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Abstract— Most of our lives are conducted in the cyberspace.
The human notion of privacy translates into a cyber notion of
privacy on many functions that take place in the cyberspace. This
article focuses on three such functions: how to privately retrieve
information from cyberspace (privacy in information retrieval),
how to privately leverage large-scale distributed/parallel process-
ing (privacy in distributed computing), and how to learn/train
machine learning models from private data spread across multi-
ple users (privacy in distributed (federated) learning). The article
motivates each privacy setting, describes the problem formula-
tion, summarizes breakthrough results in the history of each
problem, and gives recent results and discusses some of the major
ideas that emerged in each field. In addition, the cross-cutting
techniques and interconnections between the three topics are
discussed along with a set of open problems and challenges.

Index Terms— Private information retrieval, private distrib-
uted computing, private distributed learning, federated learning.

I. INTRODUCTION

RIVACY is an important part of human life. This article

considers privacy in the context of three distinct but
related engineering applications, namely, privacy in retrieving
information, privacy in computing functions, and privacy in
learning. In the first sub-topic of private information retrieval,
a user wishes to download a content from publicly accessible
databases in such a way that the databases do not learn which
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particular content the user has downloaded. Towards that goal,
the user creates ambiguity by its actions during the download.
This strategy prevents databases from guessing which content
the user has downloaded. This in turn preserves the user’s
privacy because what is downloaded leaks information about
interest and intent on the part of the user. In the second
sub-topic of private computing, a user wishes to compute a
function but does not have resources to perform the compu-
tation on its own. Thus, the user outsources the computation
to many distributed servers. This necessitates the user send its
data, which is private, to the distributed servers. The goal of the
user is to utilize the servers for computation while preserving
the privacy of its own data. To achieve that goal, the user
introduces randomness in its data so that the servers cannot
decipher the data while they are able to perform the computa-
tion successfully. In the third sub-topic of privacy in learning,
a centralized unit (parameter server) wishes to train a learning
model by utilizing distributed users (clients). The parameter
server needs labeled training data to train the model. The data
resides at the users, and the users prefer to keep their data at
their site, i.e., not send it to the parameter server, to preserve
the privacy of their data. Thus, such distributed (federated)
learning has built-in privacy advantages. However, even then,
the computations (e.g., gradients calculated on the data) may
leak some information about the raw data. To prevent that,
the users may want to add randomness to the calculation they
send to the parameter server in order to further preserve their
privacy.

The underlying threat model common to all three settings
is the undesired leak of information that is considered private
by the respective entities. In the case of private information
retrieval, the leak is about the identity (index) of the content
being downloaded/accessed. In the case of private computa-
tion, the leak is about the user data on which computation
needs to be performed by distributed servers. In the case of pri-
vate learning, the leak is user (client) data that is used to train
the learning model. A common aspect of the solution approach
to these problems is to randomize the information/actions
in such a way to hide the private information. In private
information retrieval, this corresponds to randomizing the
downloads such that a certain download may happen equally
likely for all possible user content requirements. In private
computation, randomization is achieved by adding appropriate
noise to the data whose effect can be nullified during the
computation. In private learning, privacy of clients is achieved
by keeping the data at the client side, and also my randomizing
the transmitted calculations so that leaks are prevented.

0733-8716 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on May 20,2022 at 20:18:17 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-8219-8190
https://orcid.org/0000-0002-5499-5336
https://orcid.org/0000-0002-6182-6098
https://orcid.org/0000-0001-8752-6141
https://orcid.org/0000-0003-2038-2977

730 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Database 1 Database 2
Wy Wy W3 Wy Wy W3
l (if desired msg is W)
Ayl = S Wit
A = Z?:l hiW; OR (if desired msg is W5)

AR =3 Wi W
OR  (if desired msg is W3)

\ AP =53 Wi
(local random bits) USGI‘/C}loI’ et al. 1998)
: [ R Rate = 1

2

Fig. 1. The PIR scheme of Chor et al. [1] for N = 2 databases which
achieves a rate of 1/2 for any number of messages K (for the case shown
in the figure, i.e., for K = 3 messages, the capacity is 4/7 [4]). The main
idea is to use the fact that since the databases cannot collude, one can send
correlated queries across databases, allowing the user to leverage information
retrieved across databases to increase the rate (download efficiency).

We present private information retrieval in Section II, private
distributed computation in Section III and private distributed
machine learning in Section IV. We conclude this article
in Section Section V by listing a few challenges and open
problems.

II. PRIVATE INFORMATION RETRIEVAL

The private information retrieval (PIR) problem was intro-
duced by Chor et al. [1] as a privacy-preserving primitive for
retrieving information in a private manner. In the canonical
PIR setting, a user wishes to retrieve one of K available
messages, from /N non-communicating servers, each of which
has a copy of these K messages. User request privacy needs
to be preserved during the retrieval process, i.e., the identity
of the desired message remains unknown to any single server.
A generic protocol to retrieve, e.g., message k, is as follows
in this setting:

1) The user generates N queries with a private random key
and the message index k, one query per server, which
are sent to the respective Servers;

2) Each server, based on the query it receives and the
content it stores, sends back an answer to the user;

3) The user collects the answers from N databases, and
reconstructs the message based on the answers, the
private key, and the requested message index k.

The privacy requirement can be either information-theoretic
(e.g., [2]) or computational (e.g., [3]). The former requires that
each server cannot infer any information on the identity of the
requested message, even if assuming the server has infinite
computation power; in contrast, the latter assumes that each
server has only limited computation power, and under such
computational constraint, it is required that the server cannot
learn anything on the identity of the requested message. In this
article, we only consider information-theoretic privacy.

Since the introduction of the PIR problem by Chor et al.,
tremendous advances have been made using the computer
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Fig. 2. The PIR scheme of Shah er al. [9] for N = 3 databases and
K = 2 messages which achieves a rate of 2/3 (the capacity for this setting is
3/4 [4]). More generally, the scheme achieves a rate of 1 —1/N, irrespective
of K. The new ingredient beyond Chor et al. [1] involved message sub-
packetization.

PIRL IYC] P YO Rate = 2

science theoretic approach, including on the canonical form
and many variations; see the survey article [5] and references
therein. Within the context of this approach, the effort usually
focuses on the scaling behavior of the communication costs,
including both the query communication (upload) cost and the
answer communication (download) cost, with respect to /N and
K. Moreover, the messages are usually assumed to be very
short, the most common of which is in fact a single bit per
message. There have been many variations on the canonical
setting, and it has been recognized that the PIR problem has
deep connections to other coding or security primitives, such
as locally decodable codes and oblivious transfer [6]-[8].

It was shown in Chor et al. that for a single database,
perfect information-theoretic privacy can only be achieved by
downloading the entire database (of K messages), i.e., the
optimal rate defined as the ratio of the amount of desired
information (one message) and the total downloaded amount
(K messages) in this case is 1/K. Thus, a natural question
that was first explored by Chor et. al is the following: can one
achieve a better rate than 1/K by exploiting N > 1 databases?
This question was answered in the affirmative, and it was
shown that even with N = 2 databases, one can achieve
a rate of 1/2 for any number of messages. We explain the
main idea through a simple example as shown in Fig. 1
for K = 3 messages. The main idea behind the scheme is
as follows: assuming each message W}, is one-bit, the user
generates K random bits {h1, ..., hx } and requests the linear
combination (denoted by Zkl,{:l hiWi) of the K messages
from database 1, whereas requests Zkl,{:l hpWy + Wy from
the other database whenever the user wants to retrieve Wy.
Since {hy}’s are uniformly generated bits, the distribution of
Z,If:l hiWi, + Wy is identical for every 6 € {1,2,..., K},
ensuring perfect privacy.

