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Abstract

Atomistic methods have successfully modeled different aspects of shock wave propagation in materials over the past several
ecades, but they suffer from limitations which restrict the total runtime and system size. Multiscale methods have been able
o increase the length and time scales that can be modeled but employing such schemes to simulate wave propagation and
volution through engineering-scale domains is an active area of research. In this work, we develop two distinct moving
indow approaches within a Concurrent Atomistic–Continuum (CAC) framework to model shock wave propagation through
one-dimensional monatomic chain. In the first method, the entire CAC system travels with the shock in a conveyor fashion

nd maintains the shock front in the middle of the overall domain. In the second method, the atomistic region follows the
hock by the simultaneous coarsening and refinement of the continuum regions. The CAC and moving window frameworks are
erified through dispersion relation studies and phonon wave packet tests. We achieve good agreement between the simulated
hock velocities and the values obtained from theory with the conveyor technique, while the coarsen-refine technique allows
s to follow the propagating wave front through a large-scale domain. This work showcases the ability of the CAC method to
ccurately simulate propagating shocks and also demonstrates how a moving window technique can be used in a multiscale
ramework to study highly nonlinear, transient phenomena.

2021 Elsevier B.V. All rights reserved.
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1. Introduction

The behavior of shock waves in solids has been extensively studied for many decades [1,2]. Typically, a
ropagating shock occurs in a material under high strain rate loading conditions such as a high speed impact
nd can be fully characterized by the continuum governing equations. However, it is well-known that a material’s
esponse to a given load is linked to effects at lower length scales. This is especially true for damage, fracture,
nd plastic deformation induced by shock waves as such phenomena are the result of complex behavior at the
icrostructure. Examples of such microstructural events include scattering, grain rotations, pore collapse, phase

ransformations, dislocations, void generation, and grain crushing [3–5]. Therefore, in order to understand shock
aves at the macroscale, one must also be able to describe and model them at the microscale.
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Non-equilibrium Molecular Dynamics (NEMD) simulations have been performed since the 1960s to study such
atomistic shock wave propagation [6]. In the past two decades, these NEMD simulations have been expanded to
domains consisting of millions of atoms (∼ O(105

− 109)) and used to model increasingly complex events such
as dislocation generation [7–10], void nucleation [11–13], twinning [14–16], and shock-induced spallation [17–21].
However, NEMD shock simulations can suffer from, among other things, wave reflections due to limited domain
sizes which drastically reduce the total runtime. To overcome these drawbacks, alternative atomistic shock wave
frameworks have recently been developed, and some of the more popular of these formulations include the uniaxial
Hugoniostat [22,23], the multiscale shock technique (MSST) [24,25], and the moving window method [26,27].

While contemporary atomistic methods have been very successful in modeling shock wave propagation and
characterizing how defects influence shock behavior, even the largest benchmark simulations fall short of capturing
continuum-level phenomena such as shock wave/boundary layer interactions and the resulting scattered elastic
waves. This is because limited computational resources restrict the total number of atoms that can realistically
be incorporated into a microscale framework. Although computer processing power increases over time, physical
limitations on computer architecture imply that simulations which model continuum events using purely atomistic
techniques may never be possible. Therefore, a multiscale scheme is needed which would be able to track a

oving shock wave for a long time over a large domain as well as capture a shock’s interaction with phonons
nd microstructural interfaces. Such a framework would locally retain atomistic information around a small region
f interest (i.e. the shock wave front) and transition to continuum length scales throughout the rest of the domain.

Coupled atomistic–continuum (A–C) frameworks have been developed since the early 1990s to integrate the
icroscale and macroscale into a single computational model [28]. See [29–32] for reviews on the current state of
ultiscale modeling in materials. Such methods can be roughly divided into two distinct categories: hierarchical and

oncurrent [33]. Hierarchical methods presume a separation of spatial scales, and they formulate microscale infor-
ation in terms of macroscopic behavior. In other words, the lower-scale information is averaged and introduced into

ure coarse-grained models in the form of constitutive equations. Some examples of hierarchical methods include
ultiple-level FEM [34,35], dislocation dynamics (DD) [36,37], and the second gradient technique [38]. On the

ther hand, concurrent schemes connect the spatial scales such that the continuum region flanks or surrounds an inner
tomistic region, and the two domains interact with each other directly. Concurrent methods are more applicable to
hock wave simulations as they can describe large domains for a low computational cost while retaining important
nformation at the wave front through atomistics. Hence, we use a concurrent scheme for the present formulation.

One of the primary challenges with concurrent multiscale methods is ensuring compatibility at the interface of
he fine-scaled and coarse-scaled regions so as to mitigate spurious wave reflections and ghost forces [39]. Such
on-physical phenomena arise for the following reasons: (i) a difference in governing equations exists between the
tomistic and continuum regions, (ii) the spectrum of the coarse-scaled model has a much smaller cutoff frequency
han that of the fine-scaled model causing the A–C interface to appear rigid to incoming high-frequency waves, and
iii) the interface region cannot support thermal vibrations of atoms. Many concurrent schemes have been developed
hich address such issues in different ways [33]. Some of these frameworks include the Coupling of Length Scales

CLS) method [40], the Bridging Domain (BD) method [41], the Coupled Atomistic Discrete Dislocation (CADD)
ethod [42], and the Quasicontinuum (QC) method [43]. More recent concurrent frameworks use techniques such

s the crystal plasticity finite element model (CPFEM) [44] and microscale micromorphic Molecular Dynamics
MMMD) [45] to simulate crack propagation and dynamic fracture. Concurrent schemes such as these have had
any achievements in modeling multiscale phenomena. Nevertheless, many of them involve a difference in material

escription across the interface, and most of them do not allow dislocation/phonon interactions or waves to travel
nto the continuum region [39].

The Concurrent Atomistic–Continuum (CAC) method has been developed over the past decade to overcome
ome of the limitations in previous concurrent formulations [46–54]. Employing a unified multiscale framework
uilt upon Atomistic Field Theory [55,56], CAC extends the Irving–Kirkwood method for connecting the atomistic
nd hydrodynamical equations [57] to a two-level description of materials where the particle degrees of freedom are
ncluded within each primitive unit cell. In this way, CAC follows the solid state physics model of crystals whereby
he structure is continuous at the lattice level but discrete at the atomic level, and a single set of governing equations
s used throughout the entire domain [54]. Hence, CAC not only supports dislocation/phonon interactions [58,59],
ut it also allows dislocations and waves to pass from the atomistic region to the continuum region and vice

ersa [46,52]. While CAC has been very successful at modeling material defects and their motion and is actively
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A

being applied to study dislocation evolution and interactions [60–63], it has not yet been extended to model shock
wave propagation through a material.

In the present work, we develop a long-time, moving window, A–C framework using CAC to model shock wave
propagation through a one-dimensional monatomic chain. Specifically, we use the nonlinear Eulerian thermoelastic
equations for shock compression of single crystals [64,65] to study the classic Riemann problem of a single
propagating shock. The shock is “followed” for very long simulation times using a moving window technique
as was accomplished previously in [27] for a purely atomistic framework. In the present CAC formulation, the
moving window is achieved in two distinct ways: (i) by tracking the shock in a conveyor fashion and (ii) by
simultaneously refining the coarse-scaled region and coarsening the fine-scaled region at the speed at which the
shock wave moves. These methods allow us to model a propagating shock much longer than conventional NEMD
simulations by focusing the shock front at the center of the fine-scaled region for the entire simulation.

The paper is organized as follows. Section 2 discusses the thermoelastic equations for shock wave propagation
through anisotropic single crystals derived in [64] and outlines the problem statement. Section 3 describes the
framework’s geometry and boundary conditions and also presents the potentials and thermostats used in the
simulations. Section 4 reviews the governing equations and finite element implementation of CAC. Section 5
discusses the two CAC moving window methods and how the shock is initialized in the domain. Section 6 presents
results from dispersion relation and phonon wave packet studies performed with the CAC framework. Section 7
presents results from the CAC moving window shock simulations and compares these to what is obtained from
theory. Finally, Section 8 concludes the paper and discusses future directions for this work.

