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Communication-Adaptive Stochastic Gradient
Methods for Distributed Learning

Tianyi Chen

Abstract—This paper targets developing algorithms for solving
distributed learning problems in a communication-efficient fash-
ion, by generalizing the recent method of lazily aggregated gradient
(LAG) to deal with stochastic gradient — justifying the name
of the new method LASG. While LAG is effective at reducing
communication without sacrificing the rate of convergence, we
show it only works with deterministic gradients. We introduce
new rules and analysis for LASG that are tailored for stochastic
gradients, so it effectively saves downloads, uploads, or both for
distributed stochastic gradient descent. LASG achieves impressive
empirical performance — it typically saves total communication by
an order of magnitude. LASG can be used together with gradient
quantization to bring more savings.

Index Terms—Distributed optimization, machine learning,
federated learning, communication-efficient.

1. INTRODUCTION

TOCHASTIC gradient descent (SGD) method [1] is preva-
S lent in solving large-scale machine learning problems dur-
ing the last decades. Although simple to use, the plain-vanilla
SGD often becomes less efficient when it is applied to the
distributed setting, especially in terms of the communication
efficiency.

In this paper, we aim to solve the distributed learning prob-
lem in a communication-efficient fashion while maintaining
the learning accuracy. Consider a setting consisting of a cloud
server and a set of M devices (workers) collected in M :=
{1,..., M}.Each device m has its local dataset {&,,, n € N;,, },
which defines the loss function of device m as

Ln(0):= > U0;&), meM (1)
nG/\fm

where 6 € R? is the sought vector (e.g., parameters of a pre-
diction model) and &, is a data sample. For example, in linear
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regression, £(0;&,,) is the square loss; and, in deep learning,
£(0;&,,) is the loss function of a neural network, and 6 concate-
nates the weights. The goal is to solve

. . 1

min £(6) with £(0) := 5 > La(0). 2)

meM

Problem (2) also arises in a number of areas, such as multi-
agent optimization [2], distributed signal processing [3], and
distributed machine learning [4]. While our algorithms can
be applied to other settings, we focus on the setting that for
bandwidth and privacy concerns, local data {&,,n € N,,} at
each worker m are not uploaded to the server. This setting natu-
rally arises in e.g., federated learning, in which collaboration is
needed through communication between the server and multiple
workers (e.g., mobile devices).

To solve (2), we can in principle apply the distributed version
of SGD. In this case, at iteration k, the server broadcasts the
current model 6% to all the workers; each worker m computes
VL(6F; €F ) using a randomly selected sample or a minibatch
of samples {¢F,} C {&,,n € NV,,,}, and then uploads it to the
server; and once receiving stochastic gradients from all workers,
the server updates the model parameters via

k+1 _ gk _ Tk k. ck
SGD ot =0k — % > veor;eh) 3)
meM

where 7, > 0 is the (possibly) time-varying stepsize used at
iteration k. When V£(6%; £ ) is an unbiased gradient estimator
of L,,(0), the convergence of SGD update (3) is guaranteed [5].
To implement (3), however, the server has to communicate with
all workers to obtain fresh {V/£(6%; £¥)}. This prevents the effi-
cientimplementation of SGD in scenarios where communication
between the server and the workers is costly [6]. For example,
consider using SGD to iteratively train an image classification
model over a group of wireless devices. The start-of-the-art
deep neural network models (e.g., ResNet, LSTM) for computer
vision, speech and natural language processing tasks involve
millions of parameters (e.g., 500 MB). This training process is
costly because one SGD update generates around 500 MB data
on each device’s up- and down-link transmission, and SGD takes
thousands of iterations to converge. Therefore, our goal is to find
the parameter # that minimizes (2) with minimal communication
overhead.

A. Related Work

Communication-efficient distributed learning methods have
gained popularity recently [7], [8]. Most methods belong to two
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categories: cl) reducing the bits per communication round; and,
c2) reducing the communication rounds.

Reducing communication bits. For c1), methods are cen-
tered around the ideas of quantization and sparsification.

Quantization has been successfully applied to wireless sen-
sor networks [9], [10]. In the context of distributed ma-
chine learning, a 1-bit and multi-bits quantization methods
have been developed in [11]-[13]. Other variants of quantized
gradient schemes include error compensation [14], variance-
reduced quantization [15], and quantization to a ternary vector
[16].

Sparsification amounts to transmitting only gradient coordi-
nates with large enough magnitudes exceeding a certain thresh-
old [17]. To avoid losing information of skipping communica-
tion, small gradient components will be accumulated and then
transmitted when they are large enough [18]-[22].

Quantization and sparsification address cl) but not ad-
dress c2), so they are still affected by latencies due to ini-
tiating communication, queuing, and propagating messages
[23].

Reducing communication rounds. Methods using periodic
averaging include elastic averaging SGD [24], local SGD (Fe-
dAvg) [6], [25]-[29] and momentum SGD [30]. Except [26],
[29], [31], local SGD methods follow a fixed communication
schedule. They work well in the homogeneous setting where
data are i.i.d. over all workers, but often sacrifice the learning
accuracy in the non-i.i.d. case. Work tailored for the heteroge-
neous setting includes FedProx [32]. Other methods that reduce
the number of iterations include the gradient tracking [33],
[34], primal-dual update [35], [36], opportunistic communica-
tion [37], and higher-order methods [38], [39]. Roughly speak-
ing, algorithms in [32], [38]-[40] reduce communication by
increasing local gradient computation.

This paper is based on the method of lazily aggregated gra-
dient (LAG) [41], [42]. LAG is adaptive and works well for
the heterogeneous setting. Parameters in LAG are updated at
the server, and workers only upload information that is infor-
mative enough. LAG has great performance with full gradi-
ent, but its performance degrades significantly with stochas-
tic gradients, which make its rule of communication highly
unreliable.

B. Our Approach

This paper proposes Lazily Aggregated Stochastic Gradient
(LASG), which includes a set of SGD-based methods that
considerably reduce the communication of distributed SGD.
Compared with popular communication-efficient algorithms
such as local SGD [6], [25]-[27], our LASG does not sacrifice
learning accuracy in the non-i.i.d. settings. Observing that not
all communications between the server and the workers are
equally important, LASG uses conditions to decide communi-
cation adaptively. When a worker skips a round of communi-
cation, the server uses its stale gradient to perform parameter
updates.

