper, we represent the reads-to-assembly alignment
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C = (c1, c2, . . . cj, . . . , cl0 ),
A1 = (a1,1, a1,2, . . . , a1,j, . . . a1,l1 ),
A2 = (a2,1, a2,2, . . . , a2,j, . . . a2,l2 ),

. . .

Ai = (ai,1, ai,2, . . . , ai,j, . . . ai,li ),
. . .

Am = (am,1, am,2, . . . , am,j, . . . am,lm ).

(1)

Here, C represents the contig in the alignment, and A =
{A1,A2, . . . ,Am} represents the reads aligned to the contig. m is
the number of aligned reads, l0 is the length of the contig in the
alignment and l1, l2, . . . , lm are lengths of the aligned reads. Each
element from the contig C or aligned reads A in the alignment
comes from the set of symbols � = {A,C,G,T, ∗}. If cj = ∗ and
ai,j �= ∗, there is an inserted base in read Ai according to the
contig. On the contrary, if cj �= ∗ and ai,j = ∗, the read Ai shows
a base deletion. The insertion region is a closed interval of the
form [h, k] such that ∀j ∈ [h, k], cj = ∗.

F = (f1, f2, . . . fj, . . . , fl0 ) is a sequence that marks each
position in the alignment as a trivial or complex position.
For position j in the alignment, we define the trivial position
(fj = 0) as the one meeting the following two criteria: (i)
there is no significant insertion occurring (Ij < α). If position
j is in an insertion region [h, k], Ij = max Ip, p ∈ [h, k] and
Ip = ‖ {

i|ai,p �= ∗, cp = ∗, i ∈ {1, 2, . . . ,m}} ‖. If position j is not in any
insertion region, Ij = 0; (ii) the position is consistent matches
((Mj/(Mj +Dj) > β) or consistent deletions ((Dj/(Mj +Dj) > γ ),Mj =
‖ {

i|ai,j �= ∗, i ∈ {1, 2, . . . ,m}} ‖, Dj = ‖ {
i|ai,j = ∗, i ∈ {1, 2, . . . ,m}} ‖.
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Figure 1. (A) Overview of the BlockPolish workflow. The inputs consist of a draft assembly and raw long reads. First, the draft assembly is polished with one round

of Racon and the raw long reads are aligned to the assembly to get the reads-to-assembly alignment. Then, we construct a consensus table and divide each contig

into blocks with low complexity and high complexity. The complex blocks are processed with a multiple sequence alignment to improve the alignment consistency.

Afterwards, two neural networkmodels are used to predict consensus sequences of the trivial blocks and complex blocks, separately. Finally, consensus sequences from

all blocks are concatenated into the polished assembly. (B) The construction of a consensus table from reads-to-assembly alignment. The table records the number of

different nucleotide bases, insertions (I) and deletions (D) at each position of the contig.M represents the total number of different nucleotide bases. (C) The reads-to-

assembly alignment of a complex region before and after multiple sequence alignment. (D) The neural network architecture of BlockPolish. The network of BlockPolish

consists of four Bi-LSTM layers, a compressed projection layer and a flip-flop projection layer. The Bi-LSTM layers take into both left and right alignment features when

making decisions at each position of the contig. The compression layer is to learn the compressed consensus sequence without continuously repetitive nucleotide

bases and the flip-flop is used to learn the full-length consensus sequence.

Here α, β and γ are three thresholds, and we set α = 6, β = 0.8
and γ = 0.8. The position that does not meet the criteria of a
trivial position is deemed as a complex position (fj = 1). For each
contig, we have divided each position into a trivial position or
a complex position. Then, we can define the trivial blocks and
complex blocks. The trivial block is a closed interval of the form
[u,v] such that ∀j ∈ [u,v], fj = 0. Similarly, the complex block is a
closed interval of the form [u,v] such that ∀j ∈ [u,v], fj = 1. For
example, as shown in the upper part of Figure 1B, there are nine
reads aligned to the contig. There are two insertion regions in
the alignment of the format [1, 1] and [5, 6]. At the positions in
the insertion regions, the number of insertions, deletions and
different bases are I1 = 3,D1 = 0,M1 = 3, I5 = 8,D5 = 0,M5 =
8, I6 = 8,D6 = 0,M6 = 3. So, position one is a trivial position,
and positions five and six are complex positions. Finally, the
intervals [0, 4] and [7, 9] are trivial blocks, and the interval [5, 6]
is a complex block.

