
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021 4637

Communication-Adaptive Stochastic Gradient
Methods for Distributed Learning

Tianyi Chen , Member, IEEE, Yuejiao Sun, and Wotao Yin , Member, IEEE

Abstract—This paper targets developing algorithms for solving
distributed learning problems in a communication-efficient fash-
ion, by generalizing the recentmethod of lazily aggregated gradient
(LAG) to deal with stochastic gradient — justifying the name
of the new method LASG. While LAG is effective at reducing
communication without sacrificing the rate of convergence, we
show it only works with deterministic gradients. We introduce
new rules and analysis for LASG that are tailored for stochastic
gradients, so it effectively saves downloads, uploads, or both for
distributed stochastic gradient descent. LASG achieves impressive
empirical performance— it typically saves total communication by
an order of magnitude. LASG can be used together with gradient
quantization to bring more savings.

Index Terms—Distributed optimization, machine learning,
federated learning, communication-efficient.

I. INTRODUCTION

S TOCHASTIC gradient descent (SGD) method [1] is preva-
lent in solving large-scale machine learning problems dur-

ing the last decades. Although simple to use, the plain-vanilla
SGD often becomes less efficient when it is applied to the
distributed setting, especially in terms of the communication
efficiency.
In this paper, we aim to solve the distributed learning prob-

lem in a communication-efficient fashion while maintaining
the learning accuracy. Consider a setting consisting of a cloud
server and a set of M devices (workers) collected in M :=
{1, . . . ,M}. Each devicem has its local dataset {ξn, n ∈ Nm},
which defines the loss function of device m as

Lm(θ) :=
∑

n∈Nm

�(θ; ξn), m ∈ M (1)

where θ ∈ R
p is the sought vector (e.g., parameters of a pre-

diction model) and ξn is a data sample. For example, in linear

Manuscript received June 30, 2020; revised November 10, 2020 and April
4, 2021; accepted July 12, 2021. Date of publication July 27, 2021; date of
current version August 20, 2021. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Yao Xie. The
work of Tianyi Chen was supported in part by National Science Foundation
under the project NSF 2047177, and in part by RPI-IBM Artificial Intelligence
Research Collaboration. The work of Yuejiao Sun was supported in part by
ONR under Grant N000141712162, and in part by AFOSR MURI under Grant
FA9550-18-1-0502. (Corresponding author: Tianyi Chen.)

Tianyi Chen is with the Department of Electrical, Computer and Systems
Engineering, and the Institute for Data Exploration andApplications, Rensselaer
Polytechnic Institute, Troy,NY12180USA (e-mail: chentianyi19@gmail.com).

Yuejiao Sun andWotao Yin are with the Department of Mathematics, Univer-
sity of California, Los Angeles, CA 90095 USA (e-mail: sunyj@math.ucla.edu;
wotaoyin@math.ucla.edu).

Digital Object Identifier 10.1109/TSP.2021.3099977

regression, �(θ; ξn) is the square loss; and, in deep learning,
�(θ; ξn) is the loss function of a neural network, and θ concate-
nates the weights. The goal is to solve

min
θ∈Rp

L(θ) withL(θ) := 1

M

∑
m∈M

Lm(θ). (2)

Problem (2) also arises in a number of areas, such as multi-
agent optimization [2], distributed signal processing [3], and
distributed machine learning [4]. While our algorithms can
be applied to other settings, we focus on the setting that for
bandwidth and privacy concerns, local data {ξn, n ∈ Nm} at
each workerm are not uploaded to the server. This setting natu-
rally arises in e.g., federated learning, in which collaboration is
needed through communication between the server andmultiple
workers (e.g., mobile devices).
To solve (2), we can in principle apply the distributed version

of SGD. In this case, at iteration k, the server broadcasts the
current model θk to all the workers; each worker m computes
∇�(θk; ξkm) using a randomly selected sample or a minibatch
of samples {ξkm} ⊆ {ξn, n ∈ Nm}, and then uploads it to the
server; and once receiving stochastic gradients from all workers,
the server updates the model parameters via

SGD θk+1 = θk − ηk
M

∑
m∈M

∇�(θk; ξkm) (3)

where ηk > 0 is the (possibly) time-varying stepsize used at
iteration k. When∇�(θk; ξkm) is an unbiased gradient estimator
ofLm(θ), the convergence of SGD update (3) is guaranteed [5].
To implement (3), however, the server has to communicate with
allworkers to obtain fresh {∇�(θk; ξkm)}. This prevents the effi-
cient implementationofSGDin scenarioswhere communication
between the server and the workers is costly [6]. For example,
consider using SGD to iteratively train an image classification
model over a group of wireless devices. The start-of-the-art
deep neural network models (e.g., ResNet, LSTM) for computer
vision, speech and natural language processing tasks involve
millions of parameters (e.g., 500 MB). This training process is
costly because one SGD update generates around 500 MB data
on each device’s up- and down-link transmission, and SGD takes
thousands of iterations to converge. Therefore, our goal is to find
the parameter θ thatminimizes (2)withminimal communication
overhead.

A. Related Work

Communication-efficient distributed learning methods have
gained popularity recently [7], [8]. Most methods belong to two

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4638 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

categories: c1) reducing the bits per communication round; and,
c2) reducing the communication rounds.
Reducing communication bits. For c1), methods are cen-

tered around the ideas of quantization and sparsification.
Quantization has been successfully applied to wireless sen-

sor networks [9], [10]. In the context of distributed ma-
chine learning, a 1-bit and multi-bits quantization methods
have been developed in [11]–[13]. Other variants of quantized
gradient schemes include error compensation [14], variance-
reduced quantization [15], and quantization to a ternary vector
[16].
Sparsification amounts to transmitting only gradient coordi-

nates with large enough magnitudes exceeding a certain thresh-
old [17]. To avoid losing information of skipping communica-
tion, small gradient components will be accumulated and then
transmitted when they are large enough [18]–[22].
Quantization and sparsification address c1) but not ad-

dress c2), so they are still affected by latencies due to ini-
tiating communication, queuing, and propagating messages
[23].
Reducing communication rounds. Methods using periodic

averaging include elastic averaging SGD [24], local SGD (Fe-
dAvg) [6], [25]–[29] and momentum SGD [30]. Except [26],
[29], [31], local SGD methods follow a fixed communication
schedule. They work well in the homogeneous setting where
data are i.i.d. over all workers, but often sacrifice the learning
accuracy in the non-i.i.d. case. Work tailored for the heteroge-
neous setting includes FedProx [32]. Other methods that reduce
the number of iterations include the gradient tracking [33],
[34], primal-dual update [35], [36], opportunistic communica-
tion [37], and higher-order methods [38], [39]. Roughly speak-
ing, algorithms in [32], [38]–[40] reduce communication by
increasing local gradient computation.
This paper is based on the method of lazily aggregated gra-

dient (LAG) [41], [42]. LAG is adaptive and works well for
the heterogeneous setting. Parameters in LAG are updated at
the server, and workers only upload information that is infor-
mative enough. LAG has great performance with full gradi-
ent, but its performance degrades significantly with stochas-
tic gradients, which make its rule of communication highly
unreliable.

B. Our Approach

This paper proposes Lazily Aggregated Stochastic Gradient
(LASG), which includes a set of SGD-based methods that
considerably reduce the communication of distributed SGD.
Compared with popular communication-efficient algorithms
such as local SGD [6], [25]–[27], our LASG does not sacrifice
learning accuracy in the non-i.i.d. settings. Observing that not
all communications between the server and the workers are
equally important, LASG uses conditions to decide communi-
cation adaptively. When a worker skips a round of communi-
cation, the server uses its stale gradient to perform parameter
updates.
DefineMk as the set of uploading workers at iteration k, and

define τkm as the staleness of the gradient from worker m used

Fig. 1. Generic LASG implementation.

at iteration k. LASG has the following update

θk+1 = θk − ηk
M

∑
m∈M\Mk

∇�(θk−τk
m ; ξk−τk

m
m)

− ηk
M

∑
m∈Mk

∇�(θk; ξkm) (4)

or equivalently (see also Fig. 1)

GenericLASG θk+1 = θk − ηk∇k

with ∇k=∇k−1 +
1

M

∑
m∈Mk

δkm (5)

where the stochastic gradient innovation is defined as

δkm := ∇�(θk; ξkm)−∇�(θk−τk
m ; ξk−τk

m
m). (6)

The staleness {τkm} depend onMk: at iteration k, if workerm /∈
Mk, the server increases staleness τk+1

m = τkm + 1; otherwise,
worker m uploads its stochastic gradient, and the server resets
τk+1
m = 1.
Clearly, selection of subsetMk is critical. The challenges are

1) the importance of each communication round is dynamic, thus
a fixed condition is ineffective; and 2) checking the condition
must be numerically efficiently. To address these challenges,
we develop two types of adaptive condition based on different
communication, computation and memory requirements. The
first type is computed by each worker (WK), and the second
by the server (PS).
LASG-WK: At iteration k, the server broadcasts θk to all

workers; each worker m computes ∇�(θk; ξkm), and checks
whether m ∈ Mk; only those in Mk upload δkm to the server,
which executes (5).
LASG-PS: At iteration k, the server determines Mk and

sends θk to those workers m ∈ Mk; each worker m∈Mk

computes ∇�(θk; ξkm) and uploads δkm; those workers m /∈Mk

do nothing; the server executes (5);
How Mk are computed are deferred to Section II. We sum-

marize the contributions of this paper as follows.
1) We introduce LASG, a set of communication-skipping

methods for distributed SGD. It reuses stale stochastic gradients
to reduce redundant communication.
2) We establish convergence of our proposed methods. The

convergence rates match those of SGD.
3)We tested LASG on logistic regression and neural network

training and confirm its performance gains.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4639

Fig. 2. Comparison of upload numbers (10 iterations per epoch). Applying
LAG-WK with stochastic gradients is ineffective. Even using an aggressive
parameter c = 4, it is significantly less effective than LASG-WK2 (proposed).

