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Abstract

Motivation: Oxford Nanopore sequencing producing long reads at low cost has made many breakthroughs in gen-
omics studies. However, the large number of errors in Nanopore genome assembly affect the accuracy of genome
analysis. Polishing is a procedure to correct the errors in genome assembly and can improve the reliability of the
downstream analysis. However, the performances of the existing polishing methods are still not satisfactory.

Results: We developed a novel polishing method, NeuralPolish, to correct the errors in assemblies based on align-
ment matrix construction and orthogonal Bi-GRU networks. In this method, we designed an alignment feature
matrix for representing read-to-assembly alignment. Each row of the matrix represents a read, and each column rep-
resents the aligned bases at each position of the contig. In the network architecture, a bi-directional GRU network is
used to extract the sequence information inside each read by processing the alignment matrix row by row. After
that, the feature matrix is processed by another bi-directional GRU network column by column to calculate the prob-
ability distribution. Finally, a CTC decoder generates a polished sequence with a greedy algorithm. We used five real
datasets and three assembly tools including Wtdbg2, Flye and Canu for testing, and compared the results of differ-
ent polishing methods including NeuralPolish, Racon, MarginPolish, HELEN and Medaka. Comprehensive experi-
ments demonstrate that NeuralPolish achieves more accurate assembly with fewer errors than other polishing
methods and can improve the accuracy of assembly obtained by different assemblers.

Availability and implementation: https://github.com/huangnengCSU/NeuralPolish.git.

Contact: jxwang@mail.csu.edu.cn xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the development of Oxford Nanopore Technologies (ONT),
Nanopore long-read sequencing has made significant progress in the
fields of genomics (Jain et al., 2018), transcriptomics (Garalde et al.,
2018) and epigenomics (Ni et al., 2019). Compared with second-
generation sequencing technologies, Nanopore sequencing has the
advantages of long reads, no PCR amplification, no GC bias and
real-time analysis. When the long reads span repetitive elements, re-
peat copies can be anchored within the genome’s unique position.

Thus such long-read-based sequencing can provide great potentials
for de novo genome assembly.

MinION is a portable long-read sequencing instrument from Oxford
Nanopore Technologies that enables direct, real-time analysis of long
DNA or RNA fragments, which can produce reads longer than 800kb
(Jain et al., 2018). It works by measuring electrical current changes as sin-
gle stranded DNA/RNA segments passing through a protein nanopore,
and the raw signals are translated into DNA or RNA sequences by base-
calling tools. The main limitation of Nanopore sequencing is its high error
rate compared to the short-read sequencing technology. With the
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development of nanopore chemistry and basecaller, the error rate of reads
still ranges from 5% to 20%. The error-prone reads usually lead to a
highly erroneous assembly, quite different from the subject’s actual gen-
ome, thus causing the downstream genome analysis task results to be
unreliable.

Currently, there are two main ways of reducing errors in
Nanopore genome assemblies. The first way is to correct the reads
used for genome assembly. Most errors in the reads are random so
that they can be corrected with high coverage. FC_Consensus (Chin
et al., 2016), DAGCon (Chin et al., 2013) and FalconSense (Berlin
et al., 2015) are the three most widely used long read error correc-
tion methods embedded in assemblers. Chin et al. (2013) presented
a hierarchical genome assembly process (HGAP) for high-quality de
novo microbial genome assemblies. In this process, they developed
the correction method named DAGCon to improve the quality of
raw reads for assembly. DAGCon represents a multiple sequence
alignment of a read that needs to be corrected as a partial order
graph (POG) (Lee et al., 2002) and uses a dynamic programming al-
gorithm to find the corrected sequence. Koren et al. (2017) devel-
oped the long reads assembler named Canu as a successor of Celera
Assembler. In Canu, the raw reads used for genome assembly are
corrected using FC_Consensus, which is also an error correction al-
gorithm by constructing a POG from all-versus-all read alignment.
In MECAT, Xiao et al. (2017) combined the principles from both
DAGCon and FalconSense. FalconSense corrects the reads by count-
ing consistent bases in the alignment. For regions with consistent
matches/deletions without insertions (simple regions), they applied
FalconSense. Moreover, for other complicate regions, they used the
modified DAGCon. Even though these assemblers correct the raw
reads before assembly, users still need to polish the assembly with
additional polishing tools if a more accurate assembly is required.