The PIR problem was recently reintroduced to the infor-
mation theory and coding community [9]-[11], with initial
effort focused on using advanced coding technique to improve
the storage, upload, and download efficiency. Specifically,
Shah et al. [9] generalized the Chor et al. scheme to any
arbitrary number (N > 1) of databases. The key new idea
herein was to subpacketize each message into (N — 1) parts,
and then follow an approach similar to Chor ef al. In Fig. 2,
we highlight this through an example when N = 3 and for
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Fig. 3. The capacity-achieving PIR scheme of Sun and Jafar [4] for
N = 2 databases and K = 2 messages which achieves a rate of 2/3. The
optimal scheme requires a combination of the following ideas: a) message
sub-packetization, b) maintaining message symmetry for privacy and c) fully
exploiting side information (from other databases) at each database.

K = 2 messages. Each message is partitioned into (N —1) =
2 parts, following which the user then requests a random linear
combination (A; from database 1), followed by requesting
A; XORed with the (N — 1) subpackets individually from
the remaining (N — 1) databases. This leads to a rate of
% =1- %, which is independent of K.

A significant milestone of this renewed effort on the PIR
problem is the result obtained in [4], where the optimal
download cost of the PIR capacity of the canonical setting
was fully characterized. A key new ingredient that leads to this
breakthrough is the information-theoretic reformulation of the
problem. In contrast to typical computer science theoretical
formulation, here the number of bits in each message is
allowed to approach infinity, and the capacity is defined as
the supremum of the number of useful message bits that can
be retrieved per total downloaded bits.

A code construction was provided which relies on a few
key code design principles. The scheme by Sun and Jafar for
N = 2 databases and K = 2 messages is illustrated in Fig. 3.
The key design principles behind the scheme include the
following: a) sub-packetization of each message into L = N
symbols, followed by b) downloading parts of each message
from every database (i.e., maintaining message symmetry) for
maintaining privacy of the desired message index, and c) fully
exploiting side information at every database (from remaining
(N — 1) databases). For the example in Fig. 3, this amounts
to breaking the two messages into L = 4 symbols. If the user
wants to download message W1 = (a1, a2, as,aq), it down-
loads one symbol from each message from both databases
(namely, (a1,bq) from database 1 and (az, b2) from database
2). Subsequently it downloads a3 + bo from database 1 and
a4 + by from database 2 (i.e., the remaining desired symbols
together with the undesired symbols downloaded from the
other database). A matching converse is proved using the
conventional information theoretic approach.

The surprising result inspired many subsequent works using
such a capacity formulation and led to many new discoveries
which will be surveyed in this part of the article.

A. The Canonical PIR System

For the canonical PIR setting, shown in Fig. 4, a rig-
orous computer science theoretic problem definition of the
problem was given in the seminal paper [1], and a more
explicit information theoretic translation was given in [12].
The breakthrough work of Sun and Jafar [4] instead directly
represented the coding function relations using information
measure relations, which we explain next.

The random query QH,“] intended for server-n when request-
ing message k is determined by the private random key
F,oie, HQWIF) = 0, for n = Nk =
1,2,... K. The answers A[f] from server-n, in response
to the query Q , is determined by the stored messages
and the query, i.e., H(A%C”WLK, EC]) = 0, for n =
1,2,....,N, k=1,2,..., K. Given the above, there are two
key constraints/requirements from a PIR scheme:

1) Decodability Constraint: The reconstructed message
Wy, by the user for the re(%uested message k, is deter-
mined from the answers A" 1.n and the random key F,
ie.,

(Wk|A1N, F)=0,for ke {1,2,....,K}. (1)

2) Privacy Constraint: The privacy requirement is that the
queries for any message pairs k and k&’ have an identical
distribution

Pr(QM = ¢) = Pr(QlF] = ¢), )

which can be represented as I(6; QT‘?], A{,g], Wi.k) =
for n € {1,2,..., N}, where  is the random variable
representing the index of the requested message.

In the information-theoretic setting, the download cost
D dominates the upload cost. The definition of the down-
load cost D requires some elaboration. Two obvious
information-theoretic measures directly related to the down-
load cost are Zi\;l H(A[yf}) and Eivzl H(AL?HF). The latter
is a lower bound of the expected number of total download
bits, which is how we usually measure the download cost.
The former is an upper bound of the latter, and can be viewed
as a surrogate, particularly in asymptotic (large number of
information bits in each message) settings.

The efficiency of the download is then measured by the
number of requested message bits obtained per downloaded
bit, which leads to the following capacity notion, when error
is not allowed. More precisely, a rate R is said to be achievable
for zero-error PIR, if there exists a PIR code of download cost
D such that R = % with no decoding errors. The supremum
of achievable rates for zero-error PIR is called the (zero-error)
PIR capacity Cj.

For zero-error PIR code, there is no need to explicitly
specify the probability distribution for each message, and
also no need to specify the message retrieval probability.
However, when a more general capacity notion, the e-error
capacity, is adopted, this is no longer the case, since the error
probability is not strictly zero. In this case, the convention
is to assume that each message is distributed in its range
uniformly at random, and the message is also being requested
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uniformly at random [4]. Correspondingly, a rate R is said
to be e-error achievable if there exists a sequence of PIR
codes, each of rate greater than or equal to R, for which
%Z,ﬁil Pr(Wy # Wi) — 0 as L — oo. The supremum
of e-error achievable rates is called the e-error capacity C..

The download cost used above is the expected number of
downloaded bits, and the capacities are defined accordingly,
which is usually the notion adopted in subsequent works.
However another slightly different notion of the download
cost is the worst-case download cost, which was used in [13]
(and later adopted in [14] and [15]). The worst-case download
cost is the largest number of downloaded bits over all query
combinations that are used with non-zero probability. Using
this notion, we can similarly define the zero-error worst-case
PIR capacity C, and e-error worst-case PIR capacity C,. The
breakthrough work [4] essentially established that

. . 1 I

CO:COZCEZCEZ(1+N+"' W) -3
The capacity definition Cj is the most straightforward, and
often adopted in the literature for generalized PIR settings.
When the problem setting deviates from the canonical setting,
it is known that C. can be different from C{ in certain cases,
but it is not well understood when this is the case. It is not
known whether Cy and C. can in fact be different for any
generalized PIR systems.

The general code construction for the canonical PIR system
turns out to be rather elegant, and plays an important role for
subsequent works. The code construction to obtain the capacity
result in [4] relies on several important design principles,
which are illustrated using the example of N = K = 2 case in
Fig. 3. This original construction required sub-packetization of
each message into N X parts (alternatively, a message length of
L = N symbols), followed by invoking the design principles
of server/message symmetry and exploiting side information.

