
Sparse Vector-Matrix Multiplication Acceleration
in Diode-Selected Crossbars

Nicholas Jao, Student Member, IEEE, Akshay Krishna Ramanathan,
John Sampson, Member, IEEE, and Vijaykrishnan Narayanan, Fellow, IEEE

Abstract—Conventional processors suffer from high access
latency and power dissipation due to the demand on memory
bandwidth for data-intensive workloads such as machine learn-
ing, analytic, etc. In-memory computing support for various
memory technologies has provided formidable improvement in
performance and energy for such workloads, alleviating the
repeated accesses and data movement between CPU and storage.
While many processing in-memory (PIM) works have been
proposed to efficiently compute dot-products using Kirchoff’s
law, such solutions are unsuitable for many analytic workloads
where working data is too large and too sparse to efficiently
store in memory. This paper closely focuses on the peripheral
circuit design for diode-selected crossbars and configures the
compute-embedded fabric to efficiently compute sparse matrix-
vector multiplication (SpMV). On average, our proposed end-to-
end SpMV accelerator achieves 7.7x speed up and 4.9x energy-
savings compared to the state-of-art Fulcrum.

I. INTRODUCTION

As data volume continues to grow in emerging workloads,
the performance of machine learning and data analytics appli-
cations on conventional von Neumann systems are constrained
by memory accesses and data movement between physically
separate processing and memory elements [14]. Moreover,
such applications contain sparse matrix-vector multiplication
(SpMV) operations which suffer from inefficient memory
accesses and dominate the run time on conventional computing
platforms [34] [35]. In an effort to mitigate the costs of
data movement, recent works [47] [25] [24] have explored
compute as close to the memory as possible to mitigate the
data movement bottleneck.

Emerging non-volatile memory (NVM) technologies such
as Phase Change Memory (PCM) [16], Resistive Random
Access Memory (ReRAM) [13] and Spin Transfer Torque
Magnetic Random Access Memory (STT-MRAM) [22] have
enabled the exploration of new memory architectures which
offer higher integration density than conventional volatile
memories. Prominent among these structures, the crossbar
architecture [27] [5] has shown great potential to be cheaper
and denser than dynamic random-access memory (DRAM).
Furthermore, research in emerging NVMs has demonstrated
the possibility of using the resistance storage characteristics to
perform analog computation [21]. As opposed to embedding
logic near memory, NVM-based crossbars can be designed
such that accessing the memory array itself outputs the desired
computation. Because of these unique features, the crossbar ar-
chitecture shows immense potential as computing in-memory
solutions for memory-intensive workloads [19].

We propose a crossbar-based accelerator to solve SpMV
operation found in data analytics workloads. Our architec-
ture combines both computing in-memory and computing
near-memory approaches to independently perform the entire
SpMV operation. Our contributions include:

• The proposed crossbar design features a new analog
compute operation called index search in addition to the
read and write operations. The index search operation
leverages the crossbar structure to search across at mul-
tiple non-zero matrix elements in parallel.

• We propose a dual sense amplifier (DSA) design which
converts the crossbar’s analog current into the index
search output without using expensive analog-to-digital
converters (ADC).

• We develop a parasitic-aware search reference capable of
mitigating sense amplifier errors caused by the intercon-
nect parasitics of large crossbars.

• We employ dynamic configurability in the peripheral
logic to adjust the array-level parallelism by only turning
on a select portion of the available DSAs, effectively
reducing the number of outputs from index search at
each crossbar. While this architectural feature also offers
flexibility in the deployment scenario of the proposed ac-
celerator, we analyze the trade-off between performance
and energy-efficiency to show how this tuning knob is
optimized based on the characteristics of the dataset.

• When processing multiple rows of the sparse matrix in
parallel, our architecture control mechanism achieves sig-
nificant energy-efficiency over a state-of-art near-memory
processing architecture [24] by employing an independent
control scheme and buffer local to each tile.

II. BACKGROUND

In this section, we provide an overview of the different kinds
of multiply-accumulate (MAC) operations as well as related
works for computing in-crossbars.

A. Overview of Dense MAC

Many state-of-art works [41] [26] [30] employ NVM-based
crossbars as dot-product engines to accelerate matrix-vector
multiplication (MVM) in convolution neural networks (CNN).
The MVM operations are typically the inner product between
a dense matrix against a dense vector, where the matrix is
stored linearly in the crossbar array in column major order.
Prior works [21] [8] [1] propose parallel analog dot-products
in ReRAM arrays, applying Ohm’s Law across the resistive



device and leveraging Kirchoff’s Law to sum the current
across all devices sharing the same column. Therefore, the
magnitude of the current at each bit line is the result of the
MAC operation. However, such works adopt high resolution
analog-to-digital converters (ADC) to accurately transform the
output current into a binary value, which incurs significant
area overhead and dominates the power consumption of these
systems. Moreover, these works do not consider current sneak
paths and interconnect parasitics in crossbar architectures [27].

In contrast, prototype chips [7] [45] [46] implement the
analog MAC operation in ReRAM arrays selected by access
transistors and do not suffer from sneak path leakage. These
works utilize novel multi-bit sense amplifier topologies [7]
[45] and low-precision ADCs [44] [46] to efficiently realize
neural network computations without complex and costly
peripheral circuit overhead. [33] uses the ReRAM array as
a fully-connected perceptron circuit and further reduces the
analog-digital conversion into a step-function output, realized
by a 1-bit comparator.

Aside the many works in ReRAM technology, [39] propose
domain wall (DW) based devices programmed by spin orbit
torque (SOT) to serve as both crossbar array and peripheral
sensing interface. While ReRAM accelerators require CMOS-
based sense amplifiers and power-hungry ADCs, such works
[39] [41] leverage the ultra-low current switching charac-
teristics of DW-based devices to replace the ADC and the
data buffer, which are the most expensive components in the
peripheral circuits.

In summary, many of the in-memory MVM works demon-
strate speedup against CMOS accelerators for CNN applica-
tions. However, such systems can only achieve performance
improvement under the condition that the data is stored
linearly using contiguous addresses and all the operands are
arranged in the same column to sufficiently take advantage of
Kirchoff’s Current Law. Furthermore, the analog MAC opera-
tion inherently does not support floating point representations
and thus cannot be used for CNN training.

B. Overview of Sparse MAC

It is expensive to linearly store a very sparse matrix in
memory because the elements storing zero occupy too much
space, especially if the dataset is larger than the capacity of
memory chip itself. To reduce the memory requirement, many
machine learning datasets are typically arranged in a data
structure in which only the non-zero values are stored along
with their positions in the matrix. Among these data structures,
the compressed sparse row (CSR) format [38] constructs an
array of non-zero elements for each row of the matrix. Each
non-zero element is represented by a column index and a
non-zero value, and the array is sorted by column index in
ascending order. The CSR format is widely used in many
applications due to its storage efficiency, but the compressed
structure increases the computational complexity of matrix
operations.