The second way to reduce the errors in Nanopore genome assem-
bly and improve the assembly quality is polishing. The polishing
algorithms usually take the read-to-assembly alignment as the input,
then compare the draft assembly to the mapping reads and deter-
mine if the assembly’s bases need to be modified. Currently, there
are three main strategies for polishing. The first polishing strategy
uses short reads to correct the assembly generated from long reads.
Pilon (Walker et al., 2014), ntEdit (Warren et al., 2019), NextPolish
(Hu et al., 2020), Apollo (Firtina et al., 2020) and POLCA (Zimin
and Salzberg, 2020) are representative tools of this kind. These pol-
ishing tools align highly accurate short reads to the assembly and
correct the assembly from reads alignment. The second strategy is to
use additional sequencing information. Since the raw signals
recorded by the Nanopore sequencer contain more information than
basecalled reads, Nanopolish (Loman et al., 2015) tries to use these
currents to reduce errors in genome assembly. Nanopolish calculates
the probability of each raw signal sequence based on a profile hid-
den Markov model (HMM). The core algorithm of Nanopolish is to
apply signal-to-assembly alignment to modify the draft assembly,
and then find a modified sequence that maximizes the sum of all cur-
rent emission probabilities. The third strategy is to polish the assem-
bly with long reads. Racon, Medaka, MarginPolish and HELEN are
all based on this idea. Racon (Vaser et al., 2017) is a highly efficient
consensus module based on the POG. The read-to-assembly align-
ment of the draft assembly is used to construct a POG. According to
the graph, the final consensus sequence is calculated by a dynamic
programming algorithm. Medaka (https://github.com/nanoporetech/
medaka), developed by Oxford Nanopore Technologies, is a tool to
create a consensus sequence from Nanopore sequencing data. To our
knowledge, it is the first polishing tool based on neural networks.
Medaka counts the occurrences of different bases at each position on
the assembly. A recurrent neural network is used to capture the cor-
relation of base counts on different positions of the assembly and to
predict the true base at each position. From the reports on the official
website (https://nanoporetech.github.io/medaka/benchmarks.html), it
improves accuracy over graph-based methods. It can compete with
the state-of-the-art signal-based approach, Nanopolish, with a much
higher speed. Shafin et al. (2020) developed a polishing pipeline
named ‘MarginPolish & HELEN’ based on a deep neural network. It
is designed to improve the base-level quality of the draft assembly.

There are two modules in this pipeline, MarginPolish and HELEN.
MarginPolish uses a pairwise hidden Markov model (pair-HMM) to
produce pairwise alignment statistics from read-to-assembly align-
ments. HELEN comprises a multi-task recurrent neural network
(RNN) that utilizes the weights of the POG in MarginPolish.
HELEN finally predicts a nucleotide base and the number of repeti-
tions of this base for each genomic position.

Despite the advantages in Nanopore polishing algorithms, the
polishing methods based on the second-generation short read require
extra sequencing reads from other sequencing platforms, which
increases the cost of sequencing. Since the length of the raw signal is
close to 8–9 times of the read length, the time cost of the polishing
methods based on the raw signal is unbearable. Thus the strategy for
polishing based on long reads is more promising. However, there are
still some limitations for existing methods. Racon can calculate the
optimal path from the POG, but the path with the maximum score
based on the Racon scoring model does not necessarily represent the
true consensus sequence. Medaka considers the context information
of alignment by the base distribution at each position of the contig
but loses the context information inside each read.

Here, we present a novel polishing method, named NeuralPolish,
based on alignment matrix construction and orthogonal Bi-GRU
networks. NeuralPolish only uses basecalled reads to correct the
assembly’s errors by aligning reads to the draft assembly. To feed
the read-to-assembly alignment into a neural network for predic-
tion, we construct an alignment matrix from the read-to-assembly
alignment. In the network architecture, we pair two bi-directional
GRU networks, orthogonally, with a CTC decoder (Graves et al.,
2006) to calculate the polished contigs. We compare the accuracy of
different polishing tools including NeuralPolish, Racon, Medaka,
MarginPolish and HELEN on five real datasets. To evaluate the per-
formance of polishing tools on the assembly generated by different
assemblers, we use three different assemblers including Wtdbg2,
Flye and Canu to generate the draft assembly of each dataset.
NeuralPolish can achieve polished results with fewer errors in these
tests compared to Racon, Medaka, MarginPolish and HELEN.

2 Materials and methods

In this section, we will describe the new polishing approach named
NeuralPolish. It corrects genome assemblies with Nanopore base-
called reads relying on a recurrent neural network. The contents are
organized as follows. First, we will introduce the datasets of
Nanopore reads used in our experiment and the feature construction
from read-to-assembly alignment. Then we will describe the pipeline
in NeuralPolish. In the end, we will introduce the architecture of the
neural network in NeuralPolish.

2.1 Datasets
Our experiment uses five real datasets including Escherichia coli
K12, Saccharomyces cerevisiae w303, Homo sapiens (NA12878)
chromosome 21, Homo sapiens (NA12878) chromosome 20 and
Arabidopsis thaliana. All of the raw data and references are avail-
able from public websites as shown in Supplementary Table S1.
Here, the two human chromosomes are processed separately be-
cause part of the NA12878 chromosome 21 is used to train
NeuralPolish and the NA12878 chromosome 20 is never seen by
NeuralPolish during evaluation.