We test different values of thresholds and evaluate the per-
formance of BlockPolish on the data set of HG002 chromosome
1. In Figure 2, as we progressively increase the value of α and
decrease the value of β and the value of γ , the time consumption
of the polishing process decreases and the error rate gradually
increases. When we set α = 1, β = 0.85 and γ = 0.85, most

regions on the contig are divided into complex blocks. We per-
form MSA in each block of the complex blocks, so the polishing
process takes the longest time, but the polishing result has the
lowest error rate. When we set α = 26, β = 0.6 and γ = 0.6,
the constraints of trivial blocks are relaxed. Some low-quality
regions from complex blocks are divided into trivial blocks.
These regions need MSA to improve the alignment results dur-
ing polishing, but there is no MSA in the polishing process of
trivial blocks. Thus, the error rate of polishing results increases.
For the trade-off between time consumption and accuracy, the
thresholds in BlockPolish are α = 6, β = 0.8 and γ = 0.8.

To understand the characteristics of trivial blocks and com-
plex blocks, we construct consensus tables from the reads-to-
assembly alignment of HG002 chromosome 6–10 and generate
trivial blocks and complex blocks. Then, we extract the label
sequence of each block from reference-to-assembly alignment.
To calculate the error rates of trivial blocks and complex blocks,
we align the contig sequence of each block to the label sequence.
From the distribution of length in Figure 3, we can see that
the lengths of trivial blocks range from 1 to 100 bp, whereas
the lengths of complex blocks are concentrated within 10 bp.
Since the lengths of complex blocks are relatively small, the
computation ofMSA in complex blocks does not take a long time.
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Table 2. The error rates of trivial blocks and complex blocks on the data of HG002 chromosome 6–10.

Blocks Insertion (%) Deletion (%) Substitution (%) Total error rate (%)

Trivial blocks 0.0128 0.0712 0.0516 0.1356
Complex blocks 0.2932 1.9573 0.1106 2.3611

Figure 2. A comparison of runtime and accuracy of polishing for different

thresholds in BlockPolish.

We calculate the total length of all trivial blocks and that of all
complex blocks. The total length shows that 90% of the regions
on the contig are divided into trivial blocks, and 10% of the
regions are divided into complex blocks. The error rates of trivial
blocks and complex blocks are presented in Table 2. The error
rate of trivial blocks is 0.1356%, and the error rate of complex
blocks is 2.3611%. The higher error rate indicates that polishing
complex blocks is more difficult. To optimize the alignment
result and improve the polishing accuracy of complex blocks,
we apply a fast MSA tool Kalign [31] to realign the reads in each
complex block. When performing MSA, we extend the complex
block to the left and right by three positions, respectively. As
shown in Figure 1C, at position four on the contig, the inserted
fragments are only arranged from left to right and not aligned.
The MSA effectively realigns the inserted fragments. Then, we
calculate the features including the number of different bases,
insertions and deletions from the rearranged alignment in com-
plex blocks again. Finally, the features extracted from trivial
blocks and complex blocks are fed into two neural networks
with different parameters, respectively, to generate consensus
sequences.

Neural network architecture

In this section, we will show the architecture of the BlockPolish
network. Let X = {x1, x2, . . . , xT} be a sequence of input features
(T is the length of the block and each step xt ∈ X contains six
features: the number of different nucleotide bases {A,C,G,T}, the
number of insertions and the number of deletions). As shown in
Figure 1D, the network of BlockPolish consists of four Bi-LSTM
layers, a compressed projection layer and a flip-flop projection
layer. The hidden size of each Bi-LSTM layer is 256, and the
output size of last Bi-LSTM layer is 512. The Bi-LSTM layers
can take both left and right features when making decisions at
any position of the contig. The output from LSTM layers H =
{h1,h2, . . .hT} is a tensor with the shape of T × 512. Because of
the insertions and deletions in reads-to-assembly alignment,
the length of the feature sequence may vary from the length
of the label sequence. To overcome the inconsistency, we apply
a Connectionist Temporal Classification (CTC) layer [37] in the

Figure 3. A comparison of length distributions of trivial blocks and complex

blocks on the data of HG002 chromosome 6–10.

model architecture. CTC is a sequence prediction method that
does not have the limitation that the length of input should be
the same as the length of the target.

