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Abstract. The late-Pleistocene history of the coastal
Cordilleran Ice Sheet remains relatively unstudied compared
to chronologies of the Laurentide Ice Sheet. Yet accurate re-
constructions of Cordilleran Ice Sheet extent and the tim-
ing of ice retreat along the Pacific Coast are essential for
paleoclimate modeling, assessing meltwater contribution to
the North Pacific, and determining the availability of ice-
free land along the coastal Cordilleran Ice Sheet margin for
human migration from Beringia into the rest of the Ameri-
cas. To improve the chronology of Cordilleran Ice Sheet his-
tory in the Alexander Archipelago, Alaska, we applied 10Be
and 36Cl dating to boulders and glacially sculpted bedrock
in areas previously hypothesized to have remained ice-free
throughout the local Last Glacial Maximum (LLGM; 20–
17 ka). Results indicate that these sites, and more generally
the coastal northern Alexander Archipelago, became ice-free
by 15.1± 0.9 ka (n= 12 boulders; 1 SD). We also provide
further age constraints on deglaciation along the southern
Alexander Archipelago and combine our new ages with data
from two previous studies. We determine that ice retreated
from the outer coast of the southern Alexander Archipelago
at 16.3± 0.8 ka (n= 14 boulders; 1 SD). These results col-
lectively indicate that areas above modern sea level that were
previously mapped as glacial refugia were covered by ice
during the LLGM until between ∼ 16.3 and 15.1 ka. As no
evidence was found for ice-free land during the LLGM, our
results suggest that previous ice-sheet reconstructions under-
estimate the regional maximum Cordilleran Ice Sheet extent,
and that all ice likely terminated on the continental shelf. Fu-

ture work should investigate whether presently submerged
areas of the continental shelf were ice-free.

1 Introduction

The late-Pleistocene history of the coastal Cordilleran Ice
Sheet remains relatively unstudied compared to chronologies
of the Laurentide Ice Sheet (Dalton et al., 2020). Cordilleran
Ice Sheet margin reconstructions from the Pacific Coast are
based largely on qualitative field observations with little
chronologic control (Dyke, 2004; Carrara et al., 2007; Dal-
ton et al., 2020). While a few studies have recently generated
local ice sheet retreat chronologies from terrestrial locations
along the Pacific Coast (Darvill et al., 2018; Lesnek et al.,
2018, 2020), there are still large areas of the southeastern
Alaskan coastline that lack direct age constraints on deglacia-
tion (Fig. 1). Much of the Northern Hemisphere was covered
by continental ice sheets during the global Last Glacial Maxi-
mum (GLGM;∼ 26–19 ka; Clark et al., 2009). Chronologies
of northern hemispheric glaciation have revealed that while
the Laurentide Ice Sheet and many alpine glaciers world-
wide were at their greatest extents during the GLGM, the
coastal Cordilleran Ice Sheet and the Puget Lobe reached
their maximum size ∼ 20–17 cal ka (local Last Glacial Max-
imum; hereafter LLGM; Porter and Swanson, 1998; Booth
et al., 2003; Praetorius and Mix, 2014; Darvill et al., 2018;
Lesnek et al., 2018). Other studies have also explored the
Cordilleran Ice Sheet contributions to meltwater pulse 1A
(∼ 14.6 ka) following the saddle collapse between the Lau-
rentide Ice Sheet and Cordilleran Ice Sheet (Gregoire et
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al., 2016; Ivanovic et al., 2017). Improved constraints on
Cordilleran Ice Sheet history around the time of meltwater
pulse 1A are necessary to elucidate any influences of coastal
Cordilleran Ice Sheet configuration and retreat on saddle col-
lapse. Additionally, numerical modeling studies show differ-
ing responses of the Cordilleran Ice Sheet to last deglacial
climate oscillations, thus highlighting the need for an im-
proved Cordilleran Ice Sheet chronology to bolster model
improvement and validation (Tarasov et al., 2012; Seguinot
et al., 2014; Gregoire et al., 2016; Seguinot et al., 2016;
Ivanovic et al., 2017). Finally, a temporally accurate pa-
leogeographic reconstruction of the coastal Cordilleran Ice
Sheet margin is required to assess whether a viable coastal
route existed for early Americans migrating from Beringia
into the Americas. This route hinges on the presence of ice-
free land (refugia) suitable for human habitation during the
migration event(s). Earlier mapping efforts and other sup-
porting information indicate areas of potential refugia along
the former coastal Cordilleran Ice Sheet margin (Demboski
et al., 1999; Cook et al., 2001; Carrara et al., 2003, 2007;
Shafer et al., 2010, 2011; Hebda et al., 2022).

This study has two goals: (1) improve the spatio-temporal
patterns of coastal Cordilleran Ice Sheet deglaciation in
southeastern Alaska and (2) assess whether areas of the
northern Alexander Archipelago mapped as refugia were
ice-free throughout the LLGM and thus available for hu-
man habitation (Fig. 2). We report 25 new cosmogenic 10Be
exposure ages from boulders and bedrock in the north-
ern Alexander Archipelago – the first exposure ages doc-
umenting Cordilleran Ice Sheet retreat from this coastal
region. We also report four 10Be and four cosmogenic
36Cl ages from Suemez Island in the southern Alexan-
der Archipelago. Our data constrain the deglaciation of the
marine-terminating Cordilleran Ice Sheet margin and expand
the overall North Pacific coastal glacial chronology. Our re-
sults suggest deglaciation of coastal regions ∼ 15.4–14.8 ka
in the northern Alexander Archipelago and do not support
previous mapping of refugia in areas that are presently above
sea level.

2 Setting

The Alexander Archipelago, southeastern Alaska, stretches
∼ 480 km (Fig. 2) along the western coast of British
Columbia. The southern part of the archipelago is dominated
by Prince of Wales Island and surrounding islands, whereas
the northern part encompasses Baranof Island and Chichagof
Island and a collection of smaller islands. The Alexander
Archipelago consists of accreted terranes (Triassic to Cre-
taceous in age) with quartz-bearing diorite and granodiorite
units and notable Eocene–Miocene granitic intrusive com-
plexes (Wilson et al., 2015). Late-Pleistocene volcanic ac-
tivity on southern Kruzof Island formed the Mt. Edgecumbe
volcanic field (Riehle, 1996). Post-LLGM (late-Pleistocene

and Holocene) eruptions formed extensive andesite flows
on the island and blanketed much of the surrounding area
with tephra (Riehle et al., 1984, 1992; Riehle, 1996). Mod-
ern climate of the Alexander Archipelago is dominated by
cool, wet summers and mild winters, with perennial heavy
rainfall – Sitka (Baranof Island) receives ∼ 2200 mm yr−1

while Chichagof Island receives over 3300 mm yr−1 (Ager,
2019; https://wrcc.dri.edu/summary/Climsmak.html, last ac-
cess: 14 March 2022). Snowfall is minimal at lower el-
evations but more substantial in higher-elevation areas
(https://wrcc.dri.edu/summary/Climsmak.html). Glaciers oc-
cupy alpine cirques in the Alexander Archipelago (total-
ing < 150 km2), primarily on Baranof and Chichagof islands
(Molnia, 2008). Presently, low-elevation (< 700 m a.s.l.) ar-
eas of the archipelago are dominated by coniferous rain-
forests, while alpine tundra exists above the tree line
(> 700 m a.s.l.; Ager, 2019).

