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Abstract
Auxetic behavior refers to lateral widening upon stretching or, in reverse, lateral shrinking upon compression. When
an initially auxetic structure is actuated by compression or extension, it will not necessarily remain auxetic for larger
deformations. In this paper, we investigate the auxetic range in the deformation of a periodic framework with one
degree of freedom. We use geometric criteria to identify the interval where the deformation is auxetic and validate
these theoretical findings with compression experiments on sample structures with 10 × 10 × 10 unit cells.
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Figure 1. The framework used in compression experiments. Description and dimensions are given in the text. See also Figure 6

1. Introduction
Auxetic structures have the curious property that they shrink in all directions under uniaxial compression and
widen in all directions under stretching. Early considerations on this type of behavior appeared in [1–4]. Foam
structures reported by Lakes [5] kindled wider interests in cellular and periodic designs which exhibit auxetic
deformations [6, 7]. The scope of investigations and proposed applications can be gleaned from a string of
reviews [8–15]. Advances in additive manufacturing have permitted the fabrication of increasingly complex
and intricate structures [16–20], leading to a renewed emphasis on rational design. As observed in [21], “the
rational design of metamaterials with a target property or functionality remains fiendishly difficult, and many
designs so far have relied on luck and intuition.”

In this paper, we focus on periodic bar-and-joint frameworks with auxetic behavior. Structures of this type,
also referred to as a “rods and hinges lattices,” “metamaterials of rigid bars and pivots,” or simply “trusses,”
have been frequently used in investigations concerned with the geometric underpinnings of auxetic deforma-
tions [22–26]. We note, in this context, that crystalline materials provide a vast array of periodic bar-and-joint
frameworks, also called “crystal structures” or “crystal nets” [27–30]. Displacive phase transitions, occurring
under variations of temperature or pressure, can oftentimes be modeled as periodic framework deformations
[31–33] and inquiries about auxetic behavior have been conducted for various structures [34–37].

Materials which can be modeled as periodic bar-and-joint frameworks allow a direct comparison of theoreti-
cal predictions with experimental results, thereby offering a more precise understanding of the fundamental role
of geometry in functional responses. For auxetic behavior, there is a strictly mathematical theory, developed in
[38–40], which gives necessary and sufficient conditions for the existence of auxetic infinitesimal deformations
and leads to a comprehensive design methodology. As auxetic behavior is necessarily confined to a limited
range, these results bring to the fore the problem of identifying, in the global deformation space of a periodic
framework, all regions where auxetic deformations are possible [41].

In the present study, we explore the long-range behavior of a three-dimensional periodic framework with
one degree of freedom, introduced in [42]. Figure 1 illustrates the sample structure produced for experiments
and an actual response recorded for compression. We determine the entire deformation path of the framework
and recognize auxeticity along a limited arc of this trajectory. The auxetic interval of the framework is obtained
through rigorous geometric calculations. The existence of this interval is then validated through experiments on
3D printed structures with 10 × 10 × 10 unit cells measuring 200 µm in total side length. These structures are
compressed and the lateral deformation is measured through computer vision.

In our concluding section, we elaborate on the significance of one-degree-of-freedom framework designs and
the importance of the notion of auxetic interval, which allows a numerical comparison of auxetic performance
for different frameworks in this class via the volume increase factor for the unit cells at the endpoints of the
interval.

2. The periodic framework
The specific periodic framework considered here belongs to a family of designs presented in [42]. It is obtained
from the diagram shown in Figure 2 . On the left, we see a fragment of a cubic lattice consisting of 7 cubes
inside a sphere passing through the 24 outlying corners. In the middle, the image shows an octet of lattice
points chosen from these corners and connected by edges to an additional vertex placed on the sphere. This
common vertex of the eight edges is chosen along the axis running through the center of the sphere and the
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Figure 2. Design diagram of the periodic framework. The unit vectors e1, e2, and e3, forming an orthonormal basis, as well as the
distances a, b, B, c, h, and H are indicated.

centers of the two squares determined by the octet of lattice points. This gives a rotational symmetry of order
four to the generating configuration and we use the expression “four-fold symmetry” to refer to the resulting
crystallographic symmetry of the periodic framework.