An alternative code construction was provided in [16]
and [12], which is illustrated in Fig. 5(a). In this construction,
the server symmetry and message symmetry are not used on
the per retrieval basis, but across all the retrieval patterns. The
random key F' € {0,1} is invoked with probability 1/2 each,

+

(a) The canonical PIR system; (b) extensions of the canonical system.

Correlated messages

Multi-round protocols

Multi-message retrieval
Private function retrieval
Relaxed Privacy Requirements

(b)

1

and thus the expected retrieval download cost is still the same
3/2. The advantage of this alternative code construction is
that it can be shown to have the minimum message length
(L = 1 in this example and L = N —1 in general), comparing
to the exponential growth of message length for the code given
in [4]. A similar code construction was discovered by [17] for
special case of N = 2, and was later extended to the case of
more general number of databases [18] as shown in Fig. 5(b).
The difference from that in [16] and [12] is additional layer
of symmetrization enforced across the databases. It is clear
that both code constructions have the same download cost,
however, the upload cost of the former is lower (log2 vs.
log 4). The symmetry structure in the canonical PIR setting is
quite sophisticated and plays an important role in constructing
efficient code design. The overall symmetry is induced by the
database symmetry, the message symmetry, and the (retrieval)
variety symmetry; see [12] for a detailed discussion.

B. Relation to Computer Science Theoretic PIR

For the canonical PIR system, the computer science theo-
retic description of the coding operations is exactly equivalent
to the information-theoretic version we just provided. The
main difference between them is in terms of the performance
measure, i.e., regarding the definition of Cy and C.. Since in
the computer science theoretic setting the messages are short,
usually only one bit each, the upload cost, i.e., Zﬁil log | Qs
plays an important role in the overall communication cost, and
thus the total communication cost must consist of both com-
ponents. In contrast, in the information-theoretic setting, since
the message size is allowed to be very large, the download
cost dominates and the upload cost can be essentially ignored,
and only the normalized cost is meaningful, whose inverse is
the PIR rate.

Since in the computer science theoretic setting, the message
length is fixed and not allowed to grow to infinity, it is not
meaningful to consider the ratio between the message length
and the communication cost. In contrast, in the information-
theoretic setting, this ratio between the message length and
the download cost is the key metric to consider.
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Low-subpacketization schemes for PIR for (IV, K) = (2, 2). The scheme in (a) was given in [16] and [12], and the scheme in (b) in [17] and [18].

One achieves the minimum possible subpacketization for each message while achieving an expected download cost of 3/2.

It is in fact rather difficult to fully characterize the sum of
the upload cost and the download cost (for any fixed message
length), and thus the optimal scaling laws are usually sought
after in the computer science theoretic setting. In contrast,
in the information-theoretic setting, the ratio between the
message length and the download cost leads to the concept
of capacity, and the problem in fact becomes much more
tractable. Instead of the scaling law, the capacity of the PIR
system can be fully identified.

C. Extended PIR Systems

The canonical PIR system given in the previous sub-section
can be viewed as consisting of four key components: a single-
round query-answer protocol, a set of independent messages
of the same length, an absolute privacy requirement, and also
inherently a star-shape communication network; see Fig. 4.
The last item regarding the communication network may
require some elaboration, since it is usually not explicitly
introduced: the user communicates to each server through a
dedicated link, and each server answers through a dedicated
link, and as a consequence, the communication costs are
measured in a straightforward manner on each link.

Any of these components can be generalized:

1) The query-answer protocol structure. The user sends a
single round of queries, and the servers answer in a
single round; this protocol can be generalized to allow
multiple rounds.

2) The message structure. In more general systems, the
messages can be dependent; in a less obvious variation,
the user in fact requests a function of the messages.

3) The privacy (or security) requirement. The user may
wish to enforce the privacy requirements that even
certain subsets of the servers collude, they still will not
be able to infer any knowledge on the request. The server
may place security constraint that the authors cannot
learn about other messages than the one being requested.

4) The communication network structure. This commu-
nication models can be generalized in various way,
for example, to allow a more complex communication

network, or using additional communication module,
such as caches, to facilitate the communication. In such
general settings, the communication costs are measured
in rather different manners.

In the next subsections, we survey various generalizations
of the canonical PIR problem.

1) Multi-Round and Multi-Message PIR Systems: Sun and
Jafar [19] considered the extended PIR system where the
user and the servers are allowed multiple rounds of queries
and answers. It was shown that the capacity of multiround
PIR is in fact the same as single round PIR, when there is no
constraint placed on the storage cost. This equality continues
to hold even when T'-colluding is allowed. However, when the
storage is more constrained, this equality would indeed break.
Yao et al. [20] considered using multiround communication
in the settings with Byzantine databases, and showed that
multiround communication is also beneficial in this setting.
In multi-message PIR, the user wishes to download multi-
ple messages privately. The question that arises is whether
downloading multiple messages one-by-one sequentially is
optimum. Reference [21] shows that downloading multiple
messages jointly is more efficient and beats the sequential
use of single-message PIR. Reference [21] determines the PIR
capacity when the number of desired messages is at least half
of the total number of messages, while the multi-message PIR
capacity in other cases remains open.

2) Cache or Side Information Aided PIR: Cache aided
private information retrieval (PIR) (e.g., [22]-[24]) and side
information aided PIR (e.g., [25]-[34]) are both interesting
extensions of the original information-theoretic PIR prob-
lem [4] because they both lead to reduction in download costs
due to the fact that, under both settings, the user possesses
cache or side information, respectively. The PIR capacity and
the corresponding PIR schemes with cache/side-information
vary, depending on a) if the databases are aware or unaware
of the side-information at the user; b) if the user wishes to
only keep the message index private or both the message
index and side-information private from the databases; and c)
the type of side-information available at the user (e.g., subset
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of messages or fraction of some/all messages). Recently, the
role of side information is investigated in the context of
symmetric PIR (SPIR) where the side information is a subset
of shared database common randomness; this work showed
that with appropriate amount of user-side side information the
capacity of SPIR can be increased to the capacity PIR, and
single-database SPIR can be made possible [35].

3) PIR From Databases With Limited Storage: The assump-
tion of fully replicated databases (all N databases storing
all K messages) can be unrealistic in practice. However, the
amount of redundancy across the databases has an impact on
the capacity of PIR. Specifically, on one extreme for replicated
databases, the capacity is the highest, whereas on the other
extreme, if there is no redundant storage across databases,
then the only feasible strategy is to download all K messages.
There have been several recent works which have explored
the trade-off between the capacity and storage for PIR. The
case when each message is encoded by a maximum distance
separable (MDS) code and stored across the databases, referred
to as the MDS-PIR code, was studied in [36] and [37] and the
capacity was settled by Banawan and Ulukus [36]; also see
recent results on MDS-PIR with minimum message size [38].
The problem of MDS-PIR with colluding databases turns out
to be more challenging and the capacity remains unknown for
general parameters; see [39], [40]. Several other variants have
been studied including PIR from databases storing data using
an arbitrary linear code [41], [42], impact on capacity versus
storage when using arbitrary (possibly, non-linear codes)
[43]-[47], when databases only store fraction of uncoded
messages [48]-[50], and when data is not perfectly replicated
across the databases, but rather partially replicated according
to graph based structures [51]-[54].

