
The Maximum-Level Vertex in an Arrangement of Lines

Dan Halperin✯ Sariel Har-Peled❸ Kurt Mehlhorn❹ Eunjin Oh➜

Micha Sharir➯

September 1, 2021

Abstract

Let L be a set of n lines in the plane, not necessarily in general position. We present an efficient
algorithm for finding all the vertices of the arrangement A(L) of maximum level, where the level of
a vertex v is the number of lines of L that pass strictly below v. The problem, posed in Exercise 8.13
in de Berg et al. [dBCKO08], appears to be much harder than it seems at first sight, as this vertex
might not be on the upper envelope of the lines.

We first assume that all the lines of L are distinct, and distinguish between two cases, depending
on whether or not the upper envelope of L contains a bounded edge. In the former case, we show
that the number of lines of L that pass above any maximum level vertex v0 is only O(log n). In the
latter case, we establish a similar property that holds after we remove some of the lines that are
incident to the single vertex of the upper envelope. We present algorithms that run, in both cases,
in optimal O(n log n) time.

We then consider the case where the lines of L are not necessarily distinct. This setup is more
challenging, and for this case we present an algorithm that computes all the maximum-level vertices
in time O(n4/3 log3 n).

Finally, we consider a related combinatorial question for degenerate arrangements, where many
lines may intersect in a single point, but all the lines are distinct: We bound the complexity of
the weighted k-level in such an arrangement, where the weight of a vertex is the number of lines
that pass through the vertex. We show that the bound in this case is O(n4/3), which matches the

✯The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; danha@tauex.tau.ac.il.
❸Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;

sariel@illinois.edu.
❹Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany;

mehlhorn@mpi-inf.mpg.de.
➜Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany; Present address:

Department of Computer Science and Engineering, POSTECH, Pohang 37673, Korea; eunjin.oh@postech.ac.kr.
➯School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; michas@tau.ac.il.

1

corresponding bound for non-degenerate arrangements, and we use this bound in the analysis of
one of our algorithms.

1. Introduction

Let L be a set of n lines in the plane, not necessarily in general position (that is, there may be points
incident to more than two lines of L, and pairs of lines of L might be parallel or even coincide). The
largest part of the paper is devoted to the case where the lines of L are pairwise distinct; the more
difficult case where lines of L might coincide will be handled later on. We wish to find a vertex, or
rather all the vertices, of the arrangement A(L) at maximum level, where the level λ(v) of a vertex v is
the number of lines of L that pass strictly below v.

The question that we address here appears as an exercise in the computational geometry textbook
by de Berg et al. [dBCKO08, Exercise 8.13]. It can be solved in quadratic time by constructing the full
arrangement, and then by tracing the vertices along each line from left to right, keeping track of the
level of each vertex as we go. The challenge is of course to solve it faster.

If we assume general position (so no three lines pass through a common point), then every vertex
on the upper envelope of L is at level n− 2, which is the maximum possible level (and only the vertices
of the envelope have this level). Finding one such vertex in linear time is straightforward,1 and finding
all of them takes O(n log n) time. Henceforth we focus on the interesting, and harder, case where the
lines are not in general position. For this setting we are not aware of any previous subquadratic-time
algorithm to compute a maximum-level vertex. As the requirement of Exercise 8.13 in [dBCKO08] was
to solve the problem in O(n log n) time, it seems that the difficulty of the problem was overlooked there.

The main obstacle is that, in degenerate situations, the desired vertex does not have to lie on the
upper envelope of L, as shown in the example depicted in Figure 1.1.

v
0
v
0

ℓ

v
0

Figure 1.1: A set L of lines for which
the vertex of A(L) of maximum level,
which is v0, does not lie on the upper
envelope.

Figure 1.2: A more “substantial” construction, in which the
horizontal line ℓ contains all but one of the vertices of A(L),
all at upper level Θ(n). The maximum-level vertex is v0 (as
well as its symmetric counterpart on the other side of ℓ).

In fact, the situation can be much worse—the vertex at maximum level can be far away from the
upper envelope. An illustration of such a case is given in Figure 1.2.

We do not solve Exercise 8.13 completely. We give an O(n log n) algorithm only for the case of
distinct lines. For the case where the lines in L are not necessarily distinct we only give an O(n4/3 log3 n)
algorithm. In the next section we formally state our results and give an overview of our techniques.

1For example, compute the top line ℓ intersecting the y-axis, and then compute the at most two consecutive vertices
of the arrangement along ℓ adjacent to this intersection.

2

2. Statement of our results and an overview of the techniques

In this section we review our approach and state our main results. We start by observing that whether
the lines in L are distinct or not, we may assume that L does not contain any vertical line: any such
line is not counted in the level of any point, and the only role of such lines is to create new vertices of
the arrangement. For any vertical line ℓ, the only relevant vertex is the highest intersection point of ℓ
with other lines of L. It is straightforward2 to find, in O(n log n) overall time, these highest intersection
points and their levels, for all vertical lines. Therefore, in what follows, we can indeed assume that L
has no vertical lines.

Consider in what follows the case where all the lines of L are distinct; as already noted, the case of
coinciding lines is subtler and is discussed in detail in Section 5.

Similar to the case of vertices, a point p in the plane is said to be at level k, if there are exactly k
lines in L passing strictly below p. The level of a (relatively open) edge e (resp., face f) of A(L) is the
level of any point of e (resp., f). The k-level of A(L) is the closure of the union of the edges of A(L)
that are at level k. The at-most-k-level of A(L), or (≤ k)-level, is the closure of the union of the edges
of A(L) at levels j, 0 ≤ j ≤ k. We denote the k-level as Λ↓

k, and the at-most-k-level as Λ↓

≤k.
In complete analogy, we define the upper level of a vertex v in A(L) (or of any point v ∈ R

2) to be
the number of lines of L that pass strictly above v. The k-upper level and the (≤k)-upper level of A(L)
are defined analogously to the standard level, and are denoted as Λ↑

k and Λ↑

≤k, respectively.
We consider two complementary cases:

Case (i): The upper envelope of L contains a bounded edge, and thus has at least two vertices; see
Figure 1.1.

