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SACall: A Neural Network Basecaller for Oxford
Nanopore Sequencing Data Based on
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Abstract—Highly portable Oxford Nanopore sequencer producing long reads in real-time at low cost has made many breakthroughs in
genomics studies. However, a major limitation of nanopore sequencing is its high errors when deciphering DNA sequences from noisy
and complex raw data. In this paper, we developed an end-to-end basecaller, SACall, based on convolution layers, transformer
self-attention layers and a CTC decoder. In SACall, the convolution layers are used to downsample the signals and capture the local
patterns. To achieve the contextual relevance of signals, self-attention layers are adopted to calculate the similarity of the signals at any
two positions in the raw signal sequence. Finally, the CTC decoder generates the DNA sequence by a beam search algorithm. We use a
benchmark consisting of nine isolated genomes to test the quality of different basecallers including SACall, Albacore, and Guppy. The
performances of basecallers are evaluated from the perspective of read accuracy, assembly quality, and consensus accuracy. Among
most of the genomes in the test benchmark, the reads basecalled by SACall have fewer errors than the reads basecalled by other
basecallers. When assembling the basecalled reads of each genome, the assembly from SACall basecalled reads achieves a higher
assembly identity. In addition, there are fewer errors in the polished assembly from reads basecalled by SACall compared to those
basecalled by Albacore and Guppy. In general, SACall outperforms the Nanopore official basecallers Albacore and Guppy in the
benchmark. Moreover, SACall is an open-source and freely available basecaller, which gives a chance for researchers to train their own

basecalling models on specific data and basecall Nanopore reads.

Index Terms—ONT nanopore sequencing, artificial neural network, self-attention, higher accuracy

1 INTRODUCTION

INGLE molecule sequencing long reads technology (SMS)

[1] such as Pacific Bioscience [2], [3] and Oxford Nano-
pore [4], [5] has made new impetus to genomics [6], [7], [8],
transcriptomics [9] and epigenomics [10]. The MinlON
sequencer from Oxford Nanopore Technologies (ONT) is
the only portable real-time DNA and RNA sequencing
instrument with the size of a smartphone, and each flowcell
can generate around 30 Gbp of DNA sequencing data. Low
cost, high speed, versatility and portability make MinION a
promising tool for rapid nucleic acid sequencing. Unlike
fluorescent labeling sequencing technologies, Nanopore
long-read sequencing is based on the following innovation:
a protein nanopore is embedded in an electrically resistant
polymer membrane. By setting a voltage across the mem-
brane, an ionic current is passed through the nanopore. This
event can create a characteristic disruption in the current as
the analyte passes through or near the nanopore. By mea-
suring that current, it is possible to identify the molecule.

e Neng Huang, Fan Nie, Peng Ni, and Jianxin Wang are with the School of
Computer Science and Engineering, Central South University, Changsha
410083, China and Hunan Provincial Key Lab on Bioinformatics, Central
South University, Changsha 410083, China.

E-mail: {huangneng, niefan, nipeng, jxwang)@mail.csu.edu.cn.

e Feng Luo is with the School of Computing, Clemson University, Clemson,

SC 29634 USA. E-mail: luofeng@clemson.edu.

Manuscript received 30 Mar. 2020; revised 17 Aug. 2020; accepted 6 Nov.
2020. Date of publication 19 Nov. 2020; date of current version 3 Feb. 2022.
(Corresponding author: Jianxin Wang.)

Digital Object Identifier no. 10.1109/TCBB.2020.3039244

Based on this design, nanopore sequencing technology has
many advantages such as long reads, real-time analysis, no
PCR amplification, no GC bias and direct measurement of
epigenetics [11].

High throughput sequencers from Oxford Nanopore
Technologies are reported to generate sequencing reads lon-
ger than 800 kp [12] and even exceeding 2 MB [13], which
overcomes the major limitation of short-read sequencing
whose read length is limited to several hundred bases.
These long reads provide great potentials for de novo
genome assembly. When the long reads span repetitive ele-
ments, repeat copies can be anchored within an unique
position of the genome. However, in contrast to next-gener-
ation sequencing short reads with accuracy greater than 99
percent, the main limitation of nanopore sequencing is its
high error rate. Even with improvements in nanopore chem-
istry and basecalling tools, read error rates are still between
5 and 15 percent [9]. We can reasonably assume that the
errors in nanopore sequencing are caused by two reasons.
The first reason is that the inherent sequencing limitation of
nanopore technology leads to low signal-to-noise ratio of
the original raw data, which makes it hard to determine the
true nucleotide sequence. There are some factors which
may contribute to low signal-to-noise ratio: (i) structure sim-
ilarity of the nucleotides; (ii) the signal remains unchanged
within homopolymers [14]; (iii) five nucleotides simulta-
neously affect the signal (at each moment five nucleotides
stay in the nanopore, which is 45 = 1024 combinations); (iv)
the nonuniform speed of DNA passing through the pore
[15], [16]. Second, errors occur in the process of translating
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the electrical current signals into a nucleotide sequence. The
information of DNA sequence is completely contained in
the signal data, but the shortcomings of the basecalling tools
prevent its correct interpretation. We can develop better
basecallers for nanopore sequencing to reduce the second
type of errors.