State-of-art accelerators [34] [35] have shown that sparse
matrix vector multiplication (SpMV) operations in CSR format

dominates the execution time of analytic applications during
training phase. Among the workloads under study, these works
have observed that over 90% of kernelized support vector
machines (K-SVM) and over 70% of K-means clustering
algorithms are spent on sparse matrix sparse vector multiplica-
tion (spMspV) and sparse matrix dense vector multiplication
(spMdV) respectively. Such compute patterns in data analytic
algorithms provide a strong motivation to reduce the run time
of solving SpMV in CSR data structures.

While SpMV accelerators [34] support bit-level data pack-
ing schemes to reduce memory accesses of the matrix data
stored off-chip, works in computing in-memory [20] [24]
propose redesigning the memory itself to accelerate SpMV
workloads and further reduce data movement required to
access large matrices. Our prior work [20] integrates arithmetic
compare logic into ReRAM crossbar peripheral circuits to
solve the index matching of non-zero elements in SpMV and
only schedules off-chip loads for non-zero values that need
to be multiplied. State-of-art Fulcrum [24] integrates an entire
arithmetic logic unit (ALU) at every DRAM row buffer to
support a variety of memory-intensive benchmarks including
SpMV and achieves significant speed-ups against a GPU by
avoiding data movement overheads.

Other related works [42] [6] [48] propose ReRAM-based
crossbar architectures to accelerate SpMV in graph processing.
Both [6] and [48] explores a conditional dot-product engine
in the ReRAM crossbar, only activating the analog MAC
operation on the rows corresponding to a particular source
or destination vertex. To support vertex searching, the vertex
indices are physically stored in ternary content-addressable
memory (TCAM) arrays which requires two complementary
ReRAM devices to represent one bit of data [18] [19]. Like the
prior works in Section II-A, the selective analog dot-products
performed in ReRAM-based graph processing are limited to
integer and fixed-point data representations only.

III. SPARSE-MATRIX SPARSE-VECTOR MULTIPLICATION

In this section, we cover the details of the SpMV operation
as well as discuss the additional processing overheads required
to access a sparse matrix represented by the CSR data struc-
ture.

A. SpMV Basics

Fig. 1 illustrates an example of how the SpMV operation is
executed on conventional computing systems, where a sparse
matrix A is multiplied by vector x to generate the output
vector y. Fig. 1(a) shows the original dense representation and
its corresponding sparse representation of the example SpMV
operation, highlighting the dot product between first row of A
with the column vector x to produce the first element in the
y vector, y0 = A0•x.

Matrix A is converted from a 4-by-4 square to a CSR
structure in which every row contains only the non-zero
elements. For instance, row A0 contains the value 3 at column
0 [0,3] and the value 2 at column 3 [3,2] as outlined in
Fig. 1(a). The non-zero elements in vector x is represented

2



Fig. 1: (a) Example SpMV showing the conversion from
the original to sparse (CSR) data format (b) Irregular access
patterns and compute structures required to perform SpMV in
CSR format

with the row index and the non-zero value at that row. The
SpMV example shows that rows 0, 2 and 3 corresponds to
the values 1, 3 and 2 respectively. In conventional MVM,
the number of columns in matrix A must be the same as
the number of rows in vector x as the columns needs to be
multiplied against the corresponding rows. However when the
non-zero elements are compressed to index-value structure,
the indices of A and x need to be compared to determine
which non-zero elements are to be multiplied and added to
resulting element, y0. We refer to this comparison process as
the index search operation which bottlenecks the execution
time of SpMV.

Fig. 1(b) shows a step by step process on how SpMV is
typically performed in software. Initially, all elements in the
output vector y begin at zero. The example given in Fig. 1(b)
demonstrates the computation flow required to resolve the first
element y0 as shown. The first non-zero elements from A0 and
x are accessed in a sequential manner for comparison and the
index search operation finds that the column index from A0
matches the row index of x. Because an index match indicates
that both A0 and x holds a non-zero element in the same
position, the non-zero values, 3 and 1 respectively, need to
be multiplied and accumulated to the y0. Then, the elements
[0,3] and [0,1] are discarded because no other element can
occupy position 0 and the subsequent elements [3,2] and [2,3]
are accessed. Here the the indices do not match, and the MAC
operation is skipped as a result. Because the CSR format is
sorted by index in ascending order, only the element with
the lower index is discarded as the next element in x could
possibly match the element in A0. Lastly, the next element in x
matches that of A0 and the corresponding values are multiplied

and added to the final result. In this example, both A0 and x
have reached the last non-zero element of the list. In most
cases, this process completes when one finishes before the
other.

As a result, the index search component of SpMV controls
which non-zero elements are the multiplied, accumulated and
discarded. While the original dense format enables direct linear
access of the elements and achieves computation parallelism
in dot-products, the throughput of SpMV is limited by the
sequential nature of index search required properly operate
on the compressed sparse data. This work proposes an in-
memory solution to solve index search and demonstrates
how to leverage the PCM-based crossbar structure to achieve
parallel compare operations and speed up execution time of
SpMV.

Fig. 2: (a) Example of proposed SpMV in CSR format
(b) Index search operation performed in-situ in PCM-based
crossbars which physically stores the non-zero elements of
row 0 and row 1 of matrix A on separate tiles in binary

B. Proposed Index Search

Fig. 2(a) goes through step by step how the proposed
approach to solves SpMV. In this example, matrix A represents

3



a 4×16 matrix in CSR format and is multiplied with a 16×1
sparse vector, vector x, to produce a 4×1 output, vector y.
In contrast to Fig. 1, we use a larger matrix to showcase
index search operations using a cluster. Fig. 2(a) highlights
the first two rows of Matrix A, i.e. A0 and A1, being pro-
cessed simultaneously since rows A0 and A1 both need to be
multiplied with the same vector x to generate outputs y0 and
y1 respectively. Moreover, the proposed approach compares
each non-zero element from vector x to a cluster of non-zero
elements from Matrix A to increase the chance of an index
match in a single index search cycle. The example in Fig. 2(a)
shows both rows A0 and A1 selecting 4 non-zero elements
simultaneously, amounting to 8 index comparisons per cycle.

The first non-zero element [0,1] from vector x searches for
a matching index in rows A0 and A1. The first element of
A0 matches with index 0 and the corresponding values, 1 and
3, are multiplied and added on to y0 while no match exists
in the selected cluster from A1. Because index 0 is less than
the largest index in the A0 and A1 clusters, indices 7 and 13
respectively, element [0,1] from vector x is discarded for both
rows. Next, the same index search pattern follows for the next
non-zero element [2,3] from vector x, no matches occur and
element [2,3] is discarded for both rows as well. When the
selected element in vector x moves on to [7,2], the largest
index element in the A0 cluster matches with index 7 and the
MAC operation is performed on the corresponding values, 1
and 2. In this specific case, the entire non-zero cluster in A0
is discarded and the index search selects the next four non-
zero elements in that row. On the other hand, row A1 does
not match again and the cluster is not discarded because the
element of highest index is still greater than index 7. In the
final step of fig. 2(a), A0 cluster matches with index 10 and
A1 does not match. The index search operation ends because
the last element in vector x is discarded after multiplying the
corresponding value with element [10,3] from row A0 and
accumulating it on to element y0. Based on the varying discard
patterns showed in A0 and A1, our proposed approach requires
an independent control scheme for each row of matrix A to
process them in parallel.

