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ABSTRACT

A wide range of multi-agent decision-making problems can be ab-
stracted as a federated multi-armed bandit (FMAB) problem. A key
challenge of the FMAB problem is that the exploration-exploitation
dichotomy inherited from the multi-armed bandit aspect is com-
pounded with data heterogeneity in federated learning. This renders
the exploration and exploitation of different agents inherently en-
tangled. This paper focuses on overcoming the difficulty of explo-
ration in FMAB problems, and it proposes a novel federated upper
confidence bound (UCB) algorithm that requires uncoordinated ex-
ploration (UE) decisions by the agents. The major distinction of
this algorithm, referred to as FedUCB-UE, with the existing FMAB
algorithms is that it allows the agents to explore the non-optimal
arms and make personalized arm-selection decisions without coor-
dination. While such uncoordinated exploration makes the regret
analysis non-trivial, it comes with both the theoretical and empirical
benefit of diversity in explorations. Under certain mild assump-
tions, this paper establishes that FedUCB-UE has a O(log T ) regret
bound. Furthermore, experiments performed on synthetic datasets
show that FedUCB-UE outperforms the state-of-the-art algorithms.

Index Terms— Federated learning, multi-armed bandit, upper
confidence bound

1. INTRODUCTION

Multi-armed bandit (MAB) settings provide a rich context for formu-
lating and analyzing online learning tasks. MAB settings were first
introduced in [1, 2] for designing clinical trials. Recently, they have
been applied to more modern applications such as recommender sys-
tems [3], cognitive radios [4], and portfolio selection [5]. In the
classic MAB setting, an agent is faced with some actions (called
“arms”), and each action (arm) is associated with a reward distribu-
tion. When the agent chooses an arm, it will receive a stochastic re-
ward (unknown a priori). The objective of such problems is to design
a strategy in which the agent maximizes the reward it accumulates
over time. To this end, the agent needs to pull all arms sufficiently to
form reliable estimates of all rewards (exploration). These estimates
guide the agent to pull the arm that likely has the largest reward (ex-
ploitation). Hence, the core challenge in MAB problems is finding a
trade-off between exploration and exploitation (for more details, see
a recent survey in [6]).

Due to the growing computation capability of devices and the
increasing privacy concerns, it is expected that many learning tasks
need to be performed collaboratively in a distributed way. In this
context, federated learning (FL) emerges as a unifying framework to
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tackle collaborative learning over distributed devices [7]. Recently,
the MAB problems have also been revisited in the FL setting, re-
ferred to as the federated MAB (FMAB) problems. In FMAB prob-
lems, several agents explore the same set of actions and communi-
cate through a server to cooperatively form an optimal global deci-
sion [8–14]. Next, we review the existing approaches to FMAB that
are most relevant to this paper.

1.1. Related Works

Decentralized multi-agent MAB. FMAB considered in this paper
is intimately related to the literature of multi-agent MAB. Wang et
al. [9] and Agarwal et al. [14] have considered the multi-agent MAB
problem and have obtained regret-communication tradeoffs when
the rewards of each agent are independent and identically distributed
(i.i.d.). Vial et al. [13] have proposed a robust algorithm to defend
the malicious attack in the i.i.d. setting. Shahrampour et al. [12]
have proposed the d-UER algorithm using majority vote in the non-
i.i.d. setting, and Zhu et al. [15] have proposed the Gossip-UCB al-
gorithm using delayed information about exploration time and have
provided a variant of it that preserves differential privacy. Subse-
quently, Zhu et al. [16] have extended this setting to the distributed
setting in which the agents are connected by a directed graph.

FMAB. Unlike decentralized multi-agent MAB, in FMAB, the
agents only communicate with the server in certain communication
rounds, and the agents cannot share their information directly. Thus,
the transmission of information is delayed. The study of FMAB can
be traced back to the studies by Li et al. [8] and Dubey et al. [10],
which have focused on the privacy perspective of FMAB in the i.i.d.
setting. Mitra et al. [11] have proposed the Fed-SEL algorithm for
the i.i.d. setting to address the setting in which the agents do not
have access to all arms. Recently, Shi et al. [17] have considered
the FMAB with personalization and have proposed the PF-UCB
algorithm in the non-i.i.d. setting.