For the current MinlON’s chemistry, the frequency of
sequencer measurement is 4 kHz while single-stranded
DNA molecule moves forward at a speed of 450 bases/sec,
which equals to nine measurements per base on average
[17]. To obtain a nucleotide sequence from raw electrical
current signals, a more sophisticated basecalling software is
required. Early in Nanopore sequencing, the basecalling
process was performed on cloud platform Metrichor and it
has been discontinued since 2017 [18]. ONT now provides
several basecalling tools such as MinKNOW, Albacore,
Guppy and Scrappie. MinKNOW is the operating software
that drives nanopore sequencing devices and can output
the basecalled reads in FASTQ format. Albacore is the first
local command-line general-purpose basecaller running on
CPUs. Guppy is similar to Albacore, but it is designed to
improve the basecalling speed with GPU devices. Scrappie
is primarily a research basecaller for testing new approaches
that will be integrated into new versions of Guppy and
Albacore in the future. Albacore, Guppy and Scrappie all
use an architecture which is called RGRGR in ONT because
of its alternating reverse-GRU and GRU layers [11].

In addition to official basecalling tools, there are some
independent basecallers developed by researchers in
recent years, such as Nanocall [19], DeepNano [20] and
Chiron [21]. Nanocall uses a hidden Markov model
(HMM) to predict the nucleotide sequence. The hidden
states of the HMM model represent all possible events.
The emission probabilities are computed from pore mod-
els of nanopore sequencer. The transition probabilities of
hidden states are trained on the training dataset. This
method can model the movement and stay state of the
molecule in the nanopore. DeepNano uses a bidirectional
recurrent neural network to take longer range information
in the event data. The input of each time step in RNN is an
event which contains the mean and standard deviation
value of a segment of raw signals. The output of each time
step in the model is the nucleotide base. Both Nanocall
and DeepNano are no longer under development. Chiron
is an end-to-end, segmentation-free basecaller that directly
translates the raw electrical sequence into DNA sequence.
It couples a set of convolution layers with a set of recurrent
layers. At the top of the network, a connectionist temporal
classification decoder is used to provide the final nucleo-
tide sequence based on the probabilities of output bases,
which are calculated by convolution layers and recurrent
layers. However, Chiron runs very slowly, which makes it
impractical except for very small read sets [11].

Recently, Wick et al. [11] evaluated the performance of dif-
ferent basecalling tools including Albacore, Guppy, Scrappie
and Chiron. They made a benchmark with several bacterial
genomes. Although researchers are more interested in
human DNA, Wick et al. still used bacterial genomes as the
benchmark because bacterial genomes can provide a more
confident reference sequence as ground truth to calculate
accuracy than complex eukaryote genomes.

In this paper, we present SACall, an end-to-end basecall-
ing tool, to generate the DNA sequence from raw electrical
data directly without raw signal segmentation. SACall has a
novel architecture combining convolution layers [22] and
transformer self-attention layers. During the sequencing
process in the Oxford Nanopore Sequencer, the electrical
signals are continuous current values, which seem like a
continuous curve. But the electrical signals retained in the
off-machine data are sampled by the sequencer. The
sequencer measures the electrical current at 4 kHz and the
DNA moves forward at a rate of 450 bases/sec, equating to
about nine measurements per base [17]. So the length of the
raw signal is much longer than the length of the DNA
sequence. Convolution layers are used to downsample the
raw data and reduce the computation. In addition, convolu-
tion layers can capture the local current patterns in the sig-
nals. Behind the convolution layers, there are several self-
attention layers, which mainly take the long-range depen-
dencies of electrical currents. At the top of the model,
SACall generates a DNA sequence from the probabilities of
output bases by a connectionist temporal classification
decoder. In addition, SACall is an open-source tool for users
to basecall Nanopore sequencing data directly. At the same
time, in order to allow users to train the model on their spe-
cific dataset, we give a training interface in SACall. We com-
pare SACall with ONT basecallers including Albacore and
Guppy from the perspective of read accuracy, assembly
quality and consensus accuracy. SACall outperforms the
ONT official basecalling tools on most of the test datasets.