4) PIR Under Additional Abilities and Constraints for the
Databases: The original setting in [4] considers privacy
against individual databases. In practice, a subset of databases
may have the ability to collude; this may happen, for instance,
if the databases belong to the same entity. Reference [55]
considers the case where up to 7" out of N databases may
collude, and finds the PIR capacity as a function of 7.
Further, [56] considers the case where in addition to the T
colluding databases, up to B databases may exhibit Byzantine
behavior, meaning that they can return arbitrarily random or
incorrect answers to the queries, and finds the PIR capacity as
a function of T" and B. In addition, databases may require
database privacy. This means that the user does not learn
anything further than the message it wished to download.
The resulting setting is coined as symmetric PIR (SPIR) to
emphasize the symmetry of privacy requirements of the user
and the databases. The capacity of SPIR is found in [57].
The SPIR capacity is smaller than the PIR capacity, as SPIR
is a more constrained problem than PIR. SPIR achievable
scheme is similar to the schemes in [1] and [9] but it requires
a shared common randomness among the databases. Recent
paper [35] explores making some of that common randomness
available (randomly) to the user to increase SPIR capacity.
Further, SPIR proves to be an important privacy primitive that
is a building block in many problems that involve symmetric

privacy requirements among participating parties, such as in
private set intersection [58], [59].

Databases may be subject to a set of practical limitations
due to the way that the databases are accessed or the way they
need to return their answers. For instance, if the databases
need to return their answers via noisy and/or multiple-access
wireless channels, then the PIR schemes should be designed
together with channel coding techniques to deal with the
uncertainty in the channels as in [60]. In another example
setting, if the rate at which the user can download information
from the databases is different for each database, then the
user access to the databases and the PIR schemes across the
databases may need to be asymmetric. This may happen, for
instance, if the databases have different distances to the user
(with a more distant database having a smaller bit-rate) or
if they have different channel qualities (some channels from
the databases being in deep fades). In this case, asymmetric
access conditions need to be taken into consideration [61].
An interesting observation in [61] is that if the asymme-
try is mild, the full unconstrained PIR capacity may still
be maintained. Another set of practical constraints arise if
the database-to-user channels are being eavesdropped by an
external entity. This gives rise to a problem formulation at the
intersection of information-theoretic privacy and information-
theoretic security [62]-[65]. Yet another practical constraint
is that the messages stored at the databases do not have
to be of equal length, and their a priori probabilities of
retrieval (popularities) do not have to be the same. These give
rise to message semantics that need to be taken into account
during a PIR code design [66]. An interesting observation
in [66] is that if longer messages have higher popularities then
the semantic PIR capacity may be larger than classical PIR
capacity.

5) Relaxed Privacy Notions: Perfect information-theoretic
privacy requirements (either for the user as in PIR or for both
the user and the databases as in SPIR) usually come at the
expense of high download cost and do not allow tuning the PIR
efficiency and privacy according to the application require-
ments. In applications which may require frequently retrieving
messages, trading user or database privacy for communication
efficiency could be desirable. Ideally, one would select a
desired leakage level and then design a leakage-constrained
retrieval scheme that guarantees such privacy while maximiz-
ing the download efficiency. Asonov and Freytag introduced
the concept of repudiative information retrieval [67]. The
repudiation property is achieved if the probability that the
desired message index was ¢ given the query is non-zero for
every index ¢, i.e., there is always some remaining uncertainty
at the database about the desired message index. Recently,
Toledo et al. [68] adopted a game-based differential privacy
definition to increase the PIR capacity at the expense of
bounded privacy loss. With the goal of allowing bounded
leakage for the information-theoretic PIR/SPIR formulations
(as initiated in [69]), there have been a series of recent works.
In [17], the perfect privacy constraint was relaxed by requiring
that the log likelihood of the posterior distribution for any two
message indices given the query is bounded by e. When € = 0,
this recovers perfect privacy, and allows leakage for ¢ > 0.
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A sampling of capacity results for various forms of PIR, where N is the number of servers, K is the number of messages, and 1" is the

privacy parameter with default value being 1. For the rows with a check mark, the storage on server is simple message replication. C' represents capacity,
Coso is the asymptotic capacity for large number of messages (K — oo), C* and C; are upper and lower bounds on C, respectively. W (A, B) e

(1+1/A+1/A%2 4. 4 1/AB-1)=1,

Lin et al. [70], [71] relaxed user privacy by allowing bounded
mutual information between the queries and the corresponding
requested message index. Unlike [70], [71], which deal with
the average leakage measured by mutual information, the
model studied in [17] provides stronger privacy guarantees.
Zhou et al. [72] measured the leakage using the maximal leak-
age metric and argued this leakage measure is more applicable.
Guo et al. [73] considered the problem of SPIR with perfect
user privacy and relaxed database privacy. Database privacy

was relaxed by allowing a bounded mutual information (no
more than §) between the undesired messages, the queries,
and the answers received by the user. Similar to the original
work on SPIR in [57], SPIR with relaxed database privacy
in [73] requires sharing common randomness among databases
and comes at the expense of a loss in the PIR capacity.
Asymmetric leaky PIR was explored in [18] where bounded
leakage is allowed in both directions. Recently, the model of
latent-variable PIR was introduced and studied, where instead
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of requiring privacy for the message index, one may require
privacy of data correlated with the message [74].

D. Connections to Other Security Primitives

PIR holds particular significance as a point of convergence
of complementary perspectives. It is well known that PIR
shares intimate connections to prominent problems in the-
oretical computer science and cryptography, communication
and information theory, and coding and signal processing.
PIR protocols are often used as essential ingredients of
oblivious transfer [86], instance hiding [87]-[89], multiparty
computation [90], secret sharing schemes [91], [92] and
locally decodable codes [7]. Through the topics of locally
decodable, recoverable, repairable and correctable codes [93],
PIR connects to distributed data storage repair [94], index
coding [95] and the entire umbrella of network coding [96]
in general. PIR schemes are essentially interference alignment
schemes [97] as the downloads comprise a mix of desired
messages with undesired messages (interference). Efficient
retrieval requires the alignment of interference dimensions
across the downloads from different servers while keeping
desired signals resolvable. It is not surprising then that inter-
ference alignment has been used implicitly in PIR and index
coding long before its applications in wireless networks [97].
Various equivalence results have been established between
PIR and blind interference alignment (BIA) [4], [98]; BIA
and topological interference management (TIM) [99]; TIM
and index coding [99]; index coding and locally repairable
codes [100], [101]; locally repairable and locally decodable
codes [93]; and between locally decodable codes and PIR [7].
Add to this the equivalence between index coding and network
coding [102], [103], storage capacity and index coding [104],
index coding and hat guessing [105], or the application of
asymptotic interference alignment schemes originally devel-
oped for wireless interference networks [106] to distributed
storage exact repair [107], and it becomes evident that dis-
coveries in PIR have the potential for a ripple effect in their
impact on a number of related problems.

The remainder of this article explores in greater depth the
topics of secure distributed computing and private federated
learning.