2.2 Alignment matrix construction
In several polishing tools, the read-to-assembly alignments are pre-
processed into the algorithm’s input data in different ways. Racon
constructs a POG from multiple sequence alignment of the contig to
be polished. Medaka counts the number of different bases at each
position of the contig from the read-to-assembly alignment. In
NeuralPolish, we propose to construct a novel alignment matrix
from the read-to-assembly alignment. The construction of the align-
ment matrix is shown in Figure 1. Each read is aligned to the contig
by long reads aligner. We record the entire information of alignment
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between each read and draft assembly in the alignment matrix.
When there is an insertion in the alignment, a nucleotide base in the
contig responds to multiple nucleotide bases in the read. The inser-
tion bases are combined with its left-hand side base, which is con-
sistent with SAMtools (Li et al., 2009). Once an insertion occurs, we
record the k-mer with multiple bases to capture the insertion, so that
it is clear where the insertion is and what the insertion bases are in
the alignment matrix. For a deletion, there is no base aligned to the
contig, so we use a symbol ‘-’ to represent the missing of the base. At
the positions outside the range of read alignment, there are also no
bases aligned to the contig, so we use the symbol ‘*’ to fill the blank.
The number of columns in the matrix equals to the size of the win-
dow to be polished, and the number of rows in the matrix equals to
the coverage of reads. In the matrix, each row represents a read and
each column represents the aligned bases at each position of the con-
tig. Each element in the matrix represents the aligned base, the inser-
tion bases or the deletion. For the sake of computational efficiency,
we encode the element in the matrix as integers. The deletion symbol
‘-’ is encoded with the integer 0, and the padding symbol ‘*’ is
encoded with the integer 1. Nucleotide characters A, T, C and G are
encoded as integers 2–5. All 2-mers are encoded as integers 6–21.
All 3-mers are encoded as integers 22–85. All 4-mers are encoded as
integers 86–341. All 5-mers are encoded as integers 342–1365.
Here, each element of the matrix is up to 5-mer. The reason is that,
to learn the language relationship between different k-mers, there is
an embedding layer in the neural network to process the input data.
If each element of the matrix can be encoded into a longer k-mer,
the number of words and the space of embedding layer will grow ex-
ponentially, which will affect computational efficiency.

2.3 Pipeline in NeuralPolish
As shown in Figure 2A, the polishing pipeline in NeuralPolish con-
tains four steps. The input data of the pipeline is the draft assembly
and raw reads. The draft assembly can be produced by different
long-read assemblers such as Canu (Koren et al., 2017), Flye
(Kolmogorov et al., 2019), Wtdbg2 (Ruan and Li, 2020) and Necat
(Chen et al., 2021). In the workflow of NeuralPolish, we process the
draft assembly with one round of Racon. This is because the two
state-of-the-art Nanopore assembly polishing workflows, Medaka
and MarginPolish & HELEN, use a similar framework, a graph-
based polishing followed by a neural network-based polishing. The
polishing procedure of Medaka consists of four rounds of Racon
and one round of Medaka. MarginPolish & HELEN polishing is
made up of one round of MarginPolish and one round of HELEN.
Graph-based polishing method can help to solve long-length struc-
tural errors in the assembly, while the neural network-based ap-
proach mainly solves fine base-level errors including substitution
and small indels. Both types of the errors are important, and solving
only one of them will not achieve best polishing accuracy. We evalu-
ate the performance of different rounds of Racon in the

NeuralPolish workflow and the error rate of polishing results is
shown in Supplementary Figure S1. NeuralPolish with one round of
Racon can significantly reduce the error rate of the polishing result
than NeuralPolish without Racon. More rounds of Racon in
NeuralPolish can further reduce the error rate, but they also bring
more computational expense. Then the raw reads are aligned to the
polished assembly produced by Racon with minimap2 (Li, 2018).
After that, the read-to-assembly alignments are used to construct an
alignment matrix as the neural network’s input data, as described in
Section 2.2. Finally, the trained recurrent neural network predicts
the polished sequence.

2.4 Network architecture
In this section, we will describe the architecture of the NeuralPolish
network. As shown in Figure 2B, NeuralPolish comprises three mod-
ules including the sequence context module, the base distribution
module and the CTC decoder module. The sequence context module
learns the sequence context information in each aligned read. The
base distribution module is mainly responsible for calculating the
base distribution of each position. Thus these two modules incorpor-
ate orthogonal information in the alignment matrix. The CTC de-
coder module is to generate the most likely polished sequence with
the greedy search algorithm.

2.4.1 Sequence context module

We train a bi-directional RNN (BRNN) network in the sequence
context module to extract sequence context features from each
aligned read. The BRNN contains a forward RNN and a backward
RNN to capture both upstream and downstream sequence
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C T C G G * *

CC T CG G G A A

C - C G C A C

* * C G G A C

4 3 4 5 5 2 4

4 3 4 5 5 1 1

11 3 13 5 5 2 2

4 0 4 5 4 2 4
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(1) Inputs: (2) Read2assembly alignments:
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T:3
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Encoding table

Fig. 1. The construction of the alignment matrix from read-to-assembly alignment.

In the alignment matrix, the blue row is the contig sequence and yellow rows are

aligned reads. The asterisk indicates that there is no bases aligned to the contig. The

character ‘-’ represents a deletion
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Network

Minimap2
Aligning

Polished contigs
Racon 
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Sequence context module

Base distribution module
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Fig. 2. (A) Overview of the polishing pipeline in NeuralPolish. The first step in

NeuralPolish is to polish the draft assembly with one round of Racon. Then the raw

reads are aligned to the polished assembly generated by Racon. Next, NeuralPolish

constructs an alignment matrix from the read-to-assembly alignment. Finally, the

trained orthogonal bi-directional GRU network predicts the polished contigs from

the alignment matrix. (B) Architecture of neural network in NeuralPolish. The net-

work is mainly composed of two orthogonal bi-directional GRU network and a

CTC decoder. The bi-directional GRU layer A is used to process the alignment ma-

trix by rows and the bi-directional GRU layer B processes the feature matrix by col-

umns. The CTC decoder is used to generate the final polished contig
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information. Since Gated Recurrent Unit (GRU) uses less training
parameters and executes faster than long short-term memory
(LSTM) (Chung et al., 2014), we use GRU in each RNN. In the se-
quence context module, each row in the alignment matrix is proc-
essed individually by the Bi-GRU network. Each read is computed
separately to avoid being affected by other reads when calculating
the sequence information of the current read. In the last part of the
sequence context module, the sequence context information of mul-
tiple reads in the alignment matrix is stacked into a column.