The periodicity lattice is 2Z3, consisting of all vectors in Euclidean three-dimensional space with even
integers as coordinates. Thus, the side length of the cubes depicted in the sphere is 2 and the radius of the
sphere is

√
11. The four short edges have squared length b2 = 22 − 6

√
11 and the four long edges have squared

length B2 = 22 − 2
√

11.

2.1. The global deformation space
The geometric model assumes all edges of the framework to be rigid bars and all joints to allow free relative
rotation of the incident bars. The initial configuration of this periodic framework then has one degree of freedom
and the deformation mechanism can be visualized and described by taking into account the preservation of the
four-fold rotational symmetry. The vectors e1, e2, e3 denote the standard orthonormal basis of our Euclidean
three-dimensional space. The symmetry axis remains fixed along the e3 direction and the one-parameter defor-
mation is obtained by the variation of the periodicity lattice which keeps the direction of the initial periodicity
generators 2e1, 2e2, 2e3 and keeps the first two generators of equal length. In other words, the initial cubic cell
determined by the generators evolves into an orthogonal box which maintains square faces normal to the sym-
metry axis direction (e3). We let a denote half the edge length of the square face and let c denote half the edge
length of the third periodicity generator (with direction e3). Thus, the initial configuration has a = c = 1.

When the framework moves along its deformation path, it suffices to describe what happens to the eight-bar
configuration depicted in Figure 2. We observe that the common vertex remains along the fixed axis and the
four ends of the short bars form a square of edge length 2a with center on the axis and normal to the axis. The
four ends of the long bars are the vertices of a square with center on the axis, normal to the axis and the distance
between the planes of these two squares is 2c.

If we denote by h the distance of the common vertex to the center of the first square and by H the distance
to the center of the second square, we have

h2 = b2 − 2a2 (1)

H2 = B2 − 10a2 (2)

We note that a is constrained to remain in the interval (0, b/
√

2], because 0 ≤ h2 < b2. The relation between
a and c depends on whether the common vertex is between the two squares or not (as in the initial configuration).
Thus,

c = 1
2

(H ± h) = 1
2

[
√

B2 − 10a2 ±
√

b2 − 2a2] (3)

which implies the algebraic relation:

(4c2 − 8a2 + B2 − b2)2 − 16c2(B2 − 10a2) = 0 (4)
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Figure 3. Gram matrix trajectory in (ω22, ω33) coordinates, with auxetic interval between points with horizontal and vertical tangent.

Considering that the Gram matrix ω for the periodicity generators is diagonal, with entries ω11 = ω22 = 4a2

and ω33 = 4c2, we see via (4) that the Gram matrix trajectory is the arc of the conic

Q(ω22, ω33) = (ω33 − 2ω22 + B2 − b2)2 − 2ω33(2B2 − 5ω22) = 0 (5)

where ω22, ω33 > 0. This arc of a hyperbola is shown in Figure 3(a).

2.2. Geometrical determination of the auxetic interval
The detection of the precise interval where the deformation is auxetic will illustrate the geometric criteria estab-
lished in [38, 39]. In particular, auxetic behavior requires, for all pairs of orthogonal directions, simultaneous
elongation, or, under compression, simultaneous shrinking. Computationally, we have to see where a and c
increase or decrease at the same time. As the derivative of c(a) is negative when the common vertex is between
the two squares, we are left with the alternative

c(a) = 1
2

(H − h) = 1
2

[
√

B2 − 10a2 −
√

b2 − 2a2] (6)

Figure 4 shows the graph of this function. We have

c′(a) = −5a(B2 − 10a2)−1/2 + a(b2 − 2a2)−1/2 = − 5a
H(a)

+ a
h(a)

(7)

There is one critical point in (0, b/
√

2), namely

a0 =
√

1
10

(132 − 37
√

11) ≈ 0.963581 (8)

and (7) is negative to the left and positive to the right of a0.
The auxetic interval is where a ∈ [a0, b/

√
2] ≈ [0.963581, 1.02476] and c is given by (6). The (a, c) pairs

at the endpoints are
(√

1
10

(132 − 37
√

11), 2

√
1
5

(7
√

11 − 22)

)

≈ (0.963581, 0.986458) (9)

(
√

11 − 3
√

11,
√

7
√

11 − 22) ≈ (1.02476, 1.10289) (10)
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Figure 4. The graph of c(a) in (6), for a ∈ (0, 1.02476).