The compressed projection layer is a linear layer and the
input size of the compressed projection layer is 1024. We couple
the compressed projection layer with a CTC layer to transform
the output H from the previous LSTM layer into a sequence of
nucleotide bases without continuous repetition of a single base.
In other words, the consecutively repeated nucleotide bases in
the sequence are compressed into a single base and the length
of the sequence after compression is shorter than before (e.g.
the sequence ‘CCCTAA’ is compressed into ‘CTA’). This module
only learns the order of different nucleotide bases that appear in
the consensus sequence. The output of compressed projection
Oc = {c1, c2, . . . , cT} is a tensor with the shape of T × 6. The
output symbols of compressed projection contain {A,C,G,T,D,-}.
‘D’ means a deletion and ‘-’ represents the blank symbol in CTC
to separate two adjacent prediction characters. Afterwards, we
use a greedy search algorithm to pick the symbol with the largest
probability at each time step of the output Oc. By removing the
blank symbol ‘-’, deletion ‘D’ and compressing consecutively
repeated symbols, the compressed output sequence is obtained.

Besides the compressed projection layer, there is a flip-flop
projection layer in the network. This idea of flip-flop comes from
the recognition of consecutively repeated bases in Nanopore
flip-flop basecaller (https://github.com/nanoporetech/flappie).
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Flip-flop projection is also a linear layer as the compressed
projection layer. The input size of the flip-flop projection layer
is 1024. The flip-flop projection layer followed by a CTC layer
transforms the previous LSTMoutputH into a sequence inwhich
the continuously repeated nucleotide bases are flip-flopped. In
BlockPolish, the flip-flop operation alternately represents the
continuously repeated bases using uppercase and lowercase
characters, but the length of the sequence is unchanged (e.g.
the sequence ‘AAAAA’ becomes ‘AaAaA’ after flip-flopped). The
output of flip-flop projection layer Op = {p1, p2, . . . , pT} is a tensor
with the shape of T × 10. The output characters of flip-flop pro-
jection layer are {A,a,C,c,G,g,T,t,D,-}. To achieve the final output
sequence, the greedy search algorithm is used to generate the
predicted sequence. The symbols ‘D’ and ‘-’ in the sequence are
removed, and the lowercase symbols are converted to uppercase
symbols.

In the neural network, we use a multitask learning frame-
work to optimize the compressed prediction task and the full-
length flip-flop prediction task. During training, the two tasks
are jointly trained. The losses of these two parts are calculated
by two CTC loss functions, and two losses are added as the total
loss. During inference, since the output of the compressed pre-
diction does not have the information about the number of repe-
titions of each base, we cannot recover the consensus sequence
from the output sequence of the compressed prediction task.
So, the final consensus sequence is the output sequence of full-
length flip-flop prediction. Besides, the two tasks make their
own decisions and the result of the compressed prediction task
can help to validate that of the flip-flop prediction task. We
compress the repeated nucleotide bases in the sequence Sp from
flip-flop prediction into a new sequence S′

p and then compare
the new sequence S′

p with the sequence Sc from compressed
prediction. If the sequences S′

p and Sc are equal, the result of the
flip-flop prediction task is more likely to be correct.

Model training

The whole network is trained on Nanopore reads of the human
sample HG002 chromosomes 6–10 (90% for training and 10%
for evaluation). We assemble the raw reads with Wtdbg2 and
then polish the draft assembly with one round of Racon. After-
wards, both the Nanopore raw reads and the truth assembly
from GIAB are aligned to the Racon polished assembly, respec-
tively. According to the reads-to-assembly alignment, the con-
sensus table is constructed, and we divide each contig into
trivial blocks and complex blocks. The feature tensors from
the alignment result of trivial blocks including the number of
different bases, insertions and deletions can be extracted. Based
on the reference-to-assembly alignment, the truth sequence
of each trivial block is also obtained. For complex blocks, the
read fragments are realigned by an MSA. Then, we extract the
feature tensors including the number of different bases, inser-
tions and deletions from the rearranged alignment result of
complex blocks. The truth sequence of each complex block is
also provided by the reference-to-assembly alignment.