2. Problem formulation

We consider an elastic monatomic chain with no defects under compression by an ideal one-dimensional
(i.e. longitudinal) shock wave. Mathematically, we represent the shock as a propagating discontinuity across which
there exists a jump in particle velocity, strain, and temperature. Material quantities ahead of the shock front have
the superscript −, and quantities behind the shock front have the superscript + . In each simulation, particles ahead
of the shock front are assumed to be at zero mean particle velocity, unstressed, unstrained, and at room temperature
(295 K), and the shock propagates at a natural velocity US . The notation [[·]] denotes the change in a given quantity
(·) across the shock front.

2.1. Shock equations

To characterize the shock wave at the continuum level, we use the nonlinear Eulerian thermoelastic shock
equations derived in [64,65] for anisotropic crystals. Nonlinear elastic constitutive models are required when strains
are relatively large. Since the experimental Hugoniot elastic limit typically occurs at small uniaxial compressive
strains in ductile metals, predictions for material strength which omit plastic deformation are idealizations. However,
applying analytical thermoelastic solutions to materials is beneficial for comparison with atomistic/multiscale
simulations since these defect-free domains can be shocked to finite strains over short time scales and small
volumes [65,66]. In this work, we conduct such simulations in a one-dimensional setting.

For uniaxial loading, the ‘11’ component of the deformation gradient behind the shock front is given as follows:

F11 =
∂x
∂ X

= 1 +
∂u
∂ X

= 1 + ϵ = J (1)

where u is the displacement, ϵ is the strain, and J is the Jacobian determinant. We simulate compressive shocks,
for which 0 < F ≤ 1 and −1 < ϵ ≤ 0, propagating with a positive velocity US > 0. Then, the only nonzero
component of the Eulerian strain is

D = D11 =
1
2

(
1 − F−2

11

)
=

1
2

[
1 −

1
(1 + ϵ)2

]
. (2)

lso, for uniaxial strain along the positive x-direction, we have the following:

P = −σ11

J = F11 = (1 − 2D)−1/2 (3)
3
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where P is the axial shock stress. In this case, the term Eulerian refers to a strain that is a function of the inverse
deformation gradient and not necessarily one in spatial coordinates. Therefore, the strain tensor D is Eulerian but
refers to material coordinates, so it can be used in simulations of anisotropic materials [64]. As stated in [67], the
choice between Lagrangian and Eulerian is a matter of convenience, but the Eulerian formulation gives simpler
expressions when modeling large compressions.

It is well known that a planar shock wave propagating through an unstressed solid with velocity US can be
described by the Rankine–Hugoniot equations [2,68,69]

[[P]] − ρ0Us[[v]] = 0
[[v]] − Us[[1 − J ]] = 0

[[U ]] −
1
2
ρ0[[v2]] = 0 (4)

here ρ0, v, and U denote density, particle velocity, and energy respectively. As shown in [64], analytical solutions
o the planar shock problem can be derived when the material’s internal energy is a linear function of entropy.
ssuming uniaxial strain, the Eulerian fourth-order internal energy function and conjugate thermodynamic stress

re given by [65]

Û =
1
2

C11 D2
+

1
6

Ĉ111 D3
+

1
24

Ĉ1111 D4
− θ0

(
Γ1 D +

1
2
Γ̂11 D2

− 1
)

η (5)

Ŝ = −J 3 P =
∂Û
∂ D

. (6)

ere, θ0 > 0 and η = 0 are the respective temperature and entropy ahead of the shock front, C11 is the second-order
lastic constant, and Γ1 is the first-order Grüneisen parameter. The Eulerian third-order elastic constant, Eulerian
ourth-order elastic constant, and Eulerian second-order Grüneisen parameter are obtained by the relations [64,70,71]

Ĉ111 = C111 + 12C11 (7)

Ĉ1111 = C1111 − 18C111 − 318C11 (8)

Γ̂11 = Γ11 + 4Γ1 (9)

where Γ11 = Γ1 assuming that ρΓβ = ρ0Γ0β = constant [64,72].
Solving Eqs. (3), (4), (5), and (6) simultaneously gives the following fifth-order polynomials for entropy η

enerated across the shock front [64]:

η(D) =
5∑

k=0

bk Dk (10)

b0 = b1 = b2 = 0 (11)

b3 =
1

12θ0

(
Ĉ111 − 9C11

)
(12)

b4 =
1

24θ0

[
Ĉ1111 − 9Ĉ111 − 6C11 + Γ1

(
Ĉ111 − 9C11

)]
(13)

b5 =
1

48θ0

[
−6Ĉ1111 − 6Ĉ111 − 9C11 + Γ1

(
Ĉ1111 − 6Ĉ111 − 33C11

)
+ Γ 2

1

(
Ĉ111 − 9C11

)]
. (14)

Substituting these polynomials into Eq. (5), we can obtain the following expression for the fifth-order conjugate
stress (Eq. (6)) [64]:

Ŝ = C11 D +
1
2

Ĉ111 D2
+

(
1
6

Ĉ1111 − θ0Γ1b3

)
D3

− θ0 D4
[(

Γ1b4 + Γ̂11b3

)
+

(
Γ1b5 + Γ̂11b4

)
D
]
. (15)

rom this conjugate stress, we can then use Eqs. (3)b and (6) to get an expression for the shock stress P:

P = − 1 − 2D 3/2 Ŝ. (16)
( )

4
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Fig. 1. Riemann problem of a shock wave with constant states ahead of and behind the shock front.

inally, the particle velocity v and temperature θ behind the shock front as well as the shock velocity US can be
btained from Eqs. (4)a, (4)b, (5), and (16):

v =

{(
Ŝ
ρ0

) [
(1 − 2D) − (1 − 2D)3/2]}1/2

(17)

US = v
[
1 − (1 − 2D)−1/2]−1

(18)

θ =
∂Û
∂η

= θ0

(
1 − Γ1 D −

1
2
Γ̂11 D2

)
. (19)

or every shock simulation, we use the third-order expression of Eqs. (17), (18), and (19).

.2. Problem statement

The material is described by the state variables v, ϵ, and θ on either side of the shock front as well as the shock
elocity US . Given an initial strain ϵ−, a final strain ϵ+, and state (v−, θ−) of the unshocked material, Eqs. (17), (18),
nd (19) can be used to compute US and state (v+, θ+) of the shocked material. We incorporate these parameters
nto a moving window CAC framework to simulate long-time shock wave propagation given continuum shock states
head of and behind the shock front. Specifically, we study the classic Riemann problem of a single shock wave
ith constant states on either side as shown in Fig. 1.

. Computational setup

.1. Geometry and boundary conditions

The one-dimensional CAC framework is implemented using an in-house C++ code. The monatomic chain
onsists of N particles which are split into three regions as seen in Fig. 2. The particles in each coarse-scaled
continuum) region are separated by a distance of nr0 and are referred to as nodes in the present work. Here,

is some positive integer, and r0 is the equilibrium spacing determined by the potential function. These two
oarse-scaled regions flank the inner fine-scaled (atomistic) region on either side. The particles in the fine-scaled
egion are separated by a distance of r0 and are referred to as atoms in the present work. Because CAC produces

unified atomistic–continuum framework using a single set of governing equations, the atoms and nodes have

dentical properties with the only difference being their inter-particle spacing. As a result, the particles at the

5
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Fig. 2. Schematic of the CAC domain.

atomistic–continuum interfaces (xA,0 and xA,F ) interact with each other directly while generating minimal ghost
orces.

For verification tests and non-shock simulations, we employ either standard fixed or periodic boundary conditions.
owever, when modeling a propagating shock wave, the two coarse-scaled regions have distinct particle velocities,

trains, and temperatures. Therefore, to avoid introducing non-physical artifacts into the domain, a semi-periodic
oundary condition method is employed during shock simulations. Specifically, the nodes at the ends of the chain
x0 and xF ) are made neighbors with the nodes at the interfaces (xA,0 and xA,F respectively). The atoms and nodes
t the A–C interfaces interact with each other directly as in non-shock simulations.