III. PRIVATE DISTRIBUTED COMPUTING
A. Formulation

We consider a general distributed computing framework,
where the goal is to compute a function g using N distributed
workers, while keeping the input dataset X secure (illustrated
in Fig. 7). The N workers are assigned encrypted versions of
the input using N encoding functions ¢ = (c1,...,cy), then
each worker computes a function f over the assigned share,
which can be viewed as building blocks of computing g.

This framework captures many commonly used operations.
One example is block matrix multiplication, where the goal is
to compute the product ATB given two large matrices A €
F*** and B € F**". Here the input dataset is X = (A, B),
and the computation task is g(A, B) = ATB. Given some
partitioning parameters p, m, and n, the input matrices are

compute over coded data

worker N
flen(X))

worker 1

fleX))  flea(X)) Fles(X))

~N\

master

Input X information theoretically
private against any T colluding
- - workers (e.g., worker 2 and 3).

9(X) =

Fig. 7. An illustration of private computation.

partitioned block-wise into p-by-m and p-by-n sub-blocks of
equal sizes, respectively. Then each worker is assigned a pair
of sub-blocks and computes their product, i.e., thetfunction
J is the multiplication of two matrices of sizes Fw*% and
F»*n . If there are no security requirements, the final result
can be recovered using N = pmn workers, by having each
worker compute a product of certain uncoded submatrices.
Another example is to compute multivariate polynomials on
a dataset X. Particularly, given a general polynomial f, the
input dataset is partitioned into K subsets Xi,..., Xk, and
the goal is to compute g(X) = (f(X1),..., f(XKk)). If each
worker can compute a single evaluation of f, then a computing
design using N = K workers can be obtained by assigning
each worker a disjoint uncoded subset of the input.
However, in secure computing, we aim to carry out the
computation with an additional requirement that the entire
input dataset is information-theoretically secure from the
workers, even if up to a certain number of them can collude.
In particular, a set of encoding functions ¢ £ (cy,...,cy) is
T-secure, if I({c;(X)}ier; X) = 0 for any subset 7 with a
size of at most 7', where X is generated uniformly at random.
1) Tradeoffs in Secure Distributed Computing: The goal is
to design the encoding functions to achieve a tradeoff between
the resources/constraints while ensuring the reliable recovery
of the desired computation. Specifically, the resources could
correspond to the number of available workers, storage and
computation performed per worker. In addition to T-security,
one may also be interested in communication efficient designs
to account for bandwidth constraints (between master node and
the workers). In the past few years, there have been significant
progress in using ideas from coding/information theory to
devise new schemes, and ultimately towards understanding
these fundamental tradeoffs. As an example, a large body of
work [108]-[112] have focused on the problem of distributed
computing in the presence of stragglers. Here, since the overall
latency of computation can be limited by the slowest workers,
the goal is to design schemes which minimize the number of
workers required to carry out the computation, while satisfying
the security requirement. More rigorously, let Cr denotes the
set of allowable' encoding function designs that are T-secure.
Then, in a secure coded computing problem, given fixed
parameters f, g, and Cr, one aim could be to find computing

IThe set Cr also captures practical constraints such as encoding complex-
ities.
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schemes ¢ € Cr that use as small number of workers N
as possible. Alternatively, when the total number of workers
N is fixed, one may be interested in the design of 7T-secure
schemes with minimum download communication overhead.
The capacity of secure distributed computation, analogous to
that of PIR, can then be defined as the supremum of the ratio of
the number of bits of desired information (the desired function,
g(X)), to the total number of bits downloaded from the N
servers.

B. Schemes for Private Distributed Computing

Information-theoretically secure distributed computing has
its origins in the celebrated work of Ben-Or Goldwasser
Micali (BGW protocol) on tasks involving linear/bilinear
computations. Specifically, the master node creates N coded
shares with T-secure guarantees (using Shamir’s secret sharing
scheme) which are subsequently sent to the workers. The
workers subsequently compute the function on the coded
shares. In a recent work [113], staircase codes, presented
originally for a PIR problem [114], were combined with the
idea of secret sharing to minimize the overall latency for secure
distributed matrix multiplication.

Lagrange coded computing (LCC) [115] has been proposed
to provide a unified solution for computing general multivari-
ate polynomials. In comparison to the classical BGW (or sim-
ilar Shamir’s secret sharing based protocols), LCC reduces the
amount of storage, communication and randomness overhead.
Given any fixed parameter 7', LCC encodes the input variables
using the following Lagrange interpolation polynomial

K+T

N T — Ty
@)=y X ] P > %
jelK]  ke[K+TI\{j} 7 j=K+1

I —
77

Ti—x

ke(k+TN\G} T F
where z1, ...,z are some arbitrary distinct elements from

the base field IF, and Z;’s are some random cryptographic keys
generated uniformly? at random on the domain of X;’s. Each
worker ¢ selects a distinct variable y; from the base field that is
not from {z,...,zx}, and obtains X; 2 ¢(y;) as the coded
variable. LCC is T-secure, because the coded variables sent
to any subset of T workers are padded by an invertible linear
transformation of 7" random keys, which are jointly uniformly
random.

After each worker i applies function f over the coded
inputs, they essentially evaluate the composed polynomial
f(c) at point y;. On the other hand, the evaluations of the
same polynomial at z;,...,zx are exactly the K needed
final results. Hence, by polynomial interpolation, the decoder
can recover all final results by recovering f(c), by receiving
results from any subset of workers with a size greater than the
degree of f(c). More precisely, let degf denote the total degree
of polynomial f, the degree of the composed polynomial
equals (K — 1)degf. Thus, LCC computes any multivariate
polynomial with at most N = (K — 1)degf + 1 workers.

2We assume that I is finite so that the uniform distribution is well defined.
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Secure coded computation has also been studied for differ-
ent computation tasks and settings. A majority of works are
on matrix multiplication [116]-[131], and it has been shown
in [132] and [131] that for block-partition-based designs, the
optimum number of workers to enable secure computation
can be within a constant factor of a fundamental quantity
called the bilinear complexity [133]. Private gradient com-
putation was studied in [134] and it was shown that the
optimal coding design is encoding the input variables using
harmonic sequences. References [135] and [136] considered a
setting where the workers send compressed versions of their
computing results to tradeoff the download communication
cost and the required number of workers.

LCC has also been widely leveraged to enable
privacy-preserving  machine learning  [137], [138].
In particular, authors in [137] have considered a scenario in
which a data-owner (e.g., a hospital) wishes to train a logistic
regression model by offloading the large volume of data (e.g.,
healthcare records) and computationally-intensive training
tasks (e.g., gradient computations) to /N machines over a
cloud platform, while ensuring that any collusions between T’
out of V workers do not leak information about the dataset.
In this setting, CodedPrivateML [137] has been proposed,
which leverages LCC, to provide three salient features:

1) it provides strong information-theoretic privacy guaran-
tees for both the training dataset and model parameters.

2) it enables fast training by distributing the training com-
putation load effectively across several workers.

3) it secret shares the dataset and model parameters using
coding and information theory principles, which signif-
icantly reduces the training time.

LCC has also been leveraged to break a fundamental
“quadratic barrier” for secure model aggregation in federated
learning [139]. We defer the discussion on this topic to the
next section.