Note that conventional Von Neumann systems would require
several digital comparators and a large memory bandwidth
to process such a large portion of the sparse matrix at once.
Thus, such solutions are unsuitable for our proposed approach
especially when the index search scales up to operating on
larger number of rows and non-zero clusters in parallel.
Fig. 2(b) demonstrates the advantages the crossbar structure
exploits when searching across multiple indices sharing the
same column. To enable both rows of matrix A to operate
independently, the contents of rows A0 and A1 are stored
in separate crossbar arrays. Consistent with the first step of
Fig. 2(a), both crossbars select the first 4 indices and compare
whether the stored value is greater than, less than or equal
to the search input, index 0. Based on the results of each
comparison, the corresponding control unit for each crossbar
determines which non-zero elements are discarded for the
next index search. For the case shown in Fig. 2(b), element

[0,1] from vector x is discarded for both crossbars. Then the
queue head is updated to element [2,3] for the next index
search. Because the CSR format sorts the non-zero elements
by index in ascending order, the index-value pairs are stored in
ascending order from the top to the bottom of each crossbar,
allowing the control scheme to easily identify the largest index
in the selected cluster. Lastly, the control unit enables the
corresponding value for each index match to be multiplied
and accumulated into an output register.

IV. CROSSBAR DESIGN AND ANALYSIS

To support the proposed index search described in Sec-
tion III-B, the voltage biasing and memory technology are
the key design parameters such that the crossbar can properly
convert its stored contents into analog currents via Kirchoff’s
current law. Voltage biasing design space becomes even more
critical when the access transistors are eliminated for higher
integration density and therefore relies on two-terminal se-
lector devices to access the desired memory cells without
interference from unaccessed cells during operation [5]. In
such transistor-free crossbar memory systems, the voltage
biasing scheme are optimized based on the current-voltage
characteristics of the selector such that sneak path currents
are effectively minimized and the unaccessed cells remain
undisturbed. Among the many selector candidates, selector
diodes [23] [36] have been well-studied due to its low process
cost [17], high current density and orders of magnitude ON-
OFF ratio. The primary advantage of diode-based selectors
from a crossbar design standpoint is the device’s intrinsic
rectification characteristics during reverse bias which can be
used to effectively cancel current sneak paths and enable
more flexible voltage biasing schemes for compute in-memory
applications. However, the rectification property limits the
memory cells to only support unipolar switching. While novel
back-end-of-line (BEOL) diode structures have been explored
to potentially overcome these limitations [15], we choose PCM
memory technology as the most suitable candidate to design
diode-selected crossbars for index search support.

A. Phase Change Memory Basics

The data stored inside PCM devices are represented by
the state of matter retained by the chalcogenide material.
While prior work demonstrates the multi-bit storage potential
with intermediate states [16], our work focuses on the PCM
technology as a conventional single-level cell (SLC) device.
PCMs use a temperature-based phase transition property to
switch between amorphous (high resistance) and crystalline
(low resistance) states of the material, which represents 0 and
1 bits, respectively.

When reading a single bit stored inside a PCM device, the
voltage applied across the cell generates a current based on
the electrical resistance of the material and that current is fed
into a sense amplifier circuit to distinguish which of the two
resistance states is stored in the cell. For the index search
operation, we design the applied voltage across the resistance-
based storage to produce a current proportional to the index

4



data stored in the array. To ensure the largest index produces
the largest current, the voltage applied across cell storing the
most significant bit (MSB) needs to be largest and vice versa
for the least significant bit (LSB). Section IV-B goes through
how the voltage-biasing scheme is designed to ensure (1)
the accessed cells are transformed into the appropriate analog
current (2) sneak path currents do not offset the result of the
index search operation.

Fig. 3: Voltage biasing schemes for all supported operations

B. Voltage Biasing Scheme

Fig 3 shows the voltage biasing schemes for read, write
and index search operations respectively. The read operation
in Fig 3(a) applies the ground voltage on the selected word
line (WL) and the state of the selected cells are sensed at
the bit lines (BL) which are tied to VREAD. While there is no
voltage drop across the cells sharing the same WLs and BLs as
the accessed word, there is a reversed voltage drop across the
unaccessed cells in which the current is effectively rectified
by the reverse bias of the selector diode. Fig 3(b) shows the
write operation following a similar voltage biasing pattern,
driving the selected WL to ground. Here, a SET voltage, VSET,
is applied to the BLs of the cells writing 1 and the RESET
voltage, VRESET, to the BLs of the cells writing 0. Because the
melting temperature is higher than that of the crystallization
temperature of the device, the VRESET is typically larger than
the VSET for the same pulse duration. Therefore, the unselected
WLs are set to VRESET to ensure none of the unaccessed cells
are in forward bias.

Fig 3(c) shows the proposed voltage biasing scheme for the
index search operation, which leverages the crossbar structure
to sense the current at the WLs as opposed to the conventional
read operation. Each selected BL is driven to a unique voltage
level for the cells to generate current based on the bit position.
In other words, VMSB applied to the left-most bit produces
the largest cell current and VLSB applied to the right-most bit
produces the smallest cell current when the respective PCM

devices are storing 1, following Ohm’ Law. However, when
the PCM device stores 0, the resistance is so high that the cell
yields insufficient current no matter what voltage is applied. In
this way, the magnitude of the current on the WL represents
the binary value stored, adding up the cell currents from
MSB to LSB based on Kirchoff’s Current Law. The crossbar
architecture also allows the operation to search across multiple
WLs and the unselected WLs are driven to VMSB to ensures
unaccessed cells stay below the threshold of the selector diode.
The following sections go into detail on the peripheral circuit
design to efficiently sense the WL currents while averting use
of expensive ADC circuitry.

Fig. 4: Circuit diagram of the dual sense amplifier (DSA)

C. Dual Sense Amplifier

As discussed in Section III, the output of index search is
primarily used to schedule the MAC and discard operations
in the SpMV compute pattern. Consequently, the ADCs are
unnecessary because the control unit only needs to know
whether the stored data are less than, greater than or equal
to the search input to make decisions. Shown in Fig. 4, we
propose a dual current comparator circuit which comprises of
two current-latch current sense amplifiers (CL-CSA) [29] [44]
to transform the WL current into digital output signals, OUT+
and OUT- respectively. Signal OUT+ indicates that the stored
index is less than or equal to search input and signal OUT-
indicates that the stored index is greater than or equal to the
search input. In other words, OUT+ is logic 1 when the WL
current is less than the REF+ threshold and same with OUT-
when the WL current is greater than the REF- threshold. When
the magnitude of the WL current falls right in between REF+
and REF- thresholds, both OUT+ and OUT- output logic 1
and this indicates an index match. Therefore, the comparison
output information is simply represented with 2 bits.