.2. Integration algorithm

The CAC governing equation (Eq. (26)) is a second order ordinary differential equation in time, and we solve it
sing the velocity Verlet algorithm [73] as seen below for 1D:

xi (t +∆t) = xi (t) + vi (t)∆t +
fi (t)
2m

∆t2

vi

(
t +

∆t
2

)
= vi (t) +

∆t
2

fi (t)
m

fi (t +∆t) = fi [xi (t +∆t)]

vi (t +∆t) = vi

(
t +

∆t
2

)
+

∆t
2

fi (t +∆t)
m

. (20)

Here, xi , vi , and fi denote the position of the i th particle, its velocity, and the net force acting on it respectively.
Additionally, m is the atomic mass of the particle. The time step used in the integration algorithm is chosen to be
∆t = 0.001 ps in order to minimize numerical error. The velocity Verlet algorithm is adapted in the presence of
the Langevin thermostat as explained in Section 3.4.

3.3. Interatomic potential and material parameters

We use the modified Morse interatomic potential function to calculate the integrand of the internal force density
(Eq. (27)). The standard Morse potential was modified by [74] to improve the agreement with experimental
values for the thermal expansion of materials. The modified Morse potential only considers first nearest neighbor
interactions and is given by the following expression [74]:

Π (ri j ) =
D0

2B − 1

[
e−2α

√
B(ri j−r0)

− 2Be−α(ri j−r0)/
√

B
]

(21)

here ri j = |xi − x j | is the magnitude of the displacement between particle i and j , and r0 is the distance at which
he potential reaches the minimum. We perform shock simulations with the following FCC metals: Cu, Al, Ag,
6
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Table 1
Material constants and Morse parameters of four different FCC metals [74].

Element Mass (u) ρ0 (g/cm3) Γ1 r0 (Å) α (Å−1) D0 (eV) B

Cu 63.55 8.96 5.5486 2.5471 1.1857 0.5869 2.265
Al 26.98 2.70 6.2753 2.8485 1.1611 0.3976 2.5
Ag 107.87 10.49 5.9773 2.8765 1.1255 0.4915 2.3
Ni 58.69 8.90 6.4699 2.4849 1.3909 0.6144 2.4

and Ni. The parameters for these materials are given in Table 1 where we note that each r0 is equivalent to the
quilibrium spacing along the [110] lattice direction of that particular element.

The expression for the Grüneisen constant Γ1 of a perfect crystal with pair interactions in d-dimensional space
s given as follows [75]:

Γ1 = −
1

2d
Π ′′′(r0)r2

0 + (d − 1)
[
Π ′′(r0)r0 −Π ′(r0)

]
Π ′′(r0)r0 + (d − 1)Π ′(r0)

(22)

where Π is the interatomic potential. For a one-dimensional chain, this equation reduces to

Γ1 = −
1
2
Π ′′′(r0)r2

0

Π ′′(r0)r0
. (23)

e use Eq. (23) to obtain the Grüneisen constants given in Table 1. As seen, the Γ1 values for a 1D chain are about
x the experimental constants of a 3D crystal. Without loss of generality, the CAC verification studies in Section 6
nd the Appendix are performed using only the parameters for Cu.

.4. Thermostat

We impose and maintain temperature in the domain using the Langevin thermostat. The Langevin thermostat is
tochastic and thus adds a random force to the particle motion along with a damping term ζ . The one-dimensional
quations of motion of this thermostat for a particle i are as follows:

f tot
i (t) = fi (t) − ζmvi (t) +

√
2kBθζm

∆t
h̃i (t)⟨

h̃i (t)
⟩
= 0⟨

h̃i,α h̃i,β (t)
⟩
= δαβ (24)

where α and β denote Cartesian components, kB is Boltzmann’s constant, and h̃i is a Gaussian random variable
with a mean of zero and a variance of one. Since Langevin is local in nature, the target temperatures θ+ and θ−

are specified for each atom. We modify the velocity Verlet algorithm in the presence of the Langevin thermostat
by performing the discretization used in LAMMPS [76]:

vi

(
t +

∆t
2

)
= vi (t) −

∆t
2

[
∇iΠ (t)

m
+ ζvi (t)

]
+

√
∆tkBθζ

m
h̃i

xi (t +∆t) = xi (t) + vi

(
t +

∆t
2

)
∆t

vi (t +∆t) = vi

(
t +

∆t
2

)
−

∆t
2

[
∇iΠ (t +∆t)

m
+ ζvi

(
t +

∆t
2

)]
+

√
∆tkBθζ

m
h̃i . (25)

We note that because of the Verlet scheme, the time step in each velocity update is now ∆t
2 rather than ∆t . As per

Langevin’s requirements, we generate a different random variable for each particle during each velocity update.

4. CAC method

The CAC method extends the Irving–Kirkwood non-equilibrium statistical mechanical formulation for hy-
drodynamics [57] to a concurrent atomistic–continuum, two-level description of crystalline materials [46,55,56].
7
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Specifically, CAC describes a crystalline system as a continuous collection of material points or unit cells, and the
domain is discretized with finite elements such that each element contains a collection of these primitive unit cells.
Furthermore, each unit cell is embedded with a group of discrete particles, so the continuum lattice is directly linked
to underlying atomistic behavior [52,77]. This two-level material description produces multiscale balance laws which
characterize both the macroscopic lattice deformation as well as the microscopic rearrangement of particles [54].
As a result, a single set of governing equations regulates both the fine-scaled and coarse-scaled regions — a unique
feature of CAC [78].

In this section, we present a very brief overview of the CAC formulation. More details on the CAC framework
and Atomistic Field Theory can be found in [46,54,79,80]. The finite element form of the CAC governing equation
is given as follows:

ραüα(x) − fαint (x) = 0 (26)

which is simplified to only be dependent on the internal force density (the effects of external forces are ignored).
Here, x is the physical space coordinate, ρα is the local density of mass, uα(x) is the displacement of the αth particle
in the unit cell, and fαint (x) is the internal force density generally expressed as

fαint (x) =
∫
Ω(x′)

Na∑
β=1

f
[
uα(x) − uβ(x′)

]
dx′ (27)

where Ω (x′) is the domain of x′, and Na is the total number of particles within each unit cell. Hence, the internal
force density is a nonlinear, nonlocal function of relative displacements between neighboring particles within a
given cutoff radius, and it can be obtained exclusively from the interatomic potential function [81]. At the lattice
level, we use interpolation within an element to approximate the displacement field as follows [46]:

ûα(x) = Φξ (x)Uα
ξ . (28)

Here, ûα(x) is the displacement field for the αth particle within a given element, Φξ (x) is the shape function (linear
in this work), and Uα

ξ is the displacement of the αth particle within the ξ th unit cell. We let ξ = 1, 2, . . . , n where
n is the total number of unit cells in the element.

Substituting Eqs. (27) and (28) into Eq. (26), we can then use the method of weighted residuals to obtain the
weak form of the governing equation by multiplying Eq. (26) with a weight function Φη(x) and integrating over
the entire domain:∫

Ω(x)

[
ραΦη(x)Φξ (x)

]
dxÜα

ξ −

∫
Ω(x)

Φη(x)
∫
Ω(x′)

Na∑
β=1

f
[
Φξ (x)Uα

ξ −Φξ (x′)Uβ

ξ

]
dx′dx = 0. (29)

We solve this governing equation using numerical integration techniques and then utilize the velocity Verlet
algorithm described in Section 3.2 to obtain the position, velocity, and acceleration of each particle in the system.
This finite element implementation of CAC eliminates a majority of the degrees of freedom in the continuum regions.
For critical subdomains where atomistic behavior is important, the finest mesh is used such that the element length
is equal to the atomic equilibrium spacing r0.

We now specialize these equations for a one-dimensional monatomic chain using a 1D linear element in the
coarse-scaled region as seen in Fig. 3. For monatomic crystalline materials, the CAC primitive unit cell only
contains one atom. Hence, the “unit cells” at positions x1 and x2 consist exclusively of nodes 1 and 2 respectively.
Additionally, the element edge contains five lattice points whose positions are interpolated using Eq. (28) and which
are excluded from the Verlet algorithm. We do not apply any external forces and temperature is incorporated through
the Langevin thermostat, so the governing equation reduces to the following in 1D:

MÜ − Fint
= 0 (30)

where

M =

∫
Ω(x)

[ρΦ(x)Φ(x)] dx (31)

Fint
=

∫
Ω(x)

Φ(x)
∫
Ω(x ′)

nα∑
f
[
Φ(x)Ui −Φ(x ′)U j

]
dx ′dx . (32)
j=1

8
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Fig. 3. CAC coarse-scaled element for a one-dimensional monatomic chain.