Case (ii): The upper envelope of L does not contain a bounded edge, and thus consists of a single
vertex and two rays; see Figure 1.2.

The main combinatorial results that provide the basis for our algorithms are summarized in the
following two theorems. (Here and elsewhere in the paper the logarithms are to base 2.)

Theorem 2.1. Let L be a set of n distinct lines in the plane that satisfies the assumption of Case (i).
Then the upper level of any maximum-level vertex of A(L) is at most 2 log n.

For Case (ii) we can achieve a similar property with some additional preparation. Specifically, let v
be the single vertex of the upper envelope of L, let Lv denote the set of the lines of L that are incident
to v, and set K := L \ Lv. Assume that K is nonempty; if K = ∅ then v is the only vertex of A(L),
which is clearly of maximum level (which is 0). For each line ℓ ∈ Lv, let ℓ

− (resp., ℓ+) denote the portion
(ray) of ℓ to the left (resp., right) of v. Set L−

v = {ℓ− | ℓ ∈ Lv} and L+
v = {ℓ+ | ℓ ∈ Lv}. Sort the

rays of L−
v downwards, i.e., in increasing order of their slopes, and sort the rays of L+

v also downwards,
now in decreasing order of their slopes. Let D− (resp., D+) denote the size of the largest prefix of
the rays of L−

v (resp., L+
v) that do not intersect any line of K (and thus any other line of L), and put

D := min{D−, D+}. See Figure 2.1.
Since K 6= ∅, it easily follows that no line ℓ of Lv can contribute rays to both prefixes of L−

v and L+
v

defined above (unless all lines of K are parallel to ℓ, an easily handled situation that we ignore here).
Put h := max{0, D − 2 log n} and D0 := D − h = min{D, 2 log n}. Remove from L the lines that

contribute the h topmost rays to L−
v and the lines that contribute the h topmost rays to L+

v ; by what
has just been said, no line is removed twice, and we are thus left with a subset L0 of L of size n− 2h.

2The divide-and-conquer algorithm for computing the upper envelope (split the set of lines into two parts of equal size,
compute the upper envelope of each, and merge by a scan along both envelopes) is readily extended to also compute the
degrees of the vertices on the upper envelope.

3

v

L

K

v

D
−=4

︷ ︸︸ ︷
D

+=3
︷ ︸︸ ︷

L
−

v

L
+
v

v

Figure 2.1: The case of a single vertex on the upper envelope. The same arrangement is depicted three
times, with different notations.

Theorem 2.2. Let L be a set of n distinct lines in the plane that satisfies the assumption of Case (ii).
Let v, Lv, K, D, h, D0 and L0 be as defined above. Then all the maximum-level vertices of A(L) are
vertices of A(L0), and the upper level in A(L0) of any maximum-level vertex of A(L) is at most 4 log n.

We will exploit these theorems in designing efficient algorithms, that run in optimal O(n log n) time,
for computing all the maximum-level vertices, in both cases. We note that this running time is indeed
optimal: Even the task of computing the upper envelope of L is at least as hard as the task of sorting
the lines by slope.

A central ingredient of our algorithms is computing the at-most-k-upper level of an arrangement,
where k = O(log n). The complexity (number of edges and vertices) of the (≤k)-level in an arrangement
of n lines is Θ(nk) [AG86, CS89]. Typically, this is shown for arrangements of lines in general position,
by a standard application of the Clarkson-Shor random sampling theory [CS89], but it also holds in
degenerate situations, by perturbing the lines (so they are in general position), and observing that each
degenerate original vertex corresponds to several new vertices, and at least one of them has the same level
as the original vertex. The (≤k)-level can be computed, for arrangements in general position, in optimal
time O(n log n + nk) by an algorithm of Everett et al. [ERK96]. We sketch (our interpretation of) the
algorithm in Appendix A. As k = O(log n) in both cases, the algorithm runs in (optimal)O(n log n) time.
It is not clear, though, whether this (fairly involved) algorithm also works for degenerate arrangements.

To finesse this issue, we run the algorithm of [ERK96] on perturbed copies of the lines of L, using a
simplified variant of symbolic perturbation, and then extract from its output the actual at-most-k-level
in the original degenerate arrangement. In a fully symmetric manner, this construction also applies to
the at-most-k-upper levels of A(L).

We remark that levels can be defined for arrangements of objects other than lines and in higher
dimensions. Levels in arrangements of hyperplanes are closely related (by duality) to so-called k-sets
in configurations of points. Both structures have been extensively studied; see the recent survey on
arrangements [HS18] for a review of bounds and algorithms. In what follows, though, we only concern
ourselves with planar arrangements of lines.

The remainder of the paper is organized as follows. In Section 3 we give the proofs of Theorem 2.1
and Theorem 2.2, and then present, in Section 4, our efficient (optimal) algorithms for both cases. The
case where L can contain coinciding lines is discussed in Section 5, where we present an algorithm that
has a weaker O(n4/3 log3 n) upper bound on its complexity. We conclude in Section 6 with a bound on
the maximum complexity of the weighted k-level in arrangements of lines, still catering to the case where
many lines may intersect in a single point, but the lines are all distinct. Here the weight of a vertex

4

is the number of lines that pass through it, and the complexity of the weighted level is the sum of the
weights of its vertices. On top of being a result of independent interest, we exploit it in the analysis of
our algorithm for the case of coinciding lines. In the Appendix we give a brief review of the optimal-time
algorithm by Everett et al. [ERK96] for computing the (≤k)-level for arrangements of lines in general
position, describing it from a different (and, to us, simpler) perspective than the original paper.

3. The upper level of maximum-level vertices

The proofs of both Theorem 2.1 and Theorem 2.2 rely on the following structural property, which we
regard as interesting in its own right.