Define MP as the set of uploading workers at iteration &, and
define 7% as the staleness of the gradient from worker m used
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Fig. 1. Generic LASG implementation.

at iteration k. LASG has the following update

R B ()
meM\MFk

n
—9f 2 V) 4

meMFk

or equivalently (see also Fig. 1)

GenericLASG ¢! = 9% — V¥

with VF=v*1 4 % PN
meM¥k
where the stochastic gradient innovation is defined as
ok, = VU(OF; €k) — VL(OF T k). ©6)
The staleness {7 } depend on M*: at iteration k, if worker m ¢
MPF | the server increases staleness T,’ffl = 7'7]% + 1; otherwise,
worker m uploads its stochastic gradient, and the server resets
TRl = 1.

Clearly, selection of subset M? is critical. The challenges are
1) the importance of each communication round is dynamic, thus
a fixed condition is ineffective; and 2) checking the condition
must be numerically efficiently. To address these challenges,
we develop two types of adaptive condition based on different
communication, computation and memory requirements. The
first type is computed by each worker (WK), and the second
by the server (PS).

LASG-WK: At iteration k, the server broadcasts 6% to all
workers; each worker m computes V/(6%;¢5 ), and checks
whether m € MF¥; only those in MFE upload 6fn to the server,
which executes (5).

LASG-PS: At iteration k, the server determines MF* and
sends 6% to those workers m € M¥; each worker me M¥
computes V/(6%; ¢F ) and uploads 6%, ; those workers m ¢ M*
do nothing; the server executes (5);

How M¥ are computed are deferred to Section II. We sum-
marize the contributions of this paper as follows.

1) We introduce LASG, a set of communication-skipping
methods for distributed SGD. It reuses stale stochastic gradients
to reduce redundant communication.

2) We establish convergence of our proposed methods. The
convergence rates match those of SGD.

3) We tested LASG on logistic regression and neural network
training and confirm its performance gains.
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Fig. 2. Comparison of upload numbers (10 iterations per epoch). Applying
LAG-WK with stochastic gradients is ineffective. Even using an aggressive
parameter ¢ = 4, it is significantly less effective than LASG-WK2 (proposed).

C. Why LAG Does Not Work Well With SGD?

Let us revisit the LAG method [41] and provide why it works
poorly with stochastic gradients.

Similar to what is described above, LAG has both WK and
PS types of conditions to decide MP¥. Since they are equally
ineffective with stochastic gradients, we limit our discussion to
LAG-WK. Applying LAG-WK to stochastic gradients amounts
to, in the condition of [41], replacing worker m’s gradient by its
stochastic gradient, that is, exclude m from MPFEif

‘2
dmax

Z Hek-i-l—d - 9k—d||2’ (7)
d=1

where ¢ > 0 is a pre-defined constant, and d,, is the number
of consecutive past iterates. This condition compares the new
stochastic gradient to the stale copy at the server; if the difference
is small compared to the recent changes in 6, then the server will
reuse the stale copy.

When used with (standard) gradients, LAG [41] proves the
condition leads to “larger descent per upload”. Unfortunately,
the two stochastic gradients in (7) are evaluated with two dif-

ferent samples, £¥, and ff{Ts‘. The left-hand side (LHS) is
almost never small. So, (7) becomes ineffective at judging the
contribution of V£(6%; ¢~ ) to the stochastic descent.

Fig. 2 compares the stochastic LAG and one of our new
algorithms LASG-WK2 (introduced later) on a synthetically
generated logistic regression task, which demonstrates that the
stochastic LAG is ineffective in saving communication — when
c is small (e.g., 0.4), (7) is almost never satisfied due to the in-
herent variance of the computed stochastic gradients; and when
cislarge (e.g., 4), (7) is satisfied only initially. Mathematically,
this can be explained by expanding the LHS of (7) by (see the
supplemental material for the deduction)

|Veo"seh) - vt g

c
<
dmax

B [IIVe(6*: ¢h) — Ve gl |1 (82)

> %]E (V6" €)= VL (8")|°] (8b)
1 .k .k ok

+ 5B |[[Vee i ) - VL@ ]| o

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4639

— E[|VLn(0%) — VL, (65 )|). (8d)

When 6% converges, e.g., 0k — 0*, the right-hand side (RHS)
of (7) ||gk+1-4 —Qk*d}ﬁ — 0. But the LHS of (7) does not since
the gradient variances in (8b) and (8c) do not vanish.

Therefore, the key issue is the variance of stochastic gradients
is not diminishing and fails the LAG rule (7) eventually.

II. LASG: LAZILY AGGREGATED STOCHASTIC GRADIENTS

In this section, we formally develop our LASG method. To
overcome the limitations of LAG in stochastic settings, the key
of the LASG design is to reduce the variance of the innovation
measure appeared in the adaptive condition. As discussed,
LASG-WK uses a condition checked by each worker; LASG-PS
uses one checked by the parameter server.

A. Worker LASG: Save Communication Uploads

We first introduce two LASG-WK variants. The first one,
which we term LASG-WK1, calculates two stochastic gradient
innovations with one at sample £ as

oy, = V(6" €1) — VUB;E)
and one at sample &k{ T as
SF=Tm = VO(OF T ) — V(B €8T,

rSm m

where fisa snapshot of the previous iterate ¢ that will be updated

every D (> dpax) iterations. As we will show in (10), 5fn —

< '—Tk . . .

55,1 ™ can be viewed as the difference of two variance-reduced
. ~ ~k_rk

gradients calculated at 8% and 9%~ . Using 6%, — &%, ™™ as the

error induced by using stale information, LASG-WK1 excludes

m from MPF if

2
< C

dmax

N ~k7—T7k;L
Hafn _ gk

Ty 2
dz ||0k+17d _ okde ) (9)
=1

Recall if (9) is satisfied, we increment staleness 751 = 7% +
1; otherwise, worker m uploads the fresh stochastic gradient and
resets staleness as 75! = 1.

