Toward a Scalable Upper Bound for a CVaR-LQ Problem
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Abstract— We study a linear-quadratic, optimal control
problem on a discrete, finite time horizon with distributional
ambiguity, in which the cost is assessed via Conditional
Value-at-Risk (CVaR). We take steps toward deriving a
scalable dynamic programming approach to upper-bound
the optimal value function for this problem. This dynamic
program yields a novel, tunable risk-averse control policy,
which we compare to existing state-of-the-art methods.

Index Terms— Stochastic optimal control, LMIs, Linear
systems

[. INTRODUCTION

HE standard approach to stochastic optimal control is
to evaluate a random cumulative cost in expectation.
However, this approach is not designed to protect against
worst-case circumstances. This limitation motivates robust
optimal control [1], [2] and related methods, such as minimax
model predictive control [3] and mixed Hz/Hoo control [4].
Robust methods typically assume bounded disturbances,
which excludes certain common noise models, such as Gaus-
sian noise. A technique to alleviate this restriction is to
use a risk-averse formulation, in which a random cost is
assessed via exponential utility. Here, the objective takes the
form 7, (z,m) = 1log (E7(e7?/?)), where Z is a random
cumulative cost, 7 is a control policy, x is an initial condition,
and v > 0 is a risk-aversion parameter.! This problem has
been studied in increasing levels of generality from the 1970s
to the 2010s, e.g., see [S]-[10]. As ~ increases, the criterion
J(x, ) represents a more risk-averse perspective, while as
~y approaches zero, J,(z, ) tends to the usual expected cost.
In the case of linear dynamics with Gaussian noise and
quadratic costs, the problem of optimizing 7, (x, ) is com-
monly called LEQR control. For a fixed v > 0, a Riccati
recursion is used to derive the optimal value functions and
the optimal control law, which is linear state-feedback [7]. At
each step ¢ of the recursion, it must be the case that the matrix
Y. ~! —~P,, is positive definite, where X is the covariance of
the process noise, and P, is the matrix obtained from step
t+1. If v is chosen too large, then the above condition may be
violated, and the controller synthesis procedure breaks down.
While it is known that J,(x,n) approximates a weighted
sum of the expectation E7T(Z) and the variance var?(Z) if
~yvarT(Z) is “small” [7], a more precise interpretation of
J(x,m) has not been established.
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'One may consider v < 0, which corresponds to a risk-seeking perspective.
We focus on the risk-averse perspective here, which assumes that noise leads
to harm rather than benefit.

The Conditional Value-at-Risk (CVaR) functional, which
was invented in the early 2000s by the financial engineering
community [11], has potential to alleviate the above issues.
The CVaR of Z at level o € (0, 1] represents the expectation
of the - 100% largest values of Z. The intuitive interpretation
of CVaR and its quantitative characterization of risk aversion
(in terms of a fraction of worst-case outcomes) are two reasons
for its popularity in financial engineering (see [12] and the
references therein) and its emerging popularity in control (e.g.,
see [13], [14]). In addition to financial applications, CVaR may
be a useful tool for the design of stormwater systems [14],
which are required to satisfy precise regulatory specifications,
and for the operation of robotic systems [15].

However, the optimization of CVaR is computationally
expensive in general. Unlike the expectation of a random
(cumulative) cost, the CVaR of a random cost, subject to the
dynamics of a Markov decision process, does not satisfy a
dynamic programming (DP) recursion on the state space. One
way to resolve this issue and make DP valid is via a suitable
state augmentation [16].

Here, we study a linear-quadratic optimal control problem
with distributional ambiguity, where the cost is assessed via
CVaR. Our first step is to derive an upper bound to the
optimal value of this problem. This derivation (Thm. 1) and
additional analysis (Thm. 2) motivate the formulation of an
interesting dynamic programming algorithm (Thm. 3). While
the associated value functions are defined on an augmented
state space, they are computed in a scalable fashion since
their parameters come from a Riccati-like recursion. Moreover,
our algorithm provides a risk-averse controller, in which a
risk-aversion level is parameterized in a novel way through
a positive definite matrix. While our controller synthesis
procedure is more computationally complex than LEQR, it
does not involve a condition that is analogous to the positive
definiteness of ¥~! — yP;, for all t.