Previous mapping shows much, if not all, of southeast-
ern Alaska covered by the Cordilleran Ice Sheet during the
LLGM and the last deglaciation, with a maximum position
likely terminating several kilometers out on the continental
shelf of the Gulf of Alaska (Carrara et al., 2007). Ice caps
formed atop the Coast Mountains and high massifs of the
Alexander Archipelago coalesced and flowed westward to
the continental shelf and the Pacific Ocean (Capps, 1932;
Mann, 1986; Mann and Hamilton, 1995). Outlet glaciers
occupied the present fjord and strait landscape (Carrara et
al., 2007). Today, the landscape is strewn with clear indica-
tors of widespread glaciation including deep fjords, glacially
sculpted bedrock draped with boulders, and a variety of other
glacial landforms, but it remains unclear whether all of south-
eastern Alaska was covered by the Cordilleran Ice Sheet dur-
ing the LLGM. Some areas of the Alexander Archipelago,
presently above sea level, are hypothesized to have been ice-
free throughout the LLGM (Carrara et al., 2007). Recent
studies using 10Be surface exposure dating of glacial land-
forms, however, indicate that some of these purported ice-
age refugia in the southern Alexander Archipelago were cov-
ered by the Cordilleran Ice Sheet during its LLGM advance
(Lesnek et al., 2018). Other areas previously mapped as ice
age refugia in the northern Alexander Archipelago (Carrara
et al., 2007; Dalton et al., 2020) are investigated in this study;
if their presence is confirmed with numerical dating tech-
niques, this would be a significant confirmation of the ex-
istence of coastal refugia.

3 Methods

3.1 Boulder and bedrock sampling

We collected 29 samples (11 bedrock, 18 boulder) for cos-
mogenic 10Be surface exposure dating (hereafter 10Be dat-
ing) during summer 2018, 2019, and 2020 (Figs. 3 and 4)
from several sites in coastal southeastern Alaska, including
Suemez (n= 4), Baranof (n= 11), Biorka (n= 4), Kruzof
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Figure 1. Map of the North Pacific region showing ice limits at 18.0 ka from Dalton et al. (2020) with location of relevant sites mentioned in
the text. The Alexander Archipelago is highlighted by the red box on the main figure. Orange dots indicate locations of marine sediment cores:
51-JPC (Caissie et al., 2010), SO202-27-6 (Maier et al., 2018), U1419 (Walczak et al., 2020), EW0408-85JC (Davies et al., 2011; Praetorius
and Mix, 2014, Praetoruis et al., 2015), EW0408-66JC (Praetorius and Mix, 2014; Praetorius et al., 2016), EW0408-26JC (Praetorius and
Mix, 2014; Praetorius et al., 2016), EW0408-40JC (Addison et al., 2010), MD02-2496 (Cosma et al., 2008), and JT96-09 (Kienast and
McKay, 2001). Blue dots indicate location of terrestrial study sites: Sanak Island (Misarti et al., 2012), Kodiak Island (Mann and Peteet,
1994), Finger Glacier (Mann, 1986), Haida Gwaii (Clague et al., 1982; Mathewes and Clague, 2017), Calvert Island (Darvill et al., 2018),
and Puget Sound (Porter and Swanson, 1998).

(n= 4) and Chichagof (n= 6) islands. Our samples range in
elevation from ∼ 50 to ∼ 930 m a.s.l.; all sites are above the
local marine limits of∼ 10–20 m a.s.l. (Baichtal et al., 2021).
We preferentially sampled paired sites consisting of stable
boulders and neighboring unvegetated bedrock surfaces. This
strategy allowed us to assess whether bedrock surfaces con-
tain isotopic inheritance and provides insights into ice-sheet
erosion history. In the absence of suitable boulders at a few

locations, we sampled bedrock with clear evidence of glacial
erosion to mitigate the possibility of 10Be inheritance.

We also collected samples from four glacially transported
boulders on the southwestern portion of Suemez Island
for 36Cl surface exposure dating during the summer 2019
field season (Figs. 5, 6; Table 2). The boulders consist of
non-vesicular olivine basalt of “Tertiary to Quaternary” age
(Eberlein et al., 1983).
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Figure 2. The Alexander Archipelago showing relevant marine sediment cores and terrestrial chronologies. Shaded white areas show hy-
pothesized LLGM Cordilleran Ice Sheet extent (Lesnek et al., 2020). −160 m relative sea level lowering after Baichtal et al. (2021). Red
boxes and points show sampling locations from this study. Blue box shows extent of study area from Lesnek et al. (2018, 2020). Orange
dots represent locations of marine sediment cores: EW0408-66JC and EW0408-26J (Praetorius and Mix, 2014; Praetorius et al., 2016) and
EW0408-40JC (Addison et al., 2010). Blue dots indicate locations of relevant terrestrial study sites: Gastineau Channel (Miller, 1973), Pleas-
ant Island (Hansen and Engstrom, 1996), Hummingbird Lake (Ager, 2019), Shuká Káa (Lesnek et al., 2018), and El Capitan Cave (Wilcox
et al., 2019).

Surface samples were collected from the upper few cen-
timeters of the boulders and bedrock using a handheld an-
gle grinder, hammer, and chisel. We avoided sampling areas
of the boulder tops and bedrock surfaces with visible signs
of surface erosion (e.g., fractures, weathering pits). We did,
however, observe erosional features on the boulders sampled
for 36Cl dating. We avoided collecting material from these
areas, instead sampling parts of the basaltic boulder tops that
showed fresh, unweathered surfaces. We recorded sample lo-
cations with a handheld GPS unit or GAIA GPS (both with

a vertical uncertainty of ±5 m) and measured topographic
shielding in the field with a clinometer and compass.

3.2 10Be dating

We processed samples at the University at Buffalo Cosmo-
genic Isotope Laboratory following established quartz pu-
rification and beryllium extraction procedures (e.g., Corbett
et al., 2016). After quartz purification, we dissolved sam-
ples in hydrofluoric acid with precisely weighed 9Be car-
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Figure 3. Sample photos from 2019 field season. All 10Be ages shown with 1σ internal uncertainty.

rier (PRIME Lab 2017.11.17-Be #3/#4; 9Be concentration
of 1074± 8 ppm). We isolated, oxidized, and packed beryl-
lium into target cathodes in five different batches for accel-
erator mass spectrometer (AMS) analysis at PRIME lab at
Purdue University. The samples were measured with respect
to the 07KNSTD standard (10Be / 9Be ratio of 2.85× 10−12;
Nishiizumi et al., 2007). We corrected sample ratios us-
ing batch-specific blank values between 7.50× 10−16 and
3.14× 10−15. AMS analytical uncertainty ranged from 3.2 %
to 7.3 % with an average value of 4.7 %.