C. Why LAG Does Not Work Well With SGD?

Let us revisit the LAG method [41] and provide why it works
poorly with stochastic gradients.
Similar to what is described above, LAG has both WK and

PS types of conditions to decide Mk. Since they are equally
ineffective with stochastic gradients, we limit our discussion to
LAG-WK. Applying LAG-WK to stochastic gradients amounts
to, in the condition of [41], replacing workerm’s gradient by its
stochastic gradient, that is, exclude m fromMk if∥∥∥∇�(θk; ξkm)−∇�(θk−τk

m ; ξk−τk
m

m)
∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2, (7)

where c ≥ 0 is a pre-defined constant, and dmax is the number
of consecutive past iterates. This condition compares the new
stochastic gradient to the stale copy at the server; if the difference
is small compared to the recent changes in θ, then the server will
reuse the stale copy.
When used with (standard) gradients, LAG [41] proves the

condition leads to “larger descent per upload”. Unfortunately,
the two stochastic gradients in (7) are evaluated with two dif-

ferent samples, ξkm and ξ
k−τk

m
m . The left-hand side (LHS) is

almost never small. So, (7) becomes ineffective at judging the
contribution of∇�(θk; ξkm) to the stochastic descent.

Fig. 2 compares the stochastic LAG and one of our new
algorithms LASG-WK2 (introduced later) on a synthetically
generated logistic regression task, which demonstrates that the
stochastic LAG is ineffective in saving communication—when
c is small (e.g., 0.4), (7) is almost never satisfied due to the in-
herent variance of the computed stochastic gradients; and when
c is large (e.g., 4), (7) is satisfied only initially. Mathematically,
this can be explained by expanding the LHS of (7) by (see the
supplemental material for the deduction)

E

[
‖∇�(θk; ξkm)−∇�(θk−τk

m ; ξk−τk
m

m)‖2
]

(8a)

≥ 1

2
E

[∥∥∇�(θk; ξkm)−∇Lm(θk)
∥∥2] (8b)

+
1

2
E

[[∥∥∇�(θk−τk
m ; ξk−τk

m
m)−∇Lm(θk−τk

m)
∥∥2]] (8c)

− E[‖∇Lm(θk)−∇Lm(θk−τk
m)‖2]. (8d)

When θk converges, e.g., θk → θ∗, the right-hand side (RHS)
of (7)

∥∥θk+1−d−θk−d
∥∥2→0. But the LHS of (7) does not since

the gradient variances in (8b) and (8c) do not vanish.
Therefore, the key issue is the variance of stochastic gradients

is not diminishing and fails the LAG rule (7) eventually.

II. LASG: LAZILY AGGREGATED STOCHASTIC GRADIENTS

In this section, we formally develop our LASG method. To
overcome the limitations of LAG in stochastic settings, the key
of the LASG design is to reduce the variance of the innovation
measure appeared in the adaptive condition. As discussed,
LASG-WKuses a condition checked by eachworker; LASG-PS
uses one checked by the parameter server.

A. Worker LASG: Save Communication Uploads

We first introduce two LASG-WK variants. The first one,
which we term LASG-WK1, calculates two stochastic gradient
innovations with one at sample ξkm as

δ̃km := ∇�(θk; ξkm)−∇�(θ̃; ξkm)

and one at sample ξk−τk
m

m as

δ̃k−τk
m

m := ∇�(θk−τk
m ; ξk−τk

m
m)−∇�(θ̃; ξk−τk

m
m).

where θ̃ is a snapshot of the previous iterate θ thatwill be updated
every D (≥ dmax) iterations. As we will show in (10), δ̃km −
δ̃
k−τk

m
m can be viewed as the difference of two variance-reduced
gradients calculated at θk and θk−τk

m . Using δ̃km − δ̃
k−τk

m
m as the

error induced by using stale information, LASG-WK1 excludes
m fromMk if∥∥∥δ̃km − δ̃

k−τk
m

m

∥∥∥2 ≤ c
dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2 . (9)

Recall if (9) is satisfied, we increment staleness τk+1
m = τkm +

1; otherwise, workerm uploads the fresh stochastic gradient and
resets staleness as τk+1

m = 1.
Behind (9) is the reduction of its inherent variance. To see

this, decompose the LHS of (9) as the difference of two variance
reduced stochastic gradients at iteration k and k − τkm:

δ̃km − δ̃k−τk
m

m =
(
∇�(θk; ξkm)−∇�(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇�(θk−τk

m ; ξk−τk
m

m)−∇�(θ̃; ξk−τk
m

m) +∇Lm(θ̃)
)
. (10)

To provide some intuition, we define the minimizer of (2) as θ�

and assume that ∇�(θ; ξm) is L̄-Lipschitz continuous1 for any
ξm. The LHS of (9) is upper-bounded in expectation by

E

[∥∥δ̃km − δ̃k−τk
m

m

∥∥2] ≤ 8L̄(EL(θk)− L(θ�))

+ 8L̄(EL(θk−τk
m)− L(θ�))+16L̄(EL(θ̃)− L(θ�)). (11)

When the iterate θk converges, e.g., θk, θk−τk
m , θ̃ → θ∗, the RHS

of (11) diminishes, and thus the LHS of (9) diminishes. This is

1This Lipschitz continuous assumption is needed only when we provide some
intuitions of our design, but in our subsequent analysis.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4640 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

TABLE I
A COMPARISON OF COMMUNICATION, COMPUTATION AND MEMORY REQUIREMENTS. PS DENOTES THE PARAMETER SERVER,WK DENOTES THE WORKER, PS →

WKm IS THE DOWNLOAD FROM THE SERVER TO WORKER m, AND WKm→ PS IS THE UPLOAD FROM WORKER m TO THE SERVER

in contrast to the stochastic LAG-WK rule in (8) that is lower-
bounded by a non-diminishing value.
The second rule LASG-WK2 excludes m fromMk if∥∥∥∇�(θk; ξkm)−∇�(θk−τk

m
m ; ξkm)

∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d− θk−d
∥∥2. (12)

Note that different from (7), condition (12) is evaluated at two
different iterates but on the same sample ξkm.
LASG-WK2 (12) also reduces its inherent variance since the

LHS of (12) can be written as the difference between a variance
reduced stochastic gradient and a deterministic gradient, that is

∇�(θk; ξkm)−∇�(θk−τk
m ; ξkm) =

(∇�(θk; ξkm)

−∇�(θk−τk
m ; ξkm) +∇Lm(θk−τk

m)
)
−∇Lm(θk−τk

m). (13)

With derivations deferred to the supplementary, we conclude
that E[‖∇�(θk; ξkm)−∇�(θk−τk

m ; ξkm)‖2] → 0 as θk → θ�.

B. Server LASG: Save Up/Downloads and Calculations

We next introduce two LASG-PS variants. The rationale is
that if the model difference is small, the gradient difference used
in Section II-A is likely to be small.
The first variant LASG-PS excludes m fromMk if

L2
m

∥∥∥θk − θk−τk
m

∥∥∥2 ≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2 (14)

where Lm is the smoothness constant of Lm(θ). Condition
(14) can be checked at the server side without computing new
gradients if the server stores {θk−τk

m} for each workerm.
The LHS of (14) can be upper-bounded in expectation by

E

[∥∥θk − θk−τk
m
∥∥2]≤2D

D∑
d=1

E

[∥∥θk−d−θk−d−τk−d
m

∥∥2]η2k−D

+ 2D

D∑
d=1

E
∥∥∇L(θk−d)

∥∥2 η2k−D +D2

(∑
m∈M

σ2
m

)
η2k−D.