2 MATERIALS AND METHODS

2.1 Experiment Data

The benchmark dataset, released by wick et al. [11], is used
to evaluate the performance of different basecalling tools.
This dataset contains two parts: training dataset and test
dataset. The training dataset consists of fifty individual spe-
cies genomes, which are thirty Klebsiella pneumoniae
genomes, ten genomes of other species of Enterobacteriaceae
and ten genomes from other families of Proteobacteria. The
test dataset is composed of nine species including three
Klebsiella pneumoniae, Shigella sonnei, Serratia marcescens, Hae-
mophilus haemolyticus, Acinetobacter pittii, Stenotrophomonas
maltophilia, and Staphylococcus aureus. In addition to the raw
signal data, the high-quality contigs for each species are
also provided in the benchmark as the ground truth data.
These contig sequences were assembled from Illumina
reads by wick et al. using SKESA assembler [23] (v2.3.0).

2.2 Labeling DNA Sequence on the Raw Signal

To train a SACall basecalling model, we need to offer the
data consists of raw signals and the corresponding DNA
sequences. The raw signal should be labeled by the true
nucleotide base. Since the basecalled DNA sequences have
too many errors, we need to correct the basecalled reads
first by mapping the reads to the reference. After correction,
the raw signals are aligned to the corrected basecalled reads.
Tombo (https:/ /github.com/nanoporetech/tombo) is a tool
for analyzing and visualizing raw nanopore signal. It cor-
rects the errors in basecalled reads by mapping each read to
the reference using minimap2 and annotates the corrected

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 20,2022 at 18:49:37 UTC from IEEE Xplore. Restrictions apply.


https://github.com/nanoporetech/tombo

616 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

raw signal

read

. ACTGAGGACGTC...

Re-squigele reference genome

read ll}uw-culliug ‘ - ACTGAAGLCGTC...
| ...ACTGAGGACGTC... | ;
H
1
% i
Nucleotide Signal !
ACTGAAGCCGT el W 2 6 '

Fig. 1. The procedure for labeling raw signals. First, raw signals are
basecalled by existing basecaller Guppy. Then Tombo is used to correct
the basecalled reads and re-squiggle the raw signal with the corrected
DNA sequence. Finally, we extract the input signal and the correspond-
ing label sequence.

read to the raw signals by the dynamic time warping algo-
rithm. We use Tombo to correct reads and label the raw sig-
nal. Then we can train the model with the signal and label
sequence extracted from the re-squiggled files. The work-
flow of labeling raw electrical sequence can be seen in Fig. 1.

2.3 Deep Neural Network Architecture

Because the value of each signal is determined by the five
nucleotides that stay in the nanopore [24], it is not easy to
recognize the signal pattern of a single nucleotide. Besides,
the 5-mer measured at the previous moment has a 4-base
overlap with the 5-mer measured at the current moment.
The signal at each time step is related to the surrounding
signals. As we known, deep neural network is good at
extracting high-level features in signal and image data. So,
we have developed a novel deep learning architecture that
combines the convolution layers and the transformer self-
attention layer to extract the patterns and correlations from
the raw electrical current of ONT sequencer. The whole
architecture is shown in Fig. 2. Since each base of DNA has
multiple measurements, the convolution layer acts as a
downsampling of the raw data to reduce computational
cost and calculate the local signal features. After that, the
transformer self-attention layer [25] is used to learn the cor-
relation of signals at different time steps. Because of the
multiple measurements of each base, the target DNA
sequence is shorter than the input signal sequence. Exces-
sive measurements of each base will cause insertion errors
for this base. So SACall uses a connectionist temporal classi-
fication (CTC) [26] layer at the top of the neural network to
predict the label of each time step. Then we achieve the final
nucleotide sequence by removing the repeated characters
and blank characters in the prediction. Next, we will explain
different modules in the neural network architecture.

Due to the differences in mean and variance of raw sig-
nals for a different batch of Nanopore sequencing data [24],
raw signals in each read are normalized using median shift
and median absolute deviation (MAD) scale parameters as
follows [27]:

RawSignal —

Shi ft
Scale '

NormSignal = (n

- ATCTGACT. .

CTC Decoder

Probability
of each base

Transformer
= Self-attention
layers

/ N Convolution

;«Of\, SRS j&u/j\o

Fig. 2. An unrolled sketch of the SACall architecture. At the bottom of
the model, there are two convolution layers to downsample the raw
signals and extract the local pattern of the signals. The middle part
of SACall is multiple self-attention layers for computing the correla-
tion of any two positions in the signal. At the top of the network, a
CTC decoder is used to generate the final DNA sequence with the
correlation information in the signals from previous layers.

Considering computing speed and memory, the normal-
ized raw signal sequence is divided into pieces, each of
which is 2,048 in length. The input of the model is one piece
with T time steps « = [z1, 29, . .., z7] and the corresponding
DNA sequence with m bases y=[y1,y2,...,yn] where

e {AT,C G}.