Within the scope of this article, the connection between PIR,
secure distributed computing, and private federated learning is
exemplified by the idea of cross-subspace alignment (CSA)
which extends to all three domains. CSA codes originated
in [83] as a solution to XS-TPIR, i.e., the problem of T-
private information retrieval from N servers that store K
messages in an X-secure fashion. CSA codes then found
applications in private secure coded computation [85], [140],
[141], and in particular secure distributed matrix multiplication
(SDMM) [142]. CSA codes were first applied to SDMM by
Kakar et al. in [123], and subsequently applied to secure
distributed batch matrix multiplication (SDBMM) by Jia and
Jafar in [143]. These works produced sharp capacity® char-
acterizations for various cases. For example, in [143] the
capacity for X-secure distributed computation by N servers
of a batch of outer products of two vectors is shown to be
(1 — X/N)*, the capacity for computing the inner product
of two length-K vectors is %(1 — %)* when N < 2X, and
for long vectors (K — o0) the capacity of computing inner

3 Analogous to PIR, the capacity of SDBMM is defined as the supremum
of the ratio of the number of bits of desired information (the desired matrix
products), to the total number of bits downloaded from the IV servers.
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products is shown to be (1 — 2X/N)*. While LCC [115]
codes and CSA codes originated in seemingly unrelated
contexts of distributed secure computing and secure PIR,
there are interesting connections between them. For example,
in a special case of secure multiparty/distributed batch matrix
multiplications, CSA codes yield LCC codes as a special case
[135], [144]. The generalization inherent in CSA codes is
beneficial primarily in download-limited settings, where CSA
codes are able to strictly outperform LCC codes. However, it is
worth mentioning that to achieve order-optimal performances,
entangled polynomial codes [131], [132] should be applied,
which enables coding over bilinear-complexity-based algebraic
structures, and achieving order-wise improvements. Finally,
in the domain of federated learning, CSA codes were applied
in [145] to find a solution to the problem of X-secure
T-private federated submodel learning. Fundamentally, this
is a problem of privately reading from and privately writ-
ing to a database comprising K files (messages/submodels)
that are stored across N distributed servers in an X-secure
fashion. The CSA read-write scheme of [145] is able to
fully update the storage at all N servers after each write
operation even if some of the servers (up to a specified
threshold value) are inaccessible, and achieves a synergistic
gain from the joint design of private-read and private-write
operations. Intuitively, the connection between these prob-
lems arises because the operation required at each server for
many (but not all) PIR (and private write) schemes can be
interpreted as a matrix multiplication between a threshold-
T secret-shared query vector/matrix (polynomial encoded for
T-privacy) and a threshold- X secret-shared data vector/matrix
(polynomial encoded for X -security), which produces various
desired and undesired products. CSA codes are characterized
by a Cauchy-Vandermonde structure that facilitates interfer-
ence alignment of undesired products along the Vandermonde
terms, while the desired products remain separable along
the Cauchy terms. This alignment structure allows efficient
downloads by reducing interference dimensions. Therefore,
to the extent that a multiplication of polynomial encoded
matrices is involved, and download efficiency is of concern,
the same Cauchy-Vandermonde alignment structure facilitated
by CSA codes turns out to be useful across these problems.
It is also noteworthy that applications of CSA codes generalize
naturally beyond matrix products, to tensor products, as seen
in Double Blind Private Information Retrieval (M-way blind
PIR in general) [146].

IV. PRIVATE FEDERATED LEARNING
A. Threat Models for Private Federated Learning

A typical federated learning (FL) system [147], [148]
comprises users/workers, a server/curator, and an analyst,
where users are connected to the server, and the server is
subsequently connected to the analyst. Users wish to jointly
train a machine learning model using their local datasets with
the help of the server. The training is typically done using
iterative algorithms such as gradient descent and its variants,
where users receive the global learning model that needs to be
trained from the server and compute gradients using their local
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Fig. 8. Conventional federated learning system, where w¢ denotes the model
parameters at iteration ¢, and gy (w¢) denotes the gradient computed using
wy by user k. After training, the model is released publicly.

datasets, and subsequently send the gradients or the updated
local models back to the server for aggregation. The analyst
may request for the model at any given time. Depending on
who the malicious party is, its capability and intent, we can
have several different threat models. For example, the analyst
can be assumed to be honest but curious who does not actively
attack the trustworthy server or users but tries to learn as much
information about users as possible through the output released
to it. Similarly, the server can also be assumed to be honest
but curious. However, different from the analyst, the server
can also be an active attacker, who alters the training process
and/or baits users into revealing their information. Another
possible threat model is when a subset of users is malicious,
who try to tamper with the training process by sending altered
gradients or model updates. We refer the reader to a recent
excellent comprehensive survey on the subject of FL [148],
which gives an in-depth account of recent progress on various
FL modalities, as well as challenges in achieving efficiency,
privacy, fairness, and system level implementation.

In this survey, we focus on the models where (a) the server
is trustworthy and the analyst is honest but curious; and
(b) both the server and the analyst are honest but curious.
One may think that no information can be learned by the
curious party due to the fact that the local data never leave
the users, therefore, the local data is private. However, it has
been shown that even gradients or updated models can be used
to recover the data used during training for feed-forward neural
networks [149]-[151] and convolutional neural network [152],
[153]. This type of attack is known as gradient/model inversion
attack.

B. Differential Private Federated Learning

In private distributed computing, where the entire data is
available at a central location (user), as discussed in the
previous section, it is indeed possible to achieve perfect
privacy (in an information-theoretic sense) when performing
computations over distributed cluster of nodes. The federated
learning paradigm, however, has several key distinctions as we
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briefly highlight next: since the data is already locally spread at
the users (and is required to be kept private), perfect privacy
against a single server can only be achieved by completely
sacrificing utility (in terms of the model learned by perfectly
private interactions with the user). Thus, in conventional
single-server FL, one seeks to relax the privacy requirements
from perfect privacy to allowing some leakage in a graceful
manner. Indeed, as is shown in [145], perfect privacy can be
feasible with multiple servers, and when one may be interested
in training multiple sub-models at the servers, or when some
collaboration between the users is allowed (also see the
discussion in Section IV-C). For the remainder of this section,
we will exclusively focus on the single-server FL setting when
the users cannot collaborate.

Differential privacy (DP) [154] is one of the most widely
used privacy notions and has been shown to be effective to
mitigate not only inversion attacks, but also differential attacks.
The goal is to protect the private data by perturbing the output
before it is released to untrustworthy parties. Depending on
who performs the perturbation or who we wish to protect
against, differential privacy can be further categorized into
local DP and central DP. For a FL system with K users, the
local and central DP are formally defined as follows.

Definition 1: ((eék), d¢)-LDP) Let Xy, be a set of all possible
data points at user k. For user k, a randomized mechanism
M X, — R% s (Gék),ég)-LDP if for any z, ' € X}, and
any measurable subset Oy, C Range(My,), we have

Pr(My(z) € Of) < exp (¢7)) Pr(My(2') € O) + 6e. (4)

The setting when 6y = 0 is referred as pure egc)—LDP.

Definition 2: ((e,0.)-DP) Let D 2 X} x Xy x -+ x Xk
be the collection of all possible datasets of all K users.
A randomized mechanism M : D — R? is (e, 6.)-DP if
for any two neighboring datasets D, D’ and any measurable
subset O C Range(M), we have

Pr(M(D) € O) < exp (e.) Pr(M(D’) € O) + .. (5)

The setting when 6. = 0 is referred as pure €.-DP.