Behind (9) is the reduction of its inherent variance. To see
this, decompose the LHS of (9) as the difference of two variance

reduced stochastic gradients at iteration k and k — 75 :

B, — 3 = (Ve0h; €)= VUG k) + VLW (D))

— (VU ) = VHB €l ) + VL)) . (10)

To provide some intuition, we Qeﬁne the minimizer of (2) as 6*
and assume that V¢(0;&,,) is L-Lipschitz continuous' for any
&m- The LHS of (9) is upper-bounded in expectation by

E [||5’€ - Sf,;ffaﬂ < SL(EL(0%) — £(0%))

m

+ 8L(EL(6* ™) — L(6*))+16L(EL(A) — L£(6%)). (11)

When the iterate 6% converges, e.g., 0%, 05~ § — 6*, the RHS
of (11) diminishes, and thus the LHS of (9) diminishes. This is

I'This Lipschitz continuous assumption is needed only when we provide some
intuitions of our design, but in our subsequent analysis.
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TABLE I
A COMPARISON OF COMMUNICATION, COMPUTATION AND MEMORY REQUIREMENTS. PS DENOTES THE PARAMETER SERVER, WK DENOTES THE WORKER, PS —
WK m 1S THE DOWNLOAD FROM THE SERVER TO WORKER m, AND WK m — PS 1S THE UPLOAD FROM WORKER m TO THE SERVER

Metric Communication Computation Memory
Algorithm PSSWKm | WK m —PS PS [ WKm PS [ WKm
Sync SGD always always 3) 3) O(p) /
LASG-WK1 always only if m e MF ©) 9) O(p) O(p)
LASG-WK2 always only if me MF (5) (12) O(p) O(p)

LASG-PS || only if me M" |only if me M*[| (5), (14) [only if me M* O(Mp) O(p)
LASG-PSE || only if me MF |only if me M*|| (5), (16) [only if me MF O(Mp) O(p)

in contrast to the stochastic LAG-WK rule in (8) that is lower-
bounded by a non-diminishing value.
The second rule LASG-WK2 excludes m from MF if

| weces k) —veos et

diax

Z H9k+lfd_ ek-deQ. (12)
d=1

Note that different from (7), condition (12) is evaluated at two
different iterates but on the same sample £ .

LASG-WK2 (12) also reduces its inherent variance since the
LHS of (12) can be written as the difference between a variance
reduced stochastic gradient and a deterministic gradient, that is

VU(OF;€R) — VHOF T ek ) = (VOO ¢k

C
<
dm ax

V(O gk ) 4 vam(e’ﬂﬁl)) VL (07T, (13)

With derivations deferred to the supplementary, we conclude
that K[| V£(0F; €k ) — V208 m; €5 )|[2] — 0 as 0% — 6*.

B. Server LASG: Save Up/Downloads and Calculations

We next introduce two LASG-PS variants. The rationale is
that if the model difference is small, the gradient difference used
in Section II-A is likely to be small.

The first variant LASG-PS excludes m from M?* if

dmax
Z H9k+1—d _ 9k—d”2 (14)
d=1

where L,, is the smoothness constant of £,,(#). Condition
(14) can be checked at the server side without computing new
gradients if the server stores {Ok‘ﬂkﬁ} for each worker m.

The LHS of (14) can be upper-bounded in expectation by

D
2} SQDZJE{|\9k*d—9"’*d*77’fﬂ*dllz} M-p
d=1

2 c
<

12, ||o% — o+-%

dlnax

E[Hek —gF

D
+2D Z]E HV'C(ekid)Hz Mh-p + D ( Z U%) Mh-D-
d=1 meM

(15)

Assume || VL(6%)||? is bounded; then the diminishing stepsizes

{n. } ensure that the 2nd and 3 rd terms in the RHS of (15) vanish.

Using mathematical induction, the LHS of (14) also diminishes.
Therefore, this condition remains effective asymptotically.

When an estimate L,,, is not available, one can use LASG-

PSE, a variation of LASG-PS that estimates L,, “on-the-fly.”

With IA,,’% denoting the estimate of L,,, LASG-PSE excludes m
from MP if

dinax

~ Lk c - B
(Lfn)QHQk_ek x ZSd Z ||9k+1 d_ek dH2 (16)
d=1

max

where the estimated constant I:fﬁl is updated iteratively via
R A YOOk kY — vy k=T . ¢k
£ — {Lk [Ve@* k) = Ve 601 oy

6% = 6=

We give LASG-PS and LASG-PSE in Algorithms 3 and 4,
respectively, and compare all LASG methods in Table I .

Comparison of all LASG methods. All the LASG rules
can be computed efficiently without storing all previous #*.
LASG-PS and LASG-PSE need extra memory at the server
but save both local computation and download communication
while LASG-WK1 and LASG-WK2 save only upload com-
munication. LASG-WKI1 is more conservative as LASG-WK1
measures the change of gradients at two model states for both
new and old data samples, but LASG-WK2 measures only the
change of gradient at the new sample.

C. Quantized LASG: Save Also Communication Bits

We further reduce communication bits per round by apply-
ing quantization. We define the gradient under a quantization
operator Q as

Q(0;€) := Q(VL(8;9)) . (18)
We adopt the stochastic quantization scheme in [13] and
develop quantized LASG (LAQSG) as
O =gk, ST QO el ) — Y Q0" €k
meM\MF meM¥k
where MF is determined by one of four described rules.

III. MAIN RESULTS

In this section we present the convergence results of LASG-
WK1, LASG-WK2 and LASG-PS under both the nonconvex
condition and the Polyak-}F.ojasiewicz condition, and the conver-
gence results of LAQSG under the nonconvex condition only.
We leave the analysis of LASG-PSE for future work, but it
empirically has very impressive performance.

First, we make some basic assumptions.

Assumption 1: The loss function £(6) is L-smooth, i.e. for
any 01,0, € RP, it follows that

L
L(02) < L£(6y) + <vc<el>,ez - 91> + 2 lI62 = 0. (19)
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TABLE II
A COMPARISON OF LASG-WK1 AND LASG-WK2

Algorithm 1 LASG-WK1

Algorithm 2 LASG-WK2

1: Input: Delay counter {75, }, stepsizes {1}, max delay D.
2: for k=0,1,..., K —1do

3 Server broadcasts 19'“ to all workers.

4 All workers save 6 = 0* if k mod D = 0.

5: for Worker m =1,2,..., M do in parallel

6: Compute V(6% ¢F,) and V£(0; ffn).k

7 Check condition (9) with stored Sk,

8 if (9) is violated, or, &k mod D = 0 then

1: Input: Delay counter {73}, stepsizes {1}, max delay D.
2: for k=0,1,..., K —1do

3 Server broadcasts 0% to all workers.

4 for Worker m =1,2,..., M do in pakrallel
5: Compute V£(0%;¢E) and Vﬁ(@fn_T7”;§§1).
6: Check condition (12).