While voltage-mode signals can directly be connected to
multiple comparators, the current sense amplifiers used in
our design cannot be directly connected to the same WL for
both comparators to operate simultaneously. Thus, the WL is
connected to a conventional low voltage cascode current mirror

5



(LVCCM) to effectively copy the WL current to both CL-
CSAs. Similarly, the REF+ and REF- currents are also copied
via LVCCMs to broadcast the search input to multiple dual
sense amplifiers (DSAs). In this way, the DSAs provide the
necessary interface to directly extract the compare information
from the stored data. The primary disadvantage of the using
the LVCCM to replicate the WL, REF+ and REF- currents
is that the power consumption is copied as well, resulting in
additional direct current paths from the power rail to ground in
the DSA design. In our design, the additional power overhead
is mitigated by only activating the CL-CSAs for a short pulse
after the crossbar array is fully charged. While the charging
time of the WL current is determined by the crossbar size and
interconnect parasitics, the pre-charge time for each CL-CSA
is based on how fast the LVCCM turns on and is independent
of the array size. For instance, it takes roughly 2 ns for all the
WLs to charge to steady-state in simulation according to the
crossbar parameters given in I. By enabling the CL-CSAs to
operate for 0.5 ns and sample the WL currents at steady state,
our design effectively reduces the energy dissipation of DSA,
which accounts for 80% of the total crossbar energy.

Fig. 5: Applied voltage bias on reference cells to generate
REF+ and REF- currents for a 3-bit index search correspond-
ing to the binary number 1102

In terms of peripheral circuit area, each DSA is pitch-
matched across 16 WLs of the array and fits a total of 64
DSAs at the edge of a 1024x1024 crossbar. Consequently, the
maximum number of comparisons that can be supported in a
single search cycle is 64. Although searching across a larger
cluster of non-zero elements will improve the throughput
of the index search operation, the activation of many WLs
and DSAs in parallel is very power hungry. Therefore, we
enable the crossbar to switch between two configurations,
high performance (HP) mode and low power (LP) mode. The
HP mode aggressively turns on all 64 DSAs and strives to
complete the SpMV computation flow as quickly as possible.
On the other hand, the LP mode sequentially turns only 4
of 64 DSAs at a time and limits the broadcast capability on
the crossbar to only a cluster of 4 per search. We evaluate the
system-level performance benefits of both modes in section V.

D. Parasitic-Aware Search Reference

Another critical circuit design challenge is the generation
of the appropriate REF+ and REF- currents for the corre-
sponding search input. The reference thresholds need to be
chosen such that only one index can produce a match. Parallel

to the how the WL currents are accumulated in the crossbar,
PCM cell replicas with the same bias voltages are employed to
produce the reference currents. Every reference cell comprises
of a fixed PCM resistance in series with a selector diode,
replicating the current-voltage characteristics of a crossbar
cell.

Fig. 6: Proposed parasitic-aware reference generation, activat-
ing the 2-bits which are (a) far away from the DSA (b) close
to the DSA

Fig. 5 shows an example of how REF+ and REF- are
generated for a search input of the value 6. The voltage biasing
pattern on the LRS replica cells is the primary mechanism that
converts the input binary into analog current. In the example,
the majority of the REF+ current comes from the higher-
order reference cells while the LSB reference cell is turned
off, yielding a current that matches 1102. To account for
HRS leakage currents in the WL current, HRS reference cells
are employed with the inverse voltage biasing of the LRS
reference cells. An additional LRS reference cell, biased to
VOS, is used to ensure that REF+ is half LSB larger than
the matching current such that the CL-CSA asserts OUT+
when the index is less than or equal to that threshold. For the
REF- threshold to be half LSB less than 1102, the input to
the reference cell drivers are decremented to 1012 and employs
the same half LSB reference cell to achieve the greater than
or equal to functionality. By design, a matching WL current
would fall between the two reference thresholds.

However, the parasitic resistance of the WL connection
degrades the output current at large array sizes. Because
interconnect resistance grows larger over routing distance, the
accumulated current from cells far away from the DSA are
lower than the expected value. In other words, the mean
of the WL current falls closer to the REF- threshold for
such cases and results in a higher probability of error when
distinguishing an index match. Our solution modifies the
reference current generator to adjust the thresholds based on
the physical location of the accessed cells. To implement this,
the entire WL is replicated twice for each reference threshold,
one containing only LRS cells and the other containing only
HRS cells. Fig. 6 shows how the WL replication is used
to balance out the interconnect parasitic on both sides of
the DSA, matching the degradation effect of the WL in the
reference generation to minimizing errors. At the end of each
reference generator, there is an additional LRS cell driven to
VOS to offset the reference currents by half LSB as elaborated

6



Parameter Mean (µ) Variation (σ/µ)
CMOS Supply VDD 1.1V 0.64%

VMSB-VLSB 1.5 V, 1.1V, 0.85 V, 0.715 V 0.64%
RWIRE, CWIRE 0.52 Ω/µm, 0.048 fF/µm 10%

PCM RLRS, RHRS [16] 30 kΩ, 1000 MΩ 10%
Selector RDIODE 5.8 kΩ 5%

Selector VTH 0.2 V 2%

TABLE I: Default Simulation and Variation Parameters

in Fig. 5. The only overhead of our proposed parasitic-aware
search reference is the additional peripheral circuit area of four
entire WLs of dummy cells. However, the area overhead is
less significant as the crossbar size increases. For our crossbar
design, reference generator only accounts for 0.39% of a
1024x1024 array size.

E. Variation Analysis

To analyze the robustness of our design, we perform rig-
orous Monte-Carlo simulations on the index search operation
and find the number of DSA errors which is referred to as
search error rate in this work. TABLE I lists the memory
device, selector device and array parameters as well as their
coefficients of variance used in our design and simulation. For
supply and bias voltages, we assume the variation parameter
found from prior works in bandgap references [28] [37] [40]
which have temperature coefficients as low as 34 ppm/◦C. The
selector variation parameters are chosen to be 2-5% according
to [9].

TABLE II show the search error rates of 3-bit and 2-bit
resolutions with the default variations applied. For the 3-bit
case, each digital combination is independently tested under
200 iterations, 100 simulations close to the DSA and 100
simulations far from the DSA to ensure the effect of inter-
connect parasitics are also captured. To ensure the statistical
significance of the results, the 2-bit case is tested under 2000
Monte-Carlo iterations. A search error rate of 0% (which
has been reported in several locations of TABLE II) means
that none of DSA distinguished incorrectly throughout all the
iterations simulated. As observed, the 3-bit index search is
more sensitive to variations than the 2-bit index search due
to the smaller the current margin between adjacent digital
codes, which can cause the DSA to misinterpret the stored
resistance states in the WL. It is important to note that
the sense margin between adjacent levels becomes tighter as
the stored value increases. Consequently, the observed non-
linearity in the output current distribution worsens as the index
search resolution increases as shown in the high error rate
regions of the 3-bit index search reported in TABLE II. To
understand whether or not these error rates are acceptable from
a system-level, we further evaluate the effect of DSA errors
in Section V.