We calculated all 10Be ages using version 3 of the
CRONUS-Earth exposure age calculator (http://hess.ess.
washington.edu, last access: 14 March 2022; Balco et al.,
2008; Balco, 2017), using the Arctic production rate (Young
et al., 2013) and a time-dependent (Lm) scaling scheme (Lal,
1991).

3.3 36Cl dating

All whole rock samples were prepared at the University
of New Hampshire Cosmogenic Isotope Laboratory using
a modified version of the protocols in Stone et al. (1996)
and Licciardi et al. (2008). After samples were crushed,
etched in nitric acid, and homogenized, total sample chlo-
ride was measured on a ∼ 1 g aliquot of rock that was
spiked with a small amount of 37Cl-enriched solution (LLNL
Spike A; 35Cl / 37Cl= 0.93; 1285± 3 ppm Cl) and a carrier
containing ∼ 4000 µg of Br. Cl was extracted as Ag(Cl,Br)
following standard procedures, and chlorine concentrations
were determined through isotope dilution of 35Cl / 37Cl ra-
tios (Faure, 1986). 36Cl was extracted from full rock sam-
ples as Ag(Cl,Br) after adding a carrier containing∼ 4800 µg
of Br and a natural ratio Cl carrier (35Cl / 37Cl= 3.127;
1436± 9 ppm Cl) to increase the size of the final precipitate.
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Figure 4. Sample photos from 2018 and 2020 field season. All 10Be ages are shown with 1σ internal uncertainty. Note the relatively small
size of 20SEAK-15.

35Cl / 37Cl and 36Cl /Cl ratios were measured at the
Center for Accelerator Mass Spectrometry at Lawrence
Livermore National Laboratory. Analytical uncertainty on
35Cl / 37Cl measurements ranged from 0.04 % to 0.43 %; an-
alytical uncertainty on 36Cl /Cl measurements ranged from
2.12 % to 2.87 %. Major and trace element analyses were
conducted by SGS Minerals Services in Burnaby, British
Columbia, Canada. Reported total Cl and 36Cl concentra-
tions are corrected for batch-specific process blanks (Ta-
ble 2). Analytical data used to determine surface exposure
ages are provided in Tables S1 and S2 in the Supplement.
36Cl exposure ages were calculated using an online expo-
sure age calculator (http://stoneage.ice-d.org/math/Cl36/v3/

v3_Cl36_age_in.html, last access: 14 March 2022) and Lm
scaling (Lal, 1991).

3.4 Exposure age calculation considerations

We made no corrections for post-glacial elevation changes or
snow cover when calculating our 10Be and 36Cl ages. Post-
glacial isostatic adjustment results in a time-varying rate of
cosmogenic nuclide production (Jones et al., 2019). This ef-
fect can be corrected for using comprehensive records of re-
gional emergence constrained by glacial isostatic adjustment
models or relative sea-level histories. Hundreds of radiocar-
bon ages constrain the relative sea level chronology in the
Alexander Archipelago; the sites in our study experienced
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Figure 5. Basalt samples and 36Cl ages from southwestern Suemez Island. Ages are reported at 1σ internal uncertainty.

∼ 50 m of relative sea level lowering due to forebulge col-
lapse between∼ 15 and 10 ka (Baichtal et al., 2021). Correc-
tions for glacial isostatic adjustment history, albeit slightly
uncertain given site-to-site differences in elevation history,
result in small changes (∼ 1 % age decrease), and thus we re-
port our ages without any correction for isostatic adjustment
(Tables 1 and 2). Furthermore, changes in air pressure near
a retreating ice margin and shifts in air compression above
a sample site that experienced elevation change may miti-
gate any effects of isostatic adjustment on cosmogenic nu-
clide production, potentially rendering any elevation correc-
tion unnecessary (Staiger et al., 2007).

Extended periods of thick and dense snow cover can also
inhibit 10Be and 36Cl production in a rock surface and lead
to erroneously young apparent exposure ages. While mod-
ern snowfall reports for lower-elevation areas of the Alexan-
der Archipelago indicate minimal average wintertime snow
cover (10–20 cm; https://wrcc.dri.edu/summary/Climsmak.
html), there are no data for higher-elevation areas. Conse-
quently, we cannot report our ages with reliable snow shield-
ing corrections and these exposure dates should be consid-
ered minimum ages. However, most of our sites are from low
to moderate elevations (< 500 m a.s.l.; Table 1).

Post-depositional weathering and erosion can also affect
exposure ages. We observed fresh, unweathered glacially
scoured bedrock across all our field sites, indicating mini-
mal post-glacial erosion. We made no corrections for ero-
sion in our age calculations presented within the article text,
and thus these should be considered minimum ages. For sen-

sitivity purposes, we calculated ages using an erosion rate
of 0.3 cm kyr−1, similar to erosion rates applied nearby in
British Columbia (Menounos et al., 2017). These erosion-
corrected ages are between 2 % and 7 % older and are found
in Tables S3 and S4.

Both cosmogenic and nucleogenic 36Cl can be present in
rock surfaces, and for our surface exposure age calculations
we assumed steady-state production/decay of nucleogenic
36Cl. Moderate amounts of nucleogenic 36Cl are produced
when 35Cl absorbs neutrons released by the decay of U and
Th isotopes (Gosse and Phillips, 2001). However, because
the formation age of the sampled basalt flow on Suemez Is-
land is loosely constrained to the “Tertiary to Quaternary”
(Eberlein et al., 1983), nucleogenic 36Cl production/decay
may or may not be in steady state. To assess the sensitivity
of our exposure ages to the assumption of steady-state nu-
cleogenic 36Cl production, we also calculated exposure ages
using a rock formation age of 20 ka, which, given the timing
of the LLGM ice advance in southeastern Alaska (Lesnek et
al., 2018), is the youngest formation age we might expect
for these rocks. Results of this test (Table S3) show that cal-
culated 36Cl ages are relatively insensitive to rock formation
age (< 1 % surface exposure age increase in all cases), which
is well within total uncertainty.