7 if (12) is violated, or, 7%, > D then

8

Upload 6F,. Rl — 1

> Save 0% and set 7

9: Upload 6%,. > Save 6%, and set 75F1 =1 9: else
10: else 10: Upload nothing. >Set 7 =7k 41
11: Upload nothing. > Set A =7k 41 11: end if
12: end if 12: end for
13: end for 13: Server updates via (4).
14: Server updates via (4). 14: end for
15: end for
TABLE III

A COMPARISON OF LASG-PS AND LASG-PSE

Algorithm 3 LASG-PS

Algorithm 4 LASG-PSE

1: Input: 0°, delay counter {7}, smoothness contants
{Lm}, stepsizes {7}, maximum delay D.

2: for k=0,1,..., K —1do

3 for Worker m =1,2,..., M do in parallel

4 Server checks condition (14).

5 if (14) is violated or 7%, > D then

6: Server sends 0% to worker m

7

8

Worker m computes V£(0; £F).

: Worker m uploads 8%,. > Save 0% and 75! =1
9: else
10: No action. il =7k 41
11: end if
12: end for
13: Server updates via (4).
14: end for

Assumption 2: The samples £}, €2, ... are independent, and
the stochastic gradient V/(6; &X)) satisfies

Eer [VO(0;€8)] = VLw(0),
Effﬁ [Hve(e’ fk ) - Vﬁm(@”ﬂ < 0',2

(20a)
(20b)

m — m-*

For LASG-PS, we require an extra smoothness assumption.
Assumption 3: The local gradient VL, is L,,,-Lipschitz con-
tinuous, i.e. for any 6, 65 € R, we have

Hv‘Cm(QI) - v£rn(92)” S L'rnHel - 02” (21)

Assumption 1 implies that the loss function £ can be upper
bounded by a quadratic function at any point. Assumption 2
ensures that the stochastic gradient is unbiased, and has bounded
variance. Assumption 3 bounds the change of local gradients
when they are evaluated at two points. Assumptions 1-3 are
common in analyzing SGD [13], [19]-[22], [42]-[44].

A. Convergence in the Nonconvex Case

We first present the convergence in the nonconvex case.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

1: Input: 0°, delay counter {75}, smoothness estimates
{LY,}, stepsizes {ny }, maximum delay D.

2: for k=0,1,..., K —1do

3 for Worker m =1,2,..., M do in parallel

4 Server checks condition (16).

5 if (16) is violated or 7%, > D then

6: Server sends 0% to worker m.

7 Worker m computes V£(0%; ¢F).

8

: Worker mn uploads 65,. > Save 0% and 7, =1
9: Worker m uploads L% in (17).
10: else
11: No action. >t =7k 41

12: end if

13: end for

14: Server updates via (4).
15: end for

Theorem 1 (nonconvex): Under Assumptions 1, 2 (for Al-
gorithm 3 also Assumption 3), if the stepsize is chosen as 1, =

n= O(J%),andthethresholdisc < min{ 155, VL2 Y then
{6%} generated by Algorithms 1-3 satisfy
K-1 M 2
1 vV M Zm:l Om
=Y E[IVLEH ] =0 1 . . (22)
i 2 EUIVEEOI] iyl B

From Theorem 1, the convergence rate of LASG in terms
of the average gradient norms is still O(1/v/K), matching
standard SGD [43]. When K > M, the second term is dom-
inant. If we simplify o,, = o, Vm, then the bound becomes
O(1/(M3K7)), and the convergence rate will be improved as
the number of workers M increases. Note that async method [45]
has better speedup as it artifically assumes that uploading work-
ers are independent of the past.

The assumption below bounds the variance of the quantized
stochastic gradient.

Assumption 4: For any 6 € RP and any m € M, we have
Ee, [|V£(6: &)%) < B.
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Fig. 4.

Based on this assumption, we have the following result.
Theorem 2 (LAQSG): Under Assumptions 1, 2, 4 (also
Assumption 3 for Algorithm 3), if n,=n= O(\/L?), c<

. v/ 2 .
mln{fé_“ﬁﬁ’ uaxV ML} where ¢, > 0 is a constant, then {0*}

generated by quantized Algorithms 1 - 3 satisfy
=
= S E[IVEEY)] =0 (1/\/E) . 23)
k=0
The rate O(1/+/K ) matches the standard QSGD [13].

B. Convergence Under the Polyak-tojasiewicz Condition

Assumption 5: The loss function L satisfies the Polyak-
Lojasiewicz (PL) condition with constant x4 > 0, that is
. 1

L(0) — L(07) < oM L£@)I1*. 24)

The PL condition is weaker than strong convexity and may

hold with convexity [46]. It is met by underdetermined least
squares and logistic regression.

Theorem 3 (PL-condition): Under Assumption 1,2,5 (for Al-

gorithm 3 also Assumption 3), if 7, = <o for a

2
u(k+Ko)

: : max_ DmaxVML? K
given constant K, and ¢ < mln{ané—, 5 }, then 6

generated by Algorithms 1, 2 and 3 satisfies

E [£(6%)] — £(6*) = O (1/K). (25)

The rate O(1/K) matches that of SGD [47]. Under the same
(or even slightly stronger) assumptions of Theorem 3, it has been
shown that O(1/K) is the best rate by any stochastic gradient-
based algorithm; see [48, Theorems 5.3.1 and 7.2.6].

Logistic regression on mnist digits 3 and 5.

IV. NUMERICAL TESTS

We conducted numerical tests on both logistic regression and
neural network models. We benchmarked LA(Q)SG with SGD,
LAG-WK, local SGD (with varying intervals H) and QSGD.
We did a grid search for best learning rates.

A. Logistic Regression

The data are distributed across M = 10 workers for ijennl,
MNIST (with digits 3, 5) and M = 20 for Covtype. For each
worker, the batch size is selected to be 0.01 of the local data size
forijennl, MNIST and 0.001 for Covtype. The ¢2-regularization
parameter is set to be 1075. We choose stepsize 7 = 0.1. For
all LASG algorithms, D = 100, dpnax = 10 and ¢ = 1/5?. For
local-SGD, the communication period is H = 50, 10, 20 itera-
tions forijenn1, MNIST, Covtype respectively. This is optimized
to save communication as much as possible without largely
affecting the convergence speed. For quantization methods, we
perform 4-bit stochastic quantization [13]. Numerical results are
reported in Figs. 3-5.