Convolution Module. At the bottom of the architecture,
there is a convolution module. In this module, two convo-
lution layers are used to downsample signals and extract
local patterns. The first convolution layer has a (1 k)
convolution filter, (1 % p) stride and d,,04¢1/2 output chan-
nel. k is the kernel size of the convolution, p is the step
size that the kernel moves in the convolution operation
and d,q¢ is the number of output channels in the convo-
lution. The second convolution layer also has a (1xk)
convolution filter, (1 % p) stride and d,,,,q oOutput channel.
The signal vector z in the convolution layers is calculated
as follows [28]:

T k-1

ZZU)J‘ * Lijgj- (2)

=0 j=0

= Conv(x

Here w is the weight of convolution kernel. In the model, we
set parameters k = 3, p = 2 and d,,p4e1 = 256.

In the convolution module, there is a batch normalization
layer behind each convolution layer to prevent the mean
and variance from saturation. The batch normalization [29]
over a batch data is

BatchNormy, g (zp,) = 7%”[);[ Er T
om 3
(Yl ®
Var([zy,] + €

Here y,$ and e are parameters to be learned. Batch
normalization is helpful to improve the stability of the
network [29]. Behind each batch normalization, there is a
rectified linear unit (ReLU) [30] activation operation,
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which sets a negative value to zero

0,if x4 < O;
Tye, OLherwise.

Relu(x,.) = { (4)

Transformer Self-Attention Module. Following the convolu-
tion module, there are multiple transformer self-attention
layers, which are widely used in natural language process-
ing (NLP) models like BERT [31] and GPT-2 [32]. They per-
form strongly on various tasks such as machine translation,
document generation, and syntactic parsing. In our model,
we use six transformer self-attention layers as a feature
extractor. In each self-attention layer, the similarity is calcu-
lated for any two signals in the raw signal sequence, which
represents the contextual relevance of signals. The core
modules of the transformer are Positional Encoding, Scaled
Dot-Product Attention, Multi-Head Attention and Position-
wise Feed-Forward Network.

In recurrent neural networks, current hidden state calcu-
lation depends on the previous hidden state, which limits
the ability of model parallelization. To overcome this limita-
tion, the transformer model contains no recurrence. To uti-
lize the sequential information of the raw signal data,
positional information of each signal in the signal sequence
is encoded into the input vector by positional coding [25]

PositionEncode(pos, 2i) = sin (poszz> (5)
10000%modet

PositionEncode(pos,2i + 1) = cos <LSZ> (6)
10000%modet

Here pos is the position in the input sequence, and 7 is the
dimension of the channel.

In the transformer, scale dot production is used as the
attention strategy. The input of scaled dot-product atten-
tion consists of queries Q (with channel dimension dy),
keys K (with channel dimension d;) and values V (with
channel dimension d,). The attention matrix is calculated
as follows [25]:

Q = linearg(xaun) ™
K = linear g (@qtn) ®)
V = lineary (zqun) )

T
Attention(Q, K, V) = softmax (Qi> V. 10)

NG

Multi-head attention allows the transformer model to
combine the information from different representation
subspaces when calculating the scaled dot-product atten-
tion [25].

MultiHead(Q, K, V) = Concat(head,, heads, . . ., heady,)W°
(11)
head; = Attention(QWZ, KWK vwY). (12)

Here W € Rimodcr*d, WK  Rimoaerdi and WY € Rtmoder*d
are linear projection parameters to be learned and h is the
hyperparameter. In our model, we set h = 8.

Following each attention layer, there is a fully connected
feed-forward network which consists of two linear layers
and a ReLU activation:

FFN(xy) = ReLU(xfWy, +by) x Wy, + by,. (13)

Decoder Module. At the top of the architecture, there is a
decoder module that generates the final nucleotide
sequence from high-dimension representation of correlation
information in electrical signals. The correlation information
is obtained in the previous convolution module and trans-
former self-attention module. In the decoder module, we
use a fully connected layer followed by a softmax operation
to calculate the probability of the characters at each position.
The softmax is calculated as

oWehi

= S elehi!

where o; is the predicted symbol at position ¢, and h; is the
hidden state after transformer self-attention layer at posi-
tion 4. The output symbol is ¢ € (A4, T, C, G, —) and the char-
acter - represents a blank symbol. During training, the
CTC decoder behind softmax operation uses a CTC loss
function [26] to compute the distance of the distribution of
high-level features of raw signal and nucleotide sequence
label y. During testing, the CTC decoder uses a beam search
decoding algorithm to iteratively generate candidate char-
acters (beams) and rate these candidate characters. At each
position, only the beams with top beam_width scores from
the previous time-step are retained and form a new beams
together with the characters at current time-step. In our
model, we set beam_width = 3. At the end of this procedure,
the sequence with the highest score will be chosen as the
final nucleotide sequence after removing the blank symbol
in this sequence.