So far, we have the feature tensors and truth sequences
for training two models for trivial blocks and complex blocks,
respectively. BlockPolish is a two-task model, and the two tasks
have the same input feature tensor but different label sequences.
To achieve the label of the compressed prediction task, we
compress the repeated bases in the truth sequence into a single
base. To obtain the label of the flip-flop prediction task, we
alternately represent the repeated bases in the truth sequence
using uppercase and lowercase characters. Afterward, we train

the two prediction tasks using the same feature tensor and the
different label sequences. The parameters of the neural network
are optimized by Adam optimizer [38]. The initial learning rate
is set to 0.001 and the decay ratio of the learning rate is 0.7. To
prevent over-fitting, we use the dropout [39] to randomly set the
values of some neural cells to zero. The dropout ratio is set to
0.3. To prevent gradient explosion during training, we apply a
gradient clipping strategy and set the maximum gradient to 200.
The whole network is implemented in Python with PyTorch 1.4.

Results
Evaluation of BlockPolish on polishing
Wtdbg2 assembly

We evaluated the performances of Racon, Medaka, MarginPol-
ish & HELEN and BlockPolish on ONT data of NA12878. Since
BlockPolish and MarginPolish & HELEN were both trained on the
same human sample HG002, the test data set was new for these
two polishing tools. The raw reads of NA12878 chromosome 1–
10 were extracted by Samtools [40], respectively, after mapping
all of the reads to the reference GRCh38. Then, the raw reads of
each chromosome were assembled using Wtdbg2 and polished
using four different polishing methods. For Racon polishing,
each assemblywas polished by four rounds of Racon. ForMedaka
polishing, four rounds of Racon followed by one round ofMedaka
was used to polish the draft assemblies. For MarginPolish &
HELEN polishing, each draft assembly was corrected by Margin-
Polish and HELEN successively. For BlockPolish polishing, we
polished the assemblies with a round of Racon followed by a
round of BlockPolish. The base-level error rates of the polished
assemblies were reported by the Pomoxis toolkit (https://githu
b.com/nanoporetech/pomoxis). The substitution, deletion and
insertion error rates are defined as the number of mismatched,
deleted and inserted bases divided by the number of bases in
the reference sequence. The indels error rate is the sum of
insertion error rate and deletion error rate. As can be seen from
Figure 4, BlockPolish gets the lowest overall error rate in each
chromosome. The order of accuracy in four polishing tools is
BlockPolish, MarginPolish & HELEN, Medaka and Racon. From
the error types, BlockPolish fixes much more indel errors than
other polishing tools in each chromosome. For all assemblies,
the errors are dominated by indels, which leads to the overall
lowest error rate for BlockPolish. In terms of substitution errors,
MarginPolish & HELEN has the best performance followed by
BlockPolish. Besides, we calculated the relative improvement
rate of BlockPolish compared with other tools, which is com-
puted as (ei − eB)/eB, ei ∈ {eH, eM, eR}. Here, eB, eH,eM and eR are
the overall error rates of the assemblies polished by BlockPolish,
MarginPolish & HELEN, Medaka and Racon, respectively. From
the results of the relative improvement rate, we can see that
BlockPolish has relatively improved by 2.67% over MarginPolish
& HELEN, 7.65% over Medaka and 15.70% over Racon on average.

Polishing performance generalizes to a new assembler

We trained a BlockPolish model on the training data assembled
by Wtdbg2. To evaluate the generalization power of BlockPolish
on the assembly generated by a new assembler, we used Flye
to assemble the ONT reads of NA12878 chromosome 1–10. The
draft assemblies were polished by Racon, Medaka, MarginPolish
& HELEN and BlockPolish, and the error rates of polishing results
were evaluated by Pomoxis. According to the base-level error
report shown in Figure 5, we found that the assembly polished
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Figure 4. Base-level error rates in polished Wtdbg2 assemblies of NA12878 chromosome 1–10.

by BlockPolish still gets the lowest overall error rate in each
chromosome. Compared with MarginPolish & HELEN, BlockPol-
ish has greatly improved in solving indel errors. Compared with
Medaka and Racon, BlockPolish has lower error rate both in sub-
stitutions and indels. From the results of the relative improve-
ment rate, we can see that BlockPolish has relatively improved
by 3.63% over MarginPolish & HELEN, 7.69% over Medaka and
13.86% over Racon on average. In these comparisons, Block-
Polish has better performance than state-of-the-art polishing
pipelines, even though the draft assemblies were generated by
the unseen assembler Flye. Therefore, we do not need to train
a specific model for every assembler, which makes BlockPolish
more robust and generalizable.