1. A CVAR-LINEAR-QUADRATIC PROBLEM

A. Notation

If M € R"™*™, then M > 0 (M > 0) means that M
is symmetric and positive semi-definite (positive definite).
Upper-case letters denote random variables (e.g., X;), and
lower-case letters denote values of random variables (e.g., x¢).
If £ is a metric space, B(£) is the Borel sigma algebra on £.
We define R := R U {—oc0,+o0}, Ry := RN [0,00), and
R} :={ze€R": 2z €Ry,i=1,...,n}. Opyxm, is the n xm
zero matrix. I,, is the n X n identity matrix. The trace of a
matrix M € R™ " is tr(M). P(R™) is the set of probability
measures on (R, B(R")).



B. Linear-Quadratic System Model

Consider a fully observable, linear time-invariant system:
Xiy1 = AX:+ BU+ W, Vte{0,1,...,N =1}, (1)

where X; is a R™-valued random state, U; is a R"-valued
random control, and W; is a R™-valued random disturbance
at time ¢. The matrices A € R™*™ and B € R™ ™ and the
length of the time horizon N € N are given. The initial state
X is fixed at an arbitrary z € R”. For convenience, define
flxe,up, wy) = Azy + Buy + wy for all z; € R, up € R™,
and w; € R".

We make the following assumptions about the R"-valued
disturbance process (Wo, W1q,...,Wy_1). W; and W are
independent for all ¢ # s, and W, is independent of the initial
state X for each ¢. For each ¢, the exact distribution of W;
is not known. However, the first and maximal second moment
of W, are known, which we specify below.

Definition 1 (Ambiguity Set): We define Py, C P(R™)
to be the set of probability measures with zero mean and
covariance upper-bounded by ¥ > 0. Each disturbance W;
has a distribution v; € Py . In other words, v; satisfies
Jan we ve(dwy) = 01 and [o, wewf ve(dwy) < 3.

As the system evolves, a random cumulative quadratic cost
is incurred. The random cost-to-go for time ¢ € {0,1,..., N—
1} is defined as

Zy = X{QiXn+ Y0 XTQX; + UTRU; . (2)
——

ZN Cj

C; (Zn) is the random stage (terminal) cost at time j (V).
Q e RY™™ R e R™™ and Qy € R satisty @) > 0,
R > 0, and Qy > 0, respectively. We define Z := Z; and
c(xe,ug) := o] Qg + ul Ruy for all 2, € R™ and uy € R™.

C. CVaR-Risk-Averse Optimal Control Problem

Consider a CVaR optimal control problem on a discrete,
finite time horizon with distributional ambiguity:

J2(x) ;== inf sup CVaR}'7(Z), 3)
m€ll yer ’

subject to the linear dynamics (1), where x € R" is an initial
condition and « € (0, 1] is a risk-aversion level. The objective
CVaR['7(Z) is the CVaR of Z at level , when the system is
initialized at 2 and evolves according to a control policy 7 € II
and a disturbance strategy v € I'. (v provides a distribution
for W, for each t. II and I' will be defined in this section.)
The CVaR of Z represents the expectation of the o - 100%
largest values of Z.

While the problem (3) does not satisfy a dynamic program-
ming (DP) recursion on R”, there is a useful DP recursion
on R” x R (Lemma 3). A CVaR optimal control problem
without distributional ambiguity has been solved by defining
an augmented state space [16]. Taking inspiration from [16],
we use a R™ x R-valued, random augmented state (X, St).
X is defined by (1). S; is a R-valued random variable

Siy1=5—-C, forallte{0,1,...,N—1}. (4

S; keeps track of the random cumulative cost up to time t.
The initial augmented state (X, Sp) is fixed at an arbitrary
(z,s) € R" xR. We use the augmented state space R™ X R to
define II, the class of history-dependent control policies that
summarize the history through (X, S).

Definition 2 (Control Policies 1I): A control policy 7 € II
takes the form 7 := (mg, 71, ...,7N_1), such that for each ¢,
m; is a stochastic kernel on R™ given R™ x R.