P(o; =¢) (14)

2.4 Training and Basecalling

In the training stage, the Adam optimizer [33] with Ir =
le™®, By =09, By =0.999, € = lel —8) and weight_decay =
0.01 is used to update the parameters. Scheduling the learn-
ing rate with warmup strategy is used to prevent excessive
initial learning rates, which is calculated as

_ 7-05
— “mode

0 (15)

Ir - min(n” " n - warmup ).
Here n is the number of training step, and the parameter
warmup is set to 10,000. All dropout ratio [34] in SACall are
setto 0.1.

SACall is an open-source tool for basecalling Oxford
Nanopore reads, which contains two main modules, train-
ing and basecalling. Users can train new models on specific
datasets with the SACall-training module and then load the
models into the SACall-calling module to basecall nanopore
reads. Besides, users also can directly use the SACall-calling
module and the provided trained model for basecalling
without training new models. The default model of SACall
is mainly trained from the genome of Klebsiella pneumo-

niae. Main steps of the SACall-training module include:
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TABLE 1
Read Level Error Rate of Four Basecalling Models on the Test Dataset

Dataset Basecaller Deletion rate(%) Insertion rate(%) Mismatch rate(%) Error rate(%)
Klebsiella Pneumoniae NUH29 SACall 4.93 2.63 3.50 11.06
Guppy-KP 5.68 3.33 4.09 13.10
Guppy 4.85 5.51 5.34 15.69
Albacore 4.85 5.76 5.08 15.69
Klebsiella Pneumoniae KSB2 SACall 5.26 2.31 3.69 11.26
Guppy-KP 5.90 3.38 4.56 13.84
Guppy 5.42 4.65 5.66 15.73
Albacore 5.37 4.99 5.45 15.80
Klebsiella Pneumoniae INF042 SACall 5.13 2.27 3.56 10.95
Guppy-KP 5.67 3.34 4.42 13.44
Guppy 5.27 4.60 5.48 15.35
Albacore 5.18 5.00 5.30 15.48
Serratia Marcescens SACall 437 2.42 3.72 10.51
Guppy-KP 5.21 3.28 4.40 12.90
Guppy 4.47 3.56 4.56 12.59
Albacore 4.50 4.87 5.18 14.55
Haemophilus Haemolyticus SACall 3.87 2.59 3.25 9.71
Guppy-KP 4.56 3.79 4.21 12.56
Guppy 3.57 4.52 4.05 12.14
Albacore 3.23 6.40 4.30 13.93
Stenotrophomonas Maltophilia SACall 5.20 2.60 3.62 11.42
Guppy-KP 5.90 3.28 4.12 13.30
Guppy 5.08 5.10 5.18 15.36
Albacore 4.98 5.40 4.85 15.24
Shigella Sonnei SACall 5.27 2.20 3.99 11.47
Guppy-KP 5.76 3.21 5.05 14.03
Guppy 5.80 3.12 5.31 14.23
Albacore 5.98 3.46 5.39 14.84
Acinetobacter Pittii SACall 4.87 2.43 3.94 11.23
Guppy-KP 5.59 3.38 4.61 13.58
Guppy 4.45 3.38 4.35 12.18
Albacore 4.52 491 5.01 14.44
Staphylococcus Aureus SACall 417 2.03 3.02 9.23
Guppy-KP 4.62 2.76 3.47 10.85
Guppy 3.73 2.27 2.88 8.87
Albacore 4.12 3.11 3.40 10.64

(1)  Translating Nanopore raw signal data to noisy reads
using existing basecalling tool Guppy.

(2)  Correcting the basecalled reads and annotating raw
signals using the re-squiggle module of Tombo.

(3) Extracting signals and label sequences from
resquiggled fast5 files as the inputs of the neural
network.

(4) Training the neural network and exporting the base-
calling model.

After training, we can use SACall to basecall Nanopore
raw signals. Loading the model parameter file and original
sequencing fast5 files, the SACall-calling module will out-
put the basecalled fasta file.

3 EXPERIMENTS AND RESULTS

Currently, the most widely used basecalling tools are Alba-
core and Guppy launched by Oxford Nanopore Technolo-
gies. However, Oxford Nanopore Technologies has not
released the training data of these two basecallers. So we
can only train our model with the different training data-
sets. Wick et al. released a Guppy model (v2.2.3) [11] that
was trained on the approximate 1/10 of reads in the training
benchmark. Here we named it Guppy-KP to distinguish it

from the general Guppy model released by ONT. To train
SACall, we also randomly picked 1/10 of reads in the train-
ing benchmark. Next, we evaluate the performance of these
four tools, SACall, Guppy-KP, Guppy (v2.3.8) and Albacore
(v2.3.4), on the test benchmark.

