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Abstract—Emerging non-volatile memory technologies promise
the opportunity for maintaining persistent data in memory. How-
ever, providing crash-consistency in such systems can be costly
as any update to the persistent data has to reach the persistent
domain in a specific order, imposing high overhead. Prior works,
proposed solutions both in software (SW) and hardware (HW)
to address this problem but fall short to remove this overhead
completely. In this work, we propose Non-Volatile Cache (NVC)
architecture design that employs a hybrid volatile, non-volatile
memory cell employing monolithic 3D and Ferroelectric technol-
ogy in L1 data cache to guarantee crash consistency with almost
no performance overhead. We show that NVC achieves up to
5.1x speedup over state-of-the-art (SOTA) SW undo logging and
11% improvement over SOTA HW solution without yielding the
conventional architecture, while incurring 7% hardware overhead.

Index Terms—Non-volatile cache, Persistent applications,
Monolithic-3D integration, SRAM, Ferro-electric FET

I. INTRODUCTION

Emerging non-volatile memory technologies like Intel’s 3D
XPoint allow programmers to maintain persistent data (e.g.,
files, database tables) in memory and access them using pro-
cessor load and store instructions. This architecture represents a
significant departure from and performance improvements over
conventional architecture with a volatile main memory and a
separate, slow, block storage device SSDs and HDDs [1]–[3].

Crash consistency refers to ensuring that an application’s data
is safe and recoverable even in the presence of failures [5]. The
persistent (non-volatile) data stored on these PM devices (like
files and databases) has to be updated in a specific order to
ensure that the data is safe and recoverable in the presence of
a system failure [1], [3], [4]. For example, within a database
transaction, the updates to the database log have to be persisted
before the updates to the actual database table to ensure the
crash consistency of the database. However, placing constraints
on the order of updates to PM significantly constraints the
performance of these persistent applications [4].

Prior work has sought to address this problem through
combination of software and/or hardware techniques [1], [4].
The central idea behind these proposals is to batch, coalesce,
and reorder updates to PM, where possible without losing any
crash consistency guarantees, to improve the performance of
these applications. However, the fundamental limitation of all
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of these works is the fact that for the data to be considered
“persisted”, it has to be flushed all the way to the memory
controller of the corresponding PM device [6]. For example,
Intel’s clwb and sfence instructions which ensure that some
data has been persisted are shown to be sources of significant
performance degradation [4].

In this work, we seek an alternative approach to reduc-
ing the overheads of persisting data. We leverage the novel
Monolithic 3D (M3D) technology [7] based multi-layer hybrid
non-volatile/volatile SRAM memory to effectively move the
point of persistence from the memory controller to the L1
cache. Such a change obviates the need for expensive data
movements from the L1 cache to the memory controller to
make the said data persistent. Moreover, simply making the
data persistent in the L1 cache is not sufficient. We still need
to ensure the crash consistency of the data being modified. We
design a NVC architecture enabled by the M3D integration
process by stacking and connecting non-volatile device [8] to
the underlying SRAM to ensure crash consistency.

While the NVC and the underlying M3D non-volatile SRAM
technology may be used to efficiently implement a number of
crash consistency mechanisms, in this paper we focus on the
popular undo logging technique. Undo logging is a mechanism
that is used to ensure failure atomic updates to PM, i.e., either
all or none of a set of updates are reflected in PM in the event of
system failure [1], [2]. A common example of a set of updates
is a transaction.

Undo logging techniques work by performing four important
actions: (i) backup data - when a location is modified for
the first time within a transaction, a backup of the data is
persisted before the data is modified, (ii) in-place update
- once a backup has been created, the actual data has to
be modified and persisted before the end of the transaction,
(iii) commit - at the end of the transaction, after all the in-
place updates have been performed, backups created during the
transaction have to be effectively discarded atomically, marking
the successful completion of the transaction, and (iv) restore -
if a transaction fails before completion then all locations that
have been modified during the transaction have to be atomically
restored using their backups. Our proposed NVC provides an
efficient mechanism to perform all of these actions.