Definition 3 (Disturbance Strategies I'): Every disturbance
strategy v € T takes the form v := (v, v41,...,VN—1), Such
that v; € Py is the unknown distribution of W, for each .

D. Probability Space for Random Cumulative Cost

For any (z,s) € R x R, # € II, and 7 € T, the random
cost Z is defined on a probability space (§2,B(Q2), P]Y),
where the sample space is Q := (R® x R x R™ x
R, )N x R" x R, and every w € ) takes the form w =
(.130, S0, U0, COy -+ y LN—-1,SN—1,UN—-1,CN—-1,TN, SN), where
(z¢,8:) € R*" xR, uy € R™, and ¢; € R, are values of
(X4, S¢), Uz, and C4, respectively. We have specified implicitly
that the coordinates of w have causal dependencies via (1), (2),
and (4). The random state at time ¢ is a function X; : 2 — R",
such that if w € Q is as above, then X;(w) := x4, which is
Borel measurable. S;, Uy, and C} are defined analogously. The
probability measure P;] is used to evaluate expectations, e.g.,
ETY(Z) = [oZ(w) AP (w). The form of P depends
on the dynamics of the augmented state (1) (4), an initial
augmented condition (x, s) € R™ xR, a control policy 7 € TI,
and a disturbance strategy v € I'. E.g., see [17, Prop. C.10,
Remark C.11] for a similar construction.

E. Defining CVaR of Random Cumulative Cost

The Conditional Value-at-Risk of Z := Z; (2) at a risk-
aversion level o € (0, 1] is defined as follows:

inﬂfe gmY(s, Z) if EDY(Z) < oo Vs
s€ ’ ’
+00

CVaRT(Z):= { (5)

otherwise,
where g77(s, Z) := s + L EI:Y (max(Z — Sp,0)).
Remark 1: It is standard to define

S 1
CVaR,(Y) := ;Iéﬂf{{ s+ - E(max(Y - s,0)),

where Y is a random variable with finite first moment. In (5),
we use an extended definition for CVaR to permit a class of
policies II that depends on the augmented state space and need
not have a particular analytical form (e.g., linear).

[1l. UPPER BOUND FOR CVAR-LQ PROBLEM
We use the definition of CVaR77(Z) (5) to re-express
J%(x) (3). For any € R™ and « € (0, 1], it holds that
{in}fR g™ (s, Z) if ETY(Z) <400 Vs €R
s€ !

s

J2(z)= inf sup

mellyer | +00 otherwise
= inf sup inf gh0(s,Z).
nell ~er seR 7%

EIY(Z)<+o0 VsER

Jamr(m)



In the current section, first we show that there is a policy
m € II such that J, - (z) is finite (Lemma 1), which guarantees
that the problem (3) is well-defined. Second, we derive an
upper bound to J*(x) (Thm. 1):

Ji(z) < ianQ s+ L inf sup EI7(max(Z — Sp,0)).
s€ ’

m€ell yer

Vo (w,8)

Toward the goal of computing V* scalably, we will define a
value iteration algorithm with value functions Vi, ..., V1, Vg
(Sec. IV). We will analyze the algorithm in the setting of
deterministic policies and finitely many disturbance values.
We will show that, under a measurable selection assumption,
Vi < Vo (Thm. 2), where Vg and Vj are the versions of V'
and Vj in the simplified setting, respectively. In Sec. V, we
will prove that Vp < Vo, where

Vo(z, s) := ag + max(z” Pyz — 5,0) V(z,s) € R" x R,

such that ag € R and Py > 0 are obtained via a Riccati-like
recursion (Thm. 3). We will explain how the proof of Thm. 3
provides an algorithm for a novel risk-averse controller. Also,
the above analysis takes key steps toward deriving

Ji(z) < irelﬂg s+ éf/o(x,s) Vr € R™, Ya € (0,1],
S

a scalable upper bound to a CVaR linear-quadratic optimal
control problem with distributional ambiguity.

Lemma 1 (Jo () is finite for some 7): For all z € R"
and « € (0, 1], there is a 7 € II such that J, (z) € R.