3.1 Error Rate of Basecalled Reads

Table 1 presents the error rate of four basecaller methods
including SACall, Guppy-KP, Guppy and Albacore on the
test dataset. Deletion, insertion, and mismatch rates are
defined as the number of deleted, inserted, and mismatched
bases divided by the alignment length. Error rate is defined
as the sum of deletion, insertion, and mismatch rates. On
the data of Klebsiella Pneumoniae NUH29, SACall achieves
the error rate of 11.06 percent, which is smaller than that of
other basecallers. On the data of Klebsiella Pneumoniae
KSB2, the error rate of SACall basecalled reads is 11.26 per-
cent, the error rate of Albacore basecalled reads is 15.80 per-
cent, and the error rate of Guppy basecalled reads is 15.73
percent. On the data of Klebsiella Pneumoniae genomes
INF042, SACall achieves the smallest error rate among four
basecallers, which is 10.95 percent. On the data of Serratia
Marcescens genome, SACall has the error rate of 10.51 per-
cent, the error rate of Guppy-KP is 12.90 percent, and the
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Fig. 3. The read level identity of four basecalling models on the test dataset.

error rate of Guppy is 12.59 percent. On the data of Haemo-
philus haemolyticus genome, SACall achieves the error rate
of 9.71 percent, which is more accurate than Guppy-KP,
Guppy, and Albacore. On the data of Stenotrophomonas
Maltophilia genome, the error rate of SACall is 11.42 percent
which is the smallest among four basecallers. On the data of
Shigella Sonnei genome, SACall has an error rate of 11.47
percent, while the error rates of the other three basecallers
are bigger than the error rate of SACall. On the data of Aci-
netobacter Pittii genome, the error rate of SACall is 11.23
percent, which is the smallest among four basecallers. On
the data of Staphylococcus Aureus genome, SACall obtains
the error rate of 9.23 percent, and Guppy achieves the small-
est error rate of 8.87 percent. As a whole, SACall achieves
the smallest error rate on 8 of 9 genomes in the test dataset.
The error rate of SACall is a little bigger than Guppy only
on the data of Staphylococcus Aureus genome.

3.2 Read Identity of Basecalled Reads

To assess the read identity of different basecallers, we align
the basecalled reads to the high-quality contigs by mini-
map?2 [35]. The read identity is calculated as follows:

identity = * 100%. (16)

M

M+ S+I1+D
Here, M is the number of match bases and S is the number
of mismatch bases. I represents the number of insertion
bases in the alignment, and D represents the number of
deletion bases. The overall identity is the median of all
reads’ identities. The read identity results in Fig. 3 show
that the basecalled reads generated by SACall have the
highest identity in all genomes except Staphylococcus
Aureus. It also exceeds the Guppy-KP model, which trained
on the same training data.

3.3 Quality of Assemblies From Reads Basecalled
by Different Basecaller

We use Flye(v2.4.2) to generate assembly from the reads
basecalled by different basecaller and evaluate the quality
of the genome assembly. Flye is a very fast and accurate de
novo assembler designed for single-molecule sequencing
reads. Then a quality assessment tool, Quast, is used to eval-
uate the contigs of the assembly. The Quast report of

Haemophilus
Haemolyticus

Stenotrophomonas  Shigella Sonnei  Acinetobacter Pittii  Staphylococcus
Maltophilia Aureus

assemblies is presented in Table 2. From the table, we can
see that assemblies from SACall basecalled reads have
fewer mismatch errors per 100k basepairs and indel errors
per 100 k basepairs. To calculate the identity of each assem-
bly, we divided the assembly of each reads set into the size
of 100 kbp. Each divided piece is aligned to the high-quality
contigs by minimap2. The identity is defined as the number
of matching bases divided by the alignment length. The
final assembly identity is the median of the identities of
these 10 kbp assembly segments. The results show that
reads basecalled by SACall have a higher assembly identity
than reads basecalled by other basecalling tools. In most of
the datasets, assembly from reads generated by SACall has
the highest assembly identity.