While the common case performance achieved through NVC
is appealing, the challenge in designing NVC comes from cor-
rectly handling the uncommon cases, like cache-block evictions
in the middle of a transaction and cache-block invalidations



due to coherence activity. Overall, this paper demonstrates how
to leverage M3D non-volatile SRAM to build systems that
provide meaningful crash consistency guarantees at virtually
no cost compared to prior work, Kiln [3] which changes the
conventional architecture by replacing volatile (SRAM) LLC
with non-volatile memories, thereby incurring penalties for gen-
eral execution. Whereas, in NVC, only persistent transactions
uses the non-volatile segment of L1 and rest of the general
executions uses the volatile segment of the L1 cache.

II. BACKGROUND: FEFET INTEGRATION IN M3D PROCESS

Recent advances in non-volatile devices have resulted in their
incorporation in main memory, or even as last level caches.
The non-volatile memories exhibit similar density as DRAM,
while providing substantially low standby power consumption.
However, these non-volatile memories suffer from expensive
write latency and energy compared to the DRAM. Furthermore,
endurance is an additional concern. In order to mitigate these
concerns, we design a novel multi-layer hybrid volatile/non-
volatile memory so as to use the non-volatile memory only for
the logging purpose, and not for regular memory accesses.

When designing multi-layer hybrid memories, the compati-
bility of the non-volatile device with CMOS is another design
issue. The M3D integration of heterogeneous devices needs
strict requirement on selection of materials as explained in
roadmap on emerging hardware and technology for machine
learning [9]. It shows that Hafnium Oxide (HfOx) based
ferroelectric layer have good compatibility with restrictive M3D
process flows that in turn enables CMOS transistors and FeFET
in multi-layer designs [10]. In this work, we focus on FeFET
technology due to its promise for easy CMOS integration using
monolithic 3-D integration process which enables multi-layer
designs with fine grained inter-layer connections.

The structure of FeFET device is shown in Fig. 1 (a). The
FeFET has a similar structure to MOSFET with an additional
ferroelectric (FE) layer in the gate stack. Two stable states of
polarization in the FE layer provide the non-volatile memory
behavior of the FeFET. These states can be switched by
appropriate voltage bias on the gate terminal of the device.
The FeFET device can be simplified into an equivalent circuit
model shown in Fig. 1 (b) with capacitance associated with FE
(depicted as Cfe) in series with capacitance of the underlying
MOSFET (CMOS). Let us consider the operation of this device.
When the polarization of FE layer is towards the substrate
of the MOSFET, it creates a channel between the source (S)
and drain (D) making the device be in ”ON” state even when
no external gate voltage (VG) is applied. Similarly, if the
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Fig. 1. (a) Structure of a Ferroelectric FinFET (FeFET) device. (b) Equivalent
circuit of FeFET. (c) Structure of a M3D Non-Volatile SRAM bit-cell.

polarization is pointing away from the substrate, the channel is
not formed making the device be in ”OFF” state. By increasing
the thickness of the FE (Tfe) beyond a certain value introduces
a hysteresis, i.e, non volatility in the device characteristics [8].

III. M3D NON-VOLATILE SRAM CACHE

In this section, we will be discussing about the multi-layer
non-volatile SRAM cache designs (referred to as M3D NVS-
RAM cache) using M3D process to reduce the area footprint
of additional non-volatile devices.

A. Circuit design

While the M3D NVSRAM circuit structure is similar to Li et.
al [11]., we obtain substantial benefits due to transition to our
proposed 3D structure Fig. 1(c) by leveraging the recent process
advances. The NVSRAM design in a 2-D design requires 65%
more area than the std. 6T SRAM bitcell which increases
the bitline parasitics, thereby the access costs. In contrast,
the proposed M3D NVSRAM design has its bitline parasitics
remain unaltered compared to the standard 6T SRAM bitcell,
in turn not affecting the access costs. Now, we will be looking
into the structure of a M3D NVSRAM bit-cell.