Accuracy, gene completeness and contiguity
of polished whole-genome assembly of NA12878

In the previous section, we evaluated the performance of
BlockPolish on certain chromosomes of NA12878. In this section,
we will assess the performance of BlockPolish on ONT NA12878
whole-genomeassembly. First,we assembled thewhole-genome
sequencing reads of NA12878 with Flye. The draft assembly was
polished by different polishing tools separately. The error rates
of assemblies reported by Pomoxis are listed in Figure 6. The

assembly polished by BlockPolish achieves the lowest error
rate, which is mainly due to the reduction of indel errors.
MarginPolish & HELEN has the lowest substitution error rate
followed by BlockPolish. For the draft assembly, errors are
dominated by indel errors. Substitution errors are 6.4 times
fewer than indels. In addition to accuracy, gene completeness
is an important indicator for evaluation assembly results. To
evaluate the gene completeness of polished whole-genome
assembly of NA12878,we calculated an asmgene score [41] using
minimap2 and paftools. First, the complementary DNA of Homo
sapiens from EnsEMBL was aligned to polished assemblies and
high-quality truth assembly using minimap2, and the single-
copy genes in the truth assembly were selected. Then, we
used paftools to compare the alignment result of the single-
copy genes in the truth assembly to those in the polished
assembly. The asmgene scores of assemblies polished by
different technologies are shown in Table 3. Complete asmgene
score represents the percentage of single-copy genes in the
truth assembly that are mapped as intact single-copy genes
in the polished assembly. Duplicated asmgene score gives the
percentage of single-copy genes in truth assembly that become
multi-copy in the polished assembly. As can be seen from
the figure, NA12878 assembly polished by BlockPolish has the
highest complete gene score (96.87%) over all the compared
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Figure 5. Base-level error rates in polished Flye assemblies of NA12878 chromosome 1–10.

tools. BlockPolish recovered 194 additional complete genes in
polished assembly, which is the largest number of recoveries
among all the polishing tools. To quantify contiguity, we further
assessed the assemblies of NA12878 using Quast [42]. From
Table 4, the assembly polished by BlockPolish has the highest
N50 of 20.79M. The maximum length of BlockPolish polished
assembly is longer than that of assemblies polished by other
tools. In terms of genome fraction, Medaka polished assembly
has the highest genome fraction, followed by BlockPolish
polished assembly.

Evaluation of BlockPolish on assemblies of varying
accuracies

At present, there are many base-callers for Nanopore sequenc-
ing, and their basecalling accuracies are different.As a result, the
error rate of the assembly result is also different. This requires
the polishing tools to have the ability to deal with the raw
reads and assembly results with different error rates. To evaluate
BlockPolish on the assemblies of different error rates, we used
multiple base-callers to generate several read sets of NA12878
chromosome 21. The basecalling tools include several versions
of Albacore and Guppy. The time span of these tools is from

Figure 6. Error rates in the whole-genome assemblies of NA12878 before and

after polishing with BlockPolish, MarginPolish & HELEN, Medaka, Racon.

January 2017 to December 2020. Afterwards, we used Flye to
assemble these read sets and polish the draft assemblies using
BlockPolish. The accuracies of read sets and the error rates of
assemblies are shown in Figure 7. The accuracies of reads sets
range from 83.78 to 92.52%, with a difference of 8.74%. And the
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Table 3. The score of gene completeness in the whole-genome assembly of NA12878 before and after polishing

Polishing tools Complete gene score Duplicate gene score Total gene

BlockPolish 96.87%(34 558) 0.36%(130) 34 688
MarginPolish & HELEN 96.64%(34 478) 0.31%(112) 34 590
Medaka 96.71%(34 502) 0.44%(157) 34 659
Racon ×4 96.48%(34 421) 0.41%(147) 34 568
Unpolished 96.32%(34 364) 0.50%(180) 34 544

The bold in the table means the best results.