In Eq. (30), M is the complete mass matrix which is assembled from the lumped mass matrix (LMM) of each
element in the domain. The standard LMM of a singular, two-node, one-dimensional element is defined as follows:

Me
L M M =

∫ Le

0

[
ρeΦe(x)Φe(x)

]
dx ≈

mne

2

[
1 0
0 1

]
. (33)

ere, m is the atomic mass, ne is the total number of particles and lattice points in the given element (where each
article gives 1/2 contribution), ρe is the atomic density of the element, Le is the element length, and Φe(x) is the
tandard linear shape function in 1D. For the coarse-scaled element in Fig. 3, the shape function at any position x
long the length of the element would be as follows:

Φe(x) = [φ1(x) φ2(x)] =
[

x2 − x
x2 − x1

x − x1

x2 − x1

]
=

[
1 − ξ

2
1 + ξ

2

]
(34)

here

ξ = 2
x − xC

Le
, (35)

and xC is the central coordinate of the element. We note that in the natural coordinate system, ξ = −1 at node 1,
ξ = 0 at the central point of the element, and ξ = 1 at node 2. The coarse-scaled element in Fig. 3 has a length
of 6r0 with two nodes and five lattice points, so its LMM is given as follows:

Me
L M M ≈

6m
2

[
1 0
0 1

]
=

[
3 m 0

0 3 m

]
. (36)

The terms Ü and Fint are vectors of the respective accelerations and net internal forces for each particle in the
hain. In Eq. (32), nα is the number of neighbors of particle i within a given cutoff radius, and f is the force as a

function of relative displacements acting on the particle. If we let

f int (x) =
∫
Ω(x ′)

n∑
j=1

f
[
Φ(x)Ui −Φ(x ′)U j

]
dx ′ (37)

then we can rewrite Eq. (32) as follows:

Fint
=

∫
Ω(x)

Φ(x) f int (x)dx . (38)

A force f int (x) on particle i at position x is obtained exclusively from the interatomic potential function, and
the corresponding net force is obtained through numerical integration. When finding the force f int (x) for a node
in the coarse-scaled region, the surrounding lattice points are taken as neighbors and used to calculate relative
displacements.

We use nodal integration to calculate the internal force density in Eq. (38). For a one-dimensional monatomic
chain with many elements, the internal force vector would be assembled from the individual force vectors of each
element. In a CAC framework, this internal force vector would contain net forces for both atoms and nodes. The
9
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Fig. 4. CAC geometry for moving window shock simulations. The black and orange circles represent the thermostat regions (TRs) while
the blue circles represent the window region (WR). The shock wave front (SWF) originates at the center of the WR.

only difference in the atomistic force calculations would be the element length Le (and thus ne), as well as the fact
that the neighbors of atoms are others atoms rather than lattice points. As a result, lattice point positions would not
have to be interpolated during the calculation of f int (x) for particles in the fine-scaled region.

5. Moving window

In traditional NEMD shock wave simulations, the shock cannot travel far before encountering a boundary, and this
vastly limits the overall simulation time. In the present work, we circumvent this problem by utilizing a moving
window. The moving window is similar in principle to moving boundary conditions used in [82,83] to model
dynamic crack propagation. Incorporation of the moving window into shock simulations is inspired from [26,84].
In these works, a constant flux of material with a given density and velocity was fed into the simulation window by
inserting a plane of atoms into the right boundary at regular time intervals. With the CAC framework, we employ
two distinct moving window methods to track the propagating shock and eliminate wave reflections: the conveyor
technique and the coarsen-refine technique.

5.1. Geometry for a shock

When performing shock wave simulations with the moving window, we utilize the entire CAC framework from
Fig. 2 and divide it into different regions as shown in Fig. 4. The outer particles (black and orange circles) constitute
the thermostat regions (TRs), and these particles flank the interior atoms (blue circles) which constitute the window
region (WR). We note that the two TRs encompass every continuum node as well as a small “band” of fine-scaled
atoms at each A–C interface in order for the WR to achieve the correct canonical ensemble [85]. All the particles to
the left of the shock wave front (SWF) constitute the shocked material while all the particles to the right constitute
the unshocked material. Semi-periodic boundary conditions are employed as detailed in Section 3.1, and the particles
at the thermostat and A–C interfaces interact with each other directly.

To minimize artificial kapitza resistance across the TR boundaries as well as efficiently absorb impinging transient
waves, we specify the damping factor ζ in the Langevin thermostat to be a function of position relative to each
TR/WR interface. Specifically, we utilize the equation developed in [85] to linearly ramp damping in each atomistic
TR as the distance from the TR/WR interface increases. This equation is given as follows:

ζ = ζ0

[
1 −

d (xi )

l

]
(39)

here ζ0 equals the maximum damping (one-half the Debye frequency), and l is the length of the atomistic TR.
ere, d(xi ) is the minimum absolute distance from atom i at position x to the respective A–C interface (either
oint xA,0 or xA,F ). Hence, for atoms in the fine-scaled TRs, the damping coefficient varies linearly from zero at
he TR/WR interfaces to ζ0 at the A–C interfaces. The damping coefficient equals ζ0 throughout the coarse-scaled

egions. This allows transient waves to enter the atomistic TRs and slowly be absorbed as they propagate to the

10
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continuum regions. Such a technique reduces spurious wave reflections and thus prevents artificial heating in the
WR [85,86].

5.2. Conveyor technique

A schematic of the moving window using the conveyor technique is shown in Fig. 5. The shock wave
originates at the center of the WR as detailed in Section 5.4 and immediately begins propagating forward into
the unshocked material. After the shock has traveled one equilibrium spacing r0, the atomic parameters (initial
position, displacement, velocity, and acceleration) of the first coarse-scaled particle in the chain (P1) are set equal
to the parameters of the lattice point immediately to its right (L P11). The initial position of L P11 is stored, but
ts displacement, velocity, and acceleration must be interpolated using the linear shape function from Eq. (34) as
hown in [50]:

UP1 ⇒ UL P11 = φ1(x11)UP1 + φ2(x11)UP2

U̇P1 ⇒ U̇L P11 = φ1(x11)U̇P1 + φ2(x11)U̇P2

ÜP1 ⇒ ÜL P11 = φ1(x11)ÜP1 + φ2(x11)ÜP2 (40)

After this, the initial position of L P11 is set equal to the initial position of L P12 and so on throughout the first
element until we reach the final lattice point in the element (L P1F ). Then, the initial position of L P1F is set equal
to the initial position of P2. For lattice points, only the initial positions are updated because their displacements
are interpolated during the Verlet algorithm. These steps get repeated throughout each coarse-scaled element in the
chain, and in the fine-scaled region, the parameters of a given atom are set equal to the parameters of its right
neighbor without any interpolation. Lastly, we assign the following values to the final particle in the chain (PF ):

X PF = X PF−1 + r0

UPF = 0 km

U̇PF = 0 km/sec

ÜPF = 0 km/sec2 (41)

where local atomic energy fluctuations induced near xF are damped by the Langevin thermostat as in [84].
This shifting process occurs iteratively with a frequency of τ−1

= US/r0 and effectively allows the monatomic
chain to “follow” the propagating shock wave. Therefore, if the simulated shock velocity matches the analytical
shock velocity, the SWF should remain at the center of the WR throughout the entire simulation. We refer to this as a
conveyor method because the chain moves in the positive x-direction with a constant velocity, and the coarse-scaled
and fine-scaled regions always have the same respective lengths. Hence, no real refinement or coarsening of the
domain takes place.

Due to the specified shifting frequency, the highest time resolution in the conveyor technique is r0/US . This
is solely because the region of interest in the domain is the SWF which travels with a known velocity of US .
Phenomena with longer or shorter time scales would indeed be captured in the domain, but depending on their
relative velocity, they may either outpace or fall behind the wave front and reflect off the A–C interfaces. The time
resolution of the conveyor method could easily be increased by shifting the simulation cell more frequently. The
only limiting factor would be the time step of the integration algorithm. Hence, the conveyor technique is highly
adaptable to other dynamic behavior in materials such as crack growth or dislocation evolution.