F. Accelerator Architecture

Due to robustness concerns of the index, the maximum
index search resolution is limited to 2-bits (or 3-bits) per
WL as discussed in IV-E. However, sparse matrices in many
analytic workloads are require indices greater than 16 bits to

10◦C 25◦C 40◦C
3-bit Index Search Error Rate

000 0% 0% 0%
001 0% 0% 0%
010 0% 0% 3%
011 1% 0.5% 0.5%
100 27.5% 26.5% 42.5%
101 43% 34.5% 27.5%
110 45% 38.5% 38.5%
111 7.5% 4% 3%

10◦C 25◦C 40◦C
2-bit Index Search Error Rate

00 0% 0% 0%
01 0% 0% 0%
10 1.6% 0.85% 3%
11 0% 0% 0%

TABLE II: Monte-Carlo simulation on index search error rate
for 3-bit and 2-bit resolutions under the coefficient of variation
parameters from TABLE I

represent millions of columns. To overcome this limitation, our
architecture slices the index into 2-bit segments and simultane-
ously operate on each segment to construct a full comparison.
In other words, a 24-bit unsigned integer is distributed across
12 crossbar arrays, each performing the index search operation
on their respective 2-bit segments. Because the higher-order
segments are weighted heavier than the lower-order segments,
a priority logic is required the merge the results of each DSA
and output the final comparison information for the control
unit.

Fig. 7 shows the architectural block diagram of all the
required components to accelerate SpMV. The tile shown in
Fig. 7(a) functions as both a memory and a processing element.
The crossbars serve as the primary building blocks for index
search and the priority logic constructs the final comparison
results based on the segment stored in each crossbar. If
comparing the most significant segments resulted in a greater
than or less than, then the rest of the lower-order data are don’t
cares. If the result was equal, then the priority logic would
propagate to the result of the next most significant segment.
The control unit keeps track of which portions of the crossbars
are activated, the output port of the FIFO and the operation
of the floating-point (FP) MAC unit. Upon detecting an index
match, the control unit finds the corresponding floating-point
values to be multiplied and added on to the result stored in
the buffer. Shown in Fig. 7(a), the value associated with the
matched index is read from the crossbar and fed into to the
FP MAC unit. The control unit is also responsible for the
discard process, handling the read pointer of the FIFO as well
as the selected rows and columns of the crossbars at every
search cycle. Because the control unit dynamically configures
the tile based on the output of each index search, it is critical
that the crossbars are designed properly and DSAs generate
the correct comparison results.

The FIFO component not only serves as a buffer for the
index-value pairs to be compared, but also interfaces with other
tiles to minimize the costs of data movement. Fig. 7(b) shows

7



Fig. 7: Block diagram of (a) a single tile (b) broadcasting to multiple tiles

the tiles are connected together via bus-like routing, following
the same wiring organization as a conventional random-access
memory module. This inter-tile routing, which transfers load
and store data during memory mode, is also used to internally
broadcast non-zero data to multiple tiles during SpMV. As
the number of tiles increases, the latency of the broadcast
bottlenecks the performance of the index search. As long as
the FIFO buffer is not empty, the tile continuously performs
index search with the available elements in the local buffer
and effectively hides the latency of the broadcast. To avoid
redundant broadcasts, the tile sending the elements of vector x
must keep track of the FIFO buffers of all active tiles operating
on different rows of matrix A simultaneously, only sending
new elements once when all receiving buffers are not full. If
one tile completes the index search early, the sender no longer
needs to send any more data to that tile or keep track of its
FIFO status. Note that the FIFO memory is configurable as a
conventional row buffer shared across multiple crossbars for
memory transactions, supporting the distributed read and write
of 4-bit segments to each crossbar.

V. EVALUATION

A. Experimental Methodology

Table III lists all the extracted delay, energy and area of the
circuit and architecture components described in Section IV.
The crossbar peripheral circuits and analog signals are simu-
lated using HSPICE. In terms of layout analysis, all peripheral
components make up only 4.6% of the crossbar sub-tile area.
The digital logic and architecture components of the tile are
implemented via register transfer level (RTL) synthesis. The
routing between tiles are extracted from nvsim [11] configured
with low swing wiring strategy and 2 GB storage capacity. All
components are designed using 45nm transistor process design
kit (PDK) [43] across all simulations.

We evaluate our proposed design on several sparse machine
learning datasets from [12] which require SpMV operations
in K-SVM training applications. The datasets under study are
RCV1 [2], URL Reputation (URL REP) [31], and GV LDA
[32]. RCV1 is a text categorization of multilingual documents
from Reuters with the original english collection containing
18,757 documents and up to 21,531 features per document.

Crossbar (Sub-Tile) Breakdown
Component Detail Area (mm2) Operation Delay (ns) Energy (pJ)

Row Driver 10:1024
Decoder 0.00154 R/W 0.090 0.201

Multi-Voltage
Level Driver

4-wide
256-way 0.000464 Index Search 0.088 0.086

Read 1.1 0.57
Write 30 10,752Crossbar

PCRAM
1024x1024

(2-bit / 3-bit)
0.2621

Index Search 1.581 / 1.75 2.14 / 2.49

Col. Mux 64-wide
16-way 0.000278 R/W 0.054 0.068

Data SA 64 bit 0.000554 Read Only 0.069 1.42

Row Mux 64-wide
16-way 0.00845 Index Search 0.054 0.068

Dual SA 64x2 0.0018 Index Search 0.069 6.22 / 6.59

Ref. Array PCRAM
4x1024 0.001024 Index Search - 0.0883

Read 1.26 2.19
Write 30.1 10,752TOTAL (2-bit / 3-bit) 0.2763

Index Search 1.79 / 1.96 8.60 / 9.32

Tile Breakdown (2-bit only)
Component Detail Area (mm2) Operation Delay (ns) Energy (pJ)
FIFO Buffer 1 Kb 0.0253 Index Search 0.069 17.43

Crossbars 12 Sub-Tiles 3.316 Index Search 1.79 103.2
Priority Logic 0.00138 Index Search 0.073 0.64
Control Unit 0.00256 Index Search 0.4 0.54

FP MAC 32 bit 0.0211 Multiply-Add 3.3 11.1
TOTAL 3.366 Index Search 2.33 121.8

System Components
Component Detail Delay (ns) Energy (pJ)

Routing 512 bit 9.582 163.6

TABLE III: Component Breakdown and Specifications

URL REP is a time-series collection of 20 thousand URLs
with over 3.2 million features used for classification of whether
a URL is malicious or benign. Lastly, GV LDA contains
97,935 videos uploaded to YouTube in the gaming category
in which each instance is a 1000-dimensional latent Dirichlet
allocation (LDA) topic model on the title, description and tag
information. The sparsity information of the datasets under
study are summarized in Table IV.