(15)

Assume ‖∇L(θk)‖2 is bounded; then the diminishing stepsizes
{ηk} ensure that the 2nd and 3 rd terms in theRHSof (15) vanish.
Using mathematical induction, the LHS of (14) also diminishes.
Therefore, this condition remains effective asymptotically.
When an estimate Lm is not available, one can use LASG-

PSE, a variation of LASG-PS that estimates Lm “on-the-fly.”

With L̂k
m denoting the estimate of Lm, LASG-PSE excludesm

fromMk if

(L̂k
m)2‖θk − θk−τk

m‖2≤ c

dmax

dmax∑
d=1

‖θk+1−d − θk−d‖2 (16)

where the estimated constant L̂k
m is updated iteratively via

L̂k+1
m = max

{
L̂k
m,

‖∇�(θk; ξkm)−∇�(θk−τk
m ; ξkm)‖

‖θk − θk−τk
m‖

}
. (17)

We give LASG-PS and LASG-PSE in Algorithms 3 and 4,
respectively, and compare all LASG methods in Table I .
Comparison of all LASG methods. All the LASG rules

can be computed efficiently without storing all previous θk.
LASG-PS and LASG-PSE need extra memory at the server
but save both local computation and download communication
while LASG-WK1 and LASG-WK2 save only upload com-
munication. LASG-WK1 is more conservative as LASG-WK1
measures the change of gradients at two model states for both
new and old data samples, but LASG-WK2 measures only the
change of gradient at the new sample.

C. Quantized LASG: Save Also Communication Bits

We further reduce communication bits per round by apply-
ing quantization. We define the gradient under a quantization
operator Q as

Q(θ; ξ) := Q (∇�(θ; ξ)) . (18)

We adopt the stochastic quantization scheme in [13] and
develop quantized LASG (LAQSG) as

θk+1=θk−ηk
∑

m∈M\Mk

Q(θk−τk
m ; ξk−τk

m
m)− ηk

∑
m∈Mk

Q(θk; ξkm)

where Mk is determined by one of four described rules.

III. MAIN RESULTS

In this section we present the convergence results of LASG-
WK1, LASG-WK2 and LASG-PS under both the nonconvex
condition and the Polyak-Łojasiewicz condition, and the conver-
gence results of LAQSG under the nonconvex condition only.
We leave the analysis of LASG-PSE for future work, but it
empirically has very impressive performance.
First, we make some basic assumptions.
Assumption 1: The loss function L(θ) is L-smooth, i.e. for

any θ1, θ2 ∈ R
p, it follows that

L(θ2) ≤ L(θ1) +
〈
∇L(θ1), θ2 − θ1

〉
+

L

2
‖θ2 − θ1‖2. (19)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4641

TABLE II
A COMPARISON OF LASG-WK1 AND LASG-WK2

TABLE III
A COMPARISON OF LASG-PS AND LASG-PSE

Assumption 2: The samples ξ1m, ξ2m, . . . are independent, and
the stochastic gradient ∇�(θ; ξkm) satisfies

Eξkm

[∇�(θ; ξkm)
]
= ∇Lm(θ), (20a)

Eξkm

[‖∇�(θ; ξkm)−∇Lm(θ)‖2] ≤ σ2
m. (20b)

For LASG-PS, we require an extra smoothness assumption.
Assumption 3: The local gradient∇Lm isLm-Lipschitz con-

tinuous, i.e. for any θ1, θ2 ∈ R
p, we have

‖∇Lm(θ1)−∇Lm(θ2)‖ ≤ Lm‖θ1 − θ2‖. (21)

Assumption 1 implies that the loss function L can be upper
bounded by a quadratic function at any point. Assumption 2
ensures that the stochastic gradient is unbiased, and has bounded
variance. Assumption 3 bounds the change of local gradients
when they are evaluated at two points. Assumptions 1-3 are
common in analyzing SGD [13], [19]–[22], [42]–[44].

A. Convergence in the Nonconvex Case

We first present the convergence in the nonconvex case.

Theorem 1 (nonconvex): Under Assumptions 1, 2 (for Al-
gorithm 3 also Assumption 3), if the stepsize is chosen as ηk =

η = O(1√
K
), and the threshold is c ≤ min{ 1

12Dη2 ,
√
ML2

18 }, then
{θk} generated by Algorithms 1-3 satisfy

1

K

K−1∑
k=0

E
[‖∇L(θk)‖2] = O

⎛
⎝√

M

K
+

√∑M
m=1 σ

2
m

M
3
4

√
K

⎞
⎠. (22)

From Theorem 1, the convergence rate of LASG in terms
of the average gradient norms is still O(1/

√
K), matching

standard SGD [43]. When K � M , the second term is dom-
inant. If we simplify σm = σ, ∀m, then the bound becomes
O(1/(M

1
4K

1
2)), and the convergence rate will be improved as

the number ofworkersM increases.Note that asyncmethod [45]
has better speedup as it artifically assumes that uploading work-
ers are independent of the past.
The assumption below bounds the variance of the quantized

stochastic gradient.
Assumption 4: For any θ ∈ R

p and any m ∈ M, we have
Eξm [‖∇�(θ; ξm)‖2] ≤ B.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4642 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 3. Logistic regression on covtype dataset.

Fig. 4. Logistic regression on mnist digits 3 and 5.

Based on this assumption, we have the following result.
Theorem 2 (LAQSG): Under Assumptions 1, 2, 4 (also

Assumption 3 for Algorithm 3), if ηk=η= O(1√
K
), c ≤

min{ dmax

16Dη2 ,
dmax

√
ML2

24 } where cη > 0 is a constant, then {θk}
generated by quantized Algorithms 1 - 3 satisfy

1

K

K−1∑
k=0

E
[‖∇L(θk)‖2] = O

(
1/
√
K
)
. (23)

The rate O(1/
√
K) matches the standard QSGD [13].

B. Convergence Under the Polyak-Łojasiewicz Condition

Assumption 5: The loss function L satisfies the Polyak-
Łojasiewicz (PL) condition with constant μ > 0, that is

L(θ)− L(θ∗) ≤ 1

2μ
‖L(θ)‖2 . (24)

The PL condition is weaker than strong convexity and may
hold with convexity [46]. It is met by underdetermined least
squares and logistic regression.
Theorem 3 (PL-condition): Under Assumption 1,2,5 (for Al-

gorithm 3 also Assumption 3), if ηk = 2
μ(k+K0)

≤ η0 for a

given constant K0, and c ≤ min{ dmax

24Dη2
0
, dmax

√
ML2

18 }, then θK

generated by Algorithms 1, 2 and 3 satisfies

E
[L(θK)

]− L(θ�) = O (1/K) . (25)

The rateO(1/K) matches that of SGD [47]. Under the same
(or even slightly stronger) assumptions of Theorem 3, it has been
shown that O(1/K) is the best rate by any stochastic gradient-
based algorithm; see [48, Theorems 5.3.1 and 7.2.6].

IV. NUMERICAL TESTS

We conducted numerical tests on both logistic regression and
neural network models. We benchmarked LA(Q)SG with SGD,
LAG-WK, local SGD (with varying intervals H) and QSGD.
We did a grid search for best learning rates.

A. Logistic Regression

The data are distributed across M = 10 workers for ijcnn1,
MNIST (with digits 3, 5) and M = 20 for Covtype. For each
worker, the batch size is selected to be 0.01 of the local data size
for ijcnn1,MNIST and 0.001 for Covtype. The �2-regularization
parameter is set to be 10−5. We choose stepsize η = 0.1. For
all LASG algorithms, D = 100, dmax = 10 and c = 1/η2. For
local-SGD, the communication period is H = 50, 10, 20 itera-
tions for ijcnn1,MNIST,Covtype respectively. This is optimized
to save communication as much as possible without largely
affecting the convergence speed. For quantization methods, we
perform 4-bit stochastic quantization [13]. Numerical results are
reported in Figs. 3–5.

B. Training Neural Networks

We train a convolutional neural network with two
convolution-ELU-maxpooling layers (ELU is a smoothed
ReLU) followed by two fully-connected layers for 10 classes
classification on MNIST. The data are distributed on M = 10
workers.We choose stepsize η = 0.05. Since the objective func-
tion is nonsmooth (Lm is unavailable), LASG-PS is not tested.
For other LASG algorithms, we set D = 50, dmax = 10, and
c = 1/η2. For local-SGD, we set H = 4. For all quantization
methods, we set 8 bits. We first report the the total number
of uploads needed to achieve the training loss 0.1 and the test

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4643

Fig. 5. Logistic regression on ijcnn1 dataset.

Fig. 6. Training loss on mnist dataset under different number of workers.

Fig. 7. Test accuracy on mnist dataset under different number of workers.