5.3. Coarsen-refine technique

A schematic of the moving window using the coarsen-refine technique is shown in Fig. 6. As in the conveyor
technique, the SWF originates at the center of the WR and propagates into the unshocked material. In the coarsen-
refine method, however, atoms near the left A–C interface become lattice points while lattice points near the right
A–C interface become atoms. Therefore, the moving window update does not occur until the shock has traveled a
distance of one element length nr0. After this, the last node in the shocked continuum region (the node at the left
A–C interface) becomes the second to last node in the shocked continuum region. Next, n − 1 lattice points are
ssigned the initial positions of the corresponding n−1 atoms in the shocked atomistic region. Then, the first atom in
11
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Fig. 5. Moving window using the conveyor technique.

Fig. 6. Moving window using the coarsen-refine technique.

the shocked atomistic region becomes the new A–C interface node and is assigned the initial position, displacement,
velocity, and acceleration of the atom n − 1 positions ahead of it. Effectively, a new continuum element has been
created behind the SWF, and the shocked material has been coarsened.

This atomic parameter assignment occurs throughout the fine-scaled region as long as the current atom plus n−1
is less than or equal to the first node in the unshocked continuum region. After this point, each fine-scaled atom
is assigned the parameters of the given lattice point n − 1 positions ahead of it. As in the conveyor technique,
the initial positions of the lattice points are stored, but their displacements, velocities, and accelerations must be
interpolated. Finally, the second node in the unshocked continuum region maintains its parameters from the Verlet
update, but it is now defined as the first node in the unshocked continuum region. Effectively, a continuum element
ahead of the SWF has been transformed into atoms, and the unshocked material has been refined. After this entire
process completes, the LMM is updated to reflect the modified mass distribution.

The coarsen-refine technique occurs iteratively with a frequency of τ−1
= US/nr0, and it is distinct from

the conveyor method because the initial and final positions of the framework do not change. Rather, the entire
monatomic chain remains stationary and only the boundaries of the atomistic region are updated. We also note that
the interface atoms of the atomistic TR bands are shifted accordingly. As a result, the shocked continuum region
lengthens, the unshocked continuum region shortens, and the atomistic region tracks the SWF through the domain.
For reasons similar to those mentioned in Section 5.2, the coarsen-refine technique introduces a time resolution
of nr0/US into the domain due to the update frequency. Therefore, while phenomena such as elastic waves or
dislocations could drift out of the fine-scaled region, they would merely reflect off the boundary or be absorbed by
the TRs while the WR tracked the shock.

The current coarsen-refine technique arises from a consideration of the balance between efficiency and accuracy.
For example, merely refining the domain ahead of the wave front would result in total accuracy but no efficiency
as the fine-scaled region would get larger and larger while the simulation evolved. This would defeat the purpose
of the CAC method and significantly increase the computational load over time. Likewise, merely coarsening the

domain behind the wave front would result in total efficiency but no accuracy as the fine-scaled region would get

12
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smaller and smaller while the shock approached the A–C interface. Thus, we strike a balance between these two
extremes by coarsening and refining equally-sized portions of the domain at the same rate.

5.4. Initialization of the shock wave

We choose a final strain ϵ+ and use Eqs. (17) and (18) to obtain the mean particle velocity v+ and shock front
elocity US . This mean particle velocity represents a new equilibrium velocity for particles in the shocked region,
nd the integration algorithm is updated accordingly. The imposed strain causes the shocked region to experience
niaxial compression, and the particles obey the Cauchy–Born rule such that their new positions follow the overall
train of the material. The non-zero particle velocity and compressive strain cause the shocked region to reach its
nal state and produce a forward-propagating shock wave beginning at the center of the WR. The temperature rise θ+

s calculated from Eq. (19) and imposed in the left TR, so the entire shocked region achieves this temperature [85].
he fine-scaled TR bands are far enough away from the SWF (the non-equilibrium region) such that they are

n regions of “local” equilibrium. This ensures the validity of applying thermostats onto strained sections of the
omain [22].

. Verification studies

In this section, we present verification studies and phonon wave packet tests performed with the CAC framework.
or the sake of brevity, results from the first two verification studies are presented and discussed in Appendices A
nd B. In Appendix A, we performed force vs. displacement tests to verify that Eq. (32) was correctly implemented
nto the one-dimensional framework as well as ensure force matching at the A–C interfaces. We found that the
pring constants of the fine-scaled, coarse-scaled, and CAC domains were nearly identical. Next, in Appendix B,
e performed temperature equilibration tests to ensure that the thermostat damping method discussed in Section 5.1
aintained the correct temperature in the undamped WR. We found that the Langevin thermostat equilibrated the

ystem to the given input temperature and maintained this temperature for the entire runtime.

.1. Predicting phonon dispersion relations

We first verify that our CAC framework can produce the correct dispersion relation because such a relation
haracterizes the dynamics of a crystalline system and provides a direct test of a given theoretical model [87].
raditionally, the dispersion relation of a crystalline system is obtained through Lattice Dynamics (LD). Although
D provides a fundamental description of phonon properties in perfect crystals at low temperatures, it cannot account

or anharmonic behavior like phonon–phonon scattering. Finite temperature effects can be incorporated into LD
hrough quasi-harmonic methods, but such methods are typically unwieldy and impractical to implement [88,89].
AC naturally incorporates anharmonic phenomena, and fortunately, alternative methods to LD have been developed

o evaluate phonon properties of crystalline systems in MD settings. The most common technique is the calculation
f the phonon spectral energy density ϕ(k, ω) defined as the average kinetic energy per unit cell as a function of
avevector k and angular frequency ω. In 1D, ϕ(k, ω) is given as [90]

ϕ(k, ω) =
m

4πτ0 N

⏐⏐⏐⏐⏐
∫ τ0

0

{
N∑

n=1

u̇n(t) × exp [ik · xn(t0) − iωt]

}
dt

⏐⏐⏐⏐⏐
2

, (42)

here τ0 is the total simulation time, N is the total number of particles, u̇n(t) is the velocity of particle n at time
, and xn(t0) is the initial position of particle n.

We use Eq. (42) to calculate the phonon dispersion curve of the CAC framework by postprocessing atomic
elocities in the fine-scaled region and nodal velocities in the coarse-scaled regions (Fig. 2). For this calculation,
he monatomic chain contains 260 atoms in the fine-scaled region and 20 nodes in each coarse-scaled region for

total of 300 particles. The element length in the coarse-scaled regions is defined as 6r0, and standard periodic

oundary conditions are applied at x0 and xF .

13
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Fig. 7. Phonon spectral energy density contour plot of a CAC monatomic chain calculated using the Langevin thermostat. The red line
represents the analytical dispersion relation obtained from LD, and the simulation was performed at 10 K.

The spectral energy density plot as well as the dispersion relation obtained analytically through LD using the
modified Morse potential can be seen in Fig. 7. The dispersion relation for a one-dimensional monatomic crystal
is given by the following standard equation:

ω =

√
4C
m

⏐⏐⏐⏐sin
(

kr0

2

)⏐⏐⏐⏐ (43)

here C is the elastic constant defined as the second derivative of the interatomic potential function at r0 in this case.
his simulation was performed at 10 K. The frequency resolution on the vertical axis is 0.004 rad/ps, the wavevector

esolution on the horizontal axis is 0.004, and the contours indicate the magnitude of the spectral energy density
or each (k, ω) combination.

In Fig. 7, we observe that the phonon dispersion relation obtained in the fine-scaled region of the CAC framework
s identical to that obtained from LD. However, the dispersion relation for the coarse-scaled regions is only accurate
or phonons whose wavevector is smaller than a critical value. The critical wavevector kC for an allowed error ϵ is

calculated by the element length (L = nr0) in the coarse-scaled regions according to the following equation [91]:

kC = max
k

{⏐⏐⏐⏐sin
(

kr0

2

)
− sin

(
kL
2

)⏐⏐⏐⏐ ≤ ϵ

}
. (44)

or this equation to be valid, the length values must be in nanometers, so r0 = 0.25471 nm and L = 6r0 =

.5283 nm in our case for Cu. We choose an allowable error of ϵ = 5% which corresponds to a critical wavevector
f kC = 0.064 π/r0, and a critical wavelength λC = 2π/kC = 7.96 nm. These results are consistent with spectral
nergy density plots obtained in previous works which use the CAC method for phonon heat transport and the
rediction of phonon properties [48,52,91].