Proof: Let m € 1I be an open-loop deterministic policy

such that U; takes the value 0,,x; for each ¢. By using
the quadratic cost, linear dynamics, and the definition of the
ambiguity set, it holds that

0<EJI(Z)<HJ” VyeTl, Vs €R, (6)

is a block diagonal matrix containing N copies of .
diag(Q,...,Q,Qy) is a block diagonal matrix with N —
copies of Q. F € RVN™*" and G € RVN"*N" depend on A
and N. The desired statement follows from (6). [ |
By the previous lemma and since {J, (z) : m € II} is
bounded below by 0, it holds that J(z) € R.
Theorem 1 (Upper bound to J(x)): Define

Gal(z) =

where H™* = 2TQux + tr(szTFTQ) + tr(GiGTQ). by
Q =
1

1an mf sup 9aa(s, Z) Vo € R",Va € (0,1],

Vi (z, s):=inf sup E’T’"’(max(Z S0,0)) Vz € R", Vs € R.

well yer
(N

For all x € R™ and « € (0,1], J3(2) < Go(x), Ga(z) € R,
and G, (x) = ig£ s+ 1V (z, ). Moreover, Vy' is finite.

Proof: We have J(z) < G, () because

sup inf g77(s,Z) < inf sup g57)(s,Z) Vm €1l
yerT seR seR YyerT

where I'] := {y € I' : E]7(Z) < +00 Vs € R}, and since

7 CT. Guo(r) € R because {sup,er gri(s,Z) : 7 €
I1, s € R} is bounded below and there exist s € R and = € II

s.t.sup, e gh2(s, Z) € R. Indeed, let s = 0 and let 7 assign
the value Omxl to each U;. Then, we have

0<ghi(0,2)=LE]((2) < LH® Vyel.

We have Gq(z) = infser s+ 2V (z,s) because one may
exchange the order of infima. V' is finite because 1) for any
(z,s) € R" xR, there is a 7 € II s.t. sup, ¢ B} ) (max(Z —
So,0)) € R, and 2) {sup,cr E7J(max(Z—Sp,0)): m € I}
is bounded below by 0. For the first property, one may choose
the policy that assigns the value 0,,x1 to each U;. |

IV. ANALYSIS OF A VALUE ITERATION ALGORITHM

To estimate V" (7) in a scalable fashion, we propose a value
iteration algorithm on R™ x R.

Algorithm 1 (Value Iteration for General Setting): Let the
functions Vy, Vy_1,..., Vy be defined recursively as follows.
For all (z,5) e R" x Rand fort =N —1,...,0,

TQfm —5,0)
= lergm Suprn V;:+1(f($, u, w)? 8—6(1'7 u))y(dw)

cEPw
Conjecture 1: The functions Vn,Vy_1,...,

measurable and bounded below by 0.

We use the Conjecture in the proof of Thm. 3, which
requires the Lebesgue integrals in Algorithm 1 to exist. The
Conjecture will be proved formally in future work by using
properties of convex functions.

In this work, we will analyze Algorithm 1 in the setting of
finitely many disturbance values and deterministic policies.

Definition 4 (II): 11 is the set of deterministic policies such
that every 7 € II takes the form 7 = (7o, m1,...,TN_1),
where each 7; : R™ x R — R™ is Borel measurable.

Definition 5 (Pw): Let W, be supported on the Ny points
{whw? ..., w™} C R", and let p; € [0,1] be the
(unknown) probability that the value of W; is w?. In this case,
the ambiguity set of distributions is

. N | i =1, 0 wipd = O,
Pw:=qp € R}V N : .
S wl(w?)Tpl <%

Definition 6 (T'): The set of disturbance strategies in the
setting of finitely many disturbance values is I' := {7 =
(p07p17 cee 7pN—1) Pt € 7)W Vt}

The version of V;° (7) in the setting of finitely many
disturbance values and deterministic policies is

Vn(z, s):= max(z
Vi, s):

Vo are Borel

Vi (x,s) := inf sup ETJ(max(Z — Sp,0)) (8)
m€ell ~el' ’
for all (x,s) € R™ x R. The version of Algorithm 1 in the
setting of finitely many disturbance values follows.
Algorithm 2 (Value Iteration in Finite Case): Let the func-
tions VN, Va_ 1. VO be defined recursively as follows. For

all (z,s) € R" xRandforthfl,...,O,
Vn(z,s):=max(z7Qx — 5,0)
Vi, )= 8, up 3220 Vo (07,5l ).
W
Pet1(z,s,u)

The next theorem specifies properties of Algorithm 2.