Fig. 1(c) shows the proposed structure of the M3D NVSRAM
bit-cell. The layer-1 consists of standard 6-T SRAM bit-
cell. The layer-2 consists of the non-volatile elements (N0
and N1) and discharge transistors (M2 and M3). The inter-
layer connections are made using the M3D vias shown in the
Fig. 1(c). The Word lines (WL) and Bit lines (BL) are used
during the memory read/write operations, whereas the Backup
line (BkpL) and Restore line (RsL) are used during the back-
up and restore operations involving the non-volatile FeFETs.
The area of the layer-2 cells is pitch-matched with the area
of the layer-1 std. 6T SRAM bit-cell, thereby avoiding area
overheads in single dimensional space. The operations of the
M3D NVSRAM bit-cell is similar to the [11], mainly the HW
governing the control signal is unique and explained in Fig. 4.

B. Memory, backup and restore operations

The read/write operations of the M3D NVSRAM bit-cell is
through the standard 6-T SRAM bit-cell in the layer-1. The
main feature of M3D NVSRAM bit-cell is the non-volatility
added to the SRAM cell, namely backup and restore operations
which uses the control lines in layer-2 (BkpL, RsL).

The backup operation involves two steps to save the states
into the FeFETs, N0 and N1 and is shown in the Fig. 2(a).
Whenever the backup operation is performed, the RsL is set
to ground (gnd) thereby the N0/N1’s active channel terminal
is not connected to the gnd. Then in the first step, the BkpL
is set to Vdd and the appropriate FeFET is written to high
state (conducting state) according to the node Q/QB state. In
Fig. 2(a), the node QB is gnd, hence the N1 has a gate-source
potential (Vgs) of Vdd thereby writing it to high state. Whereas,
the N0 is not changed since the Vgs is 0. Then, in order to write
the complementary value onto the other FeFET, another step
is performed by making the BkpL gnd. In this depiction, the
N0 experiences Vgs of -Vdd, thereby writing it to low state
(not conducting state) and N1 is not changed since its Vgs is
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Fig. 2. Working of (a) Backup and (b) Restore operations. Backup operation
is a two step process and restore operation requires one step.

0. Therefore, the state of the SRAM cell in layer-1 is stored
into the non-volatile elements N0 and N1 using the backup
operation. Note that, after backing up a data onto the FeFET,
any change in the volatile/SRAM won’t modify the previous
backed up value unless the next back-up signals are enabled.

The restore operation is a single step process, the value in
the FeFETs gets written into it’s corresponding SRAM bit cell.
The operation is shown in Fig. 2(b), the BkpL is maintained
in a standby voltage (Std by) and the RsL is set to Vdd. The
Std by is the voltage where the FeFETs cannot be disturbed,
i.e., cannot be written and used for reading the state of the
FeFET. Taking the previous backed up states for the FeFETs,
the node QB connects to the gnd through the N1, and the other
node turns to Vdd due to the inverter action of the 6T-SRAM.

We extend the bit-level backup and restore operations to
cache-block level as Block-Backup, Block-Restore operations
and furthermore, we have a Cache-Commit operation which
can backup the content of several cache blocks atomically
at once with the help of metadata explained in Sec. IV(B).
The activation signals (BkpL & RsL) for the backup and
restore operations are handled by the finite state machine (FSM)
described in Fig. 4 which will be explained in Sec. IV(B).
Also, for ensuring atomicity of backup and restore operations
during any power failure, the power supply unit has sufficient
capacitance for ensuring the successful completion of the write
operations on the non-volatile part of the memory cell. This
ensures robustness to unanticipated power failures.

IV. NVC ARCHITECTURE

Fig. 3(a) illustrates the high-level architecture design of NVC
in which L1 data cache, extra memory space for thread counter
value (TCNT#) and a small persistent write-back buffer, which
we call persistent queue (PQ), are all persistent enabled by
the M3D NVSRAM design in addition to the persistent main
memory PCM (shown as PM).