4 Results

We sampled from the summit of a massif at ∼ 410 m a.s.l.
on south-central Suemez Island (southern Alexander
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Archipelago) and from a flat bench scattered with boulders
on the summit’s flank for 10Be dating (Fig. 6). The two boul-
ders sampled on the bench date to 15.6± 0.7 (19SEAK-07;
Fig. 3) and 15.0± 1.1 ka (19SEAK-08; we report all sur-
face exposure ages with 1σ internal uncertainty; Table 1).
The summit site featured fresh glacially sculpted bedrock
surfaces with a couple boulders resting on the bedrock. A
boulder and its adjacent bedrock surface, as a pair, date to
17.4± 1.2 (19SEAK-09) and 19.7± 1.2 ka (19SEAK-10),
respectively (Fig. 3). The three boulders yield a mean age
of 16.0± 1.2 ka (n= 3; 1 SD).

On southwestern Suemez Island, we sampled four large
boulders for 36Cl dating. The boulders were distributed
across a terrain of patchy muskeg with locally outcropping
bedrock. Based on reconstructed Cordilleran Ice Sheet flow
directions (Lesnek et al., 2020) and boulder composition
(Table S2; Eberlein et al., 1983), the boulders were likely
plucked from basalt flows present on the southwestern por-
tion of Suemez Island (Brew, 1995). The four basalt boulders
from southwestern Suemez Island have 36Cl exposure ages
ranging from 12.4± 0.3 to 16.4± 0.5 ka (ages are reported at
1σ internal uncertainty; Fig. 5; Table 2). 36Cl surface expo-
sure ages assuming 3 mm kyr−1 of surface erosion and non-
steady-state nucleogenic 36Cl production are presented in Ta-
ble S3; for all four samples, changing these parameters re-
sults in calculated surface exposure ages < 2 % higher than
those presented in the main text.

We collected samples from four sites (Baranof Sites A–
D; Fig. 7) on the ocean-facing side of Baranof Island,
northern Alexander Archipelago. Here, we chose our heli-
copter ground stops in an area previously mapped as ice-
free throughout the LLGM (Carrara et al., 2007; Fig. 7).
Evidence for glacial sculpting of bedrock surfaces is clear;
glacial grooves, striations, and chatter marks are present at
all sites, and the bedrock surfaces, in places, are topped by
perched boulders (Fig. 3). Field evidence of recent glaciation,
including relatively unweathered chatter marks, grooves, and
striations, contradicts prior mapping of these areas being ice-
free during the LLGM.

Baranof Site A is a large, unforested area of bedrock out-
crops composed of several smaller ridges. Here, we sampled
two bedrock surfaces – one from the stoss side of a bedrock
outcrop (19SEAK-18; Fig. 3) and one from the top surface
of a nearby bedrock patch (19SEAK-19) – which date to
21.7± 0.9 and 28.0± 1.1 ka, respectively. A boulder sam-
pled adjacent to bedrock (sample 19SEAK-18) yielded an
exposure age of 16.9± 0.8 ka (19SEAK-17). A second boul-
der sample from this site dates to 14.4± 0.7 ka (19SEAK-
20; Fig. 3). At Baranof Site B – a raised bedrock knob
– we sampled two boulders and one bedrock surface. The
two boulders have 10Be ages of 15.1± 0.6 ka (19SEAK-23;
Fig. 3), 14.4± 0.7 ka (19SEAK-21); the bedrock sample has
a 10Be age of 14.4± 0.6 ka (19SEAK-22). Baranof Site C
is a high ridge between the ocean and a U-shaped valley
with abundant bedrock outcrops and few boulders. Here, a

boulder yielded an exposure age of 16.3± 0.6 ka (19SEAK-
24; Fig. 3), whereas a bedrock surface dates to 15.7± 0.6 ka
(19SEAK-25). Finally, Baranof Site D is a small bedrock
ridge between two peaks with massive stoss and lee fea-
tures. At this site, we collected samples from two quartz
veins in the bedrock, which have exposure ages of 18.2± 0.7
(19SEAK-26; Fig. 3) and 20.2± 0.8 ka (19SEAK-27). Be-
cause the sites are all in relatively close proximity and from
similar elevations (50–160 m a.s.l.), we treat the samples as
having experienced the same glacial history, and thus should
belong to a single age population. Collectively, boulder sam-
ples yield a mean age of 15.4± 1.1 ka (n= 5; 1 SD) with
no obvious outliers, whereas the bedrock samples exhibit
more scatter and are mostly older than the mean boulder age
(Fig. 9).

Biorka Island, a small island off the western coast of
central Baranof Island, was initially mapped as ice-covered
throughout the LLGM (Dyke, 2004). Here, there are nu-
merous ∼ 1 m tall boulders that rise above the surround-
ing vegetation and rest on ice-sculpted bedrock. Vegetation
and sediments mostly obscure underlying bedrock surfaces,
and thus we only collected samples from boulders at this
sampling site. Our four boulder samples yielded exposure
ages of 15.3± 0.5 (18JB005; Fig. 4), 14.9± 0.6 (18JB006),
15.4± 0.5 (18JB007; Fig. 4), and 13.7± 0.5 ka (18JB008),
with a mean of 14.8± 0.8 ka (n= 4; 1 SD; Fig. 8).

We visited a summit ridge at 545–560 m a.s.l. on the west-
ern, ocean-facing side of northwestern Kruzof Island, pre-
viously mapped as ice-free throughout the LGM (Dalton et
al., 2020). There, we found many large stable boulders and
exposed patches of glacially sculpted bedrock between veg-
etation exhibiting glacial grooves and chatter marks. Here,
we sampled three large boulders (> 2× 2× 1 m), which date
to 14.9± 0.8 (20SEAK-07; Fig. 4), 14.9± 0.9 (20SEAK-12)
and 14.6± 0.8 ka (20SEAK-13; Fig. 4), yielding a mean age
of 14.8± 0.2 ka (n= 3; 1 SD; Fig. 8). A bedrock surface at
this site dates to 13.4± 1.0 ka (20SEAK-10; Fig. 4) and sits
∼ 10 m below and ∼ 10 m away from the boulder that dated
to 14.6± 0.8 ka (20SEAK-13).

We collected samples from three sites on Chichagof Is-
land (Chichagof Sites A–C; Fig. 8). Unlike our other sam-
pling locations which are on the ocean-facing, western sides
of the archipelago, the Chichagof Island sites are all located
inland. We visited these sites to determine the timing of ice
retreat inland and to complement the findings of a previous
study that documented ice withdrawal in the central and east-
ern Alexander Archipelago (Lesnek et al., 2020). Chichagof
Island is notable for its relative lack of boulders – conse-
quently, the boulders sampled here are smaller than those at
other sites. While many bedrock outcrops featured smooth
surfaces indicative of glacial erosion, we did not observe
clear striations or chatter marks. At site A, a bedrock bench,
10Be ages from two small, perched boulders are 12.7± 0.7
(20SEAK-15; 0.5× 0.3× 0.3 m; 476 m a.s.l.; Fig. 4) and
9.0± 0.6 ka (20SEAK-16; 0.5× 0.4× 0.3 m; 473 m a.s.l.). A
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Figure 6. 10Be and 36Cl ages from samples collected on Suemez Island: red and yellow dots mark sampling site from this study, blue dot
marks sampling site from Lesnek et al. (2018). Bold ages are from boulders; plain ages are from bedrock. All 10Be and 36Cl ages reported
with 1σ internal uncertainty.

quartz vein sampled from bedrock outcrop at this site has
an exposure age of 15.3± 0.7 ka (20SEAK-14). Site B is a
series of bedrock ridges, and a single boulder yields an expo-
sure age of 12.4± 0.9 ka (20SEAK-18; 817 m a.s.l.; Fig. 4),
while an adjacent bedrock surface dates to 14.1± 0.7 ka
(20SEAK-19; 816 m a.s.l.). Finally, site C is at the summit
of a massif and one bedrock knob sampled here has an expo-
sure age of 17.7± 0.8 ka (20SEAK-22; 779 m a.s.l.; Fig. 4).