3.4 Consensus Accuracy and Error Summary
of Polished Assemblies

To access the consensus accuracy, we polish the previous
assemblies with four rounds of Racon and one round of
Medaka to generate the consensus sequences as ONT offi-
cials suggested. Racon [33] is an ultrafast consensus module
for raw de novo genome assembly of long uncorrected
reads. And Medaka (https://github.com/nanoporetech/
medaka) is a tool to create a consensus sequence from nano-
pore sequencing data developed by Oxford Nanopore Tech-
nologies. The assembly identity of each round polishing
iteration is shown in Fig. 4. For understanding the effect of
four basecallers on different kinds of consensus errors, we
count the number of errors for six different types respec-
tively in the polished assembly, which include homopoly-
mer insertion errors, other insertion errors, homopolymer
deletion errors, other deletion errors, substitution errors
and Dcm errors. Dem errors are the errors occurring in the
CCAGG/CCTGG Dcm motif. Homopolymer errors are
changes in the length of a homopolymer (three or more
bases in length) compared to the reference sequence. Other
insertion and deletion errors refer to the insertion or dele-
tion errors that occur at positions other than homopolymers.
Substitution errors refer to the mismatch of bases in contigs
and references. The consensus error summaries of different
basecallers on nine bacterial genomes are presented in
Fig. 5. ONT official basecaller Guppy and Albacore perform
poorly on Dcm sites in genomes including K.pneumoniae
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TABLE 2
The Quality of Assemblies From Reads Sets Generated by Four Basecalling Models
Genome Basecaller Misassemblies Mismatchs Indels N50 Genome Relative Identity
(bp/100k) (bp/ (Mbp) fraction length (%)
100k)
Klebsiella Pneumoniae NUH29 SACall 0 8.02 179.41 5.1 99.99% 100.10% 99.81
Guppy-KP 0 18.25 319.17 5.1 99.99% 100.26% 99.67
Guppy 0 416.42 503.09 5.2 100.00% 100.41% 99.07
Albacore 0 406.69 583.24 5.2 99.98% 100.45% 98.99
Klebsiella Pneumoniae KSB2 SACall 0 8.87 146.22 52 99.99% 100.05% 99.84
Guppy-KP 0 23.48 293.52 5.2 100.00% 100.23% 99.68
Guppy 0 428.95 322.17 5.2 99.99% 100.18% 99.24
Albacore 1 421.19 410.68 5.2 99.95% 100.23% 99.16
Klebsiella Pneumoniae INF042 SACall 0 5.68 146.46 53 100.00% 100.06% 99.85
Guppy-KP 0 18.06 292.23 54 100.00% 100.24% 99.69
Guppy 0 255.27 327.19 5.3 100.00% 100.23% 99.41
Albacore 0 255.79 410.21 54 100.00% 100.31% 99.33
Serratia Marcescens SACall 1 43.71 337.58 5.5 99.92% 103.90% 99.64
Guppy-KP 4 87.86 502.04 5.5 99.24% 103.90% 99.41
Guppy 1 120.74 44411 5.5 99.41% 104.55% 99.43
Albacore 1 116.76 712.57 55 99.25% 104.05% 99.16
Haemophilus Haemolyticus SACall 3 14.88 428.25 2.1 100.00% 100.80% 99.55
Guppy-KP 3 2448 917.01 2.1 100.00% 101.33% 99.04
Guppy 3 16.40 556.48 2.1 100.00% 100.98% 99.41
Albacore 3 2291 956.52 2.1 100.00% 101.39% 98.96
Stenotrophomonas Maltophilia SACall 0 14.68 141.11 4.8 100.00% 100.09% 99.84
Guppy-KP 0 26.57 199.18 48 100.00% 100.13% 99.78
Guppy 0 4131 366.69 4.8 100.00% 100.35% 99.58
Albacore 0 23.99 376.22 48 100.00% 100.36% 99.59
Shigella Sonnei SACall 0 9.21 171.07 4.8 100.00% 100.08% 99.82
Guppy-KP 0 21.66 351.57 48 100.00% 100.31% 99.63
Guppy 0 290.03 227.08 4.8 100.00% 100.55% 99.48
Albacore 0 287.69 274.00 48 99.99% 100.12% 99.43
Acinetobacter Pittii SACall 0 13.45 410.04 3.8 99.97% 100.31% 99.58
Guppy-KP 0 28.00 742.05 3.8 99.98% 100.69% 99.22
Guppy 0 14.58 364.71 3.8 99.97% 100.32% 99.62
Albacore 0 26.64 707.10 3.8 99.97% 100.64% 99.25
Staphylococcus Aureus SACall 0 9.72 449.61 2.9 100.00% 100.40% 99.54
Guppy-KP 0 12.09 774.65 2.9 100.00% 100.78% 99.21
Guppy 0 9.13 309.36 2.9 100.00% 100.30% 99.68
Albacore 0 12.20 506.36 2.9 100.00% 100.48% 99.50

NUH29, K.pneumoniae KSB2, K.pneumoniae INF042 and
Shigella Sonnei, but Guppy-KP and SACall have less Dcm
errors on these genomes. This is because the genomes in the
dataset used to train Guppy-KP and SACall are close to the
genomes of K.pneumoniae NUH29, K.pneumoniae KSB2,
K.pneumoniae INF042 and Shigella Sonnei. Guppy-KP and
SACall have learned the information of Dcm methylation
on these genomes. However, on these genomes, the Dcm
error rate of SACall basecalled reads is still smaller than
that of Guppy-KP basecalled reads. Besides Dcm errors,
incorrect lengths of homopolymers make up the majority of
consensus errors. In terms of homopolymer insertion errors,
SACall significantly reduces the homopolymer insertion
errors in basecalled reads compared to the other three tools
on most of the species including K.pneumoniae NUH29, K.
pneumoniae KSB2, K.pneumoniae INF042, Serratia Marces-
cens, Haemophilus Haemolyticus and Stenotrophomonas
Maltophilia. In terms of homopolymer deletion errors, the
reads basecalled by Guppy and Guppy-KP have the small-
est error rate. The amount of homopolymer deletion errors
in SACall basecalled reads is similar to that in Albacore
basecalled reads. For other insertion errors, SACall reduces