Table 4. Quast evaluation of the contiguity of polished NA12878 assemblies

Polishing tools N50 (Mb) Max Len (Mb) Total Len (Mb) Genome fraction (%)

BlockPolish 20.79 72.69 2799 97.105
MarginPolish & HELEN 20.78 72.68 2797 97.035
Medaka 20.63 72.66 2800 97.116
Racon x 4 20.63 72.65 2800 97.104

Figure 7. The performance of BlockPolish on polishing assemblies of different

qualities. The assemblies are assembled from raw long reads basecalled by

different base-callers. The red polyline represents the median identities of reads

sets.

error rates of assembly results range from 0.792 to 3.166%. In all
data sets, BlockPolish has improved the accuracy of assembly
results, although the error rate of draft assembly varies greatly.
Especially,when the raw reads were produced by the latest base-
caller Guppy v4.4.0, the assembly polished by BlockPolish had a
relative improvement rate of 54.7% over the initial assembly in
terms of the error rate.

Evaluation of the role of Racon in the BlockPolish
pipeline

Currently, two state-of-the-art Nanopore assembly polishing
workflows use the similar framework, a graph-based polishing
followed by a neural network-based polishing. The workflow
of Medaka polishing consists of four rounds of Racon and
one round of Medaka. The workflow of MarginPolish & HELEN
polishing is made up of one round of MarginPolish and one
round of HELEN. MarginPolish is similar to Racon in function,
both using the POA graph [29] to correct the draft assembly
initially. HELEN is similar to Medaka in that both of them use
deep neural networks to make predictions from the statistical
information of reads-to-assembly alignment. In BlockPolish,
we also applied the same workflow as the existing polishing

Figure 8. Evaluating the impact of different rounds of Racon in the BlockPolish

workflow.

tools. Here, we evaluated the polishing performance of different
rounds of Racon combined with BlockPolish. The test data set
was from ONT data of NA12878 chromosome 1 assembled by
Flye. We tested five BlockPolish workflows in which the rounds
of Racon range from zero to four. From the base-level error
rates result shown in Figure 8, we can see that the error rate
of the workflow combined with Racon and BlockPolish is much
lower than that of only Racon polishing or only BlockPolish
polishing. This is because the graph-based polishingmethod can
help solve long-length structural errors in the assembly, thereby
improving the reads-to-assembly alignments. Then, the neural
network approach solves fine base-level errors from the more
accurate alignment results. Neither of the two types of errors
can be ignored, and only solving one of them will not achieve
the best polishing performance. For this reason, the state-of-
the-art polishing workflows all combine the graph method with
the deep learning method. For the workflow of BlockPolish, we
executed one round of Racon followed by one round of BlockPol-
ish, because more rounds of Racon brought more computational
expense without much performance improvement. It is worth
noting that the polishing result generated by two rounds of
Racon plus one round of BlockPolish is worse than that gener-
ated by one round of Racon plus one round of BlockPolish. The
difference between the two experiments is that one performs
a round of Racon, and the other performs two rounds. More
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Table 5. The runtime of polishing NA12878 chromosome 1 with
different polishers

Polishing
tools

CPU
runtime (s)

GPU
runtime (s)

Total
runtime (s)

BlockPolish 2829 4920 7749
MarginPolish
& HELEN

5040 557 5597

Medaka 2781 6780 9561
Racon ×4 2781 0 2781

The bold in the table means the best results.

Figure 9. Error rates in PacBio assemblies of Escherichia coli, Saccharomyces cere-

visiae, Arabidopsis thaliana and Drosophila melanogaster before and after polishing

with BlockPolish.

rounds of Racon increase the error rate of polishing results. This
is because the iterative running of Racon cannot guarantee that
the result of each iteration has a higher accuracy than that of the
previous round.The improvement in the accuracy of the iterative
polishing is fluctuating.