B. Training Neural Networks

We train a convolutional neural network with two
convolution-ELU-maxpooling layers (ELU is a smoothed
ReLU) followed by two fully-connected layers for 10 classes
classification on MNIST. The data are distributed on M = 10
workers. We choose stepsize 7 = 0.05. Since the objective func-
tion is nonsmooth (L, is unavailable), LASG-PS is not tested.
For other LASG algorithms, we set D = 50, dy,.x = 10, and
¢ = 1/n%. For local-SGD, we set H = 4. For all quantization
methods, we set 8 bits. We first report the the total number
of uploads needed to achieve the training loss 0.1 and the test
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accuracy 95% under different number of workers M in Figs. 6
and 7, respectively. We also report the numerical results averaged

over 30 Monte Carlo runs in Figs. 8 and 9.

All algorithms have been tested on the popular tiny imagenet
dataset, which contains 200 classes and 500 images per class
for training and 10 000 images for testing. All images in finy
imagenet are 64x64 colored ones. We use the Resnet18 model

initialized by weights pretrained on ImageNet1000; see the ac-
curacy versus the number of communication uploads in Figs. 10

and 11. For training loss, LASG-WKI1 and -WK2 require much

less total time than SGD and local SGD with H = 2, but slightly
more than local SGD with H = 4 and 6. However, as shown in
Fig. 11, local SGD with larger communication period sacrifices
the testing accuracy by 3-4%. This reduced test accuracy is
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common among local SGD methods, which has been studied 1) Derivations of (8): By (38), we can derive that |6, [|? >

theoretically; see e.g., [27]. (/61 + 62| — [|62]|%. As a consequence, we can obtain
All LASG algorithms has the same iteration complexity b ok oerk k(|2
as SGD and outperform local-SGD in most cases. Compared E {HVE(G 1) — VA(OF 6 | }

with SGD, LASG-WK?2 and LASG-PSE reduce communication
rounds by about one order of magnitude for neural network
training and even more for logistic regression. LASG-WK1 also

Y

LB [ (Ve8¢ — V£, (0)

reduce communication by more than one order of magnitude + (V ﬁm(gk*ﬂ’%) _ Vg(gk*ﬂ’i; 5’;;77’%)) ||2}
for logistic regression. Based on the results of LAG-WK, it is
evident that the selection rules (9), (12) and (16) achieve more —E U|v£m(9k) _ Vﬁm(ek_ﬂ%) }2}

significant improvement in terms of saving communication than
the selection rule (7) of LAG-WK. Moreover, the performance
of LAQSG validates that LASG can be easily equipped with
stochastic quantization with extra benefits from quantization.

SE[IVe6*: ) — VL))

+ %E H|\W(9’“*T"’i; EEThY) VL, (05

]

V. CONCLUDING REMARKS ) KV@(&’“; ¢k ) fVLm(G’“),VEm(Gk*Ti)
In this paper, we developed a class of communication-efficient
variants of SGD that we term LASG. The LASG methods —Vz(a’“ﬂi;gfn*ﬂi )>}
leverage a set of adaptive communication rules to detect and
then skip less informative or redundant communication rounds _E [Hv L (0%) =V Km(gk—r,’:;) }2} .

between the server and workers during distributed learning. To
further reduce communication bandwidth, the quantized version
of L.ASG is glso prese.nted. Both LASG and their quantized <IE [V€(9k;kan)|@k}—vﬁ’3m(0k),Vﬁm(gk*ﬂ’%)
version are simple to implement, and have convergence rate L |
comparable to the original SGD.

Future research includes studying the proximal exten.sion of _v g(ekfr,’; : 55{77’; )> —0.
LASG for certain nonsmooth problems, and developing the o
primal-dual counterpart of LASG for distributed training of 2) Derivations of (11): Recall that

To obtain (8), we use that

=VLy (0%)

generative adversarial networks (GANs). While the setting in 5k _ gk,

this paper considers a central server and a set of workers in a " "

communication error-free system, developing the decentralized = (V€ (0% ¢k —ve (6; ey + Vﬁm(é))

version of LASG for learning without a central server is in our

future agenda. Studying the effect of errors induced by noisy — (Vg(@k”i; fr;ﬂﬁ) _ Vé(é; 55;73) + V/jm(é))
wireless channels on distributed learning is also of great practical

importance, which can be typically tackled by controlling the = (Vﬂ(&k; ffn) - W/ (é; 551) + qum(§)>

transmit power to maintain a desired SNR [49]. ]

—gk
=9m

VI. DERIVATIONS OF MISSING STEPS IN SECTION II _ (vg(gkfrfn LERThY (6 €F ) + W,m(g)) .

We will provide the detailed derivations of some missing steps —

in Section II We define an auxiliary function as =gm

And b h 5k, — Bk 2 < 2||gh |2
Un(6) 1= L0n(0) — L0n(07) — (VL (6.0 — 0% nd by 8, we have [io, %< 2llgmll” +
2||gm ™ ||*. We decompose the first term as

where 6% is a minimizer of L(¢). Assume that [[||gk (%)< 2E[|VA(0%;€F) — Ve )|

V(0;¢,,) is L-Lipschitz continuous for all &,,, we have R ~
IVE(O; Em) — VL0 Em) |2 < 2L(E(0; Em) — L(0%; Em) — + 2E[|[VL(0; &5,) = VL0 €5) — Vb (0)]]
(VL(0%; &), 0 — 0%)). Taking expectation with respect to &, — IR[E[|VL(0F; €5 ) — Va0 €5 ) |2[0M]

we can obtain
n. ¢k _ *. ¢k
Ee, (V405 6m) = V0" )] < RV G = VA0 )
_ 0. ¢k *. ¢k k1112
2f/ (£7,L(9) _ ,Cm(ﬁ*) _ <v£m(9*)’0 _ 9*>) — 2E¢m(9) E[v£(07£m) Vé(@ ’fm)|@ H| }

(26) < ALE[¢n (6%)] + 2E[[|VE(0; &5,) — VE(0*;€5)]1%]
Note that VL, is also L-Lipschitz continuous and thus (%) ALE [y (6%)] + ALE W, (0).
VL (0) — VL, (0%)]]* < 2L10m (6). where (a) follows from (26).
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By nonnegativity of 1),,, we have