5 Discussion

5.1 Bedrock 10Be ages

We sampled large and stable boulders in addition to bedrock
surfaces with clear evidence of glacial erosion (e.g., stria-

tions, chatter marks) with the goal of providing optimal con-
straints on deglaciation. Sampling bedrock surfaces also al-
lows us to better understand the subglacial erosion regime
across the Alexander Archipelago, potentially yielding infor-
mation about the duration of ice cover, the amount of sub-
glacial erosion, and the likelihood of boulders containing in-
heritance.

Bedrock exposure ages are older than the mean boulder ex-
posure ages by 2 SD or greater on Suemez Island (19SEAK-
10) and Baranof sites A (19SEAK-18, 19SEAK-19) and D
(19SEAK26, 19SEAK-27). At Chichagof site A the bedrock
exposure age (20SEAK-14) is ∼ 4.5 kyr older than the mean
boulder age but still within 2 SD, perhaps due to the large
spread in boulder ages resulting in larger standard deviations.
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Figure 7. 10Be ages from sampling sites on southern Baranof Island. Bold ages are from boulders; plain ages are from bedrock. All ages are
reported with 1σ internal error. Cordilleran Ice Sheet LLGM extent after Carrara et al. (2007).

At Chichagof site B, the single boulder 10Be age (20SEAK-
18) post-dates the single bedrock age by ∼ 1.7 kyr. In gen-
eral, bedrock data reported here are consistent with bedrock
10Be ages from Warren and Baker islands that are older (by
more than 2 SD) than mean boulder ages (Lesnek et al.,
2018). Bedrock ages may be erroneously older due to 10Be
inheritance if ice sheet erosion was insufficient to remove
the ∼ 2 m of rock required to remove most of the previ-
ous 10Be inventory. Studies from British Columbia (Darvill
et al., 2018) and Washington (Briner and Swanson, 1998)
also report cosmogenic nuclide inheritance in bedrock from
other areas covered by the Cordilleran Ice Sheet. In our field
area, the short-lived nature of the overriding event (∼ 3 kyr;
Lesnek et al., 2018) may also contribute to the lack of sig-
nificant glacial erosion. Finally, traces of inheritance may be

present in bedrock, perhaps even boulders, in ice-sheet-distal
sites like these that are overrun by ice during extremely brief
portions of the Quaternary (Briner et al., 2016).

In some cases, boulder–bedrock pairs have similar expo-
sure ages (on southern Baranof and Suemez islands), sug-
gesting our bedrock ages are unaffected by 10Be inheritance
at these sites. On Kruzof Island, a bedrock patch yields an ex-
posure age that is younger (by more than 2σ ) than the mean
age of the surrounding boulders. Potential cover by snow,
sediment, or vegetation is thought to have caused anoma-
lously young ages elsewhere in the Alexander Archipelago
(Lesnek et al., 2020) and may also explain this 10Be age from
our bedrock site on Kruzof Island.

Bedrock exposure ages vary greatly (by as much as
∼ 14 kyr) between the various sampling locations on Bara-
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Figure 8. 10Be ages from sampling sites in the northern Alexander Archipelago. All ages are reported with 1σ internal error. Bold ages
are from boulders; plain ages are from bedrock. LLGM Cordilleran Ice Sheet extent after Lesnek et al. (2020). Exposed continental shelf
at −160 m below modern sea level Baichtal et al. (2021). Yellow dots show location of relevant marine sediment cores: EW0408-66JC and
EW0408-26JC (Praetorius and Mix, 2014; Praetorius et al., 2016) and EW0408-40JC (Addison et al., 2010). Blue dots show locations of
relevant terrestrial study sites: Pleasant Island (Hansen and Engstrom, 1996) and Hummingbird Lake (Ager, 2019).

nof Island and up to 6 kyr on Suemez Island (Lesnek et al.,
2018). The Alexander Archipelago is characterized by im-
pressive relief (deep fjords, high peaks), and thus, sub-glacial
erosion rates clearly varied greatly across Suemez and Bara-
nof islands where sampling locations are ∼ 2–6 km apart.
Differing bedrock 10Be ages from the same sampling locales
confirm this inference, reflecting variable sub-glacial erosion
rates even within ∼ 100 m of each other. Some samples may
have been collected in areas dominated by glacial abrasion,
whereas other samples might be from surfaces dominated by

quarrying, and thus, this variability could reflect varying sub-
glacial processes on a local scale.

Because bedrock exposure ages from the coastal Alexan-
der Archipelago (this study; Lesnek et al., 2018) do not con-
sistently pre-date, match, or post-date exposure ages from
adjacent boulders, we refrain from including bedrock-based
10Be ages in our mean deglaciation age calculations (Figs. 9,
10). This negates biases when choosing which bedrock ages
“match” nearby erratic ages and allows us to eliminate
any concern over inheritance or post-ice retreat cover of
these bedrock surfaces. While bedrock ages, especially when
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Figure 9. Relative probably plots of bedrock (red) and boulder (blue) 10Be and 36Cl boulder (yellow) ages from this study calculated with
1σ internal uncertainty. bo. – boulder, br. – bedrock. All ages shown are mean ages from only boulders at each sample site reported with
1 SD unless noted. Cumulative plots represent all bold lines – transparent lines were not included in their calculation. a Average of all 10Be
boulder ages and oldest 36Cl boulder age with 1 SD. b Average of all 10Be boulder ages (this study and Lesnek et al., 2018) and oldest 36Cl
boulder age (this study). c One old outlier at 28.0± 1.1 ka not shown.

paired with boulder ages, are useful for identifying spatially
variable subglacial erosion processes and issues with past
cover and inheritance, they do not appear to provide reliable
age constraints on the timing of deglaciation in the Alexan-
der Archipelago due to the inconsistencies between bedrock
and boulder ages. In light of this, we also recalculate relevant
mean ages from Lesnek et al. (2018, 2020) using solely boul-
der 10Be ages to update these other regional chronologies.