During the execution of a transaction (example showed in
Fig. 5), NVC uses Block-Backup to create a persistent copy for
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Fig. 3. (a) NVC high-level overview. (b) NVC logical view of L1 data cache-
block. Each cache-block is equipped with NVC metadata to make tracking the
latest persistent version of a data feasible in the system.

the cache-block before L1 data cache could service the update
requests. When the execution of the transaction is completed,
NVC issues Cache-Commit to persist all cache-blocks that
were modified during the transaction atomically in the non-
volatile segment of the corresponding cache-blocks. Conse-
quently, NVC guarantees that either all or none of updates
in the transaction are visible in the presence of failure with
almost no performance cost in comparison to prior works [2],
[3]. First, NVC does not require to create and persist a copy
of the data (log) in PM. Second, the in-place update is not
required to be persisted in PM and can be done in L1 data
cache in conjunction with committing the transaction. Third,
upon committing a transaction, there is no need to create and
persist a special log in PM or flush all the modified cache-
blocks to the point of persistency.

A. ISA Extension

To specify the boundaries of a failure atomic region, we
extended the ISA with a pair of new instructions, FAR BEGIN
and FAR END, similar to what prior work proposed [18].
Using this instructions, we can identify the region of interest
that should be persisted and it enables correct transitions in the
FSM (Fig.4). We assume race-free data access through the use
of appropriate concurrency control mechanisms alongside the
proposed instructions are employed to add isolation property to
the failure atomic region. The extended instructions are applied
to the program through a fairly simple compiler pass to identify
the failure atomic regions and emit the instructions.

B. L1 Data Cache

Providing crash consistency at L1 Data Cache. Technically,
we can use M3D NVSRAM in any level of cache hierarchy
to provide crash consistency but we chose only L1 data cache
because of the following reasons: (i) lower hardware overhead,
(ii) inexpensive commit operation and lower implementation
complexity, due to smaller L1 size, (iii) no unified LLC
assumption as Kiln [3], orthogonal to current systems.

Fig. 3(b) illustrates the logical overview of L1 data cache-
blocks in NVC, (i) a volatile component using SRAM (denoted
as V) and (ii) a non-volatile component using FeFET (denoted
as NV). As a result, the NVC uses L1 data cache as the
conventional volatile cache and also provides non-volatility for
PM instructions. Each L1 data cache-block maintains a minimal
metadata to track the latest persistent version of data in the
system. Backup valid bit (BV) identifies if the cache-block’s
NV segment contains a valid data and change in the value of
it needs to be persisted through Block-Backup. Also, the id of
the thread (Tid) that is responsible for modifying the block is
kept in the block. Currently, our design supports two threads
per core. Tid is a volatile metadata and upon changing it, there
is no need for the new value to be persisted as it is meant
for selective bits of the Cache-Commit. In addition, since NVC
has to extend the coherence protocol to provide transferring the
persistent copy of the data between cores, a single bit (C) is
dedicated to identify whether if the block can be committed or
not. C bit also is considered a volatile metadata, similar to Tid,
and does not need to be persisted upon modification.



NVC uses the described metadata to interpret the state of a
cache-block that belongs to PM (not for regular reads/writes)
and ensures crash consistency.The behaviour of L1 data cache
will stay the same as conventional caches for requests to blocks
residing in volatile memory. Fig. 4(a) illustrates the state of a L1
data cache-block with regards to different events in the cache.
Providing an example to interpret the state machine, assume
the current state of the cache-block is in ”!Tid, BV” state and
it is going to be evicted. Then, the HW logic governing the
FSM will execute the Block-Backup operation and then change
the state to ”Tid, BV”. The reads and writes of the cache-
block belonging to PM does not require the backup and restore
operations, whereas the eviction and commits requires it.
Upon eviction: In the common case, the NVC handles
read, write and commit requests to the L1 data cache in a
very straight-forward manner as shown in the state diagram,
Fig. 4(a). However, eviction happens due to cache replacement
policy or as a result of coherence activities which needs to
be addressed by the NVC. Upon an eviction decision for a
cache-block that belongs to PM, if the non-volatile segment of
the cache-block does not contain a valid persistent copy, i.e
BV is invalid, the eviction can happen immediately. However,
if BV is set to valid and a persistent copy exists, the status
of the transaction which the persistent copy is associated with
decides the next steps. In case, the corresponding transaction
has been committed, i.e Tid is invalid, the latest copy of the
persistent of the data is in this cache-block and has to written
back to PM. Thus, the data is first copied and persisted in
persistent queue, where it stays until it is sent to PM and the
L1 data cache receives the ack for its persistence in PM. This
is crucial to ensure that persistent copies of data are not lost
when transferring from persistent L1 data cache to PM. After,
the data is persisted in the persistent queue, NVC persists the
invalidation of BV via Block-Backup.