Evaluation of BlockPolish on PacBio long-read assembly

The distributions of errors in PacBio reads and Nanopore reads
are different. PacBio reads show a high insertion error rate,
whereas Nanopore reads show similar substitution, insertion
and deletion rates [43]. BlockPolish is a polishing tool designed
for Nanopore assembly, but it is also applicable for PacBio assem-
bly from the perspective of algorithm. To enable BlockPolish
to polish PacBio assemblies, we trained a model of BlockPolish
on PacBio data of HG002 (44X). Wtdbg2 was used to assem-
ble the PacBio reads and the truth assembly was generated
from GIAB high-confidence variant set against the GRCh38 ref-
erence sequence. We tested the performance of BlockPolish on
the PacBio data of Escherichia coli (84X), Saccharomyces cerevisiae
(115X), Arabidopsis thaliana (155X) and Drosophila melanogaster
(110X) assembled by Flye. The error rates of polished assemblies
are shown in Figure 9. In three of four assembly results, BlockPol-
ish can reduce the errors in the draft assembly. In the assembly
of E. coli, there are fewer deletion errors. However, BlockPolish
mistakenly tries to recover the deletion errors, which causes
the lower performance. How to find a better strategy to balance
among different types of errors is one future work of our study.

Computational setup and runtime

To evaluate the runtime of different polishing pipelines, we ran
all the polishing tools on the Server with 40 Central Processing

Units (CPU) (Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz), a Nvidia
GeForce RTX 2080Ti Graphics Processing Unit (GPU) and 256GB
Memory. BlockPolish consists of three main calculation steps:
polishing draft assembly with one round of Racon, generating
features of trivial blocks and complex blocks, and predicting the
polished sequence by a neural network. The first two steps are
executed on CPU, and the last step is executed on GPU. Medaka
and MarginPolish & HELEN are similar to BlockPolish where part
of the calculation is on CPU and the rest on GPU. Thus, we
recorded the CPU runtime and GPU runtime separately, and then
added the two to get the final runtime. The runtime of polishing
ONT assembly of NA12878 chromosome 1 is shown in Table 5. As
can be seen from the table, Racon polishing takes the least time
and Medaka polishing takes the longest time. In the polishing
technologies based on neural network, MarginPolish & HELEN is
the fastest, followed by BlockPolish, and finally Medaka.

Conclusion
In this study, we proposed a novel genome polishing algorithm
namedBlockPolish.Due to the different accuracy and complexity
of regions in the contig, we adopted different strategies for
correcting these regions. In our proposed polishing methods,
we divided each contig into blocks with low complexity and
high complexity according to the consensus table constructed
from reads-to-assembly alignment. For complex blocks, we used
MSA to realign the raw reads in blocks to optimize the align-
ment result. Then, two neural network models with different
parameters were applied for trivial blocks and complex blocks
to predict the consensus sequences, respectively. In terms of
network architecture, we used a multitask Bi-LSTM network to
predict compressed consensus sequence and full-length flip-
flop consensus sequence. The compressed prediction task only
learns the order of the different nucleotide bases appear in the
consensus sequence. Another task predicting full-length con-
sensus sequence learns not only the order of nucleotide bases
but also the number of repetition of each base.

When polishing the ONT data of NA12878, the assembly
polished by BlockPolish achieves higher accuracy than Racon,
Medaka and MarginPolish & HELEN. In terms of error types,
BlockPolish fixes more indels errors, which are dominated in
all assemblies. We tested BlockPolish on the assembly produced
by a different assembler, which is not seen during training; the
assembly polished by BlockPolish still achieves the lowest error
rate. It means that we do not need to train a specific model
for every assembler, which makes BlockPolish more robust and
generalizable.Due to the quality of raw reads, the accuracy of the
assembly results may vary greatly. We used several base-callers
to generate the raw reads of ONT NA12878 chromosome 20 and
produced assemblies with different error rates. Afterwards, we
polished the assemblies using BlockPolish, each of the assem-
blies has an improvement in accuracy.BlockPolish is designed for
polishing erroneous ONT assembly, but it is also capable of pol-
ishing PacBio assemblies. In four data sets of PacBio assemblies,
BlockPolish reduces the errors in three of them.

Key Points
• We present a novel polishing workflow, BlockPolish,
to divide the assembly into trivial blocks and com-
plex blocks and apply different polishing strategies for
correcting the errors in these two kinds of blocks.