5.2 10Be chronology incompatible with mapped
Cordilleran Ice Sheet extent

We targeted areas of the northern Alexander Archipelago
mapped as ice-free by previous studies to determine whether
these areas were LLGM refugia. The most recent coastal
Cordilleran Ice Sheet reconstructions show significant por-
tions of the northern Alexander Archipelago as remaining
ice-free throughout the LLGM (Fig. 2), with ice terminat-

ing close to the present shoreline – not on the continental
shelf (Dalton et al., 2020; Lesnek et al., 2020). Our data,
however, indicate that at least some of these areas previ-
ously mapped as refugia (southwestern Baranof and Kru-
zof islands) were covered by ice, and deglaciated around
15.4–14.8 ka. Our new evidence thus suggests that ice ex-
tended onto the continental shelf during the LLGM, as in
the southern Alexander Archipelago (Lesnek et al., 2018).
These discrepancies between previously mapped ice extents
and those implied by our new exposure ages highlight the
need to develop deglaciation chronologies elsewhere along
the Cordilleran Ice Sheet coastal margin to provide updated
mapping around the North Pacific.
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Figure 10. (a) Proxy northern hemispheric temperature anomaly relative to early Holocene with 1σ error (Shakun et al., 2012). (b) Eustatic
sea-level curve (Spratt and Lisiecki, 2016). (c) Gulf of Alaska surface salinity δ18O record (Core SO202-27-6; Maier et al., 2018). (d) Uk

′

37
temperature reconstruction from off the coast of the Alexander Archipelago (Cores EW0408-26JC, EW0408-66JC; Praetorius et al., 2016).
(e) Ice-rafted debris record from off Vancouver Island (Core MD02-2496; Cosma et al., 2008). (f, g) Mean boulder 10Be ages from the
coastal Alexander Archipelago, with 1σ r (this study; Lesnek et al., 2018, 2020).

5.3 Cordilleran Ice Sheet retreat across the Alexander
Archipelago

Mean boulder 10Be exposure ages from Suemez Island in
this study and Lesnek et al. (2018), 16.± 1.2 ka (n= 3 boul-
ders; 1 SD) and 16.6± 0.8 ka (n= 3 boulders; 1 SD), re-
spectively, overlap within 1 SD (Figs. 6, 9). However, three
of the boulder 36Cl ages from southwestern Suemez Island
do not overlap with the 10Be ages at 1 SD (Figs. 6, 9). We
attribute this scatter to post-depositional surface erosion of
the basaltic boulders (i.e., those dated with 36Cl) in excess
of 3 mm kyr−1. Although we targeted areas of the boulder
tops with no obvious signs of erosion, given the maritime
climate of southeastern Alaska it is possible that the origi-
nal, glacially eroded boulder surfaces have been weathered.
Surface erosion of rocks with low concentrations of native
Cl (Table S2), where the primary 36Cl production pathway
is Ca spallation (Marrero et al., 2016), results in exposure
ages that are erroneously young. Thus, we interpret the oldest
36Cl exposure age (16.4± 0.5 ka; 19SEAK-02) as the closest
constraint on deglaciation at that site. This 36Cl age over-
laps with the 10Be ages from elsewhere on Suemez Island;
we combine them and calculate a new, boulder-based mean

deglaciation age of 16.3± 0.8 ka (n= 10 boulders; 1 SD) for
Suemez Island.

We group together three of our sampling locations in the
northern Alexander Archipelago that are ocean-facing: Kru-
zof, Biorka, and southern Baranof islands. As the Cordilleran
Ice Sheet retreated from the continental shelf inland, these
were the first areas presently above sea level to become ice-
free. We calculate a mean 10Be boulder age of 15.1± 0.9 ka
(n= 12 boulders; 1 SD) for the coastal northern Alexander
Archipelago.

There are limited data from elsewhere in the northern
Alexander Archipelago that constrain the timing of deglacia-
tion. A basal pollen concentrate-based radiocarbon age from
Hummingbird Lake (Fig. 7), southwestern Baranof Island,
dates to 15.0± 0.2 cal ka, in agreement with the 10Be ages
presented here and that collectively indicate coastal Baranof
Island was deglaciated prior to ∼ 15 ka (Ager, 2019). Addi-
tionally, tephra layers from Mt. Edgecumbe on Kruzof Island
are dated to 13.1 ka (Riehle et al., 1992; Begét and Motyka,
1998) and blanket many of the surrounding islands, suggest-
ing that these areas were ice-free by then.

All three sample sites on Chichagof Island (Sites A–
C) are not ocean-adjacent and characterized by a general
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lack of boulders. The boulders present were much smaller
and shorter (< 0.5 m high) than boulders sampled else-
where across the Alexander Archipelago – we chose to sam-
ple these despite their size to provide minimum ages for
deglaciation and to compare with available radiocarbon con-
straints. The ages of these boulders fall between 9.0± 0.6
and 12.7± 0.7 ka and are thus younger than other age con-
straints for deglaciation on Chichagof Island; radiocarbon
ages on shells from raised marine terraces on Chichagof Is-
land date back to 14.2± 0.6 cal ka suggesting that the island
was ice-free by this time (Baichtal et al., 2021). Smaller boul-
ders are more susceptible to cover (whether snow, vegetation,
or sediment) and may thus yield anomalously young 10Be
ages. While a lack of large boulders found on Chichagof Is-
land makes it difficult to ascertain the timing of deglaciation,
regional glacial and sea-level history suggests Chichagof Is-
land was deglaciated between 15.1 ka (when the coastal area
deglaciated) and 14.2 cal ka (the age of shells in raised ma-
rine deposits). Therefore, the boulders dated here likely have
anomalously young exposure ages.

Our mean 10Be age of 15.1± 0.9 ka (n= 12 boulders;
1 SD) from all sites along the coastal portion of the north-
ern Alexander Archipelago fits with the few other regional
deglaciation constraints (Fig. 2) and overlaps within 1 SD
with the mean boulder exposure age from the southern
Alexander Archipelago of 16.3± 0.8 ka (n= 13 boulders;
1σ ; this study; Lesnek et al., 2018, 2020). While mean ages
from the northern and southern Alexander Archipelago over-
lap within 1 SD, it is possible that these areas deglaciated
at slightly different times as these various sampling sites
happened to become ice-free. Furthermore, local ice caps
formed and radiated from massifs on Chichagof, Baranof,
and Prince of Wales islands during the LLGM (Capps, 1932;
Mann and Hamilton, 1995; Lesnek et al., 2020). These lo-
cal ice caps served as a local ice source for the Alexander
Archipelago, and their locations and flow patterns may have
led to some parts of the archipelago becoming ice-free be-
fore others. Thus, we present a range of deglaciation across
the coastal Alexander Archipelago from between 16.3± 0.8
and 15.1± 0.9 ka.