While the benefits of our prior work [20] against an SpMV
accelerator are due to reducing cost of data movement, state-
of-art Fulcrum [24] mentioned in section II-B performs better
than the GPU by almost 10x for the SpMV operation. Though
Fulcrum is implemented in 3D-stacked DRAM, [24] claims
that same simplified control and access mechanism can be em-
ployed in SRAM and NVM technologies as well. Therefore,
we evaluate our proposed in-situ accelerator against the state-
of-art Fulcrum with the simplified control built around conven-
tional PCM crossbars called Fulcrum NVM. For quantitative
comparison against our accelerator, we estimate the latency

8



Dataset Matrix Size % Non-Zeros
RCV1 18,757 x 21,531 0.35 %

URL REP 20,000 x 3,231,961 0.0036 %
GV LDA 97,935 x 1,000 2.2 %

TABLE IV: Summary of Datasets Under Study

and energy of the logic components using RTL synthesis
tool and nvsim. Assuming the same memory organization and
aggressive latency-optimized design strategy, we verify that
Fulcrum NVM operates very close to the frequency of 199
MHz as reported in [24].

B. Performance Evaluation

Fig. 10 compares the performance benefits of our proposed
accelerator against Fulcrum NVM of executing a single SpMV
over the three K-SVM datasets under study. We fix the
tile configuration of both accelerators to 16 active tiles in
parallel, limiting the internal broadcasting of vector x to 16
rows of Matrix A at a time. For run time analysis, our
accelerator outperforms Fulcrum NVM by 7.7x on average
across all bit configurations, achieving up to 16.1x for the
RCV1 dataset. The benefits of our accelerator are two-fold.
First, Fulcrum NVM does not store broadcasted values of
vector x local to each ALU which performs the index and
value processing. Consequently, the clock cycle of Fulcrum
NVM is based on broadcast latency which is longer than our
accelerator’s index search time according to table III. Second,
Fulcrum NVM computes SpMV by sequentially broadcasting
the index followed by the corresponding value, resulting in two
cycles per non-zero element. This results in wasting cycles
broadcasting data to that does not match in any active tile
as also mentioned in [24]. On the contrary, our accelerator
architecture stores the non-zero elements in the local FIFO
buffer and handles the MAC and discard operations in the
SpMV compute pattern independently at each tile, only stalling
the index search process when a match exists.

Fig. 8: Evaluation of our accelerator in HP/LP modes and
Fulcrum NVM comparing the total (a) execution time and (b)
energy consumption of a single SpMV operation.

In general, the GV LDA dataset took much longer to
complete than that of RCV1 and URL REP. This is because
the matrix size of GV LDA is much larger as the storage
requirement is roughly an order of magnitude larger than that
of RCV1 and URL REP. Relative to Fulcrum NVM, our
accelerator gains less speed up on URL REP than RCV1

and GV LDA. Although URL REP has the highest sparsity
among the datasets under study, we found that the URL
REP experiences the highest rate of index matches, 63%
on average, according to our statistical analysis. Mentioned
in Section IV-F, the control unit stalls the index search for
an additional two cycles to multiply and add corresponding
floating-point values upon detecting an index match. As a
result, our accelerator spends many cycles performing the
MAC operation on URL REP dataset.

Similarly, our accelerator achieves an average energy sav-
ings of 2.61x in the HP mode and 7.17x in the LP mode
over Fulcrum NVM. While the 93% of energy is dissipated
in the crossbars and DSAs in our accelerator, Fulcrum NVM
consumes substantial energy shifting the contents of the row
buffer as input into the ALU as well as broadcasting vector
x data to all tiles at every cycle. We also observe that the
LP mode consumes lower energy across all 3 datasets. The
HP mode aggressively looks for a match over a larger range
of indices but consumes almost an order of magnitude higher
static power during index search. While the HP mode speeds
up the discard process by saving search cycles, the LP mode
enjoys higher energy-efficiency by eliminating the redundant
analog comparisons.

Fig. 9: (a) Example of missing computations in SpMV due
to index search error (b) Evaluation of computation loss in
SpMV operation due to the variation parameters given in
TABLE I, showing the impact of PCM resistance variation
on the accuracy of SpMV across various datasets.

It is observed that the 2-bit index search resolution performs

9



slightly better than 3-bit in execution time due to shorter
search cycle. On the other hand, the 2-bit mode comes with
higher energy consumption because it requires higher number
of active crossbars to represent a 24-bit index. While the
performance of both options remain relatively similar, there
exists a huge difference in robustness of the index search
operation between the 2-bit and 3-bit resolutions as shown
in TABLE II. Fig. 9(a) illustrates a simplified example of how
index matching errors can cause expected computations to
be lost in an SpMV operation. In this example, the output
vector y dropped 2 terms out of 4 total MAC operations,
resulting in 50% missing computations. Fig. 9(b) analyzes
the system-level impact of 2-bit and 3-bit search errors due
to the default variation parameters from TABLE I at room
temperature. Under default variations, the 3-bit resolutions
suffer major computation losses for GV LDA and URL REP
datasets and the 2-bit resolution is preferred to maintain
the quality of output vector. By tuning the PCM resistance
coefficient of variance (CoV) from 10% to 5%, we observe
an average improvement of 3.1x in missing computations
for the 3-bit case and no errors are observed for the 2-bit
resolution. Therefore, it is crucial to have precise control over
the non-volatile memory resistance states in order to operate
the accelerator at higher bit resolutions.

Fig. 10: (a) Throughput normalized to Fulcrum NVM at iso-
power of 100 mW (b) Energy-efficiency analysis of the URL
REP dataset for best and worst case sparsity (% non-zeros) in
vector x

Fig. 10(a) evaluates the throughput of the HP and LP modes
of our accelerator under a budget of 100 mW average power.
Because the number of active tiles is the primary tuning knob
to increase the parallelism of the SpMV operation, understand-
ing how the accelerator performs at iso-power gives us insight
into how suitable it is as an edge computing device for Internet
of Things (IoT) applications. In a power-aware computing
scenario, our accelerator achieves much higher throughput
than Fulcrum NVM across all datasets. In particular, the LP
mode achieves an average of 8.4x and 2.8x against Fulcrum
NVM and the HP mode, respectively. The LP mode achieves
highest throughput because it can provision more resources
under the same power budget.

Fig. 10(b) captures the effect of the vector x sparsity on our
proposed accelerator compared to Fulcrum NVM. For a deeper

analysis of the results of Fig. 10(a), we choose URL REP as
a representative workload for more detailed sparsity analysis.
We evaluate SpMV operation using the sparsest, 0.001% non-
zeros, and the densest, 0.01% non-zeros, vector x from the
URL REP working set. We observe that the higher the sparsity
of the vector x in y = A • x, the more energy efficient our
proposed accelerator is. When multiplied against the sparsest
vector, the 2-bit HP and 2-bit LP modes achieve 2.2x and 5.4x
higher performance per watt than Fulcrum NVM respectively.

However, the energy-efficiency of the 2-bit HP mode is 3x
worse than that of Fulcrum NVM when vector x is less sparse
than matrix A. Since vector x is broadcasted to tiles which
contain less non-zero elements than itself, the HP mode wastes
energy performing the one-to-many compare operation at each
tile. Consequently, the LP mode mitigates the energy overhead
of the index search and is more suitable for accelerating
spMdV operations, executing 27% higher operations per joule
over Fulcrum NVM at the lowest vector x sparsity.