1.2. Our Contribution

In this context, we propose a novel federated upper confidence bound
with uncoordinated exploration (FedUCB-UE) algorithm that runs
the upper confidence bound (UCB) algorithm [18] on each agent,
but uniquely allows uncoordinated exploration. Compared to the ex-
isting FMAB algorithms, the key differences and contributions are
summarized as follows.

C1) The FedUCB-UE algorithm gives the different agents free-
dom to explore the same arm for different durations, which
leads to improved exploration efficiency.

C2) Compared to the existing algorithms, we establish that
FedUCB-UE achieves the optimal regret bound O(log T )
under certain regularity conditions, and it outperforms the
regret of the state-of-the-art algorithms.
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Fig. 1. Schematic diagram for FMAB setting.

C3) We evaluate our algorithm numerically and demonstrate its
empirical performance gains compared to the state-of-the-art
algorithms.

2. PRELIMINARIES

Consider an FMAB setting that consists of one server and N agents
sharing the same set of M arms. At each round t ∈ N, each agent
pulls one arm. We denote the arm selected by agent i ∈ [N ] ,
{1, 2, · · · , N} at round t ∈ N by Ai(t) ∈ [M ] , {1, 2, · · · ,M}.
We denote the reward of agent i ∈ [N ] after selecting arm m ∈ [M ]
at round t ∈ N by Xi,m(t). We assume that Xi,m(t) is sampled
from a σ-sub-Gaussian distribution with mean µi,m and the expected
local rewards are distinct, i.e., µi,m 6= µj,m if i 6= j. Without
loss of generality, we assume that σ = 1. The expected global re-
ward is defined as the average of the expected local rewards, i.e.,
µm , 1

N

∑N
i=1 µi,m. Accordingly, we define Xm(t) as the average

of reward realization on arm m assuming that all agents pull arm
m at round t, i.e., Xm(t) , 1

N

∑N
i=1 Xi,m(t). This serves as a

measure of global reward associated with arm m.
Without loss of generality, we further assume that arm 1 is the

best arm, i.e., µ1 = maxm µm and define ∆m , µm − µ1 as the
reward gap between arm m and the best arm. Our objective is to
minimize the static regret defined as

R(T ) , NTµ1 −
T∑
t=1

N∑
i=1

E[XAi(t)(t)] , (1)

which measures the difference between the cumulative reward of on-
line decisions and the global optimal reward.

3. FEDUCB-UE ALGORITHM

In this section, we present the FedUCB-UE algorithm that allows
each agent to make decisions according to its individual UCB and
the global information received from the server. We first introduce
the steps of FedUCB-UE in Section 3.1 and discuss the designing
rationale in Section 3.2.

3.1. FedUCB-UE Algorithm

We use the local update structure of the federated average algorithm
[7], in which each agent independently updates the local estimator
in E ∈ N local rounds and communicates with the server at round
{rE : r ∈ Z+}. Thus FedUCB-UE can be divided into three
phases: initialization, local exploration, and communication.

Phase 1. Initialization. The algorithm starts with the training pro-
cess at t = 0. Each agent i ∈ [N ] pulls each arm m ∈ [M ]
once and gets the reward Xi,m(0), which serves as the initial lo-
cal reward estimate by X̂i,m(0) , Xi,m(0). Subsequently, each
agent i ∈ [N ] sends X̂i,m(0) to the server and initializes the ex-
ploration time counter ni,m(0) = 1. After receiving the local re-
wards from all agents, server calculates the initial global rewards for
each arm m by X̂m(0) , 1

N

∑N
i=1 X̂i,m(0) and broadcasts them

to all agents. Server also initializes the exploration time counter by
nm(0) = 1.