Consider the k-upper level Λ↑

k, which, as we recall, is the x-monotone polygonal curve which is the
closure of the union of the edges of the arrangement with exactly k lines above each of them. Since the
lines of L are distinct, these levels do not share any edge, but they can share vertices. The degree of a
vertex is the number of lines in L incident to the vertex. A vertex of degree d appears in d consecutive
levels. Note that the level does not necessarily turn at every vertex v that it reaches: it could pass
through v staying on the same line (this happens when the degree of v is odd and the level reaches v
along the median incident line). See Figure 3.1 for an illustration.

Figure 3.1: The highlighted level does not turn at the marked vertex.

Let k0 be the smallest index such that there exists some vertex v that lies strictly above Λ↑

k0
(so v

is a vertex of Λ↑

k0−1, but not necessarily of all the preceding upper levels). The vertices lying strictly

above Λ↑

k0
are called detached. See Figure 3.2.

v
0
v
0k0

ℓ

v
0

k0

Figure 3.2: Figure 1.1 and a variant of Figure 1.2 with the k0-upper level highlighted.

Lemma 3.1. A vertex has maximum level if and only if it lies above Λ↑

k0
. The maximum level is n−k0.

Proof. Let v be any detached vertex. We claim that the level λ(v) of v is exactly n−k0. This is because
there are exactly k0 lines that pass through or above v, which follows since (i) this is the number of lines
that cross the vertical line through v above Λ↑

k0
, and (ii) none of these lines passes between v and Λ↑

k0
,

by the definition of k0.

5

Except for potential other vertices that lie, like v, strictly above Λ↑

k0
, and whose level is thus also

n− k0, any other vertex w lies on or below Λ↑

k0
. Suppose that w lies on Λ↑

k0
. Move from w slightly to its

left, say, along an adjacent edge of Λ↑

k0
. The new point w′ has exactly k0 lines above it and exactly one

line through it, so its level satisfies λ(w′) = n− k0 − 1. This implies that λ(w) is at most n− k0 − 1, as
we clearly must have λ(w) ≤ λ(w′); see Figure 3.3. The case where w lies on an upper level of a larger
index is handled similarly, and in fact its level can only get smaller. This completes the proof. �

w

Λ
↑

k0

w
′

Figure 3.3: The level of any vertex w of Λ↑

k0
is at most n− k0 − 1.

To exploit this result, we need the following property.

Lemma 3.2. Assume that, for some k ≥ 0, Λ↑

k has at least two vertices, and that all the vertices of Λ↑

k

also belong to Λ↑

k+1. Then, denoting by Vj the number of vertices of Λ↑
j , for any j, we have Vk+1 ≥ 2Vk−1.

Proof. The claim follows trivially by observing that if a and b are two consecutive vertices of Λ↑

k,

and thus also of Λ↑

k+1, then Λ↑

k+1 must contain at least one additional vertex3 between a and b. See

Figure 3.4. Indeed, Λ↑

k+1 leaves a (to the right) on a different edge than ab. Similarly, Λ↑

k+1 enters b
(from the left) on a different edge than ab. These two edges must be distinct, which implies that there
must be at least one vertex in between them on Λ↑

k+1. �

Λ
↑

k

Λ
↑

k+1
aa

b

Figure 3.4: Proof of Lemma 3.2. Any pair of consecutive upper levels Λ↑

k,Λ
↑

k+1, such that all the vertices of

Λ↑

k are also vertices of Λ↑

k+1, have the property that Vk+1 ≥ 2Vk − 1.

Note that the lemma also holds trivially when Vk = 1, except that then it only implies the trivial
inequality Vk+1 ≥ 1.

3.1. Upper Bounds

We now complete the proofs of both Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1 (Case (i)). By assumption, in this case Λ↑
0 has at least two vertices. Hence,

V0 ≥ 2, and Lemma 3.2 implies that4 V1 ≥ 3, and in general Vk ≥ 2k + 1, as is easily verified, for every

3Note that the assumption that the lines of L are all distinct is crucial for this argument to apply.
4Every vertex of Λ↑

0
is also a vertex of Λ↑

1
.

6

k ≤ k0 − 1, where k0 is the index introduced prior to Lemma 3.1. Hence, since the number of (distinct)
vertices of A(L) is at most

(

n
2

)

, it follows that after at most 2 log n− 1 upper levels, the assumption of
Lemma 3.2 can no longer hold, and, at the next upper level, which we have denoted as k0, we get at
least one vertex of Λ↑

k0−1 that lies strictly above Λ↑

k0
, and, by Lemma 3.1, any such vertex has maximum

level (and only these vertices have this property). This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 (Case (ii)). This case is slightly more involved. Let v, Lv, K, D, h, D0

and L0 be as defined prior to the theorem statement. In this case, each of the first D upper levels Λ↑
0,

Λ↑
1, . . . , Λ

↑

D−1 will have just a single vertex, namely v, but Λ↑

D has at least one new vertex that is an
intersection of some line of K with either the (D + 1)-st highest left ray or the (D + 1)-st highest right
ray emanating from v (rays are numbered starting at 1).

From this level on, Lemma 3.2 can be applied, and it implies that there exists a level among the
subsequent levels Λ↑