VI. CONCLUSIONS

While state-of-art Fulcrum [24] and our prior work [20]
leverage computing near-memory architectures to acceler-
ate SpMV, we propose a novel in-situ design which uses
the crossbar’s analog readout mechanism to accelerate the
computationally-intensive index search of the SpMV pattern.
Our proposed crossbar design avoids the use of expensive
ADC and employs a circuit-level technique in the reference
generator to overcome the sense margin challenges associated
with supporting analog computing in large array sizes. While
our technique addresses the impact of interconnect parasitics
on the output signal, the impact of device variation remains
an important concern and requires further investigation. There-
fore, a future work can analyze the trade-offs of implementing
existing solutions [4] [3] [10] to further improve the search
error rate of the index search operation.

Our accelerator architecture efficiently processes the index-
value data with a simple control unit local to each tile,
only reading the data when an index match is detected.
While state-of-art in-situ approaches rely on tile parallelism to
broadcast values to a large portion of the unstructured matrix,
our index search approach takes advantage of the crossbar
structure to extract comparison information over a cluster of
stored non-zero elements and ultimately reduces the number of
search cycles required to complete each active tile. Moreover,
our accelerator features dynamic configurability in the index
search cluster size, allowing flexibility in the accelerator reap
the benefits of both the HP and LP modes in various scenarios.
In datacenters where performance and throughput are critical,
the HP mode achieves the fastest SpMV execution on large
datasets when the maximum tiles in the system are employed.
On the other hand, the energy-efficiency of the LP mode is
more suitable for power-aware computing when the number
of active tiles are proportional to the power available.

10



VII. ACKNOWLEDGEMENTS

This work was supported in part by Semiconductor Re-
search Corporation (SRC), Center for Research in Intelligent
Storage and Processing in Memory (CRISP), National Science
Foundation (NSF) Expeditions in Computing CCF-1317560
and NSF Special Projects CCF-1955815.

REFERENCES

[1] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA ’16, 2016, pp. 14–
26.

[2] M. R. Amini, N. Usunier, and C. Goutte, “Learning from multiple
partially observed views -an application to multilingual text categoriza-
tion,” in Proceedings of the 22nd International Conference on Neural
Information Processing Systems, ser. NIPS’09. Red Hook, NY, USA:
Curran Associates Inc., 2009, p. 28–36.

[3] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasubramonian,
and V. Srinivasan, “Efficient scrub mechanisms for error-prone emerging
memories,” in IEEE International Symposium on High-Performance
Comp Architecture, 2012, pp. 1–12.

[4] M. Awasthi, M. Shevgoor, K. Sudan, R. Balasubramonian, B. Rajendran,
and V. Srinivasan, “Handling pcm resistance drift with device, circuit,
architecture, and system solutions,” in Nonvolatile Memories Workshop,
03 2011, p. 2.

[5] A. Aziz, N. Jao, S. Datta, and S. K. Gupta, “Analysis of functional
oxide based selectors for cross-point memories,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2222–2235,
2016.

[6] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan, “Gaas-x: Graph
analytics accelerator supporting sparse data representation using crossbar
architectures,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 433–445.

[7] W. Chen, K. Li, W. Lin, K. Hsu, P. Li, C. Yang, C. Xue, E. Yang,
Y. Chen, Y. Chang, T. Hsu, Y. King, C. Lin, R. Liu, C. Hsieh,
K. Tang, and M. Chang, “A 65nm 1mb nonvolatile computing-in-
memory ReRAM macro with sub-16ns multiply-and-accumulate for
binary DNN AI edge processors,” in ISSCC2018, 2018, pp. 494–496.

[8] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in ISCA2016, 2016, pp. 27–
39.

[9] H.-L. Chiang, T.-C. Chen, M.-Y. Song, Y.-S. Chen, J.-P. Chiu, K. Chiang,
M. Manfrini, J. Cai, W. J. Gallagher, T. Wang, C. H. Diaz, and H.-
S. P. Wong, “Design space analysis for cross-point 1s1mtj mram:
Selector–mtj cooptimization,” IEEE Transactions on Electron Devices,
vol. 67, no. 8, 2020.

[10] J. Choi, J. Jang, and L. Kim, “Dc-pcm: Mitigating pcm write distur-
bance with low performance overhead by using detection cells,” IEEE
Transactions on Computers, vol. 68, no. 12, pp. 1741–1754, 2019.

[11] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
TCAD2012, vol. 31, pp. 994–1007, 2012.

[12] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[13] H. L. et al., “Beol based rram with one extra-mask for low cost, highly
reliable embedded application in 28 nm node and beyond,” in IEDM
’17, 2017, pp. 2.4.1–2.4.4.

[14] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
SIGPLAN Not., vol. 47, no. 4, p. 37–48, Mar. 2012.

[15] S. Ghosh, R. Jha, A. Iyengar, and R. Govindaraj, “Design space
exploration for selector diode-sttram crossbar arrays,” IEEE Transactions
on Magnetics, vol. 54, no. 6, pp. 1–5, 2018.

[16] M. He, D. He, H. Qian, Q. Lin, D. Wan, X. Cheng, M. Xu, H. Tong,
and X. Miao, “Ultra-low program current and multilevel phase change
memory for high-density storage achieved by a low-current set pre-
operation,” IEEE Electron Device Letters, vol. 40, no. 10, pp. 1595–
1598, 2019.

[17] J. G. Hughes and G. W. Neudeck, “The total process cost of selective
epitaxial growth (seg) dielectric isolation process as compared to locos,”
in Twenty First IEEE/CPMT International Electronics Manufacturing
Technology Symposium Proceedings 1997 IEMT Symposium, 1997, pp.
88–92.

[18] M. Imani, S. Gupta, S. Sharma, and T. S. Rosing, “Nvquery: Effi-
cient query processing in nonvolatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 4, pp. 628–639, 2019.

[19] N. Jao, A. K. Ramanathan, A. Sengupta, J. Sampson, and V. Narayanan,
“Programmable non-volatile memory design featuring reconfigurable in-
memory operations,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), 2019, pp. 1–5.

[20] N. Jao, S. Srivinasa, A. Ramanathan, M. Kim, J. Sampson, and
V. Narayanan, “Technology-assisted computing-in-memory design for
matrix multiplication workloads,” in 2019 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), 2019, pp. 1–6.

[21] Y. Kim, Y. Zhang, and P. Li, “A digital neuromorphic vlsi architecture
with memristor crossbar synaptic array for machine learning,” in 2012
IEEE International SOC Conference, 2012, pp. 328–333.