Phase 2. Local exploration. At times t ∈ N, each agent i ∈ [N ]
first identifies the set

Si(t) ,

{
m

∣∣∣∣ ni,m(t− 1)E < nm
(⌊ t− 1

E

⌋
E
)}

, (2)

where b·c is the floor function. If Si(t) 6= ∅, agent i randomly
selects an arm from Si(t). Otherwise, agent i chooses the arm that
maximizes UCBi,m defined as

UCBi,m(t) , Bi,m(t− 1) + Cm(t− 1) , (3)

where Bi,m(t) , X̂m(b t
E
cE) + 1

N
[X̂i,m(t)− X̂i,m(b t

E
cE)] is an

unbiased estimate of µm, and

Cm(t) , min

{√
8 log(t+ 1)

N
,

√
8 log(t+ 1)

N
(
nm(b t

E
cE)− 2

)} , (4)

denotes the global confidence level on armm. OnceAi(t) is chosen,
each agent i ∈ [N ] updates the local exploration time counter and
the local reward estimator by

ni,m(t) ,
t∑

τ=0

1{Ai(τ) = m} , (5)

X̂i,m(t) ,
1

ni,m(t)

t∑
τ=0

Xi,m(t)1{Ai(τ) = m} , (6)

where 1{·} is the indicator function.

Phase 3. Communication. At communication time t ∈ {rE : r ∈
Z+}, each agent i ∈ [N ] transmits X̂i,m(t) and ni,m(t) in (5)-(6)
to the server. The sever calculates X̂m(t) and nm(t) for each arm
m ∈ [M ] via

nm(t) , max
i
ni,m(t) , X̂m(t) ,

1

N

N∑
i=1

X̂i,m(t) , (7)

and broadcasts them to all agents.
We summarize the detailed steps of FedUCB-UE in Algo-

rithm 1. In the next subsection, we will discuss the rationale for
transmitting the exploration time counter ni,m(t) and nm(t).

3.2. Transmitting the Counter Value

The maximal exploration time nm(t) serves as a source of global
information that guides the agents to adjust their local decisions. If
ni,m(t) is substantially smaller than nm(t), arm m is deemed un-
derexplored by agent i. In this case, agent i will explore arm m
more frequently. We argue that accessing the global maximal pulling
counter is necessary for the agents. Note that besides this counter,
the agents have access only to the global reward estimates, which is
insufficient for them to determine their actions. The reason is that
the difference between X̂i,m(t) and X̂m(t) also depends on the dif-
ference between µi,m and µm, which is unknown to the agents.
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Algorithm 1: FedUCB-UE
Initialization: Each agent explores each arm once and gets
X̂i,m(0) = Xi,m(0) and communicates with server to get
X̂m(0). Each agent sets ni,m(0) = 1 and the server sets
nm(0) = 1

Agent i:
for t = 1, 2, · · · do

Compute
Si(t) = {m ∈ [M ] | ni,m(t− 1)E < nm(b t−1

E
cE)}

if Si(t) 6= ∅ then
Ai(t) is sampled randomly from Si(t)

else
Compute UCBi,m(t) according to (3)
Ai(t) = arg maxm UCBi,m(t)

end
Pull arm m = Ai(t) and observe Xi,m(t)
ni,m(t) = ni,m(t− 1) + 1

Update X̂i,m(t) according to (6)
if t mod E = 0 then

Send X̂i,m(t) and ni,m(t) to the server
Receive X̂m(t) and nm(t) from the server

end
end
Server:
for t = 1, 2 · · · do

if t mod E = 0 then
Receive X̂i,m(t), ni,m(t) from all agents
Update X̂m(t), nm(t) according to (7)
Broadcast X̂m(t), nm(t) to all agents

end
end

4. THEORETICAL GUARANTEE

In this section, we first explain the reason why we choose such con-
fidence levels in (4) based on a conjecture in Section 4.1 and then
provide our regret bound and discussion in Section 4.2. The proof
sketch of Theorem 1 will be given in Section 4.3.

4.1. Conjecture and its numerical verification

Besides the global maximal pulling counter nm(t),Cm(t) is another
source of global information. Instead of setting the agent-based con-
fidence levels, we use the global-based one to prevent agents from
underestimating the global reward. Since Bi,m(t) is sub-Gaussian,
the choice of the confidence level depends on the upper bound of the
variance of X̂m(t) given by

σ2
m(t) =

1

N2

N∑
i=1

1

ni,m(t)
. (8)

We can bound (8) by lower bounding {ni,m(t) : i ∈ [N ]}. For
simplicity, we use the shorthand nm(t) = nm(b t