D, Λ
↑

D+1, . . . , Λ
↑

D+2 logn of A(L), for which there exists a vertex that lies strictly above
the level, and, at the first time this happens, any such detached vertex has maximum level in A(L), by
Lemma 3.1 (and only these vertices have this property). If D ≤ 2 log n then no line is removed, and
both claims of the theorem (that all the maximum-level vertices of A(L) are vertices of A(L0), and that
the upper level in A(L0) of the maximum-level vertices is at most 4 log n) hold; the first is trivial and
the second follows from D + 2 log n ≤ 4 log n. Assume then that D > 2 log n. In this case D0 = 2 log n.
Since no line ℓ ∈ Lv contributes to both prefixes of L−

v and L+
v of length D, at least 2D upper levels

of A(L) pass through v. In particular, v lies on all levels Λ↑
0 to Λ↑

D+2 logn. We claim that none of the

2h lines removed from L can meet any of the upper levels Λ↑

h = Λ↑

D−2 logn to Λ↑

D+2 logn of A(L), except
for passing through it at v. Indeed, any line ℓ that contributes a ray to the top h rays of L+

v passes to
the right of v above at least D0 = 2 log n other lines of Lv, none of which has been removed, so ℓ passes
below all these lines to the left of v and thus cannot meet the topmost D + 2 log n levels of A(L) to
the left of v, and it clearly cannot do so to the right of v. Figure 3.5 illustrates this argument. The
argument for lines that contribute a ray to the top h rays of L−

v is fully symmetric. We conclude that
upper levels Λ↑

h = Λ↑

D−2 logn to Λ↑

D+2 logn of A(L) are identical to levels Λ↑
0 to Λ↑

4 logn of A(L0), and hence
the upper level of any point in these levels (except for v) with respect to L is h plus its upper level with
respect to L0. Thus their upper level with respect to L0 is at most D + 2 log n − h = 4 log n. All this
completes the proof of the theorem. �

︷
︸
︸
︷
︷
︸
︸
︷

D0

h

︷

︸
︸

︷

D

v

ℓ

Figure 3.5: The prefixes of length D of L−
v and L+

v are indicated in green and red/blue respectively. No line
of Lv contributes to both prefixes. To the left of v any of the h red lines has at least D+D0 = D+ 2 log n
lines above it.

3.2. Lower Bound

In this subsection we give a construction that satisfies the property of Case (i), for which the upper level
of all the maximum-level vertices is Ω(log n). We put m = 2t, for some integer t, and construct the set

7

γ

p0

p
−m

p
m

Figure 3.6: A schematic illustration of the construction, where the parabola is flattened to a V shape and
the scale is logarithmic.

P of the 2m+ 1 points p−m, . . . , p−1, p0, p1, . . . , pm on the parabola γ : y = x2, where

p0 = (0, 0),

pi = (3i−1, 32(i−1)), for i = 1, . . . ,m

p−i = (−3i−1, 32(i−1)), for i = 1, . . . ,m.

For each j = 0, . . . , t, we construct a set Lj of sj = 2j+1 ‘dyadic’ lines. Concretely, for each j we
set Lj = L−

j ∪ L+
j , where the rth line in L+

j connects the points p(r−1)2t−j and pr2t−j , for r = 1, . . . , 2j,
and the lines of L−

j are reflected copies of the lines of L+
j about the y-axis (so the rth line in L−

j

connects the points p−(r−1)2t−j and p−r2t−j , for r = 1, . . . , 2j). We put L :=
⋃t=1

j=0 Lj, and note that

|L| =
∑t

j=0 2
j+1 = 2t+2 − 2. See Figure 3.6 for an illustration.

Lemma 3.3. (a) All the intersection points of the lines of L are either points of P or lie below the
parabola γ.
(b) All these intersection points lie in the x-range between p−m and pm.

Proof. Associate with each line ℓ ∈ L the arc γℓ of γ between the two points of P that ℓ connects.
By construction, each pair of these arcs are either openly disjoint or nested within one another. This
immediately implies (a). For (b), consider a pair of lines ℓ, ℓ′ ∈ L. The claim trivially holds when γℓ and
γℓ′ are openly disjoint, as the intersection point lies in the x-range between the two arcs. Assume then
that the arcs are nested, say ℓ connects pu and pv, ℓ

′ connects pw and pz, and u ≤ w < z ≤ v. If u = w
or z = v, the lines intersect at a point of P and the claim follows, so assume that u < w < z < v. The
construction allows us to assume, without loss of generality, that 0 ≤ u < w < z < v. Assume first that
u > 0. To simplify the notation, write a = 3u−1, b = 3v−1, c = 3w−1, and d = 3z−1. Let the intersection
point be (x, y). Then we have

y − a2

b2 − a2
=

x− a

b− a
, for the line passing through (a, a2), (b, b2) and (x, y)

y − c2

d2 − c2
=

x− c

d− c
, for the line passing through (c, c2), (d, d2) and (x, y) ,

8

and it thus follows that

x =
ab− cd

a+ b− c− d
.

We claim that −b < x < b, from which (b) follows. Observing that b > 3c and b > 3d, the denominator
is positive, so we need to show that

−b(a+ b− c− d) < ab− cd < b(a+ b− c− d).

Divide everything by a2, and put C = c/a, D = d/a, and B = b/a. We thus need to show that

−B(1 + B − C −D) < B − CD < B(1 + B − C −D).

The right inequality becomes (B−C)(B−D) > 0, which clearly holds as B > C,D. The left inequality
becomes B2 + 2B > CD +BC +BD, which also holds since C,D ≤ B/3.

The case u = 0 is handled in exactly the same manner, except that we replace a by 0. It is easily
checked that the required inequalities continue to hold. This completes the proof. �

To complete the construction, we generate two additional arbitrary lines that pass through pm and
are contained in the acute-angled cone spanned by the tangent to γ at pm and the vertical line through
pm, and apply the same construction at p−m. Altogether we obtain a set L′ of n = 2t+2 + 2 lines. It is
easily checked that any intersection point formed by any of the new lines also lies in the x-range between
p−m and pm. This, combined with Lemma 3.3, imply that the upper level of any vertex of A(L′) that
lies below γ is at least t + 1, implying that the actual level of any such vertex is at most n − t − 3. It
thus remains to calculate the levels of the points of P .

For pm, we have t+ 3 lines passing through this point, and no line of L′ passes above it, so its level
is n − t − 3. The same holds for p−m. For any other pu, with u 6= 0, let j be the largest integer such
that 2j divides u; for u = 0 set j = t. Then, by construction, there is exactly one line of Li, for each
i < t − j, that passes above pu, and two lines of Li are incident to pu, for each i ≥ t − j. Hence the
number of lines that pass through or above pu is (exactly)

2(j + 1) + (t− j) = t+ j + 2,

implying that the level of pu is n− t−j−2. The maximum value is attained for j = 0, which is n− t−2.
This is therefore the maximum level of a vertex of A(L), and all the vertices with j = 0 (those with odd
indices) have t− 1 = Θ(log n) lines of L passing above them; that is, their upper level is Θ(log n).