.2. Phonon wave packet reflections at the A–C interface

To visualize the transmission and reflection of waves at the A–C interface, we perform phonon wave packet
tudies using the CAC framework. We create the wave packet from a single branch of the dispersion relation
btained in Section 6.1 with a narrow frequency range and well-defined polarization. Specifically, for each phonon
ode, we know the corresponding wavevector k and angular frequency ω from the LD dispersion relation or spectral

nergy density plot, and we can generate a Gaussian wave packet by assigning an initial displacement Un to the
th particle as follows [92–94]:

U = Aϵ(k)exp ik(x − x ) exp
[
−(x − x )2/ξ 2] . (45)
n [ n 0 ] n 0

14
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Table 2
Effect of wavevector on the energy transmission of a phonon wave
packet traveling from the fine-scaled region to the coarse-scaled region.

k/(π/r0) % energy transmission

0.01 99.97
0.05 99.61
0.06 99.11
0.07 98.10
0.08 95.83
0.09 90.63
0.10 73.35
0.20 0.00

In Eq. (45), A is the displacement amplitude, ϵ(k) is the polarization vector (ϵ(k) = 1 in 1D), xn is the position of
he nth particle, x0 is the position of the particle at the center of the wave packet, and ξ is the spatial extent of the
ave packet. The time-dependent displacement and velocity are calculated as follows:

U ∗

n = Un × e−iωt (46)

V ∗

n =
dU ∗

n

dt
= −iωUn × e−iωt , (47)

and at t = 0, the initial velocity of the wave packet is given as [94]

Vn = ω × I mag(Un). (48)

After the wave packet is initialized in the atomistic region, it is allowed to propagate freely into the undisturbed
medium, so only the displacement and velocity at t = 0 (Eqs. (45) and (48)) are used.

In Fig. 8, we present four sets of CAC simulation results with wave packets of the following four central
wavevectors: k = 0.01, 0.05, 0.1, and 0.2 π/r0. These wave packets are chosen to represent a range of values
on the dispersion curve such that k = 0.01 π/r0 is in the atomistic–continuum overlap region, k = 0.05 π/r0 is
slightly below the critical wavevector, k = 0.1 π/r0 is slightly above the critical wavevector, and k = 0.2 π/r0

is a short-wavelength phonon which cannot be modeled by the coarse-scaled region. We observe that the long-
wavelength wave packet (k = 0.01 π/r0) achieves nearly complete transmission across the A–C interface, and the
k = 0.05 π/r0 wave packet has only a small reflection. However, the shorter-wavelength wave packet (k = 0.1 π/r0)
has less transmission at the A–C interface, while the k = 0.2 π/r0 wave packet is completely reflected. The energy
transmission of wave packets at the A–C interface for various wavevectors can be seen in Table 2. These phonon
wave packet results confirm that the reflections at the A–C interface are a direct result of the numerical discrepancy
between the atomistic and continuum regions as shown in previous studies [48,52].

6.3. Moving window with phonon wave packets

To verify that the two CAC moving window methods described in Sections 5.2 and 5.3 maintain a wave
at the center of the fine-scaled region and do not produce any spurious phenomena at the A–C interfaces, we
perform moving window simulations with a phonon wave packet. We choose a medium-wavelength wave packet
(k = 0.2 π/r0) such that the wave would ordinarily be reflected at the A–C interface if allowed to propagate freely.
The only difference with these simulations is that the Langevin thermostat is not applied to the domain — the
particles are initially at rest.

Simulation results using the medium-wavelength wave packet both with and without the conveyor mechanism
are presented in Fig. 9. We observe that this method effectively prevents the phonon wave packet from propagating
forward, and the wave remains at the center of the atomistic region. Additionally, no spurious waves appeared at
either A–C interface throughout the duration of the simulation. These results confirm that the conveyor moving
window method works correctly and can track waves much longer than would be allowed in traditional MD

simulations.
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Fig. 8. Phonon wave packet simulations performed with the following wavevectors: (a) 0.01 π/r0, (b) 0.05 π/r0, (c) 0.1 π/r0, and (d)
0.2 π/r0.

Fig. 9. Wave packet simulations performed both (a) with and (b) without the conveyor method.

When modeling a phonon wave packet with the conveyor method, the moving window update frequency is
determined by the group velocity of the wave packet. In each simulation, we use the analytical group velocity given
by vg =

∂ω
∂k to initialize the update frequency defined as τ−1

= vg/r0. Then, we observe the drift in the propagating
wave packet to calculate its actual group velocity. These analytical and simulated group velocities are plotted against
16
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Fig. 10. Analytical and simulated group velocities of phonon wave packets.

Fig. 11. Time evolution of a phonon wave packet using the coarsen-refine technique.

he reduced wavevector in Fig. 10. Here, we see that the actual group velocity of the wave packet obtained from
he conveyor method follows the analytical group velocity exactly over the full range of wavevectors. This confirms
hat the conveyor mechanism works correctly for both large and small wavelength waves and does not alter the
ave speed in any nonphysical way.
In Fig. 11, we present results of a wave packet simulation performed with the coarsen-refine technique. Here, the

ave originates at the left of the domain and travels to the right over a period of 400 ps. The displacement profile
f the wave packet at 0 ps, 200 ps, and 400 ps is shown, and the dotted lines represent the position of the left
nd right A–C interface at each time. In this case, the coarsen-refine update frequency is τ−1

= vg/nr0 = vg/L .
We observe that the initial and final positions (x0 and xF ) remain stationary while the atomistic region moves
through the entire domain by the simultaneous coarsening of the left continuum region and refinement of the right
continuum region. In effect, the left coarse-scaled region lengthens, and the right coarse-scaled region shortens as
the simulation progresses in time. As a result, the fine-scaled region tracks the wave packet thus preventing it from

ever encountering an interface.
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7. Shock wave results

In this section, we present results from shock wave simulations performed with both the conveyor and coarsen-
refine moving window technique using the CAC domain from Fig. 4. Before conducting these studies, we had
to determine an appropriate length for the fine-scaled region to ensure that the structured shock front was fully-
contained in this region and did not “spill over” into the coarse-scaled regions. The length of the fine-scaled region
is determined by the spatial shock thickness (TS) which is calculated from the shock velocity (US) and rise time (RS)
by the following equation: TS = US×RS . Studies have shown a wide range in the shock rise times for small-domain
FCC metals with lower limits of ∼ 10−3 ns [95] and upper limits of ∼ 100 ns [96] for the same material. To be safe,
we choose a rise time of 100

= 1.0 ns. The materials studied are Cu, Al, Ag, and Ni with a maximum compressive
train of −0.1. Using a rise time of 1.0 ns with the analytical shock velocity obtained from ϵ+ = −0.1, we get
he following upper limits of the shock thickness for Cu, Al, Ag, and Ni respectively: 55,170 Å (∼21,660 atoms),
9,700 Å (∼27,980 atoms), 42,680 Å (∼14,838 atoms), and 70,700 Å (∼28,452 atoms). Therefore, without loss
f generality and to be extra precautious, we perform all of our shock wave simulations with 40,000 atoms in the
ne-scaled region.

.1. Conveyor method

We first simulate propagating shock waves in the CAC domain using the conveyor moving window technique
escribed in Section 5.2. For these simulations, the left and right coarse-scaled regions each contain 20,000 nodes
ith an element length of 6r0 for a total of 80,000 particles in the domain. Additionally, each atomistic TR band

ontains 100 atoms where ζ = ζ0 increases linearly throughout each band. The atomistic TRs are much longer than
he force range to ensure that the WR achieves the correct temperature. Simulations are performed with Cu, Al,
g, and Ni for final strains (ϵ+) ranging from −0.01 to −0.1, and each simulation is allowed to run for 1.0 ns.
esults from four of these simulations for ϵ+ = −0.06 are shown in Fig. 12. Here, the dotted lines represent the
–C interfaces, and we plot the velocity profile of the shock at 0.0 ns, 0.5 ns, and 1.0 ns.
For each of these shock simulations, v+, US , and θ+ are obtained using the 3rd-order Eulerian thermoelastic

quations from Section 2.1 (Eqs. (17), (18), and (19) respectively). The Grüneisen constant Γ1 and density ρ0 are
iven in Section 3.3, and Γ̂11 is determined from Eq. (9). Additionally, the 2nd and 3rd order elastic constants are
alculated from the equations developed by Born [97]. These equations allow one to compute the elastic constants
f cubic monatomic crystals whose atoms interact according to a central pairwise force law [98–100]:

C11 =
a4

2V

∑
j

m4
j D2

jΠ (r j ) (49)

C111 =
a6

2V

∑
j

m6
j D3

jΠ (r j ). (50)

ere, a is one-half the lattice parameter of the material, V is the volume per atom (V = 2a3 for FCC crystals), and
Π is the interatomic potential. Also,

r j =
[
m2

j + n2
j + l2

j

] 1
2 a (51)

here m j , n j , and l j are position coordinates of any atom in the lattice. Finally, D j is an operator given as follows:

D j =
1
r j

d
dr j

(52)

With the modified Morse potential, r0 is defined as the equilibrium spacing along the close packed direction
of the lattice. Therefore, we calculate C11 and C111 using Eqs. (49) and (50) by summing over the first nearest
neighbors of the 1D chain, and we find Ĉ111 from these constants using Eq. (7). Knowing Γ1, Γ̂11, ρ0, C11, and
ˆ111, we can then obtain the analytical shock velocity US (as well as v+ and θ+) required to begin the simulation.