If Tid is not valid, meaning the cache-block is associated with
an ongoing transaction, the non-volatile and volatile segments
of the cache-block contains different version of the data. The
non-volatile segment has the old copy of the data before any
change in the transaction. On the other hand, the volatile
segment has the latest value of the data that has been changed
in the transaction, but not committed. As a result, NVC has to
persist both of these copies for maintaining enough information
to be able to roll back changes if the transaction aborts or
discard the logs if the transaction commits. The modified data
is persisted by overwriting the associated memory location in
PM and the old version of data will be persisted in a specified
log region in PM. We detail the logging operation and content
of the log in Sec. IV-C. Note that the value in the non-volatile
segment of the cache-block is retrieved using Block-Restore. At
the end, invalidation of BV is persisted through Block-Backup.
Example of a transaction: Fig. 5 shows an example code in
which persistent variables saving and invest are modified in a
critical section with step-by-step illustration of operations that
are executed in NVC’s L1 data cache to guarantee persistency.

In the first scenario, saving is 40 and invest is 60. When
L1 data cache receives the write request to add 20 to saving

!Tid, !BV!Tid, !BV

!Tid, BV!Tid, BVTid, BVTid, BV

Evict/
BR,BB

Wr/BB

Wr/-
Commit/CC

Evict/
BB

Rd/-Rd, Wr/-

Rd, 
Evict/-

Operations

Std_by Vdd

Vdd gnd gnd gnd

Vdd gnd gnd gnd
Block-Backup

(BB)
Cache-Commit

(CC)
Block-Restore

(BR)

Step-1
BkpL(V) RsL(V)

Step-2
BkpL(V) RsL(V)

(a) (b)

Fig. 4. (a)L1 data cache-block state machine. The state machine generates 3
outputs, namely Block-Backup, Block-Restore, Cache-Commit, and its corre-
sponding activation signals (BkpL & RsL) to the M3D NVSRAM bit-cell with
steps are shown in the table (b).

(Line 2), first Block-Backup is issued to backup the old value
of saving, I(b). Next, L1 data cache services the write request
and V segment of the corresponding contains the new value
of saving, I(c). In this case, since the if statement in Line
3 holds true, invest is going to be updated. When L1 data
cache receives the corresponding request for update to invest,
similar to update saving (Line 4), it first issues Block-Backup,
I(d) and then executes the request, I(e). When detecting the
end of critical atomic region (Line 6), core informs the L1
data cache to commit the transaction. Consequently, a Cache-
Commit operation is issued and all blocks modified in the
transaction, cache-blocks associated with saving and invest, are
backed up atomically.

The initial value of saving is equal to 10 in the second
scenario. As a result, the condition in Line 3 is not satisfied
and the second update is also to variable saving. Since we
have already backed up the old value of cache-block associated
with saving in this transaction and BV is set, L1 data cache
execute the write request without issuing Block-Backup again,
II(d). The Cache-Commit operation at the end commits all
modifications in the transaction, in this case only value of block
corresponding to saving.

C. Logging

Although NVC relies on M3D NVSRAM to achieve two
versions of a persistent cache-block efficiently, if a modified
cache-block that resides in PM has to be evicted from L1
data cache before committing the corresponding transaction,
NVC uses logging to guarantee crash consistency. Note that,
the cache block when evicted at L1 goes through the PQ (which
is also persistent) and then to the PM. So, upon any failure the
PQ is also checked for any logs.