4. Algorithms

We now present an efficient, O(n log n)-time algorithm for each of the two cases.

Case (i). Here we need to construct the k := 2 log n upper levels of A(L) and report any detached
vertex (or, for that matter, all detached vertices) of maximum level. We use the algorithm of Everett
et al. [ERK96], but we want to run it on a set of lines in general position. For this, we perturb each
line ℓ1, . . . , ℓn of L, using a special kind of symbolic perturbation that uses only parallel shifts. That is,
each line ℓi, with equation y = aix + bi, is replaced by a line ℓ′i, given by y = aix + bi + εi, where the
εi’s are symbolic infinitesimal values, satisfying ε1 ≫ ε2 ≫ · · · ≫ εn. Let L

′ denote the set of perturbed
(actually, shifted) lines. We apply the algorithm of [ERK96] to L′, to compute the k upper levels of
A(L′), in time O(nk + n log n) = O(n log n).

9

Figure 4.2: When computing the top k levels, we might not know (the degree, and thus) the level of a vertex
that is on the bottommost k-upper level, such as the arrow-marked vertex. We do know, though, the level
of any vertex, like the circle-marked vertex, that lies strictly above the k-upper level.

L. Finally, we complete Λ↑
j by adding the ray portion of F (s1) from F (s1) ∩ F (s2) to the left, and the

ray portion of F (sq) from F (sq−1) ∩ F (sq) to the right.
As is easily verified, this procedure yields the top k + 1 levels of A(L) (namely, the top levels

0, 1, . . . , k). This follows by observing that the level, as well as the upper level, of each edge of non-
infinitesimal length of A(L′) is equal to the level, or upper level, of the corresponding edge of A(L).
Moreover, the level and the upper level of any edge of non-infinitesimal length (whether in A(L′) or in
A(L)) add up to n− 1, so either of these two quantities determines the other one.

We note though that this is not true for vertices, where the level and the upper level of a vertex can
add up to any value between n − 2 and 0. To compute the level of a vertex v, we need to know both
the upper level of v and its degree. While we know the upper level of each vertex v encountered in the
construction, we may not know its degree, as we might not have encountered all its incident lines. More
precisely, the algorithm of [ERK96] does encounter only the lines that are incident to v and contribute
edges that are adjacent to v and belong to the at-most-k upper level; see a review of (our version of)
the algorithm in the appendix. This is not an issue when v is an internal vertex, that is, when v lies
strictly above the k-upper level, as all its incident lines participate in the k top levels, but it may be
problematic for vertices that lie on the k-level itself; see an example in Figure 4.2. Since we know, by
Lemma 3.1, that all the maximum-level vertices are internal (i.e., detached) vertices, for k = 2 log n, the
procedure will compute their correct levels, and will let us find all the vertices of maximum level.

To recap, we have shown that in Case (i) we can find all the maximum-level vertices in O(n log n)
time.5

Case (ii). Here we first retrieve, in O(n) time, the single vertex v of the upper envelope and the
set Lv of all its incident lines. We obtain the corresponding sets L−

v , L
+
v of their left and right rays,

respectively, and sort each of them in descending order, as prescribed earlier. We take the complementary
set K = L \Lv, compute its upper envelope EK , and test each ray of L−

v ∪L+
v for intersection with EK .

All this takes O(n log n) time, and yields the parameter D.

5Notice that in the above description we do not aim to find the critical upper level k0, and only rely on the property
that the maximum-level vertices must be internal vertices of the at-most-2 log n upper level. Thus the algorithm might
also examine vertices that lie on or below the critical level.

11

We compute the parameters h, D0, as defined in Section 1, and remove from L the h lines that
contribute the h topmost rays to L−

v and the h lines that contribute the h topmost rays to L+
v . We then

compute the at-most-4 log n-upper level in the arrangement A(L0) of the set L0 of the surviving lines,
and report all vertices of maximum level (in A(L0)), as we did in Case (i). We claim that these are also
the maximum-level vertices in A(L). Indeed, this follows from the construction, observing that (a) for
any such vertex u, other than v, the number of lines of L that pass above u is exactly h plus the number
of lines of L0 that pass above u, (b) these upper levels do not contain any vertex of A(L) that is not a
vertex of A(L0), and (c) for any other point u that lies below these upper levels, the number of lines of
L that pass above u is at least h plus the number of lines of L0 that pass above u.

That is, we have shown that in Case (ii) too we can find all the maximum-level vertices in O(n log n)
time. In summary, we have finally managed to solve Exercise 8.13 in [dBCKO08] for the case where all
the input lines are distinct. That is, we have:

Theorem 4.1. All the maximum-level vertices in an arrangement of n distinct lines in the plane can
be computed in O(n log n) time.

5. The case of coinciding lines

We now turn to the more degenerate setup where the lines of L can repeat themselves. Let Γ =
{γ1, . . . , γm} be the set obtained from L by removing duplicates. The lines of Γ are pairwise distinct,
and we denote by f the function that maps each line in L to its representative (overlapping) line in Γ.
For each γ ∈ Γ we denote by µ(γ) its multiplicity, namely the number of lines ℓ ∈ L satisfying f(ℓ) = γ.
We naturally have

∑

γ∈Γ µ(γ) = n.
The level λΓ(p) of a point p in A(Γ) is defined, as before, to be the number of lines of Γ that pass

strictly below p. The situation is somewhat different for A(L). For any point p in the plane define

S(p) :=
∑

γ∈Γ : γ passes below p

µ(γ).