As seen in Fig. 12, the shock front drifts over time from the center of the WR, and hence the simulated shock
velocity deviates slightly from the analytical value. We fit the shock profile to a hyperbolic tangent function using
MATLAB’s Curve Fitting tool, and track the shock drift over 1.0 ns (with an equilibration time of 300 ps) to obtain
18
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Fig. 12. Velocity profiles of shock wave simulations performed with the conveyor technique for ϵ+ = −0.06. Results are shown for the
following four materials: (a) Cu, (b) Al, (c) Ag, and (d) Ni.

the actual shock velocity. These results for all four elements over the full range of compressive strains studied can
be seen in Fig. 13.

We observe in Fig. 13 that the shock velocity data obtained from the CAC simulations correspond well to the
esults obtained from 3rd-order Eulerian theory over the full range of strains. For all four materials, the actual shock
elocity exceeds the analytical value by 2–3.5%. Specifically, the average errors for Cu, Al, Ag, and Ni are given
espectively as follows: 2.33%, 3.33%, 2.25%, 3.23%. These errors are attributed to the analytical approximation
f the elastic constants in Eqs. (49) and (50) (in fact, [99] found that these equations slightly under-predicted the
xperimental elastic constants of a bulk lattice at room temperature). The stiffer CAC results may also be due
o thermal effects and including fourth order terms in the Eulerian equations could further reduce the differences
etween simulation and theory. Nonetheless, the drift in the shock front is nearly imperceptible for many hundreds
f picoseconds which shows that such errors are fairly small for this type of problem. Therefore, the conveyor
ethod maintains a stationary wave front at the center of the WR with minimal deviation from the theoretical

hock velocity.
To confirm the ability of the CAC framework to track the propagating shock for very long simulation times with

his moving window technique, we conduct simulations using Cu, Al, Ag, and Ni with ϵ+ = −0.06 for 5 ns, where
S and v+ are assigned their computational values. Results from these simulations can be seen in Fig. 14, and in

ach case, we observe the shock front remain stationary at the center of the WR. Hence, the conveyor technique
llows the CAC domain to track a propagating shock much longer than traditional NEMD simulations. Additionally,
ach of these domains contains 80,000 particles and covers a total length of nearly 70 µm. An equally-sized atomistic
omain would be composed of 280,000 atoms and thus require ∼3.5x more memory. Therefore, the CAC framework
ith the conveyor technique significantly reduces the computational overhead of large-domain simulations.
19
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Fig. 13. Simulated shock velocity (US) vs. strain (ϵ+) data for (a) Cu, (b) Al, (c) Ag, and (d) Ni. Analytical results from 2nd and 3rd
order Eulerian theory are also shown.

7.2. Coarsen-refine method

Next, we track a propagating shock in the CAC domain using the coarsen-refine moving window technique
described in Section 5.3. In this case, however, the fine-scaled portion of the chain begins at the left boundary
and is allowed to travel with the shock front through the entire domain by the simultaneous coarsening of the left
continuum region and refinement of the right continuum region. Therefore, the shocked coarse-scaled region begins
with 500 nodes, the unshocked coarse-scaled region begins with 39,500 nodes, and the fine-scaled region again
contains 40,000 atoms for a total of 80,000 particles. The element length in each continuum region is 6r0 giving a
total domain size of ∼ 709,367 Å. As before, each atomistic TR band contains 100 atoms. During the simulation,
the left continuum region will grow, the right continuum region will shrink, and the atomistic region will remain at
a constant length. Results of a simulation performed with Cu for ϵ+ = −0.06 are shown in Fig. 15.

In these plots, we observe the evolution of the shock wave over 12.0 ns. The fine-scaled region successfully tracks
he moving wave front through the entire CAC domain with minimal spurious behavior at the A–C interfaces. As
xpected, we observe compression of the material to the left of the shock wave while the rightmost point remains
tationary. Hence, using the coarsen-refine moving window technique in a CAC framework allows us to model
hock propagation over engineering length scales and time frames. We note that the results in Fig. 15 can be
irectly compared to the results in Fig. 14a as both simulations follow a shock through Cu with a compressive
train of −0.06. In contrast to the conveyor technique, however, the shock can now travel through the entire domain
ecause the lengths of the continuum regions change. Previous studies have incorporated mesh refinement schemes
nto both finite element and atomistic–continuum frameworks [50,101–103]. However, employing simultaneous
20
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Fig. 14. Velocity profiles of shock simulations performed with (a) Cu, (b) Al, (c) Ag, and (d) Ni for 5 ns (ϵ+ = −0.06).

coarsening/refinement methods to model highly non-equilibrium events like propagating shock waves is an active
area of research. This work serves as a proof of concept for using such a technique in a multiscale setting.

7.3. Shock front structure

In Figs. 14 and 15, we observe that the spatial width of the shock front increases over time — implying that the
shock wave is unsteady. To understand this phenomenon further, we analyze the growth in shock front thickness over
5 ns for the four different materials. A plot of this data obtained for ϵ+ = −0.06 is shown in Fig. 16. These results
are in qualitative agreement with results from previous NEMD studies which modeled weak shock waves through
materials in a one-dimensional setting and also observed unsteady wave behavior [6,27,104,105]. Additionally, we
note that the growth rate of the shock width is approximately constant up to ∼1000 ps and then slows down
at higher time steps. This characteristic mirrors the results obtained previously in the moving window atomistic
framework [27]. Finally, from this data, we obtain a lower bound of ∼0.003 ns and an upper bound of ∼0.3 ns for
the shock rise time across each material. These values are very similar to the ranges observed in previous studies
for small-domain FCC metals [95,96].

7.4. Computational efficiency

Finally, we compare the computational cost of a shock simulation performed with CAC to an equally-sized MD
simulation of a shock wave. MD simulations were conducted using an entirely fine-scaled domain. The runtime
is calculated for a range of domain sizes, and the CAC framework always contains 40,000 atoms in the fine-

scaled region. The results are summarized in Table 3. Here, the units represent hours of runtime required for every
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i

Fig. 15. Velocity profile snapshots of a single propagating shock at the following times: (a) 0.0 ns, (b) 4.0 ns, (c) 8.0 ns, and (d) 12.0 ns.
Here, ϵ+ = −0.06, and the atomistic domain follows the shock front using the coarsen-refine technique. The dotted lines represent the A–C
nterfaces.

Fig. 16. Growth in the spatial width of the shock wave front over 5 ns. Here, ϵ+ = −0.06, and results are shown for Cu, Al, Ag, and Ni.
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Table 3
Simulation costs of the CAC method against pure MD for various domain sizes. The number of particles required
in CAC and number of atoms required in MD for the given domain length is shown (the CAC system always
contains 40,000 atoms in the fine-scaled region).