The auxetic interval can be retrieved based on the directions of the tangents to the Gram matrix trajectory given
in (5) and shown in Figure 3. By [38], the auxetic locus is where the tangents have directions belonging to the
positive semidefinite cone of 3 × 3 symmetric matrices. Our trajectory lies in the plane ω11 = ω22, ωij = 0, for
i (= j, whose intersection with the positive semidefinite cone corresponds with ω22, ω33 ≥ 0.

Thus, in Figure 3, the auxetic interval can be visualized as the arc between the points of the trajectory where
the tangent is horizontal and then vertical. These points correspond to

∂Q
∂ω22

= 0, respectively
∂Q

∂ω33
= 0 (11)

We find
3ω33 = 2(B2 − b2) − 4ω22, respectively ω33 = B2 + b2 − 3ω22 (12)

and this determines the endpoints of the auxetic interval on the Gram matrix trajectory as

(ω22, ω33) =
(

2
5

(132 − 37
√

11),
16
5

(7
√

11 − 22)
)

≈ (3.71395, 3.8924) (13)

(ω22, ω33) = (44 − 12
√

11, 28
√

11 − 88) ≈ (4.2005, 4.86549) (14)

Figure 3 shows the auxetic arc of the trajectory between these two endpoints. The relation (ω22, ω33) = (4a2, 4c2)
allows an easy comparison with the (a, c) points in (9) and (10) and we conclude that our two descriptions of
the auxetic window agree.

3. Experimental methods

3.1. Structure design
From the framework blueprint described previously, a monolithic design was created. The design process is
illustrated in Figure 5.

To create a monolithic sample of the framework, each of the edges in the blueprint shown in Figure 2 is
replaced by a bicone, as shown in Figure 5(a). By doing this, we obtain a fundamental unit consisting of eight
bicones connected in a single point. We can then replicate this fundamental unit and translate it along the vectors
of the periodicity lattice, as illustrated in Figure 5(b), to obtain the complete monolithic structure.

The monolithic structure was realized with edge lengths of b = 14.5 µm for the short edges and B = 39.2 µm
for the long edges, resulting in a = c = 20 µm in the initial configuration. The bicones that replace each of the
edges have a small diameter of 0.5 µm at their ends and a large diameter in the middle of 4 µm. The unit cell
of the periodic framework was repeated 10 times along each of the periodicity generators to create a structure
with 1000 unit cells in total, arranged into a cube. On the bottom of this cube, a plate with a thickness of 5 µm
was placed to ensure a level surface, and on the top a flattened pyramid was placed. The resulting unit cell and
the complete sample structure are shown in Figure 6.

3.2. Sample creation
All sample structures were manufactured using two-photon lithography on a Nanoscribe Photonic Professional
GT (Nanoscribe GmbH, Eggenstein-Leopoldshafen, Germany), using IP-Dip photoresin on a silicon substrate.
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Figure 5. The monolithic implementation of the periodic framework is developed in two steps. (a) First, the edges in the blueprint
of Figure 2 are replaced by bicones. (b) Second, the eight bicones that make up a fundamental unit are copied and translated along the
vectors of the periodicity lattice to generate the periodic structure.

Figure 6. The designed periodic framework. (a) A single unit cell, with the unit cell volume outlined by gray lines. The dimensions a
and c are indicated along the corresponding sides of the cubic unit cell and the corresponding unit vectors ei are indicated separately.
(b) The complete 1000 unit cell structure, with a plate on the bottom for adhesion and a shallow pyramid on the top for probe
alignment.

This machine is capable of a lateral resolution of 200 nm and can create structures up to 400 µm high. The
printed structures were sputter-coated with approximately 4 nm of gold–palladium in order to image them in a
scanning electron microscope (SEM).

After creating and testing the structures, it was observed that the plates on the top and bottom of the structures
appear slightly curved and the central part of the structure is already slightly narrower than the top and bottom
parts. This is likely an effect of the shrinkage of the used resin, which is reported to be up to 10% (see [43]).
As we describe in Section 3.4, a central region of the structure is measured to decrease the effect of these
boundaries.

3.3. Sample testing
Two uniaxial load cases are considered. One where a uniaxial deformation is applied along the four-fold sym-
metry axis, i.e., along direction e3. In this case, c is the driving parameter. For this load case, the four viewing
directions normal to the faces are equivalent and the lateral deformation of a can be measured as a response to
a deformation in c.