If p is a vertex of A(L) then its level in A(L) is λL(p) = S(p). If p lies in the relative interior of an edge
of A(L) then it lies on some line γ of A(Γ), and we say that p lies at level k in A(L) if

S(p) ≤ k < S(p) + µ(γ). (5.1)

In words, an edge e of A(L) (that is, of A(Γ)) may participate in several consecutive levels, depending
on its multiplicity. The special phenomenon that an edge may participate in several consecutive levels
is similar to the phenomenon (already noted) that holds only for vertices in arrangements of distinct
lines.

The k-level Λ↓

k in A(L) is the closure of the union of all edges e of A(Γ) that lie at level k (in A(L),
according to the definition in Eq. (5.1)). Fully symmetric definitions apply to the upper level. See
Figure 5.1 for an illustration. Note that, as in the case of distinct lines (and even more so in this setup),
the level does not necessarily turn at every vertex v that it reaches: it could pass through v staying on
the same line of Γ; see for example upper levels 2, 3 and 4 in Figure 5.1 for an illustration. Note also
that in this setup different levels may share edges of A(Γ).

As in the case of distinct lines, we wish to find the smallest upper level k0 in A(L) for which
there is a vertex in A(L) that lies strictly above Λ↑

k0
. All these (detached) vertices will be our desired

maximum-level vertices, a property that is established rigorously in the following lemma.

12

Denote this modified version of πk by π′
k. We now compute the set ∆k of line segments comprising

all the portions of lines of Γ that lie above π′
k, each represented by its left and right endpoints. (Notice

that, since we use the modified version π′
k, the set ∆k contains segments only, and no rays.) We intersect

the lines in Γ with the upward vertical ray from bL, to obtain some of the left endpoints of segments in
∆k (which are in fact internal points on the corresponding original rays). We store these endpoints in
an array W , which has an entry (not always occupied) for every line in Γ. Initially we set W [ℓ]:=null for
every line ℓ ∈ Γ. Additional endpoints are detected by moving along π′

k from left to right and carefully
examining, for each vertex v of the original πk, the set Γ(v) of all the lines of Γ that are incident to v.

To determine Γ(v), we consider the (one or two) lines that contain the edges of πk incident to v,
together with all the infinitesimal edges that have been produced as part of Λ↑

k within A(L̂), and have

been collapsed to v. Consider such an infinitesimal edge e. Let ℓ̂e be the perturbed line containing e,
and let v be the vertex of πk to which e will be contracted during the process of constructing πk (which
may in particular unite two collinear segments into a common segment). The line f(ℓ̂e) is split by v into
a leftward and a rightward ray. Consider the leftward ray, and compare its slope with that of the line
supporting the edge g immediately to the left of vk(e) along πk. If the ray has a smaller slope than g,
then vk(e) is the right endpoint of a segment whose left endpoint is stored in W . We add this segment
to ∆k and remove the corresponding entry from W . For the rightward ray we compare its slope with
the slope of the line containing the edge h along πk immediately to the right of vk(e). If it has a larger
slope than the line containing h, then we insert vk(e) into W at the entry for f(ℓ̂e), as this is the left
endpoint of a segment that will eventually be added to ∆k. (Notice that f(ℓ̂e) may contribute to ∆k

two segments incident to v.) Finally we intersect the upward vertical ray from bR with each of the lines
in Γ and using W we form the corresponding segments (representing right rays) and add them to ∆k.

Since we are using the infinitesimal edges of A(L̂), we may encounter a segment of A(Γ) that should
be added to ∆k several times (as many times as its multiplicity)). We wish to report each such segment
only once. To do so, for any line ℓ of Γ we only insert a left endpoint to W [ℓ] if this entry is null,
namely it does not currently contain a left endpoint (if it already contains a left endpoint, this means
that the left endpoint of this specific segment has already been detected due to another copy of ℓ in L̂).
Similarly, when we detect a right endpoint of a segment, we only report the segment if W [ℓ] contains a
left endpoint—in that case we add the segment having these endpoints (the left endpoint in W [ℓ] and
the corresponding right endpoint that we have just detected) to ∆k and set W [ℓ] to null.

This process of constructing the set ∆k takes time proportional to the complexity of the weighted
k-level of A(L̂), where each vertex of the level is counted as many times as there are lines passing
through it. We show in Lemma 6.1 in the next section that this quantity is bounded by O(nk1/3). This
also bounds the size |∆k| of ∆k.

Deciding whether there is a vertex of the arrangement A(Γ) strictly above πk. We run a
sweep-line algorithm over the segments in ∆k, to detect the first intersection that does not lie on πk.
Notice that all the vertices of πk are inserted into the event queue before the sweep starts. Such vertices
occur at common endpoints of the segments, and are not intersections that we seek (which only occur
within the relative interior of the segments). The same holds for the intersection of lines in Γ with either
bL or bR—we insert them to the queue before the sweep starts and neither set contains a relevant vertex
of the type we are looking for.

Finding the set V0 of detached vertices. After terminating the binary search at some index k0,
we need to find the set V0 of all detached vertices above πk0 . We consider the set ∆k0 of segments, and
observe that all the vertices in V0 are vertices of the lower envelope of ∆k0 . Indeed, no segment of ∆k0

15

can lie below any vertex v of V0, for then v would be detached from an upper level with a smaller index.
We thus need to compute the lower envelope, which we we do using Hershberger’s algorithm [Her89];

Since |∆k0 | = O(nk
1/3
0), this construction takes O(nk

1/3
0 log n) time. We output those vertices of the

envelope that lie in the relative interiors of their incident segments (ignoring segment endpoints).

The overall complexity. Computing the k-upper-level in A(L̂) takes O(nk1/3 log2 k) time [EW86]
(see also the appendix). This time dominates the time of the other procedures carried out in a single
step of the binary search. Hence, multiplying this by the number O(log n) of binary search steps, we
thus conclude:

Theorem 5.2. The maximum-level vertices in an arrangement of n lines, where some lines may coin-
cide, can be computed in O(n4/3 log3 n) time.