Fig. 8. Training loss on mnist dataset averaged over 30 trials.

accuracy 95% under different number of workers M in Figs. 6
and7, respectively.Wealso report the numerical results averaged
over 30 Monte Carlo runs in Figs. 8 and 9.
All algorithms have been tested on the popular tiny imagenet

dataset, which contains 200 classes and 500 images per class
for training and 10 000 images for testing. All images in tiny
imagenet are 64x64 colored ones. We use the Resnet18 model

Fig. 9. Test accuracy on mnist dataset averaged over 30 trials.

Fig. 10. Training loss on tiny imagenet dataset.

Fig. 11. Test accuracy on tiny imagenet dataset.

initialized by weights pretrained on ImageNet1000; see the ac-
curacy versus the number of communication uploads in Figs. 10
and 11. For training loss, LASG-WK1 and -WK2 require much
less total time than SGD and local SGDwithH = 2, but slightly
more than local SGD with H = 4 and 6. However, as shown in
Fig. 11, local SGD with larger communication period sacrifices
the testing accuracy by 3-4%. This reduced test accuracy is

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4644 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

common among local SGD methods, which has been studied
theoretically; see e.g., [27].
All LASG algorithms has the same iteration complexity

as SGD and outperform local-SGD in most cases. Compared
with SGD, LASG-WK2 and LASG-PSE reduce communication
rounds by about one order of magnitude for neural network
training and even more for logistic regression. LASG-WK1 also
reduce communication by more than one order of magnitude
for logistic regression. Based on the results of LAG-WK, it is
evident that the selection rules (9), (12) and (16) achieve more
significant improvement in terms of saving communication than
the selection rule (7) of LAG-WK. Moreover, the performance
of LAQSG validates that LASG can be easily equipped with
stochastic quantization with extra benefits from quantization.

V. CONCLUDING REMARKS

In this paper,we developed a class of communication-efficient
variants of SGD that we term LASG. The LASG methods
leverage a set of adaptive communication rules to detect and
then skip less informative or redundant communication rounds
between the server and workers during distributed learning. To
further reduce communication bandwidth, the quantized version
of LASG is also presented. Both LASG and their quantized
version are simple to implement, and have convergence rate
comparable to the original SGD.
Future research includes studying the proximal extension of

LASG for certain nonsmooth problems, and developing the
primal-dual counterpart of LASG for distributed training of
generative adversarial networks (GANs). While the setting in
this paper considers a central server and a set of workers in a
communication error-free system, developing the decentralized
version of LASG for learning without a central server is in our
future agenda. Studying the effect of errors induced by noisy
wireless channels on distributed learning is also of great practical
importance, which can be typically tackled by controlling the
transmit power to maintain a desired SNR [49].

VI. DERIVATIONS OF MISSING STEPS IN SECTION II

Wewill provide the detailed derivations of somemissing steps
in Section II We define an auxiliary function as

ψm(θ) := Lm(θ)− Lm(θ�)−
〈
∇Lm(θ�), θ − θ�

〉
where θ� is a minimizer of L(θ). Assume that
∇�(θ; ξm) is L̄-Lipschitz continuous for all ξm, we have
‖∇�(θ; ξm)−∇�(θ�; ξm)‖2 ≤ 2L̄(�(θ; ξm)− �(θ�; ξm)−
〈∇�(θ�; ξm), θ − θ�〉). Taking expectation with respect to ξm,
we can obtain

Eξm [‖∇�(θ; ξm)−∇�(θ�; ξm)‖2] ≤

2L̄
(
Lm(θ)− Lm(θ�)−

〈
∇Lm(θ�), θ − θ�

〉)
= 2L̄ψm(θ).

(26)

Note that ∇Lm is also L̄-Lipschitz continuous and thus

‖∇Lm(θ)−∇Lm(θ�)‖2 ≤ 2L̄ψm(θ).

1) Derivations of (8): By (38), we can derive that ‖θ1‖2 ≥
1
2‖θ1 + θ2‖2 − ‖θ2‖2. As a consequence, we can obtain

E

[∥∥∇�(θk; ξkm)−∇�(θk−τk
m ; ξk−τk

m
m)

∥∥2]

≥ 1

2
E
[∥∥ (∇�(θk; ξkm)−∇Lm(θk)

)
+
(
∇Lm(θk−τk

m)−∇�(θk−τk
m ; ξk−τk

m
m)

)∥∥2]
− E

[∥∥∇Lm(θk)−∇Lm(θk−τk
m)

∥∥2]

=
1

2
E

[∥∥∇�(θk; ξkm)−∇Lm(θk)
∥∥2]

+
1

2
E

[[∥∥∇�(θk−τk
m ; ξk−τk

m
m)−∇Lm(θk−τk

m)
∥∥2]]

+E

[〈
∇�(θk; ξkm)−∇Lm(θk),∇Lm(θk−τk

m)

−∇�(θk−τk
m ; ξk−τk

m
m)

〉]
− E

[∥∥∇Lm(θk)−∇Lm(θk−τk
m)

∥∥2] .
To obtain (8), we use that〈

E
[∇�(θk; ξkm)

∣∣Θk
]

=∇Lm(θk)

−∇Lm(θk),∇Lm(θk−τk
m)

−∇�(θk−τk
m ; ξk−τk

m
m)

〉
= 0.

2) Derivations of (11): Recall that

δ̃km − δ̃k−τk
m

m

=
(
∇�(θk; ξkm)−∇�(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇�(θk−τk

m ; ξk−τk
m

m)−∇�(θ̃; ξk−τk
m

m) +∇Lm(θ̃)
)

=
(
∇�(θk; ξkm)−∇�(θ̃; ξkm) +∇ψm(θ̃)

)
:=gk

m

−
(
∇�(θk−τk

m ; ξk−τk
m

m)−∇�(θ̃; ξk−τk
m

m) +∇ψm(θ̃)
)

:=g
k−τk

m
m

.

And by (38), we have ‖δ̃km − δ̃
k−τk

m
m ‖2 ≤ 2‖gkm‖2 +

2‖gk−τk
m

m ‖2. We decompose the first term as

E[‖gkm‖2]≤ 2E[‖∇�(θk; ξkm)−∇�(θ�; ξkm)‖2]
+ 2E[‖∇�(θ̃; ξkm)−∇�(θ�; ξkm)−∇ψm(θ̃)‖2]

= 2E[E[‖∇�(θk; ξkm)−∇�(θ�; ξkm)‖2|Θk]]

+ 2E[‖∇�(θ̃; ξkm)−∇�(θ�; ξkm)

− E[∇�(θ̃; ξkm)−∇�(θ�; ξkm)|Θk]‖2]
≤ 4L̄E[ψm(θk)] + 2E[‖∇�(θ̃; ξkm)−∇�(θ�; ξkm)‖2]
(a)

≤ 4L̄E[ψm(θk)] + 4L̄Eψm(θ̃).

where (a) follows from (26).

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4645

By nonnegativity of ψm, we have

E[‖gkm‖2] ≤ 4L̄
∑
m∈M

Eψm(θk) + 4L̄
∑
m∈M

Eψm(θ̃)

= 4ML̄(EL(θk)− L(θ�)) + 4ML̄(EL(θ̃)− L(θ�)). (27)

Similarly, we can prove

E[‖gk−τk
m

m ‖2] ≤
4ML̄(EL(θk−τk

m)− L(θ�)) + 4ML̄(EL(θ̃)− L(θ�)). (28)

Therefore, it follows that

E[‖δ̃km − δ̃k−τk
m

m ‖2] ≤ 8ML̄(EL(θk)− L(θ�))
+ 8ML̄(EL(θk−τk

m)−L(θ�))+16ML̄(EL(θ̃)− L(θ�)).
3) Derivations of (13): The LHS of (12) can be written as

∇�(θk; ξkm)−∇�(θk−τk
m ; ξkm)

=
(
∇�(θk; ξkm)−∇�(θk−τk

m ; ξkm)+∇Lm(θk−τk
m)

)
−∇Lm(θk−τk

m)

=
(
∇�(θk; ξkm)−∇�(θk−τk

m ; ξkm)+∇ψm(θk−τk
m)

)
−∇ψm(θk−τk

m).

Similar to (27), we can obtain

E[‖∇�(θk; ξkm)−∇�(θk−τk
m ; ξkm) +∇ψm(θk−τk

m)‖2]
≤ 4ML̄(EL(θk)− L(θ�)) + 4ML̄(EL(θk−τk

m)− L(θ�)).
Combined with the fact

E[‖∇ψm(θk−τk
m)‖2] = E[‖∇Lm(θk−τk

m)−∇Lm(θ�)‖2]
≤ 2L̄Eψm(θk−τk

m)

≤ 2ML̄(EL(θk−τk
m)− L(θ�))

we have

E[‖∇�(θk; ξkm)−∇�(θk−τk
m ; ξkm)‖2]

≤ 8ML̄(EL(θk)− L(θ�)) + 12ML̄(EL(θk−τk
m)− L(θ�)).