In the other load case, the structure is uniaxially deformed along direction e2, perpendicular to the symmetry
axis and a is the driving parameter. There are two distinct side-views for this case, one along e3, where we view
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Figure 7. Schematics of the three distinct viewing directions of the structure that are used in this study. The images show an
orthographic view of a single unit cell of structure and the relevant dimensions a and c are marked on the sides of the images.

the deformation of the second side marked a under compression and one along e1, where the deformation in c
is visible.

Three structures were constructed, one for each testing orientation. The two structures to be compressed
along e2 were constructed identically, with the only difference being a 90◦ rotation of the complete structure
(including plates) along the axis normal to the substrate.

The structures were compressed using a Femtotools FT-NMT03 nanomechanical testing system inside of a
Jeol JSM-6010LA SEM. For the compression tests, a silicon microforce sensing probe with a tip width of 50 µm
was used. The probe was centered on the structures by aligning it with the flattened pyramid. The structures were
compressed at a rate of 0.1 µm s−1. Every 0.2 µm of travel, the probe was stopped and the SEM was used to
record a high-resolution (5120 × 3840 pixels) image. Each compression step corresponds to 0.1% of applied
strain to the structure.

3.4. Experimental probing of the auxetic interval
Owing to the four-fold rotational symmetry described in Section 2, the auxetic interval can be determined by
measuring the effects of applied deformations on the distances a and c. For each compression test, the structure
is imaged from the side, allowing two dimensions to be measured during the deformation, one of which is
always the driving parameter.

Figure 7 shows a unit cell of the framework under the three different viewing directions. The distance labels
a and c can be seen next to the respective sides of the frames.

We observe that, according to Figure 4, when a is actuated, the allowed compression is relatively large,
whereas when c is actuated, the allowed compression of the sample is limited to about 1.35%. Up to this limit,
a point on the motion path corresponding to this compression can be found. Beyond this limit, no such point
can be found and the framework can therefore no longer respect the intended structural design. In experiments,
this will result in deformations which significantly or severely violate the rigid-bar assumption. Therefore,
when probing the auxetic interval experimentally, applied strains larger than 1.35% along c do not reflect the
theoretical structure in a meaningful way. In our test, we have compressed the structure slightly further to
ensure that the full range of motion was measured in the selected region, considering that the deformations are
not distributed equally throughout the structure.

3.5. Data processing
The recorded images were used to obtain quantitative data on the strains in the compressed structures. First, the
images were rotated and straightened to correct for perspective. To do this, four points on the structure were
selected and transformed to span a square.

The images were then processed using digital image correlation. The deformations were tracked in a central
region of the structure, consisting of 6 × 4 unit cells, to mitigate the effects of the boundaries. This region was
tracked using Gunnar Farneback’s algorithm, as implemented in OpenCV 3.2.0 [44, 45]. Using this algorithm,
the displacements of each pixel in the region are calculated. We use these displacements to calculate the local
strains in the tracked region and average this over the region to obtain the horizontal and vertical strains.
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Figure 8. Strains and images from a compression test along the e2 direction, measuring the orthogonal strain along a⊥, with vertical
dimension a as the driving parameter. (a) The undeformed state of the structure. The analyzed region is highlighted in green and the
directions a and a⊥ are indicated. (b) The deformed state at the end of the calculated auxetic interval.

4. Results
Compression tests were performed on the structures for each of the three distinct viewing directions. For
each test, the resulting horizontal and vertical strains were recorded. In the following figures, we report the
engineering strains:

εx = x − x0

x0
(15)

where x is the dimension under study and x0 is its initial length. Note that we can obtain these strains from
the distances a and c from Section 2.2 by subtracting 1, because these distances have an original size of 1. We
discuss each viewing direction separately. We present these strains from both experiment and theory. Next to the
plots, we show the state of the structure at the initial position and at the theoretical end of the auxetic interval.
These positions are labeled (a) and (b), respectively, in the figures.

The results of the first experiment are shown in Figure 8. Here, the structure was compressed along the e2
direction, with a as the driving parameter and the perpendicular a direction (denoted by a⊥) as the orthogonal
direction under study. The plot in the figure shows the strains observed in the experiment as well as the strains
determined from theory. In the calculated and the experimentally obtained curve, both strains are continuously
decreasing throughout the experiment. However, in the experiment, we see that the orthogonal strain lags behind
the theoretical value.