Remark. We can modify the binary search so that it first runs an exponential search from the top of
the arrangement, and only reverts to standard binary search at the first time when the current level
exceeds k0. This improves the running time to O(nk

1/3
0 polylog n), when k0 ≪ n. Obtaining such a sharp

bound on k0, or giving a construction in which k0 = Θ(n), remains one of the open problems raised by
the present work.

6. The complexity of the weighted k-level in degenerate ar-

rangements

Finally, we consider a related combinatorial question for degenerate arrangements. The resulting com-
binatorial bound, stated in Lemma 6.1, has been used in the analysis of the previous section.

As before, let L be a set of n lines, not necessarily in general position: we allow many lines to
intersect in a single point, but assume that all the lines are distinct. Recall that the vertices of the
k-level Λ↓

k are not necessarily at level k. As a matter of fact, as already noted, if the degree of a vertex v
of A(L) is d and k lines pass below v, then v belongs to the d consecutive levels k, k+1, . . . , k+ d− 1 of
A(L). Let |Λ↓

k| denote the complexity of Λ↓

k, that is, the number of its vertices, and let ω(Λ↓

k) denote the

weighted complexity of Λ↓

k, defined as the sum of the degrees of the vertices of Λ↓

k. It is known [Dey98]

that |Λ↓

k| = O(nk1/3) in the non-degenerate case (for this case we have ω(Λ↓

k) = 2|Λ↓

k|). We generalize
this result to the degenerate case in the following lemma.

Lemma 6.1. Let L be a set of n distinct lines in the plane, not necessarily in general position. Then
ω(Λ↓

k) = O(nk1/3).

Proof. We convert the original arrangement of lines into an arrangement of pseudo-lines in general
position, by making local changes in the vicinity of every vertex of degree greater than two. Furthermore,
we ensure that, in the new arrangement, when the k-level passes through the vicinity of any original
vertex v (so v is a vertex of the original level), it visits all the pseudo-lines whose original lines pass
through v, each along some segment thereof, before leaving this neighborhood.

Consider such an original vertex v, of some degree d = d(v) ≥ 3 (vertices of degree two require no
action); see Figure 6.1(a). The k-level enters this vertex from the left, say on a line ℓL, and leaves to
the right, say on a line ℓR. Assume that Λ↓

k forms a right turn at v (the left turn case is handled in a
similar fashion to what is described below, and it may also be the case that there is no turn, and the
level enters and leaves v along the same line). A line that reaches v from the left below the level, and

16

deformation suffices, only ensuring that each pair of lines that are incident to v intersect now, after
their perturbations, at a distinct point, within a sufficiently small neighborhood of v. All this results
in a collection of n pseudo-lines in general position, so that, for every vertex v of Λ↓

k, each line incident
to v now contributes at least one edge to the k-level of the modified arrangement, within the square
corresponding to (and surrounding) v.

We have thus constructed an arrangement of pseudo-lines so that the complexity of its k-level is
at least proportional to ω(Λ↓

k). By the result of Tamaki and Tokuyama [TT03], the complexity of the
k-level in an arrangement of n pseudo-lines is O(nk1/3). This completes the proof. �

Acknowledgments. The authors thank Michal Kleinbort and Shahar Shamai for pointing out the
difficulty of the problem of finding the maximum-level vertex.

Work by Dan Halperin has been supported in part by the Israel Science Foundation (grants no. 825/15
and 1736/19), by NSF/US-Israel-BSF (grant no. 2019754), by the Israel Ministry of Science and Tech-
nology (grant no. 103129), by the Blavatnik Computer Science Research Fund, and by the Yandex
Machine Learning Initiative for Machine Learning at Tel Aviv University.

Work by Sariel Har-Peled was supported by an NSF AF award CCF-1907400.
Work by Eunjin Oh was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIT) (no. 2020R1C1C1012742).
Work by Micha Sharir has been supported in part by Grant 260/18 from the Israel Science Foun-

dation, by Grant G-1367-407.6/2016 from the German-Israeli Foundation for Scientific Research and
Development, and by the Blavatnik Computer Science Research Fund.

References

[AG86] N. Alon and E. Győri. The number of small semispaces of a finite set of points in the plane.
J. Combin. Theory Ser. A, 41:154–157, 1986.

[CE92] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in
the plane. J. Assoc. Comput. Mach., 39:1–54, 1992.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geom-
etry, II. Discrete Comput. Geom., 4(5):387–421, 1989.

[dBCKO08] M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Santa Clara, CA, USA, 3rd edition, 2008.

[Dey98] T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete Comput.
Geom., 19(3):373–382, 1998.

[ERK96] H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the (≤k)-levels,
with applications to separation and transversal problems. Int. J. Comput. Geom. Appl.,
6(3):247–261, 1996.

[EW86] H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with
applications. SIAM J. Comput., 15(1):271–284, 1986.

[Her89] John Hershberger. Finding the upper envelope of n line segments in O(n log n) time. Inf.
Process. Lett., 33(4):169–174, 1989.

18

[HS18] D. Halperin and M. Sharir. Arrangements. In J. E. Goodman, J. O’Rourke, and Cs. D.
Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 28, pages 723–
762. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2018.

[OvL81] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23:166–204, 1981.

[TT03] H. Tamaki and T. Tokuyama. A characterization of planar graphs by pseudo-line arrange-
ments. Algorithmica, 35(3):269–285, 2003.

A. A review of a variant of the algorithm of Everett et al.

In this appendix we present a variant of the algorithm by Everett et al. [ERK96] for constructing the
top k levels of an arrangement of lines.

Theorem A.1. (Based on Everett et al. [ERK96]) Given a set L of n lines in general position in the
plane, and a parameter k, one can compute the top k levels of A(L) in O(n log n+ nk) time.

Proof. We proceed in four steps. First, we discuss the case where all the lines of L show up on the
upper envelope and derive a point location data structure that we need in the other steps. In the second
step, we compute k sets of lines L′

1, . . . , L
′
k such that only lines in L′ := L′

1∪· · ·∪L′
k appear in the k top

levels of A(L). Next we compute the k-upper level of A(L′), making use of the decomposition computed
in step 2 and the data structure derived in step 1. Finally, we compute the part of the arrangement of
A(L′) lying on or above the k-upper level.