E
cE). By noting

the role of Si(t) in the adjusting rule, we have the natural lower
bound ni,m(t) ≥ nm(t)/E − 1. However, this bound is loose since
the termE in the denominator in Si(t) is used to prevent the extreme
cases at the initial stages thatM−1 arms are underexplored by agent
i and we need to make sure Si(t) is empty after E local rounds,
i.e., agent i tries all the arms in Si(t). But the probability of this

extreme case will be gradually vanishing since UCBi,m(t) is a sub-
Gaussian variable with a vanishing variance as t→∞, which means
that the choices of different agents tends to achieve consensus. As a
result, ni,m and nm grow at almost the same rates, and ∀H > 1, the
probability P{ni,m(t) < nm(t)

H
− 1} diminishes as t → ∞, since

the coefficient of ni,m(t) is larger than that of nm(t). This means
that the essential global consistency lower bound does not depend on
E. To summarize, we have the following conjecture.

Conjecture 1 Define the event Di,m(t) , {ni,m(t) ≥ nm(t)
2
−

1}, and define the complementary event Dc
i,m(t) , {ni,m(t) <

nm(t)
2
− 1}. Assume that for all non-optimal arms m 6= 1, we have

qi,m =

∞∑
t=1

P{Dc
i,m(t)} < +∞ . (9)

Note that by Borel-Cantelli lemma, this conjecture indicates that
ni,m(t) is asymptotically lower bounded by nm(t)

2
−1 almost surely

as t → ∞ . Invoking Conjecture 1, we can choose the global confi-
dence level as in (4).

The advantages of this confidence level are: 1) it is negatively
related to the number of agents, and 2) it is time-varying, which does
not require the knowledge of termination horizon T , and it permits
the agents to choose arms flexibly at the initial stages.

To assess Conjecture 1, consider an FMAB setting withN = 20
agents and M = 5 arms. We set µm = (5 −m)/100 and generate
µi,m from a joint Gaussian distribution. And we run the experiment
for T = 30000 rounds. The experiment is repeated 100 times to
obtain the Monte-Carlo estimate of P{Dc

i,m(t)} at each round t. We
show the estimate of 1

N

∑N
i=1

∑t
τ=1 P{D

c
i,m(τ)} denoted by qm(t)

in Figure 2 for E = 10 and E = 20.

(a) E=10 (b) E=20

Fig. 2. Verification of Conjecture 1.

From Figure 2, for these two choices of E, qm(t) converges
for all non-optimal arms m, which implies that qi,m is finite for all
i ∈ [N ] and m 6= 1.

4.2. Regret Bound

In this section, we provide a regret bound for the FedUCB-UE algo-
rithm and discuss its implications.

Theorem 1 When Conjecture 1 holds, and E ≥ M , the regret for
the FedUCB-UE algorithm is bounded as follows.

R(T ) ≤
N∑
i=1

∑
m6=1

∆m

(
max

{
32

N∆2
m

log T, 1

}
+ q′i,m

)
, (10)

where q′i,m , π2

3
+ 2qi,m( 1

E
+ 1) + 1 and qi,m is specified in (9).

5250

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 20,2022 at 22:49:31 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 1 implies that FedUCB-UE has a regret bound that
scales with O(log T ), which is the optimal rate [17]. Even though
involving more agents will not result in a lower regret R(T ), with
more agents the algorithm will converge faster since the regret of
each agentRi(T ) , Tµ1−

∑T
t=1 E[XAi(t)(t)] will decrease. Com-

pared to Gossp UCB [15], which has anO(N2 log T ) regret bound,
FedUCB-UE will significantly improve the regret bound. The PF-
UCB algorithm also hasO(log T ) regret but with a larger coefficient
when the termination horizon T is given. In Section 5, through nu-
merical evaluations, we show that FedUCB-UE outperforms these
algorithms.

4.3. Proof sketch

We provide a proof sketch for Theorem 1 in this section. We start by
observing that the regret can be decomposed as

R(T ) =

N∑
i=1

∆mE[ni,m(T )] . (11)

To bound R(T ), we need to bound E[ni,m(T )]. If agent i chooses
arm m instead of the optimal arm 1 at time t, at least one of the
following four cases will happen: case (1): m ∈ Si(t); case (2):
Bi,m(t − 1) − µm ≥ Cm(t − 1); case (3): u1 − Bi,m(t − 1) ≥
C1(t− 1); case (4): u1 − um < 2Cm(t− 1).