2.4.2 Base distribution module

In the base distribution module, we pair a Bi-GRU network and a
fully connected layer to calculate the base distribution at each contig
position. The GRU network scans the stacked sequence context in-
formation at each contig position to calculate the hidden state. To
enable the model to polish deletion errors, the fully connected layer
is used to convert the output of the GRU layer at each position of
the contig to the probability of k-mers (1 � k � 5) or the blank
symbol. Since each position of the contig can be predicted as a 5-
mer at most, an n-mer in the contig can be converted to at most 5�
n bases in the polished result. This strategy ensures that
NeuralPolish can handle very long indel errors.

2.4.3 CTC decoder module

In the CTC decoder module, we use Connectionist Temporal
Classification (CTC) (Graves et al., 2006), an algorithm used to
train deep neural networks in sequence problems. CTC is a sequence
prediction method without knowing the alignment between input
and output. The CTC decoder module is attached to the base distri-
bution module and takes the probability of k-mers from the previous
layer as input. Let X ¼ fx1;x2; . . . ;xmg be the sequence of k-mers
probability on m positions, and Y ¼ fy1; y2; . . . ; yng be the corre-
sponding target DNA sequence. There are several challenges when
training a neural network with other supervised learning algorithms.
(i) The length of input sequence X may vary from the length of tar-
get sequence Y. (ii) The ratio of the length between X and Y is not
fixed. (iii) We do not know the accurate element-wise alignment of
input sequence X and target sequence Y. Fortunately, the CTC algo-
rithm overcomes these challenges. For a give input sequence X, the
CTC algorithm provides all possible output distributions Y 0. We can
use these distributions to infer the possible output sequence or evalu-
ate the probability of a given output sequence. During testing, the
CTC decoder uses a greedy search algorithm to pick the symbol
with the largest probability in each contig position. By removing the
blank symbols and chaining the remaining symbols together to form
a sequence, the CTC decoder ultimately provides the polished
sequence.

2.4.4 Parameters and training strategy

There are some hyper-parameters in the NeuralPolish network. The
Bi-GRU network in the sequence context module consists of three
bi-directional GRU layers and the hidden size of each layer is set to
32. The Bi-GRU network in the base distribution module comprises
three bi-directional GRU layers and the hidden size of each layer is
set to 256. The batch size used during model training is 128. The
Adam optimizer (Kingma and Ba, 2014) is used to optimize the
CTC loss function and the learning rate is 0.001. We use gradient
clipping to clip the excessive gradient value to a threshold value to
prevent gradient explosion during training. The gradient clipping
threshold is set to 1. To prevent over-fitting, we use the dropout
strategy to randomly ignore the values of some neural cells. The
dropout ratio is set to 0.5.

3 Experiments and results

3.1 Training and test datasets
To train the NeuralPolish model, we constructed a training dataset
with three genomes including E.coli, S.cerevisiae and NA12878
chromosome 21. Firstly, we used Wtdbg2 to assemble the raw reads

and polished the draft assemblies with one round of Racon.
Afterwards, the raw reads are aligned to the Racon polished assem-
blies by minimap2 to generate the read-to-assembly alignments. The
reference of each genome is also aligned to the Racon polished
assemblies to generate the ground-truth labellings. Since
NeuralPolish polishes a 64bp window (without overlaps) of the
contig each time, we used a window with the same length to ran-
domly pick some fragments from the contigs. The window size of 64
is determined according to the memory of the GPU device. We
would like to clarify that the setting of the window size will not af-
fect the accuracy of polishing results. Then we constructed align-
ment matrices of these fragments for training the model. The
training dataset is mixed with 10 000 fragments from the assembly
of E.coli (14% of the E.coli genome), 10 000 fragments from the as-
sembly of S.cerevisiae (5% of the S.cerevisiae genome) and 20 000
fragments from the assembly of NA12878 chromosome 21 (3% of
the NA12878 chromosome 21 genome). The training phase of the
NeuralPolish model on a Nvidia GeForce RTX 2080Ti took
20hours. Besides the training dataset, the test dataset was made up
of five genomes including E.coli, S.cerevisiae, NA12878 chromo-
some 21, NA12878 chromosome 20 and A.thaliana. The test dataset
used all window fragments except the ones included in the training.
Since the assembly results can be generated by different assemblers,
we used Flye, Wtdbg2 and Canu to produce assembly of each
genome.

Pomoxis (https://github.com/nanoporetech/pomoxis) is a bio-
informatics tool developed by Oxford Nanopore Technologies
(ONT), which was used as the accuracy assessment tool to com-
pare the performance of Medaka and Nanopolish by ONT
researchers. Pomoxis reports a mismatch error rate, an insertion
error rate and a deletion error rate. The mismatch, deletion and
insertion rates are defined as the number of mismatched, deleted
and inserted bases divided by the number of bases in the reference
sequence. The total error rate is defined as the sum of mismatch,
deletion and insertion error rates. Here, we used Pomoxis to com-
pare the error rates of the assemblies processed by different pol-
ishing methods.