Let L be a set of n lines in the plane in general position, meaning that no point is incident to more
than two lines of L (L may contain parallel lines). Consider the special case where all the lines of L
show up on the upper envelope E of L. Then A(L) has a special structure: except for the top face,
which is bounded by all n lines, and the bottom face and the two unbounded faces adjacent to the top
face, which are wedges bounded by only two lines, every other face is either a triangle or a quadrangle.
The triangles are all the other unbounded faces and all the other faces adjacent to the top face, and the
quadrangles are all the other faces. See Figure A.1(left).

Point location in this arrangement is simple. We compute E, in O(n log n) time (this amounts, in
the special case under consideration, to just sorting the lines of L by their slopes). Then, given a query
point q below E, we can compute the face of A(L) containing q in O(log n) time. The simplest way of
doing this is to compute the (at most) two tangents from q to E, and use only the (at most four) lines
incident to the points of tangency to compute the desired face. See Figure A.1(right).

Consider now the general case, where we are given an arbitrary set L of n lines in general position,
and a parameter k, and we want to construct the k top levels of A(L). We apply the following iterative
‘peeling’ process to L, to obtain a sequence L1, L2, . . . , Lk of subsets of L. We set L1 = L and, for each
i ≥ 1, we obtain Li+1 from Li by constructing the upper envelope Ei of A(Li), defining L′

i to consist of
all the lines that show up on the envelope, and setting Li+1 := Li \ L

′
i. A naive implementation of this

process takes O(k ·n log n) = O(nk log n) time, but we can improve it to O(nk+n log n) by noting that,
once the lines of L are sorted by slope, we can compute the upper envelope (of any prescribed subset of
L) in linear time, e.g., by a dual version of Graham’s scan algorithm for computing convex hulls (see,
e.g., [dBCKO08]). Set L′ := L′

1 ∪ · · · ∪ L′
k. By construction, only the lines of L′ appear in (i.e., support

the edges of) the k top levels of A(L).
In the next step, we construct the k-upper level of A(L′) by tracing it from left to right. Finding the

leftmost edge (ray) of the level is easy to do in linear time. Suppose that we are currently at some point

19

Figure A.1: The special structure of the arrangement of lines that are in “convex” position, meaning that
they all show up on their upper envelope. Left: The arrangement. Right: Locating a point below the
envelope.

q on some edge e of the level, and let i be the index for which the line ℓ containing e belongs to L′
i. The

right endpoint q′ of e is the nearest intersection of the rightward-directed ray emanating from q along e
with another line of L′. We find q′ using the dynamic half-space intersection data structure of Overmars
and van Leeuwen [OvL81]. This data structure maintains the intersection of half-spaces under insertions
and deletions and supports ray-shooting queries from any point inside the intersection. The intersection
must be non-empty at all times and the ray-shooting query returns the half-space whose bounding line is
first hit by the ray. We use the data structure as follows: For each j 6= i, the face of A(L′

j) that contains
q contributes the at most four half-spaces defining the face. For L′

i, e bounds two faces of A(L′
i), the

union of which is defined by at most four half-spaces in L′
i. We maintain the collection of the at most

4k such half-spaces. Each ray-shooting query takes O(log2 k) time and half-spaces can be added and
removed in the same time bound.

After we obtain q′, the new edge e′ that the level follows lies on the new line ℓ′ containing q′ (note
that ℓ′ is unique since our lines are assumed to be in general position); let j be the index for which
ℓ′ ∈ L′

j. Consider the case i 6= j; the case i = j is easier to handle. For every index m 6= i, j, both q
and q′ lie in the same face of A(L′

m), so the at most four lines of L′
m that are stored in the structure do

not change. For L′
i, e

′ enters one of the two faces of A(L′
i) adjacent to e. We insert ℓ into the structure

and delete the opposite line bounding the other face. For L′
j, we are now tracing (along e′) the common

boundary of two faces. We delete ℓ′ from the structure and insert the line bounding the opposite edge
of the new face.

That is, each new vertex on the k-level takes O(log2 k) time to obtain. Since the complexity of the
k-(upper) level in an arrangement of n lines (in general position) is O(nk1/3) [Dey98], the total cost of
constructing the level is O(nk1/3 log2 k).

In conclusion, one can compute the k-upper level Λ↑

k of A(L) in O(n log n + nk + nk1/3 log2 k) =
O(n log n+ nk) time.

We come to the final step. We construct the lower convex hull Ck of Λ↑

k, which can be done in linear

time, that is, in O(nk1/3) time, since the vertices of Λ↑

k are already sorted from left to right. Note that
each point q on or above Ck lies at upper level at most 2k, because every line that passes above q must
pass above at least one of the two endpoints of the edge of Ck that contains q or passes below q. For
each line ℓ ∈ L we compute its (one or two) intersection points with Ck, in O(log n) time, and thereby
obtain its portion above Ck. The overall time for this step is O(n log n+ nk1/3).

Let S denote the resulting collection of at most n segments and rays. Since all the elements of S
are contained in the at-most-2k upper level of A(L), the complexity of A(S) is O(nk) (see [AG86]).

20

We construct A(S) using the deterministic algorithm of Chazelle and Edelsbrunner [CE92], which runs
in O(n log n + nk) time.6 Alternatively, we can use the randomized incremental algorithm described
in [dBCKO08], which runs in expected time O(n log n + nk). Finally, we sweep A(S) once more to
remove any vertex or edge of the arrangement that lies below Λ↑

k. This step can also be performed in
O(n log n + nk) time, by traversing the planar map obtained from the previous construction, updating
the level in O(1) time when we cross from one feature to an adjacent one. �

6The algorithm [CE92] runs in O(n log n + I) time, where n is the number of segments and I is the number of
intersections that they induce. The same holds, in expectation, for the randomized algorithm that we cite [dBCKO08].

21