[22] K. Lee, J. H. Bak, Y. J. Kim, C. K. Kim, A. Antonyan, D. H. Chang,
S. H. Hwang, G. W. Lee, N. Y. Ji, W. J. Kim, J. H. Lee, B. J. Bae, J. H.
Park, I. H. Kim, B. Y. Seo, S. H. Han, Y. Ji, H. T. Jung, S. O. Park,
O. I. Kwon, J. W. Kye, Y. D. Kim, S. W. Pae, Y. J. Song, G. T. Jeong,
K. H. Hwang, G. H. Koh, H. K. Kang, and E. S. Jung, “1gbit high
density embedded stt-mram in 28nm fdsoi technology,” in 2019 IEEE
International Electron Devices Meeting (IEDM), 2019, pp. 2.2.1–2.2.4.

[23] K.-S. Lee, D.-H. Yoo, J.-J. Han, Y.-W. Hyung, S.-S. Kim, C.-J. Kang,
H.-S. Jeong, J.-T. Moon, H. Park, H. Jeong, K.-R. Kim, and B. Choi,
“Selective epitaxial growth of silicon for vertical diode application,”
Japanese Journal of Applied Physics, vol. 49, no. 8, p. 08JF03, aug
2010. [Online]. Available: https://doi.org/10.1143/jjap.49.08jf03

[24] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. Stan, and K. Skadron, “Fulcrum: A simplified control and access
mechanism toward flexible and practical in-situ accelerators,” in 2020
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 02 2020, pp. 556–569.

[25] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017, pp. 288–301.

[26] W. Li, P. Xu, Y. Zhao, H. Li, Y. Xie, and Y. Lin, “Timely: Pushing data
movements and interfaces in pim accelerators towards local and in time
domain,” 2020.

[27] J. Liang and H. . P. Wong, “Size limitation of cross-point memory array
and its dependence on data storage pattern and device parameters,” in
2010 IEEE International Interconnect Technology Conference, 2010, pp.
1–3.

[28] Y. Liu, C. Zhan, and L. Wang, “An ultralow power subthreshold cmos
voltage reference without requiring resistors or bjts,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 1, pp. 201–
205, 2018.

[29] C. Lo, W. Lin, W. Lin, H. Lin, T. Yang, Y. Chiang, Y. King, C. Lin,
Y. Chih, T. J. Chang, M. Ho, and M. Chang, “Embedded 2mb reram
macro with 2.6ns read access time using dynamic-trip-point-mismatch
sampling current-mode sense amplifier for ioe applications,” in 2017
Symposium on VLSI Circuits, 2017, pp. C164–C165.

[30] Y. Luo and S. Yu, “Accelerating deep neural network in-situ training
with non-volatile and volatile memory based hybrid precision synapses,”
IEEE Transactions on Computers, vol. 69, no. 8, pp. 1113–1127, 2020.

[31] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
suspicious urls: An application of large-scale online learning,” in
Proceedings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 681–688. [Online]. Available:
https://doi.org/10.1145/1553374.1553462

[32] O. Madani, M. Georg, and D. A. Ross, “On using nearly-independent
feature families for high precision and confidence,” Machine Learning,
vol. 92, pp. 457–477, 2013, published online 30 May 2013, [Web Link].

[33] R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, H. Suwa,
R. Yasuhara, K. Katayama, T. Mikawa, and Y. Gohou, “A 4m synapses
integrated analog reram based 66.5 tops/w neural-network processor
with cell current controlled writing and flexible network architecture,”
in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 175–176.

11



[34] E. Nurvitadhi, A. Mishra, and D. Marr, “A sparse matrix vector multiply
accelerator for support vector machine,” in 2015 International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), Oct 2015, pp. 109–116.

[35] E. Nurvitadhi, A. Mishra, Y. Wang, G. Venkatesh, and D. Marr,
“Hardware accelerator for analytics of sparse data,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 1616–1621.

[36] J. H. Oh, J. H. Park, Y. S. Lim, H. S. Lim, Y. T. Oh, J. S. Kim, J. M.
Shin, J. H. Park, Y. J. Song, K. C. Ryoo, D. W. Lim, S. S. Park, J. I.
Kim, J. H. Kim, J. Yu, F. Yeung, C. W. Jeong, J. H. Kong, D. H. Kang,
G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, “Full integration
of highly manufacturable 512mb pram based on 90nm technology,” in
2006 International Electron Devices Meeting, 2006, pp. 1–4.

[37] Y. Osaki, T. Hirose, N. Kuroki, and M. Numa, “1.2-v supply, 100-nw,
1.09-v bandgap and 0.7-v supply, 52.5-nw, 0.55-v subbandgap reference
circuits for nanowatt cmos lsis,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 6, pp. 1530–1538, 2013.

[38] H. Pabst, B. Bachmayer, and M. Klemm, “Performance of a structure-
detecting spmv using the csr matrix representation,” in 2012 11th
International Symposium on Parallel and Distributed Computing, 2012,
pp. 3–10.

[39] A. Sengupta, Y. Shim, and K. Roy, “Proposal for an all-spin artificial
neural network: Emulating neural and synaptic functionalities through
domain wall motion in ferromagnets,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 10, no. 6, pp. 1152–1160, 2016.

[40] C.-Z. Shao, S.-C. Kuo, and Y.-T. Liao, “A 1.8-nw, 73.5-db psrr, 0.2-
ms startup time, cmos voltage reference with self-biased feedback and
capacitively coupled schemes,” IEEE Journal of Solid-State Circuits,
vol. 56, no. 6, pp. 1795–1804, 2021.

[41] S. Singh, A. Sarma, N. Jao, A. Pattnaik, S. Lu, K. Yang, A. Sengupta,
V. Narayanan, and C. R. Das, “Nebula: A neuromorphic spin-based
ultra-low power architecture for snns and anns,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 363–376.

[42] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” 2017.

[43] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R.
Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and
R. Jenkal, “Freepdk: An open-source variation-aware design kit,” in 2007
IEEE International Conference on Microelectronic Systems Education
(MSE’07), 2007, pp. 173–174.

[44] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu, “XNOR-RRAM:
A scalable and parallel resistive synaptic architecture for binary neural
networks,” in DATE2018, 2018, pp. 1423–1428.

[45] C. Xue, W. Chen, J. Liu, J. Li, W. Lin, W. Lin, J. Wang, W. Wei,
T. Chang, T. Chang, T. Huang, H. Kao, S. Wei, Y. Chiu, C. Lee, C. Lo,
Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and M. Chang, “24.1 a 1mb
multibit ReRAM computing-in-memory macro with 14.6ns parallel mac
computing time for CNN based AI edge processors,” in ISSCC2019,
2019, pp. 388–390.

[46] S. Yin, X. Sun, S. Yu, and J. S. Seo, “High-throughput in-memory com-
puting for binary deep neural networks with monolithically integrated
rram and 90-nm cmos,” IEEE Transactions on Electron Devices, vol. 67,
no. 10, pp. 4185–4192, 2020.

[47] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “Top-pim: Throughput-oriented programmable
processing in memory,” in Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 85–98. [Online]. Available: https://doi.org/10.1145/
2600212.2600213

[48] L. Zheng, J. Zhao, Y. Huang, Q. Wang, Z. Zeng, J. Xue, X. Liao, and
H. Jin, “Spara: An energy-efficient reram-based accelerator for sparse
graph analytics applications,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2020, pp. 696–707.

12