3.2 Polishing assemblies generated by Wtdbg2, Flye

and Canu
Wtdbg2 is a de novo sequence assembler based on the fuzzy Bruijn
graph (Ruan and Li, 2020). To test the performance of different pol-
ishing methods on the assembly of Wtdbg2, each genome in the test
dataset was assembled by Wtdbg2 (v2.5) and polished by Racon,
Medaka, MarginPolish, HELEN and NeuralPolish, respectively. For
Racon polishing, we performed four rounds of Racon then obtained
the final polished assemblies. According to the usage of Medaka rec-
ommended by ONT, the draft assemblies were processed with four
rounds of Racon and one round of Medaka. For MarginPolish and
HELEN, each draft assembly was polished with one round of
MarginPolish and one round of HELEN. For NeuralPolish, the draft
assemblies were processed with one round of Racon and one round
of NeuralPolish. Here all the assembly, alignment and polishing pro-
cess used the default parameters for Nanopore reads.

When polishing the draft assemblies produced by Wtdbg2, the
error rates of different polishing methods are presented in Table 1.
NeuralPolish achieves the lowest error rate on four out of the five
test datasets. On the data of NA12878 chromosome 21 and 20,
NeuralPolish has the most obvious improvement in the error rate of
polishing results compared to other tools. The polishing tool with
the second lowest error rate is Medaka, while NeuralPolish has an
improvement rate of 26.6% and 15% over Medaka on these two
datasets. This is because NeuralPolish resolves a large number of de-
letion errors. On the data of S.cerevisiae, the error rate of contigs
polished by NeuralPolish is not as low as that of contigs polished by
Medaka, MarginPolish and HELEN. The reason is that
NeuralPolish is more powerful in resolving deletion errors, but there
are not many deletion errors in the contigs of S.cerevisiae. Therefore
NeuralPolish plays a limited role in improving the accuracy of this
dataset.
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To test whether NeuralPolish can be applied to polishing the draft
assemblies produced by other assemblers, we used the NeuralPolish
model trained on Wtdbg2 assemblies to polish Flye assemblies and
Canu assemblies, without re-training. Flye is a de novo assembler for
single molecule sequencing reads using repeat graphs (Kolmogorov
et al., 2019), and Canu is a branch of the Celera Assembler, designed
for high-noise single-molecule sequencing (Koren et al., 2017). The
execution process of each polishing method is the same as the process
executed during polishing Wtdbg2 assemblies.

We used Flye to assemble the raw reads and polished the contigs
with different polishing tools. The error rates of polished contigs by
Racon, Medaka, MarginPolish, HELEN and NeuralPolish are
shown in Table 2. We can see that although NeuralPolish is trained
on Wtdbg2 assemblies, it still achieves the lowest error rates of pol-
ished contigs on four out of the five test datasets assembled by Flye.
The reduction in the error rate of NeuralPolish results is most sig-
nificant for the data of NA12878 chromosome 21 and 20. Medaka
and MarginPolish have the second lowest error rates on chromo-
some 21 and chromosome 20, respectively. NeuralPolish has an im-
provement rate of 20.7% over Medaka on chromosome 21 and an
improvement rate of 17.5% over MarginPolish on chromosome 20.
In terms of Canu assemblies, we used Canu to assemble the raw
reads and polished them with different tools. The error rates of pol-
ished results by Racon, Medaka, MarginPolish, HELEN and
NeuralPolish are provided in Supplementary Table S2. Consistent
with the other experiments, on four out of the five test datasets,
NeuralPolish gets the lowest error rate of polished contigs.

For HELEN polishing, the polishing results of the NA12878
datasets are abnormal because the models of MarginPolish and
HELEN do not support Albacore basecaller. So we downloaded the
latest NA12878 raw reads (rel6, ONT Guppy basecaller v2.3.8)

from the public website. We assembled the genomes of NA12878
chromosome 20 and 21 using Wtdbg2, Flye and Canu separately.
Then we used MarginPolish, HELEN and NeuralPolish to polish the
draft assemblies and evaluated the error rates of polished results by
Pomoxis. The error rates of polished assembly are shown in Table 3.
On five out of the six datasets, the error rates of polishing results by
NeuralPolish are lower than that of polishing results by
MarginPolish and HELEN. From the error types, in all datasets the
errors are predominantly deletions, and NeuralPolish obtains the
lowest deletion error rate in each dataset.

3.3 Quast evaluation for polished assembly
Quast is a widely used quality assessment tool for genome assem-
blies. We used Quast to evaluate the quality of the assemblies pol-
ished by different polishing tools. The draft assemblies are
assembled with Flye. To calculate the assembly identity, we divided
each contig into the size of 10 kb. Each divided piece is aligned to
the reference genome by minimap2. The identity is defined as the
number of matching bases divided by the alignment length. The final
assembly identity is the median of the identities of these 10 kb as-
sembly segments. The Quast reports and assembly identities of pol-
ished results are shown in Supplementary Table S3 (Quast reports
and assembly identities of polishing Wtdbg2 assemblies and Canu
assemblies are provided in Supplementary Tables S4 and S5). The
N50 of polished contigs by NeuralPolish is similar to that of pol-
ished contigs by other polishing tools. On the data of NA12878
chromosome 21, chromosome 20 and A.thaliana, NeuralPolish gets
the least indel errors per 100k base pairs. Meanwhile, the number of
indels longer than 5 bp in polished contigs by NeuralPolish is also
smaller than that by other polishing tools. For Medaka, it is able to

Table 1. Comparison of the error rates of polishing results by

Racon, Medaka, MarginPolish, HELEN and NeuralPolish on the data

assembled by Wtdbg2. The bold in the table means the best

results.