4) Derivations of (15): Expanding LASG update, we have

E

[
‖θk − θk−τk

m‖2
]

=
1

M2
E

⎡
⎣∥∥∥ τk

m∑
d=1

∑
m∈M

ηk−d∇�(θk−d−τk−d
m ; ξk−d−τk−d

m
m)

∥∥∥2
⎤
⎦

≤ τkm
M2

τk
m∑

d=1

η2k−d E

[∥∥∥ ∑
m∈M

∇�(θk−d−τk−d
m ; ξk−d−τk−d

m
m)

∥∥∥2
]

where we used the Cauchy-Schwartz inequality.
Using E[‖A− E[A]‖2] + ‖E[A]‖2 = E[‖A‖2], we have

E

[
‖θk − θk−τk

m‖2
]
=

τkm
M2

τk
m∑

d=1

η2k−d

×E

[∥∥∥ ∑
m∈M

(
∇�(θk−d−τ

k−d
m ; ξk−d−τ

k−d
m

m)−∇Lm(θk−d−τk−d
m)

)∥∥∥2
]

+
τkm
M2

τk
m∑

d=1

η2k−dE

[∥∥∥ ∑
m∈M

∇Lm(θk−d−τk−d
m)

∥∥∥2
]

≤ τkm
M2

τk
m∑

d=1

η2k−d
∑
m∈M

σ2
m+

τkm
M2

τk
m∑

d=1

η2k−dE

[∥∥∥∑
m∈M

∇Lm(θk−d−τ
k−d
m)

∥∥∥2
]

≤ τkm
M2

τk
m∑

d=1

∑
m∈M

σ2
mη2k−d +

2τkm
M2

τk
m∑

d=1

E

[∥∥∥∇L(θk−d)
∥∥∥2] η2k−d

+
2τkm
M2

τk
m∑

d=1

∑
m∈M

L2
mE

[∥∥∥θk−d − θk−d−τk−d
m

∥∥∥2] η2k−d.

We arrive at our statement since τkm ≤ D and ηk−d ≤ ηk−D.

VII. PROOFS OF MAIN THEOREMS

We first highlight the key steps, present some supporting
lemmas that will be used frequently in the subsequent analysis,
which is followed by the proofs of the results in Section III.

A. Key Steps of Lyapunov Analysis

With these assumptions, LASG will yield descent of L(θk).
Lemma 1: Under Assumptions 1, 2 and 3, {θk} generated by

Algorithms 1, 2 and 3 satisfy

E[L(θk+1)]− E[L(θk)] ≤ −
(
ηk − Lη2k

2

)
E
[‖∇L(θk)‖2]

+
Lη2k
2

E

[∥∥∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk)

∥∥∥∥∥
2]

+

(
ηk − Lη2k

)
M

∑
m∈M

E

[〈
∇L(θk), δkm

〉]
(29)

where δkm := ∇�(θk; ξkm)−∇�(θk−τk
m ; ξ

k−τk
m

m).
Among three terms in the RHS of (29): the first term resem-

bles the standard unbiased stochastic descent; the second term
captures the variance of the stale aggregated stochastic gradient;
and, the last termquantifies the correlations between the gradient
direction ∇L(θk) and the error induced by the stale stochastic
gradient ∇k.

Analyzing the progress ofL(θk) under LASG is challenging.
Below we characterize the regularity of the stale stochastic
gradients ∇k, which lays the foundation for incorporating the
properly controlled staleness into the SGD update.
Lemma 2: Under Assumptions 1 and 2, if the stepsizes satisfy

ηk+1 ≤ ηk ≤ 1/L, then we have

E

[〈
∇L(θk), δkm

〉]
≤ Lηk

2
E

[∥∥∇L(θk)∥∥2]+ 6DLηk

2M
√
M

∑
m∈M

σ2
m

+
D∑

d=1

(
c

2Lηkdmax
+

√
ML

12ηk

)
E
[‖θk+1−d − θk−d‖2] . (30)

Lemma 2 justifies the relevance of the stale yet properly
selected stochastic gradients. Intuitively, the first term in the
RHS of (30) will reduces the magnitude of descent in (29), and

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4646 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

the second and third terms will diminish if the stepsizes are
diminishing since E[‖θk − θk−1‖2] = O(η2k).

The next lemma implies that the variance of the stale aggre-
gated stochastic gradient reduces to that of standard SGD if the
stepsizes are diminishing since E[‖θk − θk−1‖2] = O(η2k).
Lemma 3: Under Assumptions 1 and 2, if the stepsizes satisfy

ηk+1 ≤ ηk ≤ 1/L, then we have

E

[∥∥∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk)

∥∥∥∥∥
2]

≤ 3c

dmax

dmax∑
d=1

E‖θk+1−d − θk−d‖2 + 9

M2

∑
m∈M

σ2
m. (31)

In viewofLemmas1-3,we introduce the followingLyapunov
function to capture the progress of LASG:

V k := L(θk)− L(θ�) +
D∑

d=1

γd‖θk+1−d − θk−d‖2 (32)

where {γd}Dd=1 are constants to be determined later. The follow-
ing lemma is a direct application of Lemmas 1–3.
Lemma 4: Under Assumptions 1 and 2, there exist nonnega-

tive constants {Ak
d}Dd=1, B

k
0 and Bk

1 such that

E[V k+1]− E[V k] ≤ −Bk
0 E

[‖∇L(θk)‖2]+Bk
1

M∑
m=1

σ2
m

−
D∑

d=1

Ak
d E

[‖θk+1−d − θk−d‖2] .
(33)

The constants {Ak
d}Dd=1, B

k
0 and Bk

1 depend on the stepsize
ηk, the threshold c and the parameters {γd}Dd=1. Their expres-
sions are specified in the proof. By choosing proper ηk and c,
we are able to ensure the convergence of LASG.

B. Supporting Lemmas

Define theσ-algebraΘk = {θl, 1 ≤ l ≤ k}. For convenience,
we initialize parameters as θ−D = · · · = θ−1 = θ0, and define
the difference between θk+1−d and θk−d as

Δk−d := θk+1−d − θk−d (34)

which implies that Δk := θk+1 − θk.
Some basic facts used in the proof are reviewed as follows.
Fact 1. Assume that X1, X2, . . . , Xn ∈ R

p are independent
random variables, and EX1 = · · · = EXn = 0. Then

E

[∥∥∥ n∑
i=1

Xi

∥∥∥2
]
=

n∑
i=1

E
[‖Xi‖2

]
. (35)

Fact 2. (Young’s inequality) For any θ1, θ2 ∈ R
p, ε > 0,〈

θ1, θ2

〉
≤ ‖θ1‖2

2ε
+

ε‖θ2‖2
2

. (36)

As a consequence, we have

‖θ1 + θ2‖2 ≤
(
1 +

1

ε

)
‖θ1‖2 + (1 + ε)‖θ2‖2. (37)

Fact 3. (Cauchy-Schwartz) For θ1, . . . , θn ∈ R
p, we have∥∥∥ n∑

i=1

θi

∥∥∥2 ≤ n

n∑
i=1

‖θi‖2. (38)

Lemma 5: For k −D ≤ l ≤ k − τkm, if {θk} are the iterates
generated by LASG, we have

E

[〈
∇L(θk),∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

〉]

≤
√
ML

12ηk

D∑
d=1

E
[‖Δk−d‖2]+6DLηk√

M
σ2
m (39)

and similarly, we have

E

[〈
∇L(θk),∇Lm(θl)−∇�(θl; θk−τk

m)
〉]

≤
√
ML

12ηk

D∑
d=1

E
[‖Δk−d‖2]+ 3DLηk√

M
σ2
m. (40)

Proof: We first prove (39) by decomposing it as

E

[〈
∇L(θk),∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

〉]
(a
= E

[〈
∇L(θk)−∇L(θl),∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

〉]
≤ LE

[
‖θk − θl‖‖∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)‖

]
(b)

≤
√
ML

12Dηk
E
[‖θk − θl‖2]

:=T1

+
6DLηk

2
√
M

E

[
‖∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)‖2

]
:=T2

(41)

where (a) holds due to

E

[〈
∇L(θl),∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

〉]
= E

[
E

[〈
∇L(θl),∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

〉∣∣∣Θl
]]

= E

[〈
∇L(θl),E

[
∇�(θl; ξkm)−∇�(θl; ξk−τk

m
m)

∣∣Θl
] 〉]

= E

[〈
∇L(θl),∇Lm(θl)−∇Lm(θl)

〉]
= 0

and (b) is a direct application of Fact 2.
Applying Fact 3 to T1, we have

T1= E

[∥∥∥ k−l∑
d=1

Δk−d
∥∥∥2
]
≤ (k − l)

k−l∑
d=1

E
[‖Δk−d‖2]

≤ D
D∑

d=1

E
[‖Δk−d‖2] (42)

and applying Fact 1 to T2, we have

T2 = E

[∥∥∇�(θl; ξkm)−∇�(θl; ξk−τk
m

m)
∥∥2]

=E

[∥∥∇�(θl; ξkm)−∇Lm(θl)+∇Lm(θl)−∇�(θl; ξk−τk
m

m)
∥∥2]

= E

[∥∥∇�(θl; ξkm)−∇Lm(θl)
∥∥2]

+ E

[∥∥∇Lm(θl)−∇�(θl; ξk−τk
m

m)
∥∥2] ≤ 2σ2

m (43)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4647

where the last inequality uses Assumption 2. Plugging (42) and
(43) into (41), it leads to (39).
Likewise, following the steps to (41), it can be verified that

(40) also holds true.