Theorem 2 (Analysis of Algorithm 2): For t = 0,..., N,
the value function V; : R” x R — R is convex and bounded
below by 0, and Vt(xt, s¢) is non-increasing in s; for each x;.
Fort =0,1,...,N — 1, for any (z,s;) € R™ x R, there is a
uy € R™ such that

‘7t(xt7 St) = 1/_Jt+1($t7 St»u;t,st)~ 9

Suppose that there is a Borel measurable function 7f : R x
R — R™ such that for all (x¢,s;) € R™ x R,

‘Zﬁ(xtast) :&tJrl(CCt,St,W;(xtaSt)) (10)

Define 7* := (75,77, ..., Ta_y)- Then, Algorithm 2 provides

an upper bound to V; (8) specifically, V5" < V4.

Remark 2: Thm. 2 invokes a measurable selection assump-
tion (see also [17, Thm. 3.2.1]), which motivates future study
of measurable selection theorems.

To prove Thm. 2, we present two supporting results.

Lemma 2 (Value Function Analysis): Let v : R x R —
R be convex and bounded below by 0. Also, let v(zx,s) be
non-increasing in s for each z. Define v* : R® x R — R
as v*(z,s) 1= infycpm sup,cp,, Z;v:“i I v(f(x, u,w’), s —
c(z, u)) Then, v* is finite, convex, and bounded below by 0,
and v*(x, s) is non-increasing in s for each z. Also, for all
(z,s) € R™ x R, there is a u} , € R™ such that v*(z,s) =
SUPyepy Sopes P o(f(@uh g wl), s — c(@,u} ). ,

Proof: Since f(z,u,w’) is affine in (, u, s) for each w’,
s —c(x,u) is concave in (x,u, s), v is convex, and v(z, s) is
non-increasing in s for each z, (z,u,s) — v(f(x,u,w’),s —
c(z,u)) is convex in (x,u,s) for each w’. By proceeding
step-by-step through the operations that lead to v* and by
using knowledge of the operations that preserve convexity, the
desired properties follow. ]

The next supporting result for Thm. 2 provides properties
of conditional expectations and a DP recursion on R” x R.
Let 7 € Mand v € T. For t = 0,1,...,N, denote the
(7, 7)-conditional expectation of max(Z; — S, 0) as follows:
for all (z4,s;) € R™ x R, W/ (2, 8;) := E™ (max(Z, —
5¢,0)| Xy = 24,8, = s;), where Z, is defined by (2), and
recall that Z := Z.

Lemma 3 (A DP Recursion): Let m € II and v € T'. Then,
for all (z,s) € R™ x R, we have

Wg " (z,s) = E7:] (max(Z — So,0)),
Wy (x,s) = max(zTQrx — s,0).

Also, for t € {N —1,...,0}, we have W7 (zy,5;) =
Z;V”i i W (f(.’L‘t,ﬂ't(J?t, st), wl), sy — c(wy, mi (e, 51))).
Proof: The conclusions follow from the same arguments
that are used to prove the DP recursion for expected cumula-
tive costs (when one uses the probability measure P} and
the dynamics of the augmented state). ' ]
Next, we use Lemma 2 and Lemma 3 to prove Thm. 2.
Proof: [Thm. 2] The properties of V; hold by verifying
the properties of V}y and by applying Lemma 2 inductively. By
Lemma 3, we have V' (, s) = inf .y sup, cp W37 (2, s) for
all (z,s) € R” x R. Denote T := {0, 1,..., N}. It suffices to
show that W[ " (24, 5:) < Vi(¢, s¢) for all (z¢, s;) € R"XR,
v E T, and ¢t € T. Indeed, the above statement implies

that sup, cp W (24, 80) < Vi(xy, s¢) for all (z4,5:) €
R™ x R and ¢t € T. Since 7* € II and by the definition
of the infimum, V' (z,s) := inf cqsup, g W7 (z,s) <
SUp., WT Y (x,s) < Vilz,s) for all (z,s) € R x R.
Now, the base case (¢t = N) holds via Lemma 3 and the
definition of V. Assume (the induction hypothesis) that, for
some t € {N —1,...,0}, we have