Dataset Tool Mismatch Deletion Insertion Error rate

E.coli Wtdbg2 0.07% 0.32% 0.03% 0.42%

Racon 0.11% 0.18% 0.13% 0.42%

Medaka 0.13% 0.05% 0.10% 0.28%

MarginPolish 0.10% 0.09% 0.10% 0.29%

HELEN 0.09% 0.13% 0.10% 0.31%

NeuralPolish 0.06% 0.11% 0.07% 0.24%

S.cerevisiae Wtdbg2 0.11% 1.08% 0.53% 1.72%

Racon 0.11% 0.77% 0.67% 1.55%

Medaka 0.09% 0.57% 0.55% 1.21%

MarginPolish 0.08% 0.59% 0.54% 1.21%

HELEN 0.09% 0.73% 0.58% 1.39%

NeuralPolish 0.10% 0.67% 0.74% 1.51%

NA12878 chr21 Wtdbg2 0.26% 4.84% 0.24% 5.34%

Racon 0.26% 2.82% 0.31% 3.39%

Medaka 0.32% 2.47% 0.29% 3.08%

MarginPolish 0.28% 2.71% 0.31% 3.31%

HELEN 1.50% 9.02% 0.87% 11.38%

NeuralPolish 0.28% 1.50% 0.48% 2.26%

NA12878 chr20 Wtdbg2 0.27% 5.20% 0.21% 5.68%

Racon 0.27% 3.04% 0.32% 3.63%

Medaka 0.33% 2.66% 0.27% 3.26%

MarginPolish 0.43% 3.26% 0.35% 4.04%

HELEN 1.76% 9.60% 0.95% 12.31%

NeuralPolish 0.39% 1.87% 0.51% 2.77%

A.thaliana Wtdbg2 0.69% 5.45% 1.85% 7.99%

Racon 0.68% 3.70% 1.89% 6.27%

Medaka 0.68% 3.42% 2.01% 6.11%

MarginPolish 0.70% 4.15% 2.02% 6.87%

HELEN 1.73% 6.86% 2.28% 10.87%

NeuralPolish 0.69% 3.05% 2.26% 6.00%

Table 2. Comparison of the error rates of polishing results by

Racon, Medaka, MarginPolish, HELEN and NeuralPolish on the

data assembled by Flye. The bold in the table means the best

results.

Dataset Tool Mismatch Deletion Insertion Error rate

E.coli Flye 0.18% 0.09% 0.07% 0.34%

Racon 0.11% 0.17% 0.13% 0.41%

Medaka 0.14% 0.05% 0.10% 0.29%

MarginPolish 0.11% 0.08% 0.11% 0.30%

HELEN 0.09% 0.12% 0.10% 0.31%

NeuralPolish 0.07% 0.10% 0.08% 0.25%

S.cerevisiae Flye 0.10% 0.75% 0.50% 1.35%

Racon 0.12% 0.75% 0.63% 1.50%

Medaka 0.10% 0.54% 0.52% 1.16%

MarginPolish 0.09% 0.60% 0.40% 1.09%

HELEN 0.09% 0.74% 0.44% 1.26%

NeuralPolish 0.11% 0.69% 0.58% 1.38%

NA12878 chr21 Flye 0.39% 2.90% 0.32% 3.61%

Racon 0.37% 2.84% 0.42% 3.63%

Medaka 0.42% 2.38% 0.38% 3.19%

MarginPolish 0.33% 2.25% 0.26% 2.84%

HELEN 2.09% 17.30% 0.48% 19.88%

NeuralPolish 0.42% 1.56% 0.55% 2.53%

NA12878 chr20 Flye 0.33% 3.08% 0.27% 3.68%

Racon 0.31% 2.99% 0.36% 3.66%

Medaka 0.35% 2.50% 0.32% 3.16%

MarginPolish 0.28% 2.32% 0.32% 2.92%

HELEN 2.11% 16.83% 0.59% 19.53%

NeuralPolish 0.34% 1.56% 0.50% 2.40%

A.thaliana Flye 0.73% 3.94% 1.99% 6.66%

Racon 0.69% 3.57% 2.11% 6.37%

Medaka 0.74% 3.47% 2.03% 6.23%

MarginPolish 0.69% 3.49% 2.05% 6.23%

HELEN 1.07% 4.79% 2.11% 7.97%

NeuralPolish 0.73% 2.94% 2.37% 6.04%
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reduce the number of indels per 100k base pairs, but there is no sig-
nificant reduction in the number of indels longer than 5 bp. It means
that Medaka can only solve short indel errors (�5 bp), but
NeuralPolish can deal with both short and longer ones (>5 bp). In
terms of genome identity, NeuralPolish has the highest identity on
four out of the five test datasets. On the test data of NA12878 chro-
mosomes 21 and chromosome 20, the increase in genome identity
by NeuralPolish is the most significant.