E[llgh[I”] <AL Y Em(0%) +4L > Egpm(0)

meM meM
= AML(EL(0%) — L(6*)) + AML(EL(A) — L(6%)). (27)
Similarly, we can prove
Elllgn, ™ 17) <

AML(EL(* ™) —
Therefore, it follows that
E[||o%, — 0%, |2 < SML(EL(0") — L(6%))
+ 8ML(EL(0 ™)~ L(6*))+16ML(EL(6) — L(6*)).
3) Derivations of (13): The LHS of (12) can be written as
VUOR k) — VOE Tk
= (VU0 5) - VO TR )+ VL (0TH))
— VL (0F )
= (VU055 - VO )+ V(05

— ey (05,
Similar to (27), we can obtain
E[|[VE(0%; €5) — VOO €5) + Vi (0F775) |17

< AML(EL(0%) — £(0%)) + AM L(EL(0* ™) — L£(6%)).
Combined with the fact
E[[| Ve (0% 7)|[2) = B[ VL (05 ™) — VLo (0%)]]
< 2LEg,,, (07 7)
< 2ML(EL(O¥ ™) — £(6%))
we have
E[|[Ve(6¥; ) — VUOF T 6)|?)
< SML(EL(0%) — £(0%)) + 12M L(EL(6F ™) — £(6%)).

4) Derivations of (15): Expanding LASG update, we have
E {Hek _ 6k777’§'1H2:|

3 )]
sznkdvgekdr ’gkd‘r )’
d=1meM ]
k T 2-
m k—d-1k-, sk—d—7k 2
72 nk—d]E H Z vg(e ™ S Sm " )
M d=1 memM i

where we used the Cauchy-Schwartz inequality.
Using E[[|A — E[A]]]*] + IIE[ JII* = E[||A][?], we have

E [j6" - %~ 12] = Mgznzd

meM

L(6*)) + AML(EL(A) — L(6%)). (28)

|5 (oo -veo o)

ot

kadE
d=1

k 7—1,:1 k 7—7]*37,
T, T, F—d—r o
éﬁgznzﬂzamﬁ;znidEU\zvcmw )
d=1 meM d=1 meM

H Z VL, (05 2]
meM

§|3L

ﬂ

3>

Tk T

< Tm o224 2m g Mvc (6+—d) H }
27k o 2

4 ZTm I2E [Hek d _ pgh-d-7}? ]172 ’

We arrive at our statement since 7,;, < D and ng_q < Mk—D-

VII. PROOFS OF MAIN THEOREMS

We first highlight the key steps, present some supporting
lemmas that will be used frequently in the subsequent analysis,
which is followed by the proofs of the results in Section III.

A. Key Steps of Lyapunov Analysis

With these assumptions, LASG will yield descent of £(6%).
Lemma 1: Under Assumptions 1, 2 and 3, {#*} generated by
Algorithms 1, 2 and 3 satisfy

20+ - B2 < - (m - 22 ) B [0
9 2

- %E[ % %me@;gs{m) — VL) ]

+ W gAE [<vg(9k),5fn>] (29)

where 6% 1= V0(0F; €k ) — Vo8 Th; €T,

Among three terms in the RHS of (29): the first term resem-
bles the standard unbiased stochastic descent; the second term
captures the variance of the stale aggregated stochastic gradient;
and, the last term quantifies the correlations between the gradient
direction VL£(6*) and the error induced by the stale stochastic
gradient V*.

Analyzing the progress of £(#*) under LASG is challenging.
Below we characterize the regularity of the stale stochastic
gradients V*, which lays the foundation for incorporating the
properly controlled staleness into the SGD update.

Lemma 2: Under Assumptions 1 and 2, if the stepsizes satisfy
Me+1 < i < 1/L, then we have

E[<VL‘,(9’“) >] < %E [||v£(9’“)!|2} +% 3o
meM

D
C VML
E [I1gF+1-d _ gk—d) 2]

Lemma 2 justifies the relevance of the stale yet properly
selected stochastic gradients. Intuitively, the first term in the
RHS of (30) will reduces the magnitude of descent in (29), and
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the second and third terms will diminish if the stepsizes are
diminishing since E[||¢% — 0¥~1(|2] = O(n?).

The next lemma implies that the variance of the stale aggre-
gated stochastic gradient reduces to that of standard SGD if the
stepsizes are diminishing since E[||0* — 6%~1(|2] = O(n?).

Lemma 3: Under Assumptions 1 and 2, if the stepsizes satisfy
Ne+1 < Mk < 1/L, then we have

T

2
E Oy

meM

1 .
37 O VHOT e ) — VL(0")
meM

€1V

max

dmax 9
Z EHek—&-l—d _ 9k—d||2 + W
d_

In view of Lemmas 1-3, we introduce the following Lyapunov
function to capture the progress of LASG:

D
VE = L(0%) = L(6%) + > yall*T " — 652
d=1

(32)

where {v,4}%_, are constants to be determined later. The follow-
ing lemma is a direct application of Lemmas 1-3.

Lemma 4: Under Assumptions 1 and 2, there exist nonnega-
tive constants { A¥}D_ | B and BY such that

M
E[V*1] - E[V*] < — BSE [|VLOY)*] + Bf Y o2,
m=1

D
_ ZAS]E [||0k+17d _ kadHﬂ )
d=1
(33)

The constants {A%}2_ |, BE and B} depend on the stepsize
Nk, the threshold ¢ and the parameters {v4}%.,. Their expres-
sions are specified in the proof. By choosing proper 7 and c,
we are able to ensure the convergence of LASG.