(1)

for all (z411,5:41) € R"xRand vy € T. Let (x4, 5;) € R" xR
and y € . It follows that W, " (x, s;) < Vi(x, ;) due to
7* being in II, Lemma 3, and Egs. (11) and (10). [ ]

Wl (@i, se41) < Viga (e, se41)

V. A SCALABLE UPPER BOUND

Here, we return to the setting where there may be un-
countably many disturbance values. We will derive a scalable
upper bound to V, (Alg. 1) of the form, Vy(z,s) := ag +
max(xT Pyz — s,0) for all (z,s) € R® x R, where ap € R
and a positive definite symmetric matrix Py € R"™*" are
obtained through a Riccati-like recursion. The recursion is
parameterized by a positive definite symmetric matrix L and
provides a risk-averse controller. After the proof of Thm. 3,
we will describe the controller synthesis procedure.

Theorem 3: Define Py := Q5 and ay := 0. Let L € R™*"
satisfy L > 0. Fort = N—1,...,1,0, define the matrices P; €
R™>™ such that P; > 0, and the scalars a; € R recursively,

Py = AT (P} + BRTBT — (P + L)) A+ Q,
Ay = Q41 +tr(E(Pt+1 + L)) (12)
For all ¢t € {N,...,1,0}, define Vt(azt,st) = a; +

max(z! Py, — 54,0) for all (z4,s;) € R® x R. Then, for
all t € {N,...,1,0}, we have V; < Vi, provided that V; is
Borel measurable and bounded below by 0.

Remark 3 (About L, Py, a¢): P; and a; (12) are parameter-
ized by L. In the finite-time case above, L € R™*™ is only
required to be symmetric and positive definite.

Proof: We proceed by induction. The base case holds
because Py = @y and ay = 0. Now assume that for some
te{N—-1,...,1,0}, for all (x441,5:41) € R" xR, we have
Vt+1(96t+1,8t+1) < apq + maX(fomem - 8t+1,0),
where P, 1 € R™*™ satisfies P;41 > 0 and a;y; is a scalar.
It suffices to show that Vi(z4,s;) < a; + max(x] Pixy —
$t,0) V(xy,8:) € R™ x R, where a; and P; are defined by
(12). Let (x4, s;) € R™ x R. Since Vt+1 and V;,, are Borel
measurable and 0 < V41 < Vt+1, it holds that Vi(z,s;) <
at+1 + infy,erm SUp,,ep, fRn max@ﬁ’ffut (wt), 0)ve(dwy),
where ¢y, (we) = f(we, ue,we)T Py f(ae, u,we) +
c(xy,up) — s¢. By weak duality (e.g., see [18, Lem. A.1]),

‘/t(l‘t, St) < Ag+1 + inf inf tI'(AM), (13)
ur €R™ MeMPtyt
p(xe,8¢)
where A := diag(¥,1) and M{(7",, is the set of matrices
My Mo
M= >0 s.t. My € R™™", Ma; € R, and
|:M1TZ Moo S. 11 22
[wl 1M [w] 1] > ¢, (w) Vw, €R™. (14)



By matrix algebra, it follows that (14) is equivalent to

@%,st + QT u P + (QTu,P)T >0, where (15)
M M - Gsf Kth Tt In OnXI
q)mt,st = KTt ) g1 K= 0 Tt ;
(n+m)xn Omx1
0 0 = 0
G, = nxn nx1 ’ T._ (Bn+1)xm ;
¢ |:01><7L —St @ I,
P = [len 1 01><(2n+m)]7
Py Py [A B]
H := T T . .
(*) [A B] Pt+1|:A B] + dlag(Q, R)