C. Proof of Lemma 1

Due to the smoothness of L(θ) in Assumption 1, we have

E
[L(θk+1)

]− E
[L(θk)]

≤ ηk E

[
−
〈
∇L(θk), 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)

〉]

:=I1

+
Lη2k
2

E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)

∥∥∥2
]

:=I2

. (44)

With δkm := ∇�(θk; ξkm)−∇�(θk−τk
m ; ξ

k−τk
m

m) denoting the
stochastic gradient innovation, we decompose I1 as

I1 = − E

[〈
∇L(θk), 1

M

∑
m∈M

∇�(θk; ξkm)
〉]

+
1

M

∑
m∈M

E

[〈
∇L(θk), δkm

〉]
:=H1

= − E

[〈
∇L(θk), 1

M

∑
m∈M

E
[∇�(θk; ξkm)

∣∣Θk
] 〉]

+H1

= − E
[‖∇L(θk)‖2]+H1 (45)

and likewise decompose I2 as

I2=E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk)+∇L(θk)

∥∥∥2
]

= E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk)

∥∥∥2
]

:=H2

+E
[‖∇L(θk)‖2]−2E

[〈
∇L(θk), 1

M

∑
m∈M

∇�(θk; ξkm)
〉]

+ 2E

[〈
∇L(θk), 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)

〉]

= H2 + E
[‖∇L(θk)‖2]− 2H1. (46)

We obtain Lemma 1 by plugging (45) and (46) into (44).

D. Proof of Lemma 2

We next bound H1 defined in (45) separately for different
LASG rules. First for LASG-WK1’s rule (9), we have

H1
(a)
=

1

M

∑
m∈M

E

[〈
∇L(θk), δ̃km − δ̃k−τk

m
m

〉]

+
1

M

∑
m∈M

E

[〈
∇L(θk),∇�(θ̃; ξk)−∇�(θ̃, ξk−τk

m
m)

〉]

(b)

≤ Lηk
2

E

[∥∥∇L(θk)∥∥2]+ 6DLηk

M
√
M

∑
m∈M

σ2
m

+

D∑
d=1

(
c

2Lηkdmax
+

√
ML

12ηk

)
E

[∥∥Δk−d
∥∥2]

where (a) is due to the definition of δkm, and (b) is obtained by (9),
(36) with ε = 1

Lηk
, and (39) with θl = θ̃. Note that the definition

of θ̃ in Algorithm 1 implies l = � k
D � ≤ k − τkm.

For LASG-WK2’s rule (12), we apply (36) with ε = 1
Lηk

and

(39) with l = k − τkm, which leads to

H1 =
1

M

∑
m∈M

E

[〈
∇L(θk),∇�(θk; ξkm)−∇�(θk−τk

m ; ξkm)
〉]

+E

[〈
∇L(θk),∇�(θk−τk

m ; ξkm)−∇�(θk−τk
m ; ξk−τk

m
m)

〉]

≤ Lηk
2

E
[‖∇L(θk)‖2]+ 6DLηk

M
√
M

∑
m∈M

σ2
m

+

D∑
d=1

(
c

2Lηkdmax
+

√
ML

12ηk

)
E
[‖Δk−d‖2] .

For LASG-PS’s rule (14), applying E[∇�(θk; ξkm)|Θk] =
∇Lm(θk), we get

H1 =
1

M

∑
m∈M

E

[〈
∇L(θk),∇Lm(θk)−∇Lm(θk−τk

m)
〉]

+
1

M

∑
m∈M

E

[〈
∇L(θk),∇Lm(θk−τk

m)−∇�(θk−τk
m ; ξk−τk

m
m)

〉]
(c)

≤ Lηk
2

E
[‖∇L(θk)‖2]+ 6DLηk

2M
√
M

∑
m∈M

σ2
m

+

D∑
d=1

(
c

2Lηkdmax
+

√
ML

12ηk

)
E
[‖Δk−d‖2]

where (c) uses (36) with ε = 1
Lηk

and (40) with l = k − τkm.

E. Proof of Lemma 3

We next bound H2 defined in (46) separately for different
LASG rules. For LASG-WK1, using (38), we first have

H2 ≤ 3E

[∥∥ 1

M

∑
m∈M

δ̃km − δ̃k−τk
m

m

∥∥2]

+ 3E

[∥∥ 1

M

∑
m∈M

∇�(θk, ξkm)−∇L(θk))∥∥2
]

+ 3E

[∥∥∥ 1

M

∑
m∈M

(∇�(θ̃; ξkm)−∇Lm(θ̃))

+
1

M

∑
m∈M

(∇Lm(θ̃)−∇�(θ̃; ξk−τk
m

m))
∥∥∥2
]

(a)

≤ 3c

dmax

dmax∑
d=1

E
[‖Δk−d‖2]+ 9

M2

∑
m∈M

σ2
m

where (a) follows from (9), (20b), and (35).

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4648 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

For LASG-WK2, using (38), we have

H2 ≤ 2E

[∥∥ 1

M

∑
m∈M

(
∇�(θk−τk

m , ξk−τk
m

m)−∇�(θk; ξkm)
)∥∥2]

+ 2E

[∥∥ 1

M

∑
m∈M

(∇�(θk; ξkm)−∇Lm(θk)
) ∥∥2]

(b)

≤ 2c

dmax

dmax∑
d=1

E
[‖Δk−d‖2]+ 2

M2

∑
m∈M

σ2
m

where (b) uses (12), (20b) and (35).
For LASG-PS, using (38), we have

H2 ≤ 2E

[∥∥ ∑
m∈M

(
∇�(θk−τk

m , ξk−τk
m

m)−∇Lm(θk−τk
m)

)∥∥∥2
]

+ 2E

[∥∥ ∑
m∈M

(
∇Lm(θk−τk

m)−∇Lm(θk)
)∥∥2]

(c)

≤ 2c

dmax

dmax∑
d=1

E
[‖Δk−d‖2]+ 2

M2

∑
m∈M

σ2
m

≤ 3c

dmax

dmax∑
d=1

E‖Δk−d‖2 + 9

M2

∑
m∈M

σ2
m

where (c) holds due to (14), (20b), and (35).

F. Proof of Lemma 4

Plugging Lemmas 2 and 3 into Lemma 1 leads to

E
[L(θk+1)

]− E
[L(θk)]

≤ −
(
ηk − Lη2k +

L2η3k
2

)
E
[‖∇L(θk)‖2]

+
D∑

d=1

((
3ηk

2dmax
+

1− Lηk
2Ldmax

)
c+

√
ML

12

)
E
[‖Δk−d‖2]

+ Lη2k

(
9

2
+ 6

√
MD

)
1

M2

∑
m∈M

σ2
m (47)

where we use the fact that Lηk ≤ 1.
By definition of E[V k], it follows that (with γD+1 = 0)

E[V k+1]− E[V k] = E
[L(θk+1)

]− E
[L(θk)]

+ γ1E
[‖Δk‖2]+ D∑

d=1

(γd+1 − γd)E
[‖Δk−d‖2] .

First we decompose E[‖Δk‖2] as
1

η2k
E
[‖Δk‖2]

= E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk) +∇L(θk)

∥∥∥2
]

≤ 2E
[‖∇L(θk)‖2]

+2E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−∇L(θk)

∥∥∥2
]

(a)

≤ 2E
[‖∇L(θk)‖2]+ 6c

dmax

D∑
d=1

E
[‖Δk−d‖2]+ 18

M2

∑
m∈M

σ2
m

where (a) uses Lemma 3.
Together with (47), it follows that

E[V k+1]− E[V k] ≤ − (
ηk − (L+ 2γ1)η

2
k

)
:=Bk

0

E
[‖∇L(θk)‖2]

+
D∑

d=1

((
ηk +

1

2L

)
c

dmax
+

√
ML

12
+
6cγ1η

2
k

dmax
+γd+1−γd

)

:=Ak
d

E
[‖Δk−d‖2]
+

((
9

2
+ 6

√
MD

)
L+ 18γ1

)
:=Bk

1

η2k
M2

∑
m∈M

σ2
m (48)

from which the proof is complete.