B. Supporting Lemmas

Define the o-algebra©% = {#! 1 < | < k}.Forconvenience,
we initialize parameters as 6~ = ... = =1 = 9°, and define
the difference between 012 and #F—9 as

Ak d 9k+1 d okfd

which implies that A := gk+1 — gk,
Some basic facts used in the proof are reviewed as follows.
Fact 1. Assume that X, X5, ..., X,, € R? are independent
random variables, and £ X; = --- = FX,, = 0. Then

(34)

n 2 n
B> x: ]zZE[IlXiH?] (35)

i=1 i=1

Fact 2. (Young’s inequality) For any 61,605 € RP ¢ > 0,
1641 ellf2]I?
0,0 > < WIE | ENYRl 36
< L02) S oo + 5 (36)
As a consequence, we have
1

01 + 02> < (1 + g) 1011 + (1 +€)]|62]2. (37)
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Fact 3. (Cauchy-Schwartz) For 01, ..., 0, € RP, we have

n 2 n
\ (= n 3o

Lemma 5: For k — D<l<k:—7'
generated by LASG, we have

E[(VL(), Vet eh) - vee'es ™))

(38)

, if {0%} are the iterates

D
VML DL,
< E [k + S0k 2 (39)
]-277k = v M
and similarly, we have
E [<vz:(9k), VL (0') — VU85 0- )]
[lak-¢2) + 2210 2 (40)

TG
Proof: We ﬁrst prove (39) by decomposing it as
E[(VL©OF), veo'seh) - vee'eh ™))

CR[(VLE®) - VL©), Vo' eh) - T )]

]

< LE {Hgk — 0| |veo's gk — Vﬁ(@l;gs;‘r,,’;)

< MM g e _ giy2)
T 2Dmp— Aop
GDLnk

B [|IVe('; &k) - veo's € @)

2VM |

where (a) holds due to

E (VL") Vo' eh) - vee'eh ™))

)

=T
=E[E [(vL©), vee'se,) - vee e e

o)

= (VL) E Ve’ k) - Ve eh ™)

=E

:<v.c(al), VL (6') — vﬁm(az)ﬂ 0

and (b) is a direct application of Fact 2.
Applying Fact 3 to T}, we have

o | <a

D
< DY) E[|aM)?]
d=1
and applying Fact 1 to 75, we have

T, =E[[[vae'eh) - Vo' eh )

k-1
—0)) E[la)]
d=1

(42)

’
:E[”W("l?fﬁ)*Vﬁm(elHVﬁm(@l)fwwl;s,’i;fr’“ﬂ\ﬂ
—E [[ve@'seh) - o]

+E [chmwl) - ww%gﬁ%ﬂ <22, @)
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where the last inequality uses Assumption 2. Plugging (42) and
(43) into (41), it leads to (39).

Likewise, following the steps to (41), it can be verified that
(40) also holds true.

C. Proof of Lemma 1

Due to the smoothness of £(¢) in Assumption 1, we have

E[£(6*")] —E [£(9k)}
< E <v.c (6%, Z VO(Or gk )>]
mEM
L — 1
2
Mg ||+ m% w(ekffn;gfﬂ)ﬂ. (44)

L ]
=1,

With 6% = VE(0%; €8 ) — Ve(5 75 %) denoting the
stochastic gradient innovation, we decompose I; as

Z V(6 €k >]

mEM

+ AZW;E [<vc(9k)75§1>}

L 1
=H,

I = <vc )

+

<V£(9’f 3 E[Veok; k)| o] >

mEM

—E[|VLO")|?] + Hy
and likewise decompose I as

(45)

I,=E

H% S vt gl — vc(ek)+w(9k)H21
meM

=k ["]\14 > VO ~ vc(ek)Hzl
meM

:=Ho
E [|[VL(6%)]?] -2 <w (%), Z V(O €k ) >]
m€M
+92E <VL‘ (%), Z Vo(F gk )>]
mEM

=H,+E [HV,C(Gk)Hz] —2H,.
We obtain Lemma 1 by plugging (45) and (46) into (44).

(46)

D. Proof of Lemma 2

We next bound H; defined in (45) separately for different
LASG rules. First for LASG-WXK1’s rule (9), we have

oY 1\14 ME [<vz:(9k),5,’; —S,’j;ﬂ’%ﬂ

Z (VL") Ve e") - ved.eh ™))

me./\/l
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( ) Lnk 6D Ly,

E[|vLeh|] +

D
C
" ; <2Lnkdmax -

where (a) is due to the definition of 5%,

RN

o)l

1277k

,and (b) is obtained by (9),

(36) withe = ——, and (39) with #' = 6. Note that the definition
of f in Algorlthm limplies | = [£] <k — 7k
For LASG-WK2’s rule (12), we apply (36) w1th €= +— and

39) w1thl =k — m,
=52 3 B[(Ve@h), veekieh) - wwk-*;g,’mﬂ

meM

which leads to

+E[(VL(O"), VeOr T €k) — Veer gl )

< e 6DL77k
L [|v20h)] + S2L S o
77L€M
D
c VML s

For LASG-PS’s rule (14), applying E[V/(6%; ¢k )|0F] =
VL, (9") we get

H, = M SE [<vz: (0%), VLo (6% — vzm(e’ﬂfff’n)ﬂ
meM

MZ]EKV L(6%),9 Ly (655 = VE0" s ¢l )]

meM
Z Om

( ) L?]k GDLnk

2M\ﬁ

D
> ¢ VML

+ + E [[|AF-d2
d=1 <2Lnkdmax 127y, ) [” || ]

where (c) uses (36) with & = L%k and (40) with [ = k — 7% .

E [[IVL(©6")]?]

E. Proof of Lemma 3

We next bound H, defined in (46) separately for different
LASG rules. For LASG-WKI1, using (38), we first have

1 e o o s
Hy < 3E [H 5 _ gh-rh ]
IR
o H% PRGNS —vqak»u?]
meM
1 n ~
+3E ||| 37 2 (VABigh) - VLW D)
meM

+% > (VL (0) = Ve(b; Eﬁfﬁl))HQ]

meM

d
3C max

max

J+35 X o

meM
where (a) follows from (9), (20b), and (35).
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For LASG-WKZ2, using (38), we have