Ice retreat across the Alexander Archipelago is also regis-
tered in marine sediments off the former coastal Cordilleran
Ice Sheet margin. Several marine sedimentary records (cores
EW0408-26JC, EW0408-66JC, EW0408-85JC) extending
back to ∼ 18.5 cal ka show the presence of ice-rafted de-
bris (IRD) beginning ∼ 18.5 ka, peaking at 17.5–16.5 ka,
and ceasing at 14.8 ka, reflecting a final retreat of marine-
terminating ice (Praetorius and Mix, 2014). Furthermore,
these IRD data record fluctuating but relatively elevated calv-
ing spanning 18.5 to 14.8 ka, perhaps indicating steady re-
treat punctuated by periods of accelerated melting.

Tephra from Mt. Edgecumbe (Kruzof Island) found in
core EW0408-26JC is interpreted to have been deposited
in a submarine environment, suggesting that this core site
was ice-free by 14.6 ka (Praetorius et al., 2016). Records

of a subsequent eruption dated to ∼ 13.1 cal ka from ma-
rine sediments in Sitka Sound (core EW0408-40JC) indicate
that this area (between Baranof and Kruzof islands) must
have been ice-free by this time (Addison et al., 2010). Fi-
nally, 14C ages from mollusks found in a diamicton layer
along the Gastineau Channel date to ∼ 13.8 cal ka, reflect-
ing the beginning of deglaciation near the mainland (Miller,
1973; we calibrate all uncalibrated 14C ages with CALIB 8.2;
http://calib.org/calib/, last access: 14 March 2022).

5.4 Chronologies of Cordilleran Ice Sheet deglaciation
across the North Pacific

Radiocarbon ages from the Cordilleran Ice Sheet margin re-
flect ice advance from∼ 20–17 ka, near the end of the GLGM
at 19 ka. Ages from mammalian fossils in Shuká Káa on
Prince of Wales Island indicate Cordilleran Ice Sheet ad-
vance ∼ 20 ka in the Alexander Archipelago (Lesnek et al.,
2018). Directly south of the Alexander Archipelago, on east-
ern Graham Island (Haida Gwaii) initial ice advance is dated
to 24.1–22.5 cal ka with a 14C date from a twig underlying
till (Blaise et al., 1990; Mathewes and Clague, 2017). Along
the southwestern Cordilleran Ice Sheet margin, ice reached
its maximum extent until ∼ 17.0 ka in the Puget Sound area
(Porter and Swanson, 1998).

Glacier chronologies from the northeastern Pacific coast-
line also reflect post-GLGM retreat. On Sanak Island, tephra
near the bottom of a lake sediment core dates deglacia-
tion before ∼ 15.9 ka, broadly synchronous with Cordilleran
Ice Sheet withdrawal in the Alexander Archipelago (Mis-
arti et al., 2012). On Kodiak Island, final LLGM retreat
dates to ∼ 15.7 cal ka, as marked by a 14C age above glacio-
tectonically altered sediments (Mann and Peteet, 1994). Di-
rectly north of the Alexander Archipelago, a 14C age from
a log found within the Finger Glacier lateral moraine pro-
vides a minimum age of deglaciation at∼ 14.6 cal ka (Mann,
1986). Radiocarbon ages from a marine sediment core in
Dixon Entrance date maximum Cordilleran Ice Sheet ex-
tent to before ∼ 16.1 cal ka and retreat beginning before
∼ 15.3 cal ka (Barrie and Conway, 1999). A marine sediment
record from Vancouver Sound similarly dates maximum ice
extent to 18.5 ka and retreat of the Cordilleran Ice Sheet onto
the mainland by 16.4 ka (Blaise et al., 1990). Quaternary sed-
iments on eastern Graham Island indicate the Cordilleran Ice
Sheet was retreating by 17.8 cal ka (Blaise et al., 1990). No-
tably, 10Be ages on Calvert Island suggest ice retreated off the
continental shelf at ∼ 18 ka, pre-dating ice withdrawal onto
land in the Alexander Archipelago (Darvill et al., 2018).

Marine sediment cores are interpreted to show ice re-
treat across the coastal northeastern Pacific. A marine sed-
iment core (SO202-27-6) from the Gulf of Alaska captures
a decrease in sea surface salinity ∼ 16 ka, interpreted to
reflect increased meltwater from the Cordilleran Ice Sheet
margin (Maier et al., 2018). Another marine sediment core
(EW0408-85JC) recovered off the coast of southern Alaska
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records a decrease in glacial-margin sediment accumulation
at 16.9 ka as ice stagnated or began to retreat (Davies et al.,
2011). Reductions in salinity captured by planktonic δ18O in
this core at ∼ 16.7 ka are interpreted as an increase in melt-
water input from retreating glaciers. A transition from ice-
proximal to laminated hemipelagic sediments at ∼ 14.8 ka
marks glacier retreat off the continental shelf and onto land.
Off the coast of Alaska, a marine sediment core records a
peak of IRD deposition between 18 and 17 ka, interpreted as
the retreat of marine-terminating margins of the Cordilleran
Ice Sheet (Walczak et al., 2020). Additionally, another core
from off Vancouver Island (MD02-2496) captures IRD depo-
sition between∼ 17.0 and∼ 16.2 cal ka – indicating rapid re-
gional deglaciation – and a minor IRD event at ∼ 14.7 cal ka
(Cosma et al., 2008).

Our new data showing ice retreat at 15.1± 0.9 ka from
the northern Alexander Archipelago, along with ages of
deglaciation from the southern Alexander Archipelago
(16.3± 0.8 ka; this study; Lesnek et al., 2018), are broadly
synchronous with previously published ice retreat chronolo-
gies for the marine-terminating Cordilleran Ice Sheet mar-
gin elsewhere along the northeastern Pacific Coast. However,
while our chronology only documents deglaciation, it pro-
vides further evidence of a delayed LLGM across the coastal
Cordilleran Ice Sheet compared to the GLGM maximum ex-
tents of alpine glaciers in mainland Alaska (Briner et al.,
2017), parts of southern Alaska (Reger et al., 1996), and the
Laurentide Ice Sheet (Dalton et al., 2020).