We first set t0 to be large enough such that for all t > t0 case (4)
does not hold, i.e., ni,m(t0) = 32 log T

N∆2
m

+3. To bound the occurrence
times of case (2) and case (3), we need the following lemma.

Lemma 1 For the FedUCB-UE algorithm, ∀i ∈ [N ] andm ∈ [M ],
if r0 is large enough such that nm(r0E) ≥ 3, then for all rounds
t > r0E, we have

P(|Bi,m(t)−µm|≥Cm(t))≤ 2

(t+ 1)2
1{Di,m(t)}+21{Dc

i,m(t)} .

Note that Bi,m(t) is sub-Gaussian and its variance can be bounded
by E

N(nm(t)−E)
1{Dc

i,m(t)} + 2
N(nm(t)−2)

1{Di,m(t)}. The proof
is complete by using the definition of sub-Gaussian variables.

The occurrence time of case (2) and case (3) after sufficiently
large time t0 can be bounded as π2

6
− 1 + qi,m. The last step is

to bound case (1) by two parts: i) the additional occurrence time of
the set Si(t) is nonempty caused by case (2) and case (3) are no
larger than 2qi,m

E
− 1, ii) the adjusting rule needs the lower bound

ni,m(t) ≥ nm(t)
E

, thus, each arm needs one additional exploration
step to meet the gap.

Combining the results above, we have

E[ni,m(T )] ≤ 32

N∆2
m

log T + q′i,m , (12)

where q′i,m = π2

3
+ 2qi,m( 1

E
+ 1) + 1.

5. NUMERICAL EXPERIMENTS

In this section, we conduct numerical evaluations to assess the per-
formance of the FedUCB-UE algorithm. We compare our algorithm
with the following two state-of-the-art algorithms.
Gossip UCB [15]: each agent communicates with only one of its
neighbors at each local exploration round, i.e., E = 1. We set the
topology of agents to be fully connected for a fair comparison.

PF-UCB [17]: since the global regret is considered, during two com-
munication rounds, each agent of the PF-UCB algorithm explores
each arm in the candidate set of the best arm for the same number of
times. And we set the exploration time to be E

2
for a fair comparison.

We use a synthetic dataset to evaluate the performance of
FedUCB-UE. We set N = 20, M = 10, and E = 10, and run
the experiment with the mean rewards generated by

Model 1: µi,m ∼ N ( 20−m
5

, 1) ,
Model 2: µi,m ∼ N ( 20−m

20
, 1) .

Model 1 is simpler for agents to find the best arm since the non-
optimal gap ∆m is relatively large. We repeat the experiments for
each model 100 times and plot the average regret R(t)

t
. Besides us-

ing theoretical thresholds for all the algorithms, we also perform the
grid search to find optimally-tuned thresholds for each algorithm.
Figure 3 shows the average regret R(t)

t
for Model 1 with the theo-

retical threshold and the optimally-tuned threshold, while Figure 4
shows the results under the same metrics for Model 2.

(a) Theoretical threshold (b) Optimally-tuned threshold

Fig. 3. Average regret for different methods in Model 1.

(a) Theoretical threshold (b) Optimally-tuned threshold

Fig. 4. Average regret for different methods in Model 2.

Both Figure 3 and Figure 4 show that FedUCB-UE outperforms
the other two in terms of average regret in both the cases of the the-
oretical or optimally-tuned threshold. Furthermore, comparing Fig-
ure 3(a) and Figure 3(b) (Figure 4(a) and Figure 4(b)) for the same
algorithms implies that the theoretical threshold for FedUCB-UE al-
most matches the optimally-tuned threshold.

6. CONCLUSIONS

In this work, we have proposed a novel adaptive federated multi-
armed bandit algorithm. Distinct from the existing algorithms, the
proposed FedUCB-UE algorithm allows the agents to form local de-
cisions and obtains the global information only intermittently. Our
theoretical analysis shows that FedUCB-UE achieves the optimal
O(log T ) regret bound asymptotically. The numerical tests demon-
strate that FedUCB-UE outperforms the state-of-the-art algorithms.
Future research includes extending FedUCB-UE to personalized set-
ting and decentralized settings.
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