NVC determines a log region in the PM and keeps track of
the next available log entry memory address in the region to
allocate in case of a log creation. The log is created on the flight
and consists: (i) the data, (ii) the block address, (iii) Tid and
the current value of TCNT counter for the corresponding thread
(TCNTLog) (iv) the order of log issued in this transaction, i.e.,
a volatile counter associated with each transaction that shows
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TABLE I
SIMULATION CONFIGURATION (22NM)

Core

4-cores, 2GHz OoO
8-wide Dispatch, Commit,

192-entry ROB,
32/32-entry LSQ

D-Cache
64KB, 4-way, 64B

2ns hit lat, 8 MSHRs
3/1.5ns backup/restore

I-Cache 32KB, 4-way, 64B
1ns hit lat, 8 MSHRs

Persistent
Queue

16 entries, 20ns delay to
PM controller

L2 256KB unified, 8-way,
4.5ns hit lat, 16 MSHRs LLC 2MB per core, 16-way,

12ns hit lat, 32 MSHRs
Memory
controller

128/64-entry RWQ for both
DRAM and PCM

DRAM;
PCM

DDR4-2400;
Rd/Wr lat 346/500ns

which log entry is older in that transaction. NVC resets this
counter when the transaction commits.

D. Recovery

NVC uses the content of L1 data cache and TCNT counters,
alongside any valid log entries that are present in the log region
to guarantee that the system will be recoverable to a consistent
state. The recovery mechanism will restore cache blocks and
consider the ones with valid BV. Also, the valid log entries
needs to be recovered. So, the recovery mechanism considers
persistent queue as an extension of L1 data cache and restores
valid entries upon recovery.

For identifying if a log entry is valid or not, the recovery
mechanism uses the Tid field of the log entry to check the
TCNT counter associated with the log. Next, recovery mecha-
nism compares the TCNTLog field of the log with the value of
TCNT counter. If TCNTLog is smaller than TCNT counter, it
indicates that log belongs to a transaction that is committed and
thus, it should be discarded. In case, multiple log entries exist
for the same data in the same transaction, recovery mechanism
compares the order field of the logs and only restore the oldest.

It is possible that a valid copy of the data in L1 data cache
and a valid log both exist in the system for the same data. This
could happen when a cache-block that belongs to a transaction
that has not been committed is evicted and returned to L1 data
cache again in the same transaction, then a failure happens
before committing the transaction. In such a scenario, recovery
mechanism ignores the the copy of the data in the cache-block
as the log entry contains the old value of data.

V. EVALUATION

A. Methodology

Circuit/Design analysis: We perform simulations of M3D
NVSRAM circuit in hpsice employing 20nm PTM model [12]
for the CMOS transistors and the FeFET model calibrated
based on L-K equation in [13]. The M3D process degrades the
layer-2 transistors performance [14] which was incorporated
in the simulation model. The M3D via was modeled with a
resistance of 100Ω and capacitance of 1.2fF. The described
state machine implemented using SystemVerilog RTL needed
for the L1 data cache block in Fig. 4 was synthesized using
Synopsys Design Compiler and the cache related parameters
were measured using CACTI [15] for 22nm technology. The
area overhead of the state machines for the entire L1 data cache,
shown in Fig.4, amounts to 5%. With the required additional
metadata and persistent queue (PQ), NVC incurs 7% in total.
Architectural Simulation infrastructure: We evaluate NVC
using the gem5 architectural simulator [16] in full-system

mode, configured as Table I. We model a four-core system
with the ARMv8 ISA with 8-entry persistent queue per L1
data cache and use the recent Intel’s Optane memory charac-
terization study [17] to model a PM device in our system.
Workloads: The workloads contain several PM-centric multi-
threaded workloads from [18], like tree-based data structures
(RB), database (TPCC), and a persistent key-value store bench-
mark, YCSB. Fig. 6(a) illustrates the distribution of persistent
stores per transactions in all workloads, (ignoring transactions
that contain no persistent update) showing that a wide range of
transaction sizes are evaluated.
Designs evaluated: In this work, we evaluate four different
designs. (i) Software Logging (SW) refers to state-of-the-art
SFR-based undo logging [2]. (ii) Kiln refers to the state-of-the-
art hardware solution with persistent LLC [3]. (iii) NVC refers
to our proposed design with M3D NVSRAM L1 Data cache.
(iv) Ideal refers to the system with non-volatile memory that
provides no crash consistency guarantee. Ideal is added to our
evaluation to show the upper-bound on what NVC can achieve.