We refer e, (eEk)) and d. (d¢) as privacy parameters. These
parameters are closely associated with a quantity called sensi-
tivity, which is defined as the largest difference of a function
over all available inputs. It is known that central DP is a
weaker guarantee than local DP. Therefore, local DP guarantee
implies central DP guarantee. Both central and local DP are
first computed on a per-iteration basis. Then, the total leakage
is computed by summing up the leakages over all iterations.
However, simply summing up the leakages over all iterations
provides bound on the actual total leakage due to the fact
that data is often reused during training. It is known that
the more a data point is used, the more information it leaks.
Therefore, to capture this phenomenon, various of composition
theorem/leakage accountant methods are used to tighten the
bound on the total leakage, such as advanced composition
theorem, and moment accountant [155].

1) Basic privacy preserving mechanisms: Let us first look

at the case where the server is trustworthy, and the goal
is to satisfy a desired central DP level against the curious

2)

3)
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analyst. The outputs, e.g., learning model iterates or
gradients, have been shown to leak information about
the local datasets. Therefore, the goal is to perturb the
outputs so that it becomes difficult for the analyst to
learn information about the local datasets. Typically, for
works that focus on central DP, the perturbation is done
at the server. The outputs can be perturbed by using
random response, adding noise, or using approximations.
For example, in [155], Gaussian noise is added to the
gradient before the model update. However, gradients
and model parameters often are represented with finite
precision, which make Gaussian noise injecting mech-
anism impractical. Thus, other types of noise injecting
mechanisms are also considered, such as Laplace mech-
anism, and for discrete values, binomial mechanism can
be used [156]. Noise with custom density can also be
used [157]. However, as mentioned earlier, the privacy
guarantee degrades when the same data is used for
training repeatedly.

Privacy amplification via sampling: To remedy this
issue, another line of work focuses on reducing the
exposure of the data through user [158], [159] or data
point sampling [155], [160], [167], [168]. In [158],
users are sampled i.i.d. according to some probability,
who will then compute and send the gradients to the
server for perturbation and model updates. In [160],
exponential mechanism is studied. In [167], various
data sampling schemes, such as Poisson sampling, sam-
pling with/without replacement, are studied and ana-
lyzed. As a result of sampling, the privacy level is
amplified [167], i.e., less noise is needed to achieve
the same privacy level that is achieved by schemes
without sampling. Amplification can also be obtained
through shuffling [161], where a trusted shuffler shuffles
the outputs from users before sending it to the server.
Works that consider shuffling as part of the pipeline
include [162], [163]. Another way to control leakage
is to ensure that the sensitivity is small by carefully
choosing the clipping norm [164].

Private FL over new communication models: The above
works rely on assumption that the server (and the shuf-
fler) is trustworthy. This assumption may not be practical
in certain scenarios. To remove this assumption, local
DP was proposed and studied, where each user is respon-
sible for protecting their own data. Similar to central DP,
one can ask users to directly perturb the information
they want to send, e.g., in [165]. In addition to adding
noise, one can also perturb the information by using
approximation. In [173], the approximation is obtained
by flipping a random bit in the input string of each user.
In [174], a random vector that is roughly in the same
direction as the original gradient is sampled and used
as an approximation by each user. However, it has been
shown that techniques that let users perturb information
directly to achieve LDP may suffer greatly in terms of
utility, i.e., accuracy. In order to satisfy LDP and provide
reasonable utility, we can again use the idea of privacy
amplification using sampling and/or shuffling [161],
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TABLE I

A QUICK REFERENCE OF SOME OF THE KEY PRIVACY PRESERVING TECHNIQUES FOR PROVIDING CENTRAL AND LOCAL DP GUARANTEES IN
FEDERATED LEARNING

Noise Injection Sampling Shuffling Others
Central DP [161], [162] [160], [163]-[165] [166]-[168] [169]
Local DP [170], [171] [172], [173] [166], [174]-[177] | [178], [179]
W Model notions, such as Concentrated DP [181], [182],
Release Renyi DP [183], Bayesian DP [184], communication-
* constrained DP [172] and information-theoretic pri-
gavg (Wt) vacy [137]. Concentrated DP is a relaxed version of
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Fig. 9. Federated learning system with a shuffler, who shuffles the gradients
before sending them to the PS. The trained model is subsequently released to
the analyst.

[169]-[172]. Since information is perturbed at the user,
honest but curious shuffler would not compromise the
local DP. Intuitively, both sampling and shuffling are
able to further confuse the curious party without inject-
ing more noise. Therefore, one is able to inject less
noise to maintain utility, and still achieve the desired
privacy level via sampling and/or shuffling. Another line
of work focuses on private FL. over wireless channels
[175]-[180]. With superposition property of wireless
channel, the gradients can be naturally aggregated while
being transmitted. It has been shown in [177] and [178]
that, by carefully designing the power control factors,
the channel noise can be used as perturbation and
provides DP guarantee. Amplification results are shown
in [175], where perturbation added by users that is aggre-
gated over wireless channel enhances privacy guarantee,
and in [180], the privacy is amplified by aggregated
perturbation and the addition of user sampling in the
FL pipeline. However, channel state information (CSI)
is obtained with the help of the server and is crucial
in these works. When the server is untrustworthy, CSI
obtained from the server can be tampered to lurk users
to leak information. Therefore, [179] and [180] study
the case when CSI is not available.

4) Other privacy notions and connections to DP:
There are also works that use different privacy

DP, where it ensures that leakage is centered around
the expected privacy level €., and is subgaussian. The
probability that leakage exceeds €. by a small amount
is bounded. Unlike the standard DP, where the expected
leakage is not bounded and could potentially go to
infinity with probability J., leakage of concentrated DP
does not go to infinity. Renyi DP is another relaxation
of the standard DP that is based on the concept of
Renyi divergence. Renyi DP can be translated to stan-
dard DP and it was shown to have better composition
result in [183]. Bayesian DP is essentially standard
DP, however, the data distribution is taken into account
when quantifying privacy parameters. While one can
show connection between DP and information-theoretic
privacy, the approaches that are used to secure data
are completely different. In [137], data is kept private
by using error control codes and the idea of secret
sharing. The data is considered private when the mutual
information of the original data and encoded data is zero.
Other works such as [185] studies how to allocate the
amount of noise added to the data by each user in a
decentralized setting (without the presence of a server)
so that the collective noise does not reduce the utility.