Here, (%) denotes the appropriate terms for symmetry. By
[19, Lemma 3.1], (15) is solvable for u; € R™ if and only
if Wg@%sth > 0 and Wg@%,stWQ > 0, where the
columns of Wp and Wy form bases for the nullspaces of
P and @, respectively. By matrix algebra, it holds that
qu)%-,st

ToM
W5 o

Tt,St

Wp >0 <= My > Py, (16)
Wg>0 <= M>H,

where

H L é ~ ~éAl't
oo el ATG wf (ATGA+ Q) — s

G:=P,1— P B(R+BTP B 'BTP,,.

},and

A7)
Therefore, 1(x¢, s¢) (13) is equivalent to

Y(xy,s¢) = inf  tr(AM), where
MeMLyt

M3
Mya

(18)
My
M,
My, € R
M22 eR
By (13), (18), and A = diag(X, 1), it holds that

inf tI'(ZMll) + Mss.
cMitet

t+1

M{ } M >0
My > Py

M > Hl‘t,St

M= (19)

Vi(ze, 5¢) < apqr + (20)

By taking a Schur complement, M > Hg, s,
My1 > G and Mayy > h(zy, s¢, M), where

is equivalent to

h(xy, 8¢, M) := xfT (ATG’A + Q)xt — 5
+ ()T (Mg — G)H (M2 — GAzy).  (21)
We have G < P4y from (17), so My, > G is redundant:

My, Myo
M= M >0
Tt,S¢ |:M]?-‘2 M22:|
Mt = My, € R™™ M1 > P (22)
M22 c R M22 > h(fEt,St,M)

To bound the objective, we use the relaxation Mis = 0, x1.
Recall that L > 0 and define the set M{{7", C M{17T" as:

A =0 ]| o
= My, € R™*® My >{3t+1 +L , (23)
My € R Moo > h(xy, sy, Mi7)
where we define iz(xt,st,Mn) =
2T (AT(G = M) T A+ Q)ay — 1. (24)

Thus, we have

inf
VETI
MeMTh

Vi(we, 8¢) < agyr + tr(X M) + Moy, (25)

dr(we,st)
Let My := Py + L, M3, = max (h(xy, 54, M77),0), and

My, ,, = diag(M7,, M3,). Then,
or(xe, 8¢) < tr(XM7,) + max (ﬁ(xt, st, My1), 0). (26)
By substituting the definition of M7;, we have
‘/t(l't,St) S at+max (il(xt,st,Pt+1 —‘rL),O), (27)

where a; is given by (12). Since iz(xt,st,PH_l + L) =
x?Pta:t — s¢, where P; is given by (12), we are done. |

Remark 4 (Controller Synthesis): Based on the proof of
Thm. 3, we can derive a sub-optimal policy as follows. For a
fixed L > 0, compute the matrices P; via the recursion (12).
Let g € R™ be an initial condition. Define sy := x(:,FPoxo,
which depends on L through Fy. For ¢t = 0,1,...,N — 1,
proceed through the following steps:

1) Compute M, ., as per the proof of Thm. 3, M7 . :=
diag(M7,, M3,), where My, = Py + L, M3, :=
max(h(zy, s¢, M7,),0), and h is given by (24).

2) Choose a u; € R™ that satisfies (15) when M = M;‘hSt.

Such a wu; is guaranteed to exist from the choice of M =

M;, , and by repeating several steps in the proof above.

We note that the u, satisfying (15) may not be unique.

3) Nature chooses a disturbance value w; € R".

4) Calculate xyy1 = Azy + Buy + wy and sp41 = s¢ —

c(x¢,ug). Update t by 1. Go to step 1 if ¢ < N.

We now identify some interesting similarities and differ-
ences between our approach and classical methods.