B. Performance Comparison

Fig. 6(b) shows the performance comparison across different
design configurations. The main takeaways are:
Both NVC and Kiln outperform SW significantly in all
workloads: The SW encounters high performance overhead
as it has to ensure the undo-log containing the old version of
the data is persisted in PM before any modification to it. This
is in contrast to Kiln and NVC which have persistent caches
do not need to update in PM (long critical path) to guarantee
persistency. Kiln and NVC can achieve up to 4.6x and 5.1x in
CQ and 2.8x and 3.0x on average speedup over SW. Note that
although NVC persists data that is evicted from L1 by making
sure it reaches PM, this event is not on the critical path of the
execution and has almost no performance overhead.
NVC outperforms Kiln consistently: M3D NVSRAM L1 data
cache in NVC does not introduce any overhead for volatile
updates and provides efficient persist operations in L1 data
cache. Moreover, the commit operation in Kiln relies on all
the modified block in the transaction to be flushed to LLC.
In comparison, the commit operation in NVC can happen
atomically in L1 data cache. NVC gains up to 11% in CQ and
5% on average over Kiln across workloads. The gains seem
modest attributing to the bypassing of the higher level caches
and queuing structures (in Kiln) for these requests, thereby not
impacting the critical path.
NVC achieves close to Ideal performance: NVC can reach
close-to-Ideal performance as the atomic operations of M3D
NVSRAM L1 data cache provide efficient persist and commit
operations. We observed minimal 1% performance improve-
ment in Ideal over NVC on average. This also implies that the
performance implications of NVC are negligible.

C. Cache Energy Overhead

The read, write, backup and restore energies per block in
M3D NVSRAM are 0.0344nJ, 0.0368nJ, 0.0010nJ, 0.0006nJ
respectively. The backup and restore energies are low compared
to the memory operations mainly attributing to the avoidance



Fig. 6. (a)The distribution of persistent updates in a transaction across workloads. TATP contains transactions with only one persistent update inside, on the other
hand, the number of updates in transactions of Hashmap can be over hundreds. (b)Normalized speedup over SW for all design configurations. (c)Normalized
cache hierarchy energy consumption over Kiln.
of the highly parasitic H-tree buses. The memory operations
(read/write) uses both the data and address buses. Whereas the
backup and restore operation uses only the address bus and
also avoids the costly periphery logics, thereby consuming less
energy. Also, these operations uses the local ground path in
each cell thereby avoiding any parasitics related costs.

We study the cache hierarchy energy consumption in Kiln,
NVC and Ideal, assuming energy characterization of 8MB STT-
RAM LLC for Kiln shown in Fig. 6(c). NVC consistently
reduces the energy consumption in the cache hierarchy. The
main benefits over Kiln is mainly because of the large 8MB
L3 STT-RAM cache employed in Kiln, accounting for the
expensive read/write costs (due to large bus parasitics) needed
for the persistent requests , whereas NVC requires minimal
access costs of small L1 data cache. Further, Kiln affects the
performance and energy consumption of both volatile and non-
volatile updates in LLC as STT-RAM lacks the dual function-
ality in which M3D NVSRAM offers. This is opposed to NVC
which avoids issuing non-volatile writes for volatile updates,
thereby reducing the expensive non-volatile write costs. NVC
reduces the cache hierarchy energy up to 12.2% in RB and 7%
on average.

D. Transaction Size Sensitivity Analysis

We modified plausible benchmarks to be able to vary the
transaction size artificially as a parameter. The performance
of NVC w.r.t SW is shown in Fig. 7, the speedup over SW
will increase with higher transaction size. This is because the
overhead of persisting and enforcing persistent orders increases
with higher number of persistent updates in a transaction. On
the other hand, NVC avoids such overheads by providing a
persistent L1 data cache.