3.4 Analysis of error sites in the assembly polished by

NeuralPolish
To better understand the difference between contigs before and after
NeuralPolish polishing, we compared the draft assembly with the
polished assembly in terms of error sites. The draft assembly was
assembled from raw reads of NA12878 chromosome 20 by Flye.
Then we used Mummer (Marçais et al., 2018) to align the draft as-
sembly and polished assembly to the reference to find the error sites.
Analysis of the error sites in draft assembly and polished assembly is
shown in Supplementary Figure S2. In terms of deletion errors, a
total of 1 171 405 deletion sites in the draft assembly were detected
and corrected, and 614 127 deletion sites remained in the polished
assembly. During the correction process of NeuralPolish, some new
deletion errors were introduced. The number of newly introduced
error sites was 256 174, accounting for 29.44% of the total deletion
errors. In the polished assembly generated by NeuralPolish, the
number of deleted error sites was reduced from 1 785 532 to 870
301. For insertion errors, the draft assembly contains 12 825 inser-
tion error sites. NeuralPolish identified and corrected 8 387 error
sites, accounting for 65%. But NeuralPolish introduced 101 982 in-
sertion error sites. Compared with the draft assembly by Flye, the
number of insertion error sites in the polished assembly was
increased from 12 825 to 106 420. The reason for the increase of in-
sertion errors is when NeuralPolish corrected a large number of de-
letion errors, some correct sites were incorrectly detected as deletion
error sites and then NeuralPolish modified these correct sites. For
substitution errors, there were 153 668 error sites in draft assembly.
NeuralPolish identified and corrected 82 877 error sites, accounting
for 54%. During the correction process of NeuralPolish, 75 649
new substitution errors were introduced. Compared with the draft
assembly, the number of substitution error sites in the assembly pol-
ished by NeuralPolish was reduced from 153 668 to 146 440. In
general, in the NeuralPolish polishing of NA12878 chromosome 20,
NeuralPolish solved a large number of deletion errors at the cost of

introducing some new insertion errors. Since the number of solved
sites is more than three times the number of newly introduced error
sites, the total number of error sites in the polished assembly still
decreased significantly.

3.5 Counting homopolymer 5-mers in polished

assembly and reference genome
Due to the mechanism of Nanopore sequencing, indel errors are
more likely to occur in the homopolymers. We chose the homopoly-
mer 5-mers consisting of a single (e.g. AAAAA) base or 4-base
stretch of a single base (e.g. AAAAT). Then we compared the num-
ber of these 5-mers appeared in the contigs with that in the refer-
ence. We selected the homopolymer 5-mers with the top 20
occurrence frequency in the reference, and the numbers of these 5-
mers in the polished assembly are presented in Supplementary
Figure S3. Comparing NeuralPolish with Racon, Medaka and
MarginPolish, the number of homopolymer 5-mers in NeuralPolish
polished assembly is much closer to the real value (the number of
homopolymer 5-mers in the reference) in almost every chosen homo-
polymer 5-mer. Besides, there are seven types of homopolymer 5-
mers, the numbers of which in the HELEN polished assembly are
far from the real value, whereas the numbers in NeuralPolish pol-
ished assembly are consistently close to the real values across all
homopolymer 5-mers.

3.6 Evaluation of NeuralPolish on assemblies with

varying degree of errors
Currently, a variety of basecallers are available for converting
Nanopore raw signals to DNA sequences. The most commonly used
basecallers are Albacore and Guppy which are developed by ONT.
These basecallers are constantly updated and different versions have
varying raw read identities. As a result, the error rates of draft
assemblies are also different. To evaluate NeuralPolish on the
assemblies with different error rates, we used four read sets of
NA12878 chromosome 21 which were basecalled by Albacore
v2.3.4, Guppy v2.3.8, Guppy v4.4.0 fast model and Guppy v4.4.0
high accuracy (hac) model separately. Then we used Flye to assem-
ble these read sets and polished the draft assemblies using
NeuralPolish. The read identity of each read set and the error rates
of the polishing results are shown in Supplementary Figure S4. The
median identities of read sets range from 83.4% to 92.52%. And
the error rates of polished assemblies range from 1.29% to 3.61%.
In all datasets with varying degree of errors, NeuralPolish reduced

Table 3. Comparison of the polishing error rates of MarginPolish, HELEN and NeuralPolish on the data of latest NA12878 rel6. The bold in

the table means the best results.

Dataset Tool Mismatch (%) Deletion (%) Insertion (%) Error rate (%)