Remark 5 (Relation to LEQR and LQ games): The Riccati
recursion for the LEQR problem in finite time takes the form
[7): fort=N—1,...,1,0,

P=AT(PZL +BR'BT %) 1A+ Q,  (28)
provided that 7y > 0 is chosen so that ! —~ P, is positive
definite for each ¢. Similarly, the Riccati recursion for a soft-
constrained LQ game takes the form [1, Eq. 3.4a’, p. 53]: for
t=N-1,...,1,0,

P =AT(PL +BR'BT - Ln) 'A+Q, (29
provided that 15,5 is invertible for each ¢, R = I,,,, and A is a
scalar parameter representing a disturbance-attenuation level.
The key differences between (12), (28), and (29) appear in the
terms X2, /\—122, and (P41 +L)_1, respectively. Our recursion
(12) encodes a risk-aversion level through the matrix (P11 +
L)_l, whereas the classical recursions (28) (29) encode risk
aversion by scaling the covariance X.

Remark 6 (Relation to minimax MPC): One may interpret
an LEQR controller in a model-predictive-control (MPC)
setting as an approximate solution to minimax MPC [3, p.
99]. In minimax MPC, a matrix 7 > 0, which depends on
a bounded region containing the process noise, appears in
the algorithm that provides an optimal control [3, Eq. 8.29,



p- 99]. Our recursion (12) has a similar structure since it is
parameterized by a matrix L > 0, and it is plausible that a
preferable choice of L depends on the maximal covariance ¥
(a topic for future investigation). A key distinction between
minimax MPC and our approach is the uncertainty model of
the process noise. Our approach permits process noise with an
unbounded support and a spectrum of possibilities that occur
with various probabilities. However, minimax MPC permits
process noise that lives in a bounded region with known
bounds [3, p. 42]. The “better” uncertainty model may be
application-dependent.

VI. NUMERICAL SIMULATION

Fig. 1 provides example trade-off curves comparing LEQR
(as y varies) with our proposed approach from Section V (as L
varies). These results show that for a simple one-state system,
our proposed approach (ACVaR) has comparable performance
relative to LEQR. This finding is notable given the simplicity
of our experiment and that our method avoids the case where
v is too large and the LEQR cost becomes infinite. We also
simulated the optimal CVaR controller from [16], which is
not distributionally robust. This controller assumes exact prior
knowledge of the disturbance distribution, which explains its
superior performance. However, this optimal CVaR controller
is not scalable to higher-dimensional problem instances, since
it requires discretizing the augmented state space.

2.5

rd deviation

Empirical CVaR («
2

5|

2.0 T T T T T T T T
22 24 26 28 30 32 34 3.6 3.8
Empirical mean

8. T T T T T T T T
22 24 26 28 30 32 34 3.6 3.8
Empirical mean

Fig. 1. Trade-offs between empirical mean, standard deviation, and
CVaRo.05 of the LQR cost for (i) our controller (ACVaR) as L varies, (ii)
the LEQR controller as ~ varies (LEQR), (iii) the exact CVaR« controller
with prior knowledge of the disturbance distribution as « varies (CVaR),
and (iv) the LQR controller (LQR). We used the scalar dynamical system
Tep1 =t +us+weWthR=Qf =1,Q = 1073, o = 1, and
N = 4. The disturbance w; is zero-mean Gaussian with unit variance.
The parameter ranges were 0.2 < L < 100, & < v < ¢, where e
is the critical v value for LEQR. Each point is the mean of 50,000 trials,
where the same schedule of pseudo-random seeds are used across
policies. In the limits L — oo, v — 0, and a — 1 for ACVaR, LEQR,
and CVAR., respectively, we recover the risk-neutral LQR policy.

VIl. CONCLUDING REMARKS

We took steps toward deriving a scalable upper bound to
a distributionally robust, CVaR optimal control problem for
linear systems with quadratic costs. CVaR characterizes the
(usually abstract) notion of risk as a fraction of worst-case
outcomes, which is intuitive and precise. A result from our
analysis is a risk-averse controller with intriguing similarities
and differences relative to the state-of-the-art.

Potential areas for future work include studying the infinite-
horizon case, characterizing the extent to which the upper

bound approximation parameterized by L is tight, and elu-
cidating the connections between the choice of L and the
maximal covariance X.

Further numerical experiments, potentially with higher-
dimensional or more realistic application-specific examples,
are needed to ascertain whether the proposed approach may be
a superior alternative to LEQR in certain application domains.
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