such errors in basecalled reads compared to other basecal-
lers. In genomes of K.pneumoniae NUH29, K.pneumoniae
KSB2, K.pneumoniae INF042, Serratia Marcescens, Haemo-
philus Haemolyticus, Stenotrophomonas Maltophilia, Shi-
gella Sonnei and Staphylococcus Aureus, SACall basecalled
reads have the smallest insertion error rate. For other dele-
tion errors, on most of the genomes, SACall obtains similar
performance with the other three basecallers. In terms
of substitution errors, SACall reduces this type of errors
in basecalled reads than other basecaller. In genomes
including K.pneumoniae NUH29, K.pneumoniae KSB2, K.
pneumoniae INF042, Serratia Marcescens, Haemophilus
Haemolyticus, Stenotrophomonas Maltophilia and Shigella
Sonnei, SACall obtains the smallest substitution error rate.
In general, SACall performs better than the ONT official
basecallers on consensus accuracy, mainly due to the reduc-
tion of Dcm errors, homopolymer insertion errors, other
insertion errors and substitution errors.

3.5 Comparing the Speed of Different Basecallers

In terms of basecalling speed, we perform SACall and
Guppy on Nvidia TITAN V GPU. Since Albacore only
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Fig. 4. The consensus identity of four basecallers on the test dataset. Each assembly is polished by four rounds Racon and one round Medaka. 0 to 3

on the horizontal axis means Racon polishing, 4 means Medaka polishing.

runs on central processing unit processor (CPU), we
test Albacore on Intel(R) Xeon(R) E5-2630 v4 @ 2.20 GHz
CPU. The basecall rate of SACall is 80,000 bases
per second on average, and Albacore has a speed of
120,000 bp/sec when using 40 threads. Of all the tools,
the speed of Guppy basecalling is the fastest which is
800,000 bp/sec.
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4 CONCLUSION

Currently, Nanopore basecalling tools under develop-
ment are all based on recurrent neural networks and its
variants LSTM and GRU. ONT official basecaller Albacore
and Guppy use the alternative reverse-GRU layers and
GRU layers architecture. Chiron uses the architecture
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Fig. 5. The polish error summary of four basecallers. The error types include Dcm methylation errors, homopolymer deletion errors, homopolymer
insertion errors, other deletion errors, other insertion errors, and substitution errors.
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combining the convolution layers and recurrent neural
networks. In this study, we present a novel architecture
that combines the convolution layers and self-attention
layers to learn the correlation in nanopore sequencing sig-
nals. In this model, the local pattern of sequencing raw
signal is captured by multiple convolution layers. The
self-attention layers are used to calculate the similarity at
any two positions in the sequence, which provides the
contextual relevance of signals. Finally, the basecalled
DNA sequence is generated with the connectionist tempo-
ral classification decoder by a beam search algorithm. For
speed and memory considerations, the raw signals are
divided into pieces with the size of 2,048. Each signal
piece is fed into the neural network to generate the nucle-
otide sequence fragments. Then SACall concatenates
these DNA fragments to form the final basecalled DNA
sequence.

Compared with Albacore, Guppy and Guppy-KP trained
on the same dataset as SACall, our proposed basecaller gets
the highest accuracy on 8 of 9 datasets in the benchmark in
terms of read level identity. From the perspective of the
quality of genome assembly, the assembly from SACall
basecalled reads achieves the highest identity in most of the
test datasets. The misassemblies, N50 and genome fraction
of assembly from reads set basecalled by SACall are close to
the assembly from reads set generated by ONT basecallers.
To access the consensus accuracy of SACall basecalled
reads, we polish the assemblies with four rounds of Racon
and one round of Medaka. The polished assembly from
SACall basecalled reads achieves the highest consensus
accuracy on 7 of 9 datasets. In the analysis of consensus
errors, we found that SACall outperforms other tools,
mainly due to the reduction of Dcm-methylation errors,
homopolymer insertion errors, other insertion errors and
substitution errors.

In short, we develop a new basecalling tool for nano-
pore sequencing, which can generate high accuracy base-
called reads. With SACall, users can train their models
on datasets for some specific genomic applications such
as detecting base modification [36], [37]. At present, we
do not consider DNA base modification when training
the model. In future work, we will directly predict base
modification during the basecalling process. This
requires us to annotate the base modification on the raw
electrical current signal when preparing the training
data.
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