G. Proof of Theorem 1

To ensureAk
d ≤ 0 in (48) of Lemma4, it is sufficient to choose

{γd} satisfying (with γD+1 = 0)(
ηk +

1

2L

)
c

dmax

+

√
ML

12
+

6cγ1η
2
k

dmax
+ γd+1 − γd ≤ 0, 0 ≤ d ≤ D

where the stepsize is chosen as ηk = η, k = 1, . . . ,K.
Solve the linear equations above and get

γ1 =
(η + 1

2L)cD/dmax +
√
MDL
12

1− 6cDη2/dmax
. (49)

Select c ≤ min{ dmax

12Dη2 ,
dmax

√
ML2

18 } such that γ1 ≤
√
MDL
3 .

If we further select η ≤ 1
2L+ 4

3

√
MDL

≤ 1
2L+4γ1

and then

Bk
0 = ηk − (L+ 2γ1)η

2
k ≥ η

2
. (50)

Summation up (33) over k = 0, . . . ,K − 1, it follows that
K−1∑
k=0

ηk
2
E
[‖∇L(θk)‖2] ≤ L(θ0)− L(θ∗)

+
K−1∑
k=0

(
9

2
+ 12

√
MD

)
Lη2k
M2

∑
m∈M

σ2
m. (51)

Specifically, if we choose a constant stepsize

ηk = η := min

{
1

2L+ 4
3

√
MDL

,
cη√
K

}
(52)

where cη > 0 is a constant, then

1

K

K−1∑
k=0

E
[‖∇L(θk)‖2]

≤ 2

Kη

(
L(θ0)− L(θ∗) +K

(
9

2
+ 12

√
MD

)
Lη2

M2

∑
m∈M

σ2
m

)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4649

≤
(
4L+ 8

3

√
MDL

K
+

2

cη
√
K

)
(L(θ0)− L(θ∗))

+
cη√
K

(
9 + 24

√
MD

) L

M2

∑
m∈M

σ2
m. (53)

Choosing cη = O(M
3
4 (
∑

m∈M σ2
m)−

1
2) leads to the theorem.

H. Proof of Theorem 2

Let EQ and EQ,ξm denote the expectation with respect to the
stochastic quantization Q and both the stochastic quantization
Q and the datum ξm, respectively.
As a result of [13, Lemma 3.1] and Assumption 4, b-bit

quantized gradients have the following unbiasedness property

EQ [Q(θ; ξm)] = ∇�(θ; ξm) (54)

and the bounded variance (with B defined in Assumption 4)

EQ,ξm

[‖Q(θ; ξm)−∇�(θ; ξm)‖2]
≤ min

{
d

(2b−1 − 1)2
,

√
d

2b−1 − 1

}
B =: σ2

Q. (55)

Analogous to the proof of Lemma 1, we can get

E
[L(θk+1)

]− E
[L(θk)] ≤ −

(
ηk − Lη2k

2

)
E
[‖∇L(θk)‖2]

+
(
ηk − Lη2k

)
H3 +

Lη2k
2

H4

where H3 and H4 are defined similar to H1 and H2 in (44).
We first bound H3 as

H3 :=
1

M

∑
m∈M

E

×
[〈

∇L(θk),∇�(θk; ξkm)−Q(θk−τk
m ; ξk−τk

m
m)

〉]

=H1+
1

M

∑
m∈M

E

×
[〈
∇L(θk),∇�(θk−τk

m ; ξk−τk
m

m)−Q(θk−τk
m ; ξk−τk

m
m)

〉]
(a)

≤ H1 +

√
ML

12ηk

D∑
d=1

E
[‖Δk−d‖2]+ 6DLηk

2M
√
M

σ2
Q (56)

where (a) is obtained by steps similar to those of (39).
Plugging the bound on H1 in Lemma 2 into (56), we have

H3 ≤ Lηk
2

E
[‖∇L(θk)‖2]+ D∑

d=1

(
c/dmax

2Lηk
+

√
ML

6ηk

)

E
[‖Δk−d‖2]

+
6DLηk√

M

∑
m∈M

(
σ2
m +

σ2
Q

2

)
.

Likewise, H4 can be bounded as

H4 = E

[∥∥∇L(θk)− 1

M

∑
m∈M

Q(θk−τk
m ; ξk−τk

m
m)

∥∥2]

(b)

≤ 4E

[∥∥∥ 1

M

∑
m∈M

∇�(θk−τk
m ; ξk−τk

m
m)−Q(θk−τk

m ; ξk−τk
m

m)
∥∥∥2
]

+
4

3
H2

(c)

≤ 4c

dmax

dmax∑
d=1

E‖Δk−d‖2 + 12

M2

∑
m∈M

(
σ2
m +

σ2
Q

2

)

where (b) uses (37) with ε = 3, and (c) uses Lemma 3.
The remaining steps follow those of Theorem 1 with σ2

m

replaced with σ2
m +

σ2
Q

2 .

I. Proof of Theorem 3

Using the PL-condition of L(θ), (33) can be rewritten as

E[V k+1]− E[V k] ≤ − 2μBk
0E[L(θk)− L(θ∗)]+Bk

1

∑
m∈M

σ2
m

+

D∑
d=1

Ak
dE

[‖Δk−d‖2] . (57)

If we choose γd such that Ak
d ≤ −2μBk

0γd for d =
1, 2 . . . , D, then we have

E[V k+1] ≤ (1− 2μBk
0)E[V

k] +Bk
1

1

M2

∑
m∈M

σ2
m

≤
k∏

j=0

(1−2μBj
0)V

0+

k∑
j=0

Bj
1

k∏
i=j+1

1− 2μBi
0

M2

∑
m∈M

σ2
m.

(58)

To ensure Ak
d≤−2μBk

0γd, note that if ηk ≤ η ≤ 1
L+2γ1

, then

Bk
0 = ηk − (L+ 2γ1)η

2
k ∈ [0, ηk]. (59)

Hence, it is sufficient to choose γd satisfying (γD+1 = 0)(
ηk +

1

2L

)
c

dmax
+

√
ML

12

+
6cγ1η

2
k

dmax
+ γd+1 − γd ≤ −2μηγ1, ∀d.

Solve the linear equations above and get

γ1 =
(η + 1

2L)cD/dmax +
√
MDL/12

1− 6cDη2/dmax − 2μDη
. (60)

Let ηk = 2
μ(k+K0)

with K0 = max{ 2(L+ 2
3

√
MDL)

μ , 16D},
which ensures that

ηk ≤ η := min

{
1

L+ 2γ1
,

1

8μD

}
. (61)

Together with the selection c ≤ min{ dmax

24Dη2 ,
dmax

√
ML2

18 },
this ensures that γ1 ≤

√
MDL
3 .

Plugging into (58) leads to

E[V k+1] ≤ (1− μηk)E[V
k]

+

(
9

2
+ 12

√
MD

)
L

M2

∑
m∈M

σ2
mη2k

:=R

.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

4650 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Multiplying over k = 0, . . . ,K − 1, it follows that

E[V K] ≤
K−1∏
k=0

(1− μηk)V
0 +R

K−1∑
k=0

η2k

K−1∏
j=k+1

(1− μηj)

≤ (K0 − 2)(K0 − 1)

(K +K0 − 2)(K +K0 − 1)
V 0

+
R

μ2

K−1∑
k=0

4

(k +K0)2
(k +K0 − 1)(k +K0)

(K +K0 − 2)(K +K0 − 1)

≤ (K0 − 1)2

(K +K0 − 1)2
V 0 +

4RK

μ2(K +K0 − 1)2
. (62)

Using the definition of V 0 and the initialization θ−D = · · · =
θ−1 = θ0, we complete the proof.

REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automat. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[3] G.B.Giannakis,Q.Ling,G.Mateos, I.D. Schizas, andH.Zhu, “Decentral-
ized learning for wireless communications and networking,” in Splitting
Methods in Communication and Imaging, Science and Engineering, New
York, NY, USA: Springer, 2016.

[4] J. Dean et al. “Large scale distributed deep networks,” in Proc. Conf.
Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1223–1231.

[5] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat., Fort Lauderdale, FL, USA,
2017, pp. 1273–1282.

[7] A. Nedić, A. Olshevsky, and M. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953–976, May 2018.

[8] M. I. Jordan, J. D. Lee, and Y. Yang, “Communication-efficient distributed
statistical inference,” J. Amer. Stat. Assoc., vol. 114, no. 526, 2019.

[9] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, Apr. 2005.

[10] E. J. Msechu and G. B. Giannakis, “Sensor-centric data reduction for
estimationwithWSNsvia censoring andquantization,” IEEETrans. Signal
Process., vol. 60, no. 1, pp. 400–414, Jan. 2011.