Domain size (Å) Particles (CAC) Atoms (MD) h/ns (CAC) h/ns (MD) Speedup

98,827 40,000 40,000 0.371 0.371 1.000
247,069 50,000 100,000 0.505 0.996 1.972
395,310 60,000 160,000 0.600 1.544 2.573
543,551 70,000 220,000 0.724 1.976 2.729
691,792 80,000 280,000 0.765 2.542 3.323
840,034 90,000 340,000 0.912 3.171 3.477
988,275 100,000 400,000 0.996 4.440 4.458
1,729,481 150,000 700,000 1.583 9.343 5.902

nanosecond of simulation time (h/ns), and each simulation was conducted with 40 processors. Notably, even the
smallest CAC domain is already a factor of 2 faster than the pure MD system. For the longest domain, the speedup
factor grows to nearly 6 even though there are only 4.67x as many atoms in the MD simulation as particles in the
CAC simulation. This study illustrates benefits of using CAC with the moving window techniques to significantly
reduce the computational time of large-scale, nonlinear simulations.

8. Conclusion

In this paper, we developed a moving window multiscale framework using the CAC method to model shock wave
ropagation through a one-dimensional monatomic chain. Specifically, we studied the classic Riemann problem of
single propagating shock wave in an infinite medium. We characterized the shock at the continuum level using

he third-order nonlinear Eulerian thermoelastic equations for shock compression in anisotropic crystals [64,65]. We
hen incorporated two different moving window techniques into the framework which tracked the moving shock
ront in distinct ways. In the first method, the entire domain followed the wave front in a conveyor fashion, while
n the second method, the fine-scaled region traveled through the chain by simultaneous coarsening and refinement.

We performed many verification studies with the framework including the replication of phonon dispersion curves
nd the simulation of phonon wave packets. Shock wave studies revealed that the CAC framework could accurately
odel propagating shocks with velocities very similar to those predicted by third-order Eulerian continuum theory.
dditionally, these studies showed that the conveyor technique could maintain the wave front in the middle of the
ne-scaled region for very long simulation times. Finally, simulations performed with the coarsen-refine technique
emonstrated that the fine-scaled region could travel with the shock through the domain and thus prevent the shock
ave from encountering the atomistic–continuum interface.
This work showcases the ability of the CAC framework to simulate highly non-equilibrium, transient events

ike shock waves through engineering-scale domains over realistic time scales. Atomistic methods have modeled
any features of shock propagation in materials over the past several decades, but the scalability of such schemes

s restricted by computational resources. While multiscale methods like CAC overcome size-scalability issues,
tudies which use these atomistic–continuum frameworks to model shock-like events have been limited. This is
artly because fast-moving, nonlinear phenomena like shock waves can be hard to capture even in fairly large
omputational frameworks. When such events are simulated, the total runtime is nevertheless bounded because
he shock will eventually leave the domain. The CAC method along with the two moving window techniques
iscussed in this paper significantly reduces the computational expense of such simulations and provides a means
o model a propagating wave over extended time scales. The present formulation will also be very valuable
hen studying other phenomena in a 1D chain such as nonlinear transition waves, Hertzian contact, and phonon

ransport [48,52,106–108].
Future work will incorporate a wave passing technique into the CAC framework. One of the main issues hindering

rogress in the development of concurrent multiscale schemes is the reality of spurious wave reflections at the A–C

nterfaces. Previous work has utilized LD to allow short wavelength, high-frequency phonon waves to pass from
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the atomistic region to the continuum region [52]. We hope to expand upon this work and use such techniques to
model complex phenomena like elastic waves emanating from a shock impact. Additionally, since transverse atomic
motion and dislocations cannot be studied in a 1D setting, we intend to expand the current framework to higher
dimensions and study events like phase transformations. In a 2D or 3D scheme, the WR would be either an area
or volume and the A–C interfaces would be either lines or planes which could fluctuate in direction due to the
moving window. Additionally, the shock could travel at different angles when compared to the lattice orientation
of the crystalline system. Despite these challenges, incorporating a coarsening/refinement technique into such a
higher-dimensional framework would allow us to study effects at the shock front when it encounters phonon waves
or other microstructural boundaries.
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Appendix A. Force vs. displacement tests

To ensure that the one-dimensional CAC framework achieves proper force matching at the A–C interfaces and
thus does not produce any spurious wave phenomena, we perform force vs. displacement tests. This is accomplished
by pulling the first particle in the chain very slowly at a constant rate and plotting the net force acting on it as a
function of its absolute displacement over time. Specifically, we displace the particle at a rate of 1.6695 × 10−7 Å/ps
for 10,000 ps. We perform these simulations using fine-scaled, coarse-scaled, and CAC domains with a total of 595
particles and lattice points in each system. Hence, the fine-scaled domain consists of 595 atoms, the coarse-scaled
domain consists of 100 nodes with each element having a length of 6r0, and the CAC domain consists of an inner
atomistic region containing 360 atoms and two outer continuum regions each containing 20 nodes. The results from
these force vs. displacement studies can be seen in Fig. A.17.

We observe that the coarse-scaled and CAC domains produce slopes which are nearly identical to the slope
obtained from the fine-scaled domain with relative errors of 0.0% and 0.84% respectively. We note that even smaller
relative errors were achieved with larger domain sizes. This implies that the spring constant is approximately the
same in all three frameworks. From these results, we conclude that the nodal integration and linear interpolation
schemes used in our CAC framework yield accurate forces on the individual particles. Therefore, Eq. (27)
is implemented correctly, and our system does not produce any spurious phenomena at the A–C boundaries.
Additionally, the spring constant remains largely unchanged when transitioning from a fine-scaled domain to an
equally-sized coarse-scaled or CAC domain.

Appendix B. Temperature equilibration tests

In this section, we verify that the CAC system from Fig. 4 can achieve the correct NVT ensemble in the undamped
R when the Langevin thermostat is applied to each TR. Specifically, we ensure that the temperature of the WR

emains stable for various desired temperatures under equilibrium conditions. The input temperature θ0 is specified,
nd the particles initially have random velocities such that the CAC domain contains the correct total energy for
n equilibrium system at θ0. Ideally, under equilibrium conditions, the system should achieve steady state with the
ppropriate equipartition of kinetic and potential energies.

There are two main parameters associated with the CAC system from Fig. 4: the length of each TR and the

aximum damping parameter ζ0. To understand how these parameters affect the temperature equilibration of the
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Fig. A.17. Force vs. displacement test results for (a) fine-scaled, (b) coarse-scaled, and (c) CAC domains.

WR, we performed studies over a range of different values. First, we found that each TR needed to be at least
the range of the forces as a shorter length failed to dampen energetic pulses and resulted in wave reflections into
the WR. Additionally, we found that the optimal value for ζ0 was one-half the Debye frequency ( 1

2ωD). A smaller
ζ0 (weak damping) failed to achieve a canonical ensemble in the WR, while a larger ζ0 (hyper damping) resulted
n large fluctuations in the WR [109]. These results are consistent with results previously obtained for the CADD
ramework [85]. Therefore, we always use a maximum damping of 1

2ωD with the Langevin thermostat. Results for
the temperature equilibration studies can be seen in Fig. B.18.

For each of these simulations, the CAC domain contains a total of 1000 particles with 100 nodes in each coarse-
scaled TR, 50 atoms in each fine-scaled TR, and 700 atoms in the WR. We then evolve the system for 5 ns and
calculate the temperature of the undamped WR at each time step using the equipartition theorem. The temperature
in each TR remains steady at the input temperature θ0 and thus acts as a constant-temperature reservoir. In Fig. B.18,
we plot the temperature in the WR vs. time for the following input values: 10 K, 100 K, 200 K, 300 K, 400 K, and
500 K. In each case, we observe the temperature stabilizes after a short time and achieves a steady state around the
respective input temperature. We note that the variance in the temperature increases with larger input values because
the particles oscillate more rapidly at higher temperatures. This effect can also be seen in Table B.4 which shows
the time-average temperature and its corresponding standard deviation in the WR for each simulation. These results
confirm that when an input temperature θ0 is applied to each TR, the undamped WR maintains an equilibrium
steady state around this value.
25
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t

Fig. B.18. Temperature in the undamped WR vs. time. Here, the Langevin thermostat is applied to the TRs for the following input
emperatures: 10 K, 100 K, 200 K, 300 K, 400 K, and 500 K.

Table B.4
Time-average temperature in the WR and its associated standard
deviation for various input temperatures θ0 applied to each TR.

θ0 (K) ⟨θ⟩ ⟨δθ⟩

10 10.19 0.52
100 98.64 5.37
200 200.65 11.24
300 302.72 16.52
400 400.66 19.35
500 496.39 24.56
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