5.5 Paleoclimate records from the North Pacific

Several paleoclimate records from around the North Pacific
span our interval of Cordilleran Ice Sheet deglaciation in
the Alexander Archipelago. A combined diatom assemblage-
and alkenone-derived record of sea surface temperatures
(SSTs) from the Bering Sea (Core 51JPC) records perennial
sea ice from ∼ 22.5 ka (beginning of record) to 17 ka and
increased SSTs beginning ∼ 16.9 ka before a notable shift
back to annual sea ice ∼ 16.7 ka (Caissie et al., 2010). In
the northern Gulf of Alaska (Core EW0408-85JC), δ18O data
document increasing SSTs at 16.7 ka and again at ∼ 14.7 ka
(Davies et al., 2011). Alkenone-inferred paleo-SST recon-
structions from this same core show the lowest SSTs (∼ 5 ◦C)
circa 17.0 ka, with increased SSTs beginning ∼ 16.5 ka, and
a rapid ∼ 3–4 ◦C rise in SSTs from 15.2 to 14.7 ka (Prae-
torius et al., 2015). Alkenone-inferred SST and δ18O records
from the Gulf of Alaska also record increased SSTs of∼ 3 ◦C
at 14.7 ka (cores EW0408-26JC, EW0408-66JC; Praetorius
et al., 2016). Off Vancouver Island, Mg /Ca temperature re-
constructions from subsurface-dwelling N. pachyderma in-
dicate two stages of warming of ∼ 2 ◦C at 17.2–16 ka, and a
further ∼ 3 ◦C 15.5–14.0 ka, while surface-dwelling G. bul-
loides record a 3 ◦C SST increase from 15.0–14.0 ka (core
MD02-2496; Taylor et al., 2014), all within the uncertainty
of coastal Alexander Archipelago ice retreat. Alkenone SST

reconstructions from another nearby core (core JT96-09) also
indicate a 4 ◦C increase in SST at ∼ 14.7 ka (Kienast and
McKay, 2001).

There are few terrestrial paleoclimate data that span the
last deglacial period from southeastern Alaska and coastal
British Columbia. Cordilleran ice cover until ∼ 15 ka across
much of the region impeded the preservation of many
terrestrial records – however, there are limited ice core,
speleothem, and lake records that date back to early regional
deglaciation or prior. A growth hiatus in a speleothem from
El Capitan Cave (southern Alexander Archipelago) spanning
∼ 41.5 to ∼ 13.4 ka suggests the cave was either overrid-
den by the Cordilleran Ice Sheet, experienced permafrost
conditions and a mean annual air temperature < 0 ◦C, or
lacked drip water (Wilcox et al., 2019). The youngest date
also serves as a minimum limit on deglaciation, as the area
was thawed by ∼ 13.4 ka. However, El Capitan Cave is
∼ 60 km inland of the outermost coastal region and there-
fore may have still experienced these conditions while the
outer coast deglaciated. At Hummingbird Lake, southwest-
ern Baranof Island, pollen records indicate Pinus contorta
dominated from ∼ 15.2 to 14 ka, which is interpreted to rep-
resent Pinus contorta response to the beginnings of Gulf of
Alaska ocean warming at ∼ 16.5 ka (Praetorius et al., 2015;
Ager, 2019). This record suggests increased air temperatures
around deglaciation of the Alexander Archipelago between
16.3± 0.8 and 15.1± 0.9 ka.

5.6 Implications for early human migration

Several studies have scrutinized potential areas of LLGM
glacial refugia in the Alexander Archipelago through a hu-
man migration perspective (Carrara et al., 2007; Lesnek et
al., 2018), building off similar approaches from elsewhere in
the North Pacific (e.g., Warner et al., 1982; Mann and Pe-
teet, 1994; Misarti et al., 2012). Our study focused on south-
ern Baranof and Kruzof islands because previous mapping
suggested that parts of these areas were ice-free throughout
the LLGM (Carrara et al., 2003, 2007). However, our 10Be
ages from southern Baranof Island indicate these areas were
glaciated throughout the LLGM and not available for human
habitation between ∼ 20 and ∼ 15.4 ka. Our exposure ages
from Kruzof Island also suggest this area was not ice-free
until ∼ 14.8 ka.

These results indicate that some of the last major unevalu-
ated areas of possible refugia presently above sea level were
covered by ice during the LLGM. At its maximum extent, ice
likely extended onto the then-exposed continental shelf. Ice
occupation of the continental shelf – or at least parts of the
shelf – off the Alexander Archipelago was relatively brief,
from ∼ 20.0 to ∼ 16.0 ka (Lesnek et al., 2018). Areas of the
continental shelf would have been above modern sea level
during this time and until ∼ 11–8 ka, when sea level neared
modern levels in the Alexander Archipelago (Baichtal et al.,
2021). At a minimum, ice lobes would have existed within
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the major shelf troughs (e.g., Chatham Strait), likely crossing
the entire shelf at these locations; at a maximum, the entire
continental shelf may have been occupied by ice from ∼ 20
to ∼ 16 ka. Whether portions of the shelf remained ice-free
during the LLGM is unknown, but it is possible. Based on
the immediate colonization of Pinus at 15.2 ka in Humming-
bird Lake and as early as ∼ 15.4 ka on Pleasant Island, there
were likely ice-free areas on the shelf throughout the LLGM
(Hansen and Engstrom, 1996; Ager, 2019).

6 Conclusions

We conclude that several areas in southeastern Alaska previ-
ously mapped as ice-free through the LLGM were covered by
ice until between∼ 16.3 and∼ 15.1 ka. 10Be ages from boul-
ders suggest that the northern coastal Alexander Archipelago
deglaciated at 15.1± 0.9 ka, while 10Be and 36Cl ages date
ice retreat in the southern portion at 16.3± 0.8 ka, following
a LLGM that began after∼ 20 ka (Lesnek et al., 2018, 2020).
The timing of deglaciation in the Alexander Archipelago is
similar to some other sites around the Cordilleran Ice Sheet
coastal margin (e.g., Mann and Peteet, 1994; Misarti et al.,
2012) but later than other locations (e.g., Darvill et al., 2018).
Notably, the deglaciation in southeastern Alaska is later than
in mainland Alaska and Kodiak and Sanak Islands, Alaska
(Fig. 1), where records are more aligned with the GLGM.
The timing of deglaciation in the Alexander Archipelago is
broadly synchronous with regional records of local ocean and
air temperature increases. We also found that anomalously
old 10Be ages of bedrock surfaces are likely due to inheri-
tance caused by insufficient ice sheet erosion and thus urge
caution when using ages from bedrock surfaces as direct con-
straints on ice retreat without additional boulder ages along
the coastal margins of the Cordilleran Ice Sheet.

Our data indicate that previous mapping of the coastal
Cordilleran Ice Sheet can be spatially and temporally im-
proved. We suggest that ice likely extended out on the con-
tinental shelf along the Alexander Archipelago. We are in-
creasingly confident that areas of the coastal Cordilleran Ice
Sheet previously mapped as ice-free throughout the LLGM
were in fact covered by ice, and that refugia, if any ex-
isted, would have been located on the exposed continen-
tal shelf. Although more logistically challenging, subsequent
studies should evaluate the existence of LLGM refugia in
the Alexander Archipelago by focusing on the previously ex-
posed continental shelf. Special attention should be given to
the northern Alexander Archipelago where ice masses were
fed by local ice caps and thus may not have been as extensive,
as opposed to elsewhere in the northeastern Pacific where ice
was sourced from the main body of the Cordilleran Ice Sheet.
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