[11] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. Conf. Int. Speech Commun. Assoc., Singapore, 2014.

[12] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SignSGD: Compressed optimisation for non-convex problems,” in Proc.
Int. Conf. Mach. Learn., Stockholm, Sweden, 2018, pp. 559–568.

[13] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Conf. Neural Inf. Process. Syst., Long Beach, CA, USA, 2017,
pp. 1709–1720.

[14] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
SGD and its applications to large-scale distributed optimization,” in Proc.
Int. Conf. Mach. Learn., Stockholm, Sweden, 2018, pp. 5325–5333.

[15] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “Zipml:
Training linear models with end-to-end low precision, and a little bit of
deep learning,” in Proc. Int. Conf. Mach. Learn., Sydney, Australia, 2017,
pp. 4035–4043.

[16] W. Wen et al., “Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” in Proc. Conf. Neural Inf. Process. Syst., Long
Beach, CA, 2017, pp. 1509–1519.

[17] A. F. Aji and K. Heafield, “Sparse communication for distributed gradi-
ent descent,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
Copenhagen, Denmark, 2017, pp. 440–445.

[18] Y. Lin, S. Han, H.Mao, Y.Wang, andW. J. Dally, “Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training,” in
Proc. Intl. Conf. Learn. Representations, Vancouver, Canada, 2018.

[19] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Proc. Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018,
pp. 4447–4458.

[20] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in Proc.
Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018, pp. 5973–5983.

[21] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Proc. Conf. Neural
Inf. Process. Syst., Montreal, Canada, 2018, pp. 1299–1309.

[22] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,” in
Proc. Conf. Neural Inf. Process. Syst., Montreal, Canada, 2018, pp. 9850–
9861.

[23] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach.
Burlington, MA, USA: Morgan Kaufman, 2007.

[24] S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging SGD,” in Proc. Conf. Neural Inf. Process. Syst., Montreal,
Canada, 2015, pp. 685–693.

[25] S. U. Stich, “Local SGD converges fast and communicates little,” in Proc.
Intl. Conf. Learn. Representations, New Orleans, LA, 2019.

[26] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” in Proc.
Int. Conf. Mach. Learn. Workshop Coding Theory Large-Scale ML, Long
Beach, CA, 2019.

[27] H.Yu, S.Yang, andS.Zhu, “Parallel restartedSGDwith faster convergence
and less communication: Demystifying why model averaging works for
deep learning,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 5693–
5700.

[28] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A.
T. Suresh, “SCAFFOLD: Stochastic controlled averaging for on-device
federated learning,” in Proc. Intl. Conf. Mach. Learn., 2020, pp. 5132–
5143.

[29] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Local
sgd with periodic averaging: Tighter analysis and adaptive synchroniza-
tion,” in Proc. Conf. Neural Inf. Process. Syst., Vancouver, Canada, 2019,
pp. 11080–11092.

[30] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving
communication-efficient distributed SGDwith slowmomentum,” in Proc.
Intl. Conf. Learn. Representations, 2020.

[31] M. Kamp et al., “Efficient decentralized deep learning by dynamic model
averaging,” in Proc. Eur. Conf. Mach. Learn. Knowl. Disc. Data.„ Dublin,
Ireland, 2018, pp. 393–409.

[32] T. Li, A.K. Sahu,M. Zaheer,M. Sanjabi, A. Talwalkar, andV. Smith, “Fed-
erated optimization in heterogeneous networks,” 2018, arXiv:1812.06127.

[33] H. Sun, S. Lu, and M. Hong, “Improving the sample and communication
complexity for decentralized non-convex optimization: A joint gradient
estimation and tracking approach,” 2019, arXiv :1910.05857.

[34] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-efficient distributed
optimization in networks with gradient tracking and variance reduction,”
in Proc. Int. Conf. Artif. Intell. Stat., Palermo, Italy, 2020, pp. 1662–1672.

[35] Y. Liu, W. Xu, G. Wu, Z. Tian, and Q. Ling, “Communication-censored
ADMM for decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 67, no. 10, pp. 2565–2579, Mar. 2019.

[36] X. Mao, K. Yuan, Y. Hu, Y. Gu, A. H. Sayed, and W. Yin, “Walk-
man: A communication-efficient random-walk algorithm for decentral-
ized optimization,” IEEE Trans. Signal Process., vol. 68, pp. 2513–2528,
Mar. 2020.

[37] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Communication-
efficient distributed strongly convex stochastic optimization: non-
asymptotic rates,” Sep. 2018, arXiv :1809.02920.

[38] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed
optimization using an approximate Newton-type method,” in Proc. Int.
Conf. Mach. Learn., Beijing, China, 2014, pp. 1000–1008.

[39] Y. Zhang and X. Lin, “DiSCO: Distributed optimization for self-
concordant empirical loss,” inProc. Int. Conf. Mach. Learn., Lille, France,
2015, pp. 362–370.

[40] M. Jaggi et al., “Communication-efficient distributed dual coordinate
ascent,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, Canada, 2014,
pp. 3068–3076.

[41] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Proc. Conf.
Neural Inf. Process. Syst., Montreal, Canada, 2018, pp. 5050–5060.

[42] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-efficient
distributed learning via lazily aggregated quantized gradients,” in Proc.
Conf. Neural Inf. Process. Syst., Vancouver, Canada, 2019, pp. 3370–3380.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: COMMUNICATION-ADAPTIVE STOCHASTIC GRADIENT METHODS FOR DISTRIBUTED LEARNING 4651

[43] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming,” SIAM J. Optim., vol. 23, no. 4,
pp. 2341–2368, 2013.

[44] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” in Proc. Conf. Neural Inf. Process. Syst.,
2013, pp. 315–323.

[45] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization
from zeroth-order to first-order,” in Proc. Conf. Neural Inf. Process. Syst.,
Barcelona, Spain, 2016, pp. 3054–3062.

[46] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the Polyak-Łojasiewicz condition,”
inProc. Eur. Conf.Mach. Learn., Riva del Garda, Italy, 2016, pp. 795–811.

[47] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent opti-
mal for strongly convex stochastic optimization,” 2011, arXiv:1109.5647.

[48] A. S. Nemirovski and D. B. Yudin, Problem Complexity and Efficiency in
Optimization. Wiley, 1983.

[49] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learn-
ing and communications framework for federated learning over wireless
networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269–283,
Jan. 2021.

Tianyi Chen (Member, IEEE) received the B.Eng.
degree in communication science and engineering
fromFudanUniversity, Shanghai, China, in 2014, and
the M.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University of Minnesota
(UMN), Minneapolis, MN, USA, in 2016 and 2019,
respectively.

Since August 2019, he has been with the Depart-
ment of Electrical, Computer and Systems Engineer-
ing, Rensselaer Polytechnic Institute, Troy, NY,USA,
as an Assistant Professor. His research focuses on the

theory and application of optimization and statistical signal processing to prob-
lems emerging in machine learning and wireless networks. He was the recipient
of the Doctoral Dissertation Fellowship at UMN, the IEEE Signal Processing
Society Best Ph.D. Dissertation Award in 2020, and the NSF CAREER Award
in 2021. He was also the recipient of the Best Student Paper awards, including
those from Asilomar and ICASSP (as the coauthor).

YuejiaoSun received the bachelor’s degree in applied
mathematics from Peking University, Beijing, China,
in 2016 and the Ph.D. degree in applied mathematics
from the University of California, Los Angeles, CA,
USA, in 2021. Her research focuses on developing
efficient stochastic optimizationmethods formachine
learning applications. She developed efficient algo-
rithms for large-scale distributed optimization prob-
lems and hierarchically coupled problems. She was
the recipient of the Dissertation Year Fellowship and
the Balbes Award at UCLA in 2020, and the Out-

standing Student Paper Award for ICASSP 2021.

Wotao Yin (Member, IEEE) received the Ph.D. de-
gree in operations research from Columbia Univer-
sity, New York, NY, USA, in 2006, respectively.
During 2006–2013, he was with Rice University,
Houston, TX, USA. Between 2013 and 2021, he was
a Professor with the Department of Mathematics,
University of California, Los Angeles, CA, USA.
In 2019, he joined Alibaba US Damo Academy as
a Researcher. His research interests include compu-
tational optimization and its applications in signal
processing, machine learning, and other data science

problems. He invented fast algorithms for sparse optimization and large-scale
distributed optimization problems. He was the recipient of the NSF CAREER
Award in 2008, the Alfred P. Sloan Research Fellowship in 2009, and the
Morningside Gold Medal in 2016, and his coauthored six papers received the
Best or Outstanding Paper-Type awards. Since 2018, he has been among the top
1% cited researchers by Clarivate Analytics.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on May 20,2022 at 22:52:53 UTC from IEEE Xplore. Restrictions apply.