C. Secure Model Aggregation in Federated Learning

While data is kept at the user-side in FL, a user’s model
still carries a significant amount of information about the
local dataset of this user. Specifically, as shown recently,
the private training data can be reconstructed from the local
models through inference or inversion attacks (see e.g., [186]—
[189]). To prevent such information leakage, secure aggre-
gation protocols are proposed (e.g., [139], [190]-[195]) to
protect the privacy of individual local models, both from
the server and other users, while still allowing the server
to learn the aggregate model of the users. More specifically,
secure aggregation protocols ensure that, at any given round,
the server can only learn the aggregate model of the users,
and beyond that no further information is revealed about the
individual local model of a particular user. The key idea of
the secure aggregation protocols is that the users mask their
models before sending them to the server. These masks then
cancel out when the server aggregates the masked models,
which allows the server to learn the aggregate of the local
models without revealing the individual models.
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In the secure aggregation protocol of [190], known as
SecAgg, pairwise secret keys are generated between each
pair of users. For handling user dropouts, the pairwise keys
in [190] are secret shared among all users, and can be
reconstructed by the server in case of dropouts. This protocol
tolerates any D dropped users and ensures privacy guarantee
against up to 7' colluding users, provided that 7'+ D < N,
where IV is the number of users. The communication cost of
constructing these masks, however, scales as O(N 2), which
limits the scalability of this approach. Several works have
considered designing communication-efficient secure aggre-
gation protocol [139], [191]-[193], [196]. SecAgg+ [193]
improves upon SecAgg [190] by limiting the secret sharing
according to a sparse random graph instead of the complete
graph considered in SecAgg [190]. TurboAgg [139] over-
comes the quadratic aggregation overhead of [190], achiev-
ing a secure aggregation overhead of O(Nlog N), while
simultaneously tolerating up to a user dropout rate of 50%
and providing privacy against up to N/2 colluding users
with high probability. The key idea of Turbo-Aggregate that
enables communication-efficient aggregation is that it employs
a multi-group circular strategy in which the users are parti-
tioned into groups. The dropout and the privacy guarantees
of TurboAgg, however, are not worst-case guarantees and it
requires log N rounds. FastSecAgg [191] is a 3-round secure
aggregation interactive communication-efficient protocol that
is based on the Fast Fourier Transform multi-secret sharing,
but it provides lower dropout and privacy guarantees compared
to SecAgg [190]. While all of aforementioned works in secure
aggregation provide cryptographic security, the secure aggre-
gation protocol [192] provides information-theoretic secu-
rity. In addition, unlike all previous protocols that depend
on the pairwise random-seed reconstruction of the dropped
users, this protocol departs from the previous protocols by
employing instead one-shot aggregate-mask reconstruction of
the surviving users. This feature can reduce the aggregation
complexity significantly. However, this protocol relies on a
trusted-third party to distribute the masks over the users.
While all of the aforementioned works do not consider the
bandwidth heterogeneity among the different users in secure
aggregation, an adaptive secure aggregation protocol has been
proposed in [196] which quantizes the model of each user
according to the available bandwidth to improve the training
accuracy.

While secure aggregation seeks to resolve the issue of
preserving user data privacy by masking the individual model
updates, the learning protocol can be adversarially affected
by Byzantine users that may aim to break or perturb the
learning to their benefit [197]-[201]. As the local models
are protected by random masks, the server cannot observe
the individual user updates in the clear, which prevents the
server from utilizing outlier detection protocols to protect
the model against Byzantine manipulations. This problem has
been recently addressed in [198], for the L.I.D. setting, where
the first single-server Byzantine-resilient secure aggregation
protocol for secure federated learning known as BREA has
been developed. BREA is based on distance based adversar-
ial detection and leverages quantization and verifiable secret
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sharing to provide robustness against malicious users, while
preserving the privacy of the individual user models.

All works on secure aggregation only guarantee the privacy
of the individual users over a single aggregation round [139],
[190]-[193]. While the privacy of the users is protected in
each single round, the server can reconstruct an individual
model from the aggregated models over multiple rounds of
aggregation. Specifically, as a result of the client sampling
strategy and the users dropouts, the server may be able to
recover an individual model by exploiting the history of the
aggregate models [202], [203]. This problem was studied
for the first time in [203] which developed a client selec-
tion strategy known as Multi-RoundSecAgg that ensures the
privacy of the individual users over all aggregation rounds
while taking into account other important factors such as the
aggregation fairness among the users and average number
of users participating at each round (average aggregation
cardinality) which control the convergence rate.

V. DISCUSSION: CHALLENGES AND OPEN PROBLEMS

In this article, we have surveyed the privacy issues in
information retrieval, distributed computation, and distrib-
uted (federated) learning. We conclude this article with the
following incomplete list of remaining challenges and open
problems in these areas.

Challenges and open problems in PIR:

e Coded colluding databases: The PIR problem is com-
pletely solved when the database content is coded for
the case when the databases do not collude, and is also
completely solved when the databases collude for the
case when the database content is replicated (uncoded).
However, the problem is open when database content
is coded, potentially secured and the databases may
collude. Remarkably, even the asymptotic capacity (for
large number of messages) remains open. While the lower
bound for U-B-XS-MDS-TPIR in Table 6 is conjectured
to be aymptotically optimal, the asymptotic capacity C'
remains unknown in almost all cases.

o Non-replicated databases: The basic form of PIR assumes
that the databases contain exactly the same set of files.
In reality, the databases will have some overlap in content
and will also have distinct items. When the databases
have arbitrary contents, the PIR capacity problem is open,
with a few notable exceptions [S1]-[54]. The challenge
here is to be able exploit the replication to reduce
the download cost, while at the same time deal with
non-replication as efficiently as possible.

o Upload cost and message size: In the capacity formula-
tion, the upload cost is largely ignored. However, when
the message sizes are not very large, the consideration
on the upload cost becomes important. The problem then
becomes how to construct codes for small message sizes
to achieve a smaller upload cost. In general, PIR schemes
should be designed to minimize a combined measure of
upload and download costs.

o Weakly private (leaky) information retrieval: In some
practical applications of PIR, it may not be absolutely
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necessary to require perfect privacy, and a small leakage
may be tolerable. In this setting, two questions stand out:
What are good metric(s) to measure the leakage, and how
to characterize the capacity as a function of these metrics.
More complex message structure: The messages are usu-
ally required to be independent (and of the same length).
What is the optimal coding strategy when the messages
are dependent, either as overlapping parts, or are depen-
dent following a general probability law?

Privacy, stragglers and timeliness of retrieval: While
PIR focuses mainly only on the privacy of downloaded
information, it assumes that the servers are ideal, which
respond to queries immediately and with no delays.
Robust PIR problem considers the case of servers being
completely unresponsive [55], [114]. However, most
servers respond eventually, albeit slowly in many cases.
Therefore, there is a need to design systems where
information may be downloaded privately but also in a
timely manner. An initial consideration of this issue is
presented in a recent paper in [204], but the problem
remains largely open.

the non-i.i.d. setting is an interesting future direction.
The main challenge in this direction is to determine
whether the updates that may seem deviating are due to
the users having non-i.i.d. data or because of Byzantine
users sending erroneous updates.

Secure aggregation and multi-round secure aggregation:
There are many open problems related to the multi-round
secure aggregation problem introduced in [203]. While
the secure aggregation protocols are believed to protect
the privacy the of the individual users, it is not clear
whether such protocols ensure privacy in the information-
theoretic sense. Specifically, the secure aggregation pro-
tocols ensure that the server only learns the aggregate
model of the users. However, the aggregate model of the
users may still reveal information about the individual
users and characterizing such a leakage is an important
problem. While Multi-RoundSecAgg provides a trade-off
between the multi-round privacy, the average aggregation
cardinality, and the aggregation fairness, investigating
the optimality of Multi-RoundSecAgg remains an open
problem.
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