VI. CONCLUSION

In this work, we proposed NVC, an architecture design that
employs M3D NVSRAM technology to move the point of

CQ CTree Hashmap LL PC RB SPS Gmean
0
1
2
3
4
5
6
7
8
9 1 4 16 64

Sp
ee
du

p

Fig. 7. Speedup of NVC over SW for different number of persistent updates
in a transaction.

persistence all the way to L1 data cache and eliminates almost
all overheads with regards to guaranteeing crash consistency.
We improved the performance of the state-of-the-art SW undo
logging up to 5.1x and almost completely close the gap with
the system with no persistency guarantee while incurring as
hardware overhead only ≈7% increase in L1 data cache area.

REFERENCES

[1] J. Coburn et al., ”NV-Heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” SIGARCH Comput. Archit.
News 39, 1, 105-118, 2011.

[2] V. Gogte et al., ”Persistency for synchronization-free regions,” 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 46–61, 2018.

[3] J. Zhao et al., ”Kiln: Closing the Performance Gap Between Systems
With and Without Persistence Support,” in ACM MICRO-46, 2013.

[4] V. Gogte et al., ”Relaxed Persist Ordering Using Strand Persistency,”
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 652-665, 2020.

[5] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, andR. H. Arpaci-
Dusseau, “Optimistic crash consistency,”in Proceedings of the 24th ACM
Symposium on Operating Systems Principles. USA, p. 228–243, 2013.

[6] ”https://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-vol-3a-part-1-
manual.html”, 2016.

[7] M. M. Shulaker et al., ”Monolithic 3D integration: A path from concept to
reality,” 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 1197-1202, 2015.

[8] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric
negative capacitance MOSFET: Capacitance tuning antiferroelectric
operation,” in IEDM Tech. Dig., USA, pp. 11.3.1–11.3.4, 2011.

[9] K. Berggren et al., ”Roadmap on emerging hardware and technology for
machine learning,” Nanotechnology, 2021.

[10] S. Dutta et al., ”Monolithic 3D Integration of High Endurance Multi-
Bit Ferroelectric FET for Accelerating Compute-In-Memory,” 2020 IEEE
International Electron Devices Meeting (IEDM), pp. 36.4.1-36.4.4, 2020.

[11] X. Li et al., ”Design of Nonvolatile SRAM with Ferroelectric FETs for
Energy-Efficient Backup and Restore,” IEEE Transactions on Electron
Devices, 3037-3040, 2017.

[12] http://ptm.asu.edu/
[13] A. Aziz, S. Ghosh, S. Datta and S. K. Gupta, ”Physics-Based Circuit-

Compatible SPICE Model for Ferroelectric Transistors,” in IEEE Electron
Device Letters, vol. 37, no. 6, pp. 805-808, 2016.

[14] F. -K. Hsueh et al., ”Monolithic 3D SRAM-CIM Macro Fabricated with
BEOL Gate-All-Around MOSFETs,” 2019 IEEE International Electron
Devices Meeting (IEDM), pp. 3.3.1-3.3.4, 2019.

[15] R. Balasubramonian, A.B. Kahng, N. Muralimanohar, A. Shafiee, and V.
Srinivas. ”CACTI 7: New Tools for Interconnect Exploration in Innovative
Off-Chip Memories,” ACM Trans. Archit. Code Optim. 14, 2, Article 14,
2017.

[16] N. Binkert et al., ”The gem5 simulator,” SIGARCH Comput. Archit.
News 39, 1-7, 2011.

[17] J. Izraelevitz et al., ”Basic performance measurements of the intel optane
DC persistent memory module,” arXiv preprint arXiv:1903.05714, 2019.

[18] A. Kolli et al., ”Language-level persistency,” SIGARCH Comput. Archit.
News 45, 481–493, 2017.


	Introduction
	Background: FeFET Integration in M3D Process
	M3D Non-volatile SRAM Cache
	Circuit design
	Memory, backup and restore operations

	NVC Architecture
	ISA Extension
	L1 Data Cache
	Logging
	Recovery

	Evaluation
	Methodology
	Performance Comparison
	Cache Energy Overhead
	Transaction Size Sensitivity Analysis

	Conclusion
	References