(a) bc &
; . < 2B VL] + S [lAR ] + 5 S o
Hy <2E |||+ > (W(e’“*%g ) — V(R €k ) ) [ max =1 meM
meM where (a) uses Lemma 3.
Together with (47), it follows that
+2E ||i S (VUOrsel) — VL 0M) | ket k 2 e
M = Sm m E[V*] -E[VT] < _I(77k —(L+ 271)77k)IE [IVL(6")|?]
" ::BéC
E [||A%]?] T D 1\ ¢ VML 6oy
max Z M2 m%;/( + Z (nk + ﬁ) d + 12 + d’ylnk +7d+1_’7d
where (b) uses (12), (20b) and (35). d=1 e e .
For LASG-PS, using (38), we have =A%
: 2 k—d)|2
H, < 2F H Z (Vﬁ(ﬁk’ﬂﬁ,fﬁ[“ﬁ) _ vzm(0k7T2)> H ‘| E[HA ” ]
meM 9 2
6VMD | L+ 18 ; 48
k 2 +((2+\/ ) + w)MQT%am (48)
+2E ||| 32 (VL0 ) = VL. (09)) | ' — '
. M from which the proof is complete.
() 2¢ &K e
= dmax ; £ “|A H 2 ZJMU G. Pl"O()fOfTheOl’em 1
— me
d To ensure A’; < 0in (48) of Lemma 4, it is sufficient to choose
3¢ k—dy2 | vq} satisfying (with ypyq1 = 0)
S o Z AT+ M2 > on bl . o
d= meM 4+ c
where (c) holds due to (14), (20b), and (35). ("’“ ZL) Do
Vi 2
F: Proof of Lemma 4 O B i 9 <0,0<d <D
Plugging Lemmas 2 and 3 into Lemma 1 leads to where the stepsize is Z;:)(sen asmp =, k=1 K
h L , o KL
E [5(9 +1)} —E [5(9 )] Solve the linear equations above and get
L} (0 + 5)eD /dipay + YLL
< =\ m— L’I72 + —k> E ||VE(9k)|‘2 Uy max . 49
< g 2 [ } m= 1— 6cD77 /dmax “9)
— 2dmax 2Ldax 12 If we further select n < 2L+%3/MDL < QL-‘:4’Y1 and then
9 1 BE = — (L+2y)n2 > 2. 50
+ L} <§+6~/MD> B Z o2, (47) 0 =1k — (L+2v1)nj; = 5 (50)
meM Summation up (33) over £ =0, ..., K — 1, it follows that
where we use the fact that Ly, < 1.
By definition of E[V*], it follows that (with yp 1 = 0) Z TR E [[|V£( (0%)|2 ] < L(6°) — £(67)
E[VFH] —E[VF] =E [£(0*™)] — E [£(6")] a
D
+ E A7) + 3 (s = 7a)E [1AR)2]. * Z ( i D) 5> ome G
d=1 meM
First we decompose E[[|A¥||?] as Specifically, if we choose a constant stepsize
1
SE[|AYP] o 1 o
2 =17 := min 52
Tk e 2L + 4V/MDL VK 62
1 . ) 2 :
HM ZVE(Gk_Tk’;fﬁfT’k") _ V,C(Gk) n VE(Qk)H ] Where;n > 0 is a constant, then
meM
) = > E[IVLEh)]?]
< 2 [|V.L(0")]] K

+2E
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AL+ 8/MIDL 2 " . - o
= : + L(6°) — L(o" < 4E H— V(O gk —Q(ok T el ‘
_< = CN?)(() (¢7)) < Mﬁ%( &)= Q( ghm)

C L 4
+ —L (9+24VMD) — 2 53 iy

cowmhTa  ® b

Choosing ¢, :O(M%(ZmeM a%)*%)leads to the theorem. % fEHAk a2 4 (U?n_'_%)
InaX meM

H. Proof of Theorem 2 where (b) uses (37) with € = 3, and (c) uses Lemma 3.
Let Eq and Eq ¢, denote the expectation with respect to the  The remaining steps follow those of Theorem 1 with T
stochastic quantization ) and both the stochastic quantization  replaced with o2 + Q
@ and the datum &,,, respectively.
As a result of [13, Lemma 3.1] and Assumption 4, b-bit | Proof of Theorem 3
quantized gradients have the following unbiasedness property

Q [Q(O;&m)] = VL(0; &m) (54)

and the bounded variance (with B defined in Assumption 4)

Using the PL-condition of £(6), (33) can be rewritten as
E[V*H] —E[V¥] < — 2uBFE[L(6%) — L(67)]+BF > o7,

meM
Eq, [1Q(0;&n) — VEOB; &0)|1] D
+) ARE [ AR 2 (57)
i d vd 2 d=1
< min P12 1 B=:105. (55) =
( If we choose 4 such that A% < —2uBky, for d=
Analogous to the proof of Lemma 1, we can get 1,2..., D, then we have
Ln? k+1 k k
E [£(0")] — E[£(6")] < (nk - %)E [Iveesy)?) BV < (- 2uBOEV + Bl 15 .
meM
Ln? k k k
7.2 Ly ; ; 2MB
+(77k Lnk> Hs + B) o, SH(l_QuBé)V0+ZB{ H OZ 2
where H3 and H, are defined similar to H; and Ho in (44). 7=0 J=0 i=j+1 meM
We first bound Hs as (58)
Hy - % Z E To ensure Ajj < —2uB{yq, note that if gy <1 < 75—, then
meM By =1k — (L +2y1)n; € [0,7]. (59)
% KVE(Qk)a VO(OF; €k ) — Q(OF T gkTh )>} Hence, it is sufficient to choose v, satisfying (yp4+1 = 0)
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Solve the linear equations above and get
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where (a) is obtained by steps similar to those of (39). Let _ 2 with Ko — ma {2(L+ 2VMDL) 16D}
. . . T]k - M(k“!‘KO) 0 — X o ) ’
Plugging the bound on H; in Lemma 2 into (56), we have which ensures that
Lnk " ¢/dmax | VML < e mi {; L}
Hy < — VL(O g N = 1) 1= 1min ) . (61)

2
Together with the selection ¢ < mm{ X "““*}éﬁ = }

E HAkdeZ 24Dn?>
[ } this ensures that v, < @.

6DL o2 Plugging into (58) leads to
77k2<02+_Q>' gging into (58)
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Likewise, H,4 can be bounded as 9
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Multiplying over k = 0, ..., K — 1, it follows that

E[VE]

K-1 K-1 K-1
< [Ja=wm)Vo+R> i T] (41— um))
k=0 k=0  j=k+1
(Ko —2)(Ko —1) 0

S K+ Ko —2)(K+ Ko— 1)

+~ng 4 (k+ Ko — 1)(k + Ko)
w2 prs (k+ Ko)? (K + Ko — 2)(K + Ko — 1)

(Ko — 1)
T (K+Ko—1)2

4RK

Vo .
T BAK T Ko —1)?

(62)

Using the definition of V' and the initialization 0~ = ... =

0—1
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= #°, we complete the proof.
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