NA12878 chr21 MarginPolish 0.188 0.527 0.341 1.056

(Wtdbg2) HELEN 0.194 0.586 0.347 1.127

NeuralPolish 0.217 0.444 0.347 1.008

NA12878 chr20 MarginPolish 0.134 0.574 0.316 1.024

(Wtdbg2) HELEN 0.129 0.684 0.3 1.113

NeuralPolish 0.162 0.536 0.318 1.016

NA12878 chr21 MarginPolish 0.257 0.486 0.43 1.173

(Flye) HELEN 0.246 0.509 0.373 1.128

NeuralPolish 0.284 0.422 0.412 1.118

NA12878 chr20 MarginPolish 0.193 0.504 0.371 1.068

(Flye) HELEN 0.177 0.508 0.34 1.025

NeuralPolish 0.225 0.449 0.405 1.079

NA12878 chr21 MarginPolish 0.258 0.632 0.379 1.269

(Canu) HELEN 0.278 0.702 0.353 1.333

NeuralPolish 0.278 0.611 0.371 1.260

NA12878 chr20 MarginPolish 0.157 0.522 0.335 1.014

(Canu) HELEN 0.153 0.564 0.318 1.035

NeuralPolish 0.185 0.454 0.356 0.995

Note: The draft assemblies of NA12878 chromosome 20 and 21 were assembled by Wtdbg2, Flye and Canu.
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the error rate of the assemblies. When the reads were basecalled by
latest basecaller Guppy v4.4.0 high accuracy model, the polished as-
sembly produced by NeuralPolish had a relative improvement rate
of 23.5% over the draft assembly in terms of the error rate. Overall,
NeuralPolish can be used to polishing the assemblies of varying de-
gree of errors as well as the datasets generated by different
basecallers.

3.7 Polishing assemblies with multiple rounds of

NeuralPolish
When correcting the assembly using polishers, multiple rounds of
polishing often lead to a more accurate assembly. To evaluate the
performance of NeuralPolish iterative polishing, we performed four
rounds of NeuralPolish on the five test datasets. In the iterative pol-
ishing, we only ran Racon during the first round of NeuralPolish. In
subsequent iterations, we aligned the raw reads to the polishing re-
sult from previous iteration and then predicted the polished contigs
of current iteration. The error rates of the iterative polishing results
are provided in Supplementary Table S6. In four out of the five test
datasets, NeuralPolish iterative polishing further reduces the errors
in the assemblies. In the dataset of NA12878 chromosome 21, three
iterations of NeuralPolish lead to a error reduction of 0.07%. In the
dataset of NA12878 chromosome 20, four iterations of
NeuralPolish have a further error reduction of 0.02%. In the dataset
of A.thaliana, four iterations of NeuralPolish reduce the error rate
of the assembly from 6.06% to 5.95%. Overall, when polishing
assemblies using NeuralPolish, iterative polishing can achieve more
accurate assemblies.

3.8 Computational setup and runtime
There are two main steps in NeuralPolish, alignment matrix con-
struction and neural network prediction. The alignment matrix con-
struction is done on the server with 40 CPU processors [Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10GHz]. The polished sequence pre-
diction is performed on a Nvidia GeForce RTX 2080Ti GPU.
Medaka and MarginPolish & HELEN are similar to NeuralPolish
where part of the computation is on CPU and the rest is on GPU.
Therefore, the overall runtime is obtained by adding the GPU run-
time and the CPU runtime. The runtime of each polishing method
performed on the data assembled with Flye is provided in
Supplementary Table S7. In Racon polishing, we performed four
iterations of Racon. In Medaka polishing, we performed four itera-
tions of Racon followed by Medaka. In MarginPolish and HELEN
polishing, we ran MarginPolish first and then HELEN. In
NeuralPolish polishing, we performed one round of Racon follow
by NeuralPolish. When the coverage of raw reads exceeds 40�,
NeuralPolish will randomly pick at most 40� of them, while other
polishing methods will use all the data. So in the data of E.coli
(319�) and S.cerevisiae (512�), NeuralPolish takes the least time.
When the species is relatively complex, the running time of
NeuralPolish will be longer than that of other tools. However, the
extra time spent enables NeuralPolish to obtain more accurate pol-
ishing results. NeuralPolish takes more runtime on the datasets of
NA12878 chromosome 21, NA12878 chromosome 20 and
A.thaliana, but it also achieves the lowest error rates on these data-
sets. The reason why NeuralPolish takes more time when polishing
complex species is that there is a CTC algorithm used in
NeuralPolish. For a given input feature, the CTC decoder calculates
all possible output distributions. When the species is more complex,
there are a much larger number of types of output distributions.

4 Conclusion

In this study, we proposed a novel Nanopore polishing method,
NeuralPolish, which generates polished assemblies with fewer errors
on a wide range of test datasets compared to Racon, Medaka,
MarginPolish and HELEN. In NeuralPolish, we designed an align-
ment matrix construction from read-to-assembly alignment. In the
network architecture, NeuralPolish uses two orthogonal bi-

directional GRU networks to process the matrix by row and col-
umn, respectively. Then the final polished sequence is processed by a
CTC decoder with a greedy algorithm. Our NeuralPolish model is
trained on the assembly produced by Wtdbg2, and it outperforms
Racon, Medaka, MarginPolish and HELEN in terms of the assembly
error rate on most of the test datasets. Besides, we evaluated
NeuralPolish on the assembly generated by Flye and Canu,
NeuralPolish obtains the polished assemblies with fewer errors.
From the analysis of error sites of the polished assembly, we found
that NeuralPolish solves a large number of deletion errors at the cost
of introducing some insertion errors, thereby reducing the overall
error rate of the draft assembly. From the comparison of the homo-
polymer 5-mers counts in the polished genome assembly and refer-
ence genome on the data of NA12878 chromosome 20, we found
that the distribution of 5-mers in the assembly polished by
NeuralPolish is closer to that of the reference in the homopolymer
regions.

NeuralPolish is a haploid polishing method, and thus it can not
recognize and solve heterozygous polymorphisms. Since the error
distribution and the error rate of PacBio sequencing data is different
from that of Nanopore sequencing data, we will further develop
NeuralPolish to support the polishing of PacBio assembly in future
work.
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