• For complex blocks, we realign the reads in these
regions to improve the alignment results with anMSA.
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• We train two different Bi-LSTM networks to predict
polished sequences for two types of blocks, respec-
tively.

• The results show that in the whole-genome assem-
blies ofNA12878 assembled byWtdbg2 and Flye,Block-
Polish has a higher polishing accuracy than other
state-of-the-arts.
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6. Boža V, Perešíni P, Brejová B, et al.Deepnano-blitz: a fast base
caller for minion nanopore sequencers. Bioinformatics 2020;
36(14): 4191–2.

7. Huang N, Nie F, Ni P, et al. Sacall: a neural network base-
caller for oxford nanopore sequencing data based on self-
attention mechanism. IEEE/ACM Trans Comput Biol Bioinform
2020.

8. Cheng H, Concepcion GT, Feng X, et al. Haplotype-resolved
de novo assembly using phased assembly graphs with hifi-
asm. Nat Methods 2021; 18(2): 170–5.

9. Shafin K, Pesout T, Lorig-Roach R, et al. Nanopore sequenc-
ing and the shasta toolkit enable efficient de novo assembly
of eleven human genomes. Nat Biotechnol 2020;1–10.

10. Liao X, Li M, Hu K, et al. A sensitive repeat identification
framework based on short and long reads. Nucleic Acids Res
2021.

11. Firtina C, Bar-Joseph Z, Alkan C, et al. Hercules: a profile
hmm-based hybrid error correction algorithm for long reads.
Nucleic Acids Res 2018; 46(21): e125–5.

12. Bao E, Lan L. Halc: High throughput algorithm for long read
error correction. BMC bioinformatics 2017; 18(1): 1–12.

13. Goodwin S, Gurtowski J, Ethe-Sayers S, et al. Oxford
nanopore sequencing, hybrid error correction, and de novo
assembly of a eukaryotic genome. Genome Res 2015; 25(11):
1750–6.

14. Madoui MA, Engelen S, Cruaud C, et al. Genome assembly
using nanopore-guided long and error-free dna reads. BMC
Genomics 2015; 16(1): 327.

15. Hackl T, Hedrich R, Schultz J, et al. proovread: large-scale
high-accuracy pacbio correction through iterative short read
consensus. Bioinformatics 2014; 30(21): 3004–11.

16. Zimin AV, Marçais G, Puiu D, et al. The masurca genome
assembler. Bioinformatics 2013; 29(21): 2669–77.

17. Koren S, Schatz MC,Walenz BP, et al. Hybrid error correction
and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol 2012; 30(7): 693–700.

18. Bao E, Xie F, Song C, et al. Flas: fast and high-throughput
algorithm for pacbio long-read self-correction. Bioinformatics
2019; 35(20): 3953–60.

19. Salmela L, Walve R, Rivals E, et al. Accurate self-correction
of errors in long reads using de bruijn graphs. Bioinformatics
2017; 33(6): 799–806.

20. Koren S, Walenz BP, Berlin K, et al. Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res 2017; 27(5): 722–36.

21. Kolmogorov M, Yuan J, Lin Y, et al. Assembly of long, error-
prone reads using repeat graphs. Nat Biotechnol 2019; 37(5):
540–6.

22. Ruan J, Li H. Fast and accurate long-read assembly with
wtdbg2. Nat Methods 2020; 17(2): 155–8.

23. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated
tool for comprehensive microbial variant detection and
genome assembly improvement. PloS one 2014; 9(11):
e112963.

24. Hu J, Fan J, Sun Z, et al. Nextpolish: a fast and efficient
genome polishing tool for long read assembly. Bioinformatics
2020.

25. Warren RL, Coombe L, Mohamadi H, et al. ntedit: scal-
able genome sequence polishing. Bioinformatics 2019; 35(21):
4430–2.

26. Zimin AV, Salzberg SL. The genome polishing tool polca
makes fast and accurate corrections in genome assemblies.
PLoS Comput Biol 2020; 16(6):e1007981.

27. Firtina C, Kim JS, Alser M, et al. Apollo: a sequencing-
technology-independent, scalable and accurate assembly
polishing algorithm. Bioinformatics 2020; 36(12): 3669–79.
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