Figure 9 shows the results of the experiment where the structure was compressed along the e2 direction,
making a the driving parameter, and c the orthogonal direction under study. In both the theoretical strains and
the experimental strains, we see that there is a minimum for εc, after which this orthogonal strain increases again
for continuing compression. In the theoretical curve, this minimum occurs at εa = −3.7%, εc = −1.35%. In
the experiment, we saw that this minimum occurred at a larger compressive strain of around −7%.

Figure 10 shows the results from the final viewing direction, where the structure was compressed along the
e3 direction, with c as the driving parameter and a as the orthogonal dimension. For this viewing direction,
we present applied strains up to εc = −1.35%, because compressions beyond that are impossible in theory
and might include breaking of the structure in the experimental tests. We see that the theoretical curve flattens
off at εc = −1.35%, with an orthogonal strain of εa = −3.7%. In the experiment, we did not see this lateral
contraction. Rather, there was little to no lateral deformation observed.
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Figure 9. Strains and images from a compression test along the e2 direction, measuring the orthogonal strain along c with a is the
driving parameter. (a) The undeformed state of the structure. The analyzed region is highlighted in green and the directions a and c
are indicated. (b) The deformed state at the end of the calculated auxetic interval.

Figure 10. Strains and images from a compression test along the e3 direction, measuring the orthogonal strain along a with c as
driving parameter. (a) The undeformed state of the structure. The analyzed region is highlighted in green and the directions a and c
are indicated. (b) The deformed state at the end of the calculated auxetic interval.

In the images for all three measurements, we can see that the strains in the structures are not evenly dis-
tributed. In particular, in the images of Figure 8, we see that the center of the structure contracts substantially
more than the regions at the top and bottom of the structure.
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5. Discussion
When the structure is compressed along the e2 direction, with a as the driving parameter, the structure shrinks
laterally under increasing compression in both perpendicular directions for the complete calculated auxetic
interval. In the measurements, the calculated auxetic interval lies between the points (a) and (b).

Outside of the calculated auxetic interval, we see that the orthogonal a direction keeps shrinking with increas-
ing load, while the c direction starts to expand again after an applied strain of −7%. This transition indicates the
end of the auxetic interval and occurs later than was calculated from the theoretical model. For both directions,
the orthogonal deformations are smaller than those resulting from theory. However, one must take into consid-
eration that the theoretical model assumes unrestricted relative rotations at all joints while monolithic samples
have limitations in this respect and introduce boundary conditions. In particular, the horizontal constraints intro-
duced by the plates at the top and the bottom of the structure has had a visible effect on the deformation. This
can be observed in Figure 8, where the center part of the structure contracts substantially more than the sides.

Overall, we observe that the nature of the deformation agrees with the geometric model. As the structure
demonstrated no lateral expansion for each of the three orthogonal views of the structure, we have validated
auxetic behavior over the calculated interval admitting compression.

6. Conclusion
In this study, we have shown that a framework design based on a geometric theory of periodic auxetics allows
for a very explicit and precise description of its global periodic deformation. Furthermore, we have shown
that such a framework can be produced using existing additive manufacturing technology at the micrometer
scale. Compression tests have been performed on the manufactured frameworks and measurements confirm the
auxetic behavior in the interval calculated using the theoretical model.

We emphasize the distinctive role of periodic framework designs with one degree of freedom. In the pres-
ence of several degrees of freedom, additional controls or constraints would be needed for selecting an auxetic
deformation trajectory from response possibilities which definitely include non-auxetic deformations. Thus, the
existence of a general methodology for one degree of freedom auxetic design is particularly relevant [40, 42].
The framework design considered here is of the simplest kind, in view of the fact that it has just two orbits of
vertices under periodicity. Moreover, the presence and preservation of the four-fold symmetry allows explicit
and precise computations.

Our investigation highlights the importance of predicting and recognizing the interval where auxetic behavior
occurs. Within the class of one-degree-of-freedom periodic designs, the volume increase factor for the unit cell
at the endpoints of the auxetic interval, provides a comparison criterion for